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Introduction

Satellite communications are one of the most growing fisld®mmunication indus-
try, and in the last decade a remarkable number of networ&sgiding many dfferent
services, has been deployed. A general class of mobildimasgrvices (MSSSs) is
supplied in aeronautical, land, and maritime scenariosekample, systems such as
Thuraya, Telesat, Inmarsat, and Iridium (just to cite fewheim) provide a telephone
connection similar to a cellular telephone link, except the repeaters are in orbit
around the Earth. Moreover, MSSs include railway applicetj security issues (e.g.,
the Automatic Identification Service, AlS, which suppligemtification and local-
ization information to vessels and shore stations)fitranonitoring, disaster man-
agement, e-health applications, digital video transmigsand many more. We will
focus on digital video services, which range from customises (such as interactive
applications) to professional and TV broadcasting sesvieq., the Direct-to-Home,
DTH). In particular, we will consider the Digital Video Brdeasting (DVB) service
and its two standards: the second generation of DVB-Sat€llivVB-S2), which de-
scribes the forward link (i.e., the connection between away and the user terminal
through a satellite repeater) [1], and the DVB-Return Cleh®atellite (DVB-RCS)
that defines the return link [2]. In all standards the spaetallocation is critical since
the band occupation is severely regulated and the avaitebidwidth is becoming
more and more scarce with the growing of the satellite marde¢refore, the need
for maximizing the broadcast information compels the aidopdf spectrally éicient
transmission techniques.

After the introduction of some technical backgrounds in @bel, in this The-
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sis we will propose three flerent solutions to the spectrdfieiency issue. First, in
Chapter 2 we will consider a multi-user scenario with fraggyemultiplexing, that is
one of the scenarios included in the DVB-RCS standard. Weaddpt continuous
phase modulations (CPMs) serially concatenated with agrautde through an in-
terleaver, and iterative detectjolecoding. The choice of the modulation formats is
justified by the intrinsic high spectraffieiency of CPMs, which can be further in-
creased exploiting the frequency packing technique. Sundmarovement does not
come for free, in fact an accurate synchronization has touaeamteed to allow the
detector to work properly. To this purpose, new iteratiegfrency and phase estima-
tors will be derived and the synchronization accuracy teste

Then, in Chapter 3 we will focus on code division multiple esx (CDMA) sys-
tems employing CPMs. A brand new spectral spreading teaknigspecially tai-
lored to CPMs, will be presented. We will show how to easilyaiba large, flat, and
smooth power spectral density, without resorting to sprepdequences and then
getting rid of all the design problems that come with. Morowe will derive some
suboptimal multi-user detectors that will be employed tovskthat the proposed sys-
tem outperforms all the other considered systems, founieititerature, in terms of
bit error rate and spectraffeiency.

Finally, considering the DVB-S2 scenario, in Chapter 4 wé priopose to in-
crease the spectrafficiency through time and frequency packing. This technigilie w
cause intersymbol and interchannel interferences to,agsgiring a significant in-
crease in the number of pilots used to carry out frequencyphade synchronization.
Therefore, new pilot designs will be introduced, and sudptimal and suboptimal
reduced-complexity algorithms derived. We will show thregt proposed systems may
outperform the DVB-S2 standard in terms of bit error rate gpekctral éiciency.

At last, we will draw some conclusions and sketch some plessiiture investi-
gations.



Chapter 1

Backgrounds

In this Chapter we give the basic frameworks, algorithmd, definitions extensively
used in this Thesis. First, the continuous phase moduat{@PMs) are defined
and their characteristics described. They will be employethe first two Chap-
ters of this Thesis in two €fierent scenarios. Then, maximum a posteriori proba-
bility (MAP) symbol detection strategy and the factor gréagpim-product algorithm
(FG/SPA) framework, pervasively adopted in every chapter, lasstiated. Finally,
we sketch the iterative joint detectjmiecoding procedure and the simulation-based
algorithm employed for the computation of the informatiater

1.1 Continuous phase modulations

CPMs are constant envelope modulations, hence low costfergpkan be used in
heavy saturation. Since the phase is continuous, theselatiodis result to be highly
spectral and powertigcient [3].

Phase continuity introduces a memory in the modulated kigha complex en-
velope of a CPM signal is therefore

St @) = 4/ %exp{&rhz aiq(t—iT) +9}
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whereEg is the energy per symbdl, the symbol periodh a constant callechodula-
tion index {ay} are the information symbols belonging to the alphakét..., +(M-1)},
q(t) is thephase smoothing respondefined as

0 whent<O
qt) =
whent > LT

NIl

andd is the initial phase fbset. Parametel is the correlation lengthof the CPM
signal. The phase smoothing function can be expressedeggahbf thefrequency

pulse

o = 49

whose duration is at mo&iT. Since the frequency pulse isfidirent from zero only

in the interval [QLT], the phase of the signal can be expressed as the sum of three
terms (in addition to the initial phag®. Considering a finite-duration transmission,
we have

k-L

d(tn, 00) = 2rh >
i=0

k=1

+orh > aiq(t-iT)+

i=k—L+1

1+
2

+ 2rhayq(t — KT) KT <t<(k+1)T.

The first of these terms depends on the “old” symbols whosporesq(t) has
reached its final value/2 and is callegphase state

k-L
Wk = [ﬂhZai] mod 2r.

i=0
The second term depends on the 1 most recent symbolgy_ ,1,...,ax 1. This

group of symbols defines theorrelative stateand, together with the phase state,
contributes to the definition of thmodulator stateat timekT, that is

Ok = (Qk-1s -+ s Xk 41 PK) -
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Given the symbol and the state at tikig, the phase@(t; ax, ok)—and hence the CPM
signal—results determined.
Attimet = (k+1)T, the next modulator state becomes

ki1 = (ks - - Ok L42; Pks1)
where the new correlative state is obtained just righttisigithe old one, and the new

phase state is
@k+1 = (@K + mhak-L+1) mod 2r.

To evaluate the number of states of the modulator we obséatetiie number of
correlative states i1, Theoretically, the number of phase states may be infinite.
Fortunately, it results to be finite if the modulation indexairational number [3]

h="
p

wheren and p are relatively prime. Ifn is even, there ar@ distinct phase states,
otherwise there are®2possible phase states. Among thegevalues, onlyp can
be taken on in the even time epochs, while in the odd time epoaly the other
p values can be taken on. Hence, the total number of states BMar@odulator is
alwayspM-~1. If n and p are not relatively prime, the index definition is still valid
but the trellis is redundant and can be reduced.

An integer representation of the phase state and the infammsymbols allows to
work with a new phase state whose alphabet results to beitivagant [4]. Defining

ak =2ax—(M-1)
¢k = 2rhgg — rh(M — 1)k
we have thaty € {0,1,...,M -1} andgk € {0,1,..., p— 1}, and the new update law
becomes
@k+1 = (@k+ ak-L+1) Modp
wheregy, 1 takes on values in the same alphabeppindependently of the timk
(even or odd).

CPMs are grouped in two classes according to the correldiogth. Namely,
they are said to bull responseCPMs if L = 1, orpartial responseCPMs ifL > 1.
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1.2 MAP symbol detection strategy and BCJR algorithm

Given a sequence of transmitted symbfds} collected into vectom, wherea =
(ao,...,ax_1), and a channel with memory, we denote by vecttire suficient statis-

tics of the received signa(t), extracted by the receiver. In particular, théh element

of vectorr can be a vector, denoted in the following since in general, at each time
epochn, the number of dfficient statistics can be greater than one. Thus, the MAP
symbol detection strategy minimizing the average symhboirgrobability is

an = argrgnaP(anlr) 1.1)

whereP(.) denotes a probability mass function (PMF). We adopt thegegy because
it provides soft-output decisions and, as a by-product atipesteriori probabilities
(APPs){P(an|r)}, which can be considered as reliability estimates on theamsym-
bols{&,}. These estimates allow us to derive soft-input soft-ou(BIEO) detection
(or decoding) algorithms, necessary to implement iteggdint detectiofdecoding
schemes [5].

In particular, by employing the Bayes rules, we can expreesMAP symbol
strategy in (1.1) as

8 = argn;nam(rlan)P(an) 1.2)

where{P(a,)} are the a priori probabilities of symbd|a,} andp(.) denotes a proba-
bility density function (PDF). Thus, in order to accompligie proposed maximiza-
tion, we need to compute the Pk |a,). Considering a channel with memory de-
scribed as a finite-state machine (FSM), whose state is eeéryto,, we can solve
the MAP symbol problem by the Bahl, Cocke, Jelinek, Raviv JBalgorithm [6]
based on a probabilistic derivation. In particulpr|a,) expression is given by

P(rlan) = " an(@n)Brsa(enia) P(r nldn, o) (1.3)

where

e ap(op) is the forward metric defined as

an(on) = p(r8_1|0'n)P(0'n)
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where we denote by the vector collecting all the slicient statistics , from
n=ngton=ny;

e Bni1(ons1) is the backward metric and reads

Brs1(onsr) = p(r r|1<+_11|0'n+1)-

Forward and backward metrics can be recursively computexidgin the following
forward and backward recursions

@nia(0ma) = D, an(om) P nlan, on) P(an) (1.4)
an,0n
o) = > Pt (0ns2) P nlan, o) P(an) (1.5)
an,0n+1

Hence the BCJR algorithm works as follows:

e forward and backward metrics are computed by means of (hd(R5) for
each time epoch and each state valug,;

e the PDFp(r|a,) is derived by (1.3) exploitingn(or), Bni1(0n1), andp(rnlan, on);

e finally, the MAP strategy (1.2) can be implemented and AFR®a,|r)} ob-
tained.

However, this algorithm is usually unsuitable for direciplamentation because of
the dificulties in numerically representing probabilities, noskr functions, and ba-
sic arithmetical operations (multiplication and sum) iitog these values. There-
fore, a perfectly equivalent algorithm, working in the loigfamic domain, is usually
adopted since it does not present these problems of imptatiem[7]. In the loga-
rithmic domain, Equations (1.3), (1.4), and (1.5) are athie form

INf(01,....00) =In(&* +...+ &™)
which can be recursively calculated resorting to the Jacolugarithm, i.e.

In (e‘51 + e‘52) = max{61,62} +In (1 + e"51‘52') .
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Typically, when symbolga,} are generated from aw-ary alphabet, we choose the
set{fan} of M —1 logarithmic ratios of APP$P(an|r)} as reliability estimates of
decisions on symbols,}. The log-likelihood ratio (LLRYa, is hence defined as

P(a, =ar
fan=1n (an=alr)

RZCECD o

whereae{l,...,M-1}.

1.3 Factor graphs and sum-product algorithm

An alternative derivation of the BCJR algorithm can be atediby means of the fac-
tor graphs (FGs) and the sum-product algorithm (SPA) ptedein [8]. These tools
are particularly suited to find the marginals of a joint PMBttban be expressed as
product of “local” functions, each of which depends on a stib§the variables. This
factorization can be visualized with a FG, which is a bipargraph that indicates
which variables are argument of each local function. The &Bs on the FG and
computes the marginal functions derived from the globattiam.

Letx = (x,...,%n) be a collection of variables, whergtakes on values on some
(usually finite) domairA;, and letf(x) be a multivariate function. Suppose tH#k)
factors into a product of several local functiofis each having a subsgj of x as
argument:

o) =] ] f04)

jed

wherel is a discrete index set. A FG is a bipartite graph which hasiahia node for
each variable, a factor node for each functiofy, and an edge connecting variable
nodex; to function nodef; if and only if x; is an argument of;. The SPA is defined by
the computation rules at variable and factor nodes, and ljtabée node activation
schedule. Denoting by ;(X) @ message sent from the variable nogéo the
factor nodef;, by uf,x (%) @ message in the opposite direction, andgpyhe set of
functions f; havingx; as argument, the message computations performed at wariabl
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and factor nodes are, respectively [8]

st ()= [ ] #nox(%) (L.7)
heBi\{fj}

pioe ()= D fittyee) [] m-q®) (1.8)
~{x} yeCi\{xi}

whereC; is the set of variables argument §fand 3. ., is the summaryoperator,
i.e., a sum over all the variables @) excludingx;.

Thus, we can factor the PMEalr) in order to find, through the SPA, the marginal
APPs{P(a,|r)} required by the MAP symbol strategy (1.1). If the FG has cjcle
the SPA is inherently iterative and the convergence to tlaetemarginal PMFs is
not guaranteed. Nevertheless, for many relevant problé&ascterized by FGs with
cycles, the SPA was found to provide very good results anebfihie it represents a
viable solution to the approximated marginalization of tiwaliate PMFs when exact
calculation is not feasible because of complexity.

Finally, we define the message-passing schedule in the SBfe apecification
of the order in which messages are updated. In general, iafpdor graphs with
cycles, the so-called flooding schedule is adopted [9]: oheteration, all variable
nodes and subsequently all factor nodes pass hew messabes teeighbors.

1.4 Iterative joint detection/decoding

When we consider a communication system characterized bgrancorrecting code
and a channel with memory, the set of possible states of thathsystem can have
a very large cardinality. Hence, the optimal MAP symbol (eqence) detection
strategy at the receiver may become infeasible. In thesescage can resort to a
suboptimal iterative joint detectigaecoding scheme which exhibits a computational
complexity much lower than the complexity of the optimalestte, but whose perfor-
mance approaches that of the optimal one (as verified by ncaheesults) [10]. In
particular, here we describe the operations of a serialicatenated scheme, which
is the scheme adopted in all the following Chapters for theadm®n of the transmit-
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ted signal (a CPM or a linearly modulated signal) in the pneseof an outer error
correcting code.

In an iterative concatenated joint detectibecoding scheme, each component
block (i.e., the detector and the decoder) works separbjeimplementing the MAP
symbol strategy optimal for the single block, assuming tiwabther memory sources
are present in the system. They employ a detection (respbgtilecoding) algorithm
based on the MAP symbol rule which provides reliability msties on the algorithm
decisions. In general, an iterative concatenated schebased on the following ba-
sic concept: each component block exploits the suggespomdgded by the other
component block, in order to derive decisions which becomeermeliable with the
iterations. In detail, a serially concatenated scheme svaskfollows. First of all,
the detector performs an instance of the detection algoritiperating on the chan-
nel suficient statistics. Then, the soft decisions produced on each syrahare
forwarded to the decoder, which employs the detector APRs @$ori probabili-
ties on symbolda,} while performing decoding. Thus, a new set of soft decisions
on the symbols are produced and passed to the detector. Tdwateexploits these
reliability estimates as a priori probabilities ¢} and starts a new iteration of the
serially concatenated scheme. The joint detediecoding process continues for a
fixed number of iterations, then hard final decisions on sysfag} are made.

In order to accelerate the convergence of the iterativectletgdecoding process,
each component block must receive as input an informatianishmot self-produced.
With this purpose, in [11] and [12] the conceptexttrinsic informatioris introduced,
which identifies the reliability information produced by angponent block which
does not depend on the information received as input. If weteby/3 the LLR
defined in (1.6) and produced by a block, representing thabiity measure of a
MAP symbol algorithm on the decision on the symhbg] the extrinsic information
53" generated by such block is given by

e,out _ pout e,in
Can =lan—lan -

The FGSPA tool intrinsically propagates extrinsic informatias, described by (1.7)
and (1.8).
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The turbo principle, i.e., the exchange of information kesw two soft blocks,
can be employed also in iterative decoding applied to lonsig parity-check (LDPC)
codes and turbo codes [13].

1.5 Information rate for channels with memory

Theinformation rate [x;y) quantifies the amount of information that can be trans-
mitted over a channel with input random proc@ésnd output random procegds,
and is expressed in bits per channel use. In the following vidagus on the case
where bothX andY are stationary processes. From them we extract the digimege
stationary random sequenceandy respectively, in general not of the same length.
From information theory results [14], we know that for evehannell (x;y) can be
expressed as

ch.us

bit
1669) = -h6) (e (L.9)
whereh(x) is thedifferential entropy ratef the input sequence
—+00 l
h(x) = —E{lo X :f X)log, ——dx
(x) {log, p(x)} _wp() 955

andh(xly) is the conditional differential entropy rate of the input sequencgiven
the channel output sequenge

h(xly) = ~E{log, p(xly)} = f “p(x,y)logzﬁdxdy

which depends only on the channel characteristics. It camben that (1.9) is equiv-
alentto

10:y) = h(y) = h(y¥) ( bit e) (1.10)

ch.us
A method to compute the information rate of a finite-statedbid Markov model is
described in [15], and employs the forward recursion of ti&IB algorithm. This
method can be extended to all channel models with an infiniteler of states (for
example additive white Gaussian noise channfflscted by phase noise) finding an
auxiliary finite-state channel that approximates the datbannel. In this case, the
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algorithm allows to compute a lower bound of the actual imfation rate—the better
the channel approximation, the tighter the bound.

The method is the following. Given a certain channel inpqtmce(T =(X1,...,XN)
and the corresponding output sequence of the same Igﬁlg:tr(yl, ...,¥n), the com-
putation of the diterential entropy rath(y) and of the conditional dlierential entropy
rate h(y|x) can be carried out thanks to the Shannon-McMillian-Brgim#eorem
[14] which ensures the convergence, with probability eqo@ne, of

) = - Jim_<Eflog, p) (L12)
) = - Jim <E{log, pyynd)) (1.12)

if x’l\I and yi‘ are realizations of stationary ergodic finite-state hidt#arkov pro-
cesses. Replacing (1.11) and (1.12) in (1.10), we get
1 plyy x})
I(x;y) = lim —E{log, ————¢. (1.13)
NS0 N2 ply)

Hence, to compute the information rate we just need to etaltee PDFsp(y;‘)
and p(y’l\‘lx’l\‘). These values can béfectively obtained by the forward recursion of
the BCJR algorithm implementing the MAP symbol detectiaatsgy. Finally, to
evaluate the expectation in (1.13) the Montecarlo methadldgpted.



Chapter 2

Synchronization for FDM-CPM
systems

Spectral &iciency (SE) of frequency division multiplexed (FDM) systeoan be in-
creased by reducing the spacing between two adjacent deatine allowing over-
lap in frequency and hence admitting a certain amount offgrence [16][17]. This
aspect has been investigated from an information-theopetint of view for linear
[18] as well as continuous phase modulations (CPMs) [19][&@owing that a sig-
nificant improvement can be obtained through packing evesnvel the receiver side
a single-user detector is employed. When a multi-uservec& adopted, the bene-
fits in terms of SE can be even larger and the signals can begaenser and denser
[16]-[21].

Since, as known, the complexity of the optimal multi-usetedtor increases ex-
ponentially with the number of channels, suboptimal d&ecichemes are required.
In the case of a satellite FDM system using linear modulatiaghe adoption of
reduced-complexity multi-user detection (MUD) algorithimorrowed from the liter-
ature on code division multiple access (CDMA) is investghin [16]-[18] showing
that these techniques work well also in this scenario. Aigtothis is, in principle,
possible for CPM systems as well, a new reduced-complexityDMalgorithm for
an additive white Gaussian noise (AWGN) channel is derind@2] based on factor
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graphs (FGs) and the sum-product algorithm (SPA) [8]. Thiiet framework, often
used in the past to reinterpret known algorithms, is veryulder deriving new de-
tection schemes with an unprecedented complgetyormance tradefb[23]-[27]

or for applications where traditional probabilistic medlsdail [28]. In this case, the
new algorithm designed in [22] by using this framework oufiprens all other subop-
timal MUD algorithms both from performance and complexityings of view [20].
But a denser packing has an impact not only on the detectimritdim. In fact, once
satisfactorily suboptimal MUD algorithms are availabl¢her subsystems become
critical. In particular, carrier synchronization scherabte to cope with the increased
interference must be adopted.

In this Chapter, we will focus on CPMs, since they are oftepleged in satellite
communications and they have been recently included inrideg2neration Digital
Video Broadcasting - Return Channel Satellite (DVB-RCS&hdard [2]. CPM sig-
nals are appealing for satellite systems for their robsstrie nonlinearities, stem-
ming from the constant envelope, their claimed power andtesgedficiency, and
their recursive nature which allows to employ them in sBriebncatenated schemes
[29][30].

2.1 System model

We assume that the channel is sharedJbyndependent users. Without loss of gen-
erality, we consider synchronous users, all employing #mesmodulation format,
equally spaced in the frequency domain, transmitting atstivae power, and a re-
turn link satellite channel. The extension to the case ofiesonous users, possibly
with different power and modulation formats can be pursued as dedanb[22].
The adoption of CPMs allows to use cheaper nonlinear anglifiethe transmitters,
which can be driven in saturation and whosteet can be neglected in our anal-
ysis. On the other hand, we assume that the on-board satfliplifier works far
from the saturation to avoid distortions on the composiimai—this is a common
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operating choice for this kind of systemdNe assume that each user transnhits
symbols and we denote byfn“) the symbol transmitted by userat discrete-time

n, which takes on values in th®l-ary alphabef{+1,+3--- + (M — 1)}. Moreover,

oV = (a(“) oW )T is the vector of theN symbols transmitted by userand we
also denotezyzn = (a(l) Lo ande = (),....a}_,)". In the following, ()" de-
notes transpose ang'{ transpose conjugate. The complex envelope of the received
signal can be written as

)
(M) =Y sU(ta)eO+w() 2.1)
u=1

wherew(t) is a zero-mean circularly symmetric white Gaussian noisegss with
power spectral density (PSDNg (No assumed perfectly known at the receiver),
61 (t) is the phase noise (PNJfacting usem (6(t) and6M(t) are assumed inde-
pendent foru # v), ands¥(t,a) is the CPM information-bearing signal of user
which reads

SO, oWy = 4 / = exp{ 2nf W+ hZ aWq(t— nT)} : (2.2)

In the generic time intervaln[l,nT + T), the CPM signal of useun is completely
defined by symbok“ and stater = (wn, ¢n), where

(U) _ ()

n-1°°"">

(u)

(a n-L+1

(04

is the correlative state ang},, which takes onp values, is the phase state. In the
following, we defineo = (¢, ...,a4)T ando = (o],...,0)".

An approximated set of licient statistics can be obtained by extractingam-
ples per symbol interval from the received signal prefilldog means of an analog
low-pass filter which leaves unmodified the useful signal has a vestigial sym-
metry aroundy/2T. The condition on the vestigial symmetry of the analog pefil

1We are dealing with a multiple carrier per transponder s¢enahich is common in the return link
of satellite systems.
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ensures that the noise samples are independent and idlgrdistibuted (i.i.d.) com-
plex Gaussian random variables with independent compsneath with mean zero
and varianceg? = Noip/T [22]. We will denote byr,m, the mth received sample
(m=0,1,...,5—1) of then-th symbol interval. Assuming™(t) constant over an
interval of lengthT, this sample can be expressed as

Z (e e + v (2.3)

whereg” = 6 (nT), {wy,m} are i.i.d. complex Gaussian noise samples, sifida®, o)
(whose dependence el ando" will be omitted in the following when unnec-
essary) is the contribution of userto the useful signal component. The random
process{e,({‘)} is modeled according to a discrete-time Wiener processse/hre-
mental standard deviation over a symbol interwalis known at the receiver [27].

In the following, we will definer, = (rno.rn1,....fny-2) ", r = (r§.r{.....ry_,)" and

(U)_ (U) ) (W T
(s 0 Sh1 S l)

2.2 Carrier synchronization algorithms

2.2.1 Multi-user joint detection and phase synchronizatia

In the presence of PN, phase synchronization must be peztbjointly with detec-
tion [23], [27]. We describe the extension of the reduceahglexity MUD scheme
in [22] to the case of channel¢tacted by PN. This algorithm is obtained by means
of some graphical manipulations on the FG representingadiné glistribution of the
transmitted symbols and the channel phase. We follow thee8agy approach em-
ployed in [27] to design single-user detectors for the PNholeh

We can rewrite the signal of usarhighlighting the component that depends on
the CPM phase state:

W (@, o) =5 (o, W)’
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Defining ¥ = [ + 6],,., where [J2, denotes the modulusrdperator, the re-
ceived signal (2.3) can be expressed as

U
— (u)
m:Z§1ur)n S1U)"Un))ewn +Wnm- (2.4)
u=1
Let us now definaon = (@Y?,..., 04T, @ = (@],...,0])T, ¥n = @T,...ui)T,
=Wl,....y)", andsV = (sf]”%, Y., _)T. Discarding the terms indepen-

dent of symbols and states and taking into account that a Gthlshas a constant
envelope, the joint distributiop(a, w, ¥|r) can be factored as

N-1
pler,w,ylr) o ]‘[P(w(“))w(“) [ [ Enten nyro)-
n=0
U
] [TV, 0P eGP, ofNP (@), 0, a)Ped?)  (2.5)
u=1
where

199, 09,09 = Pl 0 o)

n+1°
G i) = pu™ 1w d?, i)

TOY, 0®,y¥) = exp{ %[ H (“)e*”(“)]}

En(an, wn, ¥,) = T_[l ﬁ exp{ [ (I)HS$1k) ~( - wﬁk))]} (2.6)

i=1 k=i+1

Notice thatP(w(“)1|w§1“),an)) is an indicator function, equal to onedf”, v, and

(“) , are compatible and to zero otherwise, @(lﬂﬁi)l gV, Wy = p(‘ﬁgi)l w, f]“)ul
is a Gaussian PDF |mf1“+)1 with mean {z/g) + han_L+1]2: and standard deviation
oa. The FG corresponding to (2.5) has cycles of length fout, riigke unlikely the
convergence of the SPA, since they are too short. We remese tbhort cycles by
clustering the variables® andy" and then stretching them in®’, o™,y V) [8],

obtaining a graph with shortest cycles of length twelve.uisieig as in [22] that the
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interference among non-adjacent users is negligible, weoapnate (2.6) as

uUu-1
En(an, on ;) ~ ]—[Eﬂ“l)(aﬂ),wﬂ), g)’aﬂﬂ)’wgﬂ)’wgﬂ)) (2.7)
i=1

where
Er(:’l+l)(a$1l)a (-Ug), S]I)v a/gH—l)a (-US]H—:L)v 17[’2-'-1)) = eXp{_E %[SQ)HS(;_F]‘)e_(d/(n)_QP% Y :|} .

This FG is shown in Fig. 2.1 and is similar to that for the AWGNwnel [22]. A ma-
jor difference is represented here by the fact that continuousbiema,(qu) are now
represented in the graph. Hence, the application of the BRM\es the computation
of continuous PDFs and is not suited for a practical impleaté@n. To overcome
this problem, we may resort, as in [27], to the canonicalrithstion approach. Ex-
amples of commonly used canonical distributions for thiaretel can be found in
[27]. In the numerical results, we will consider a canonitiatribution composed of
a weighted sum of impulses. In other words, each plﬁ&%é&s guantized td equally
spaced values. Although the algorithm has been obtaineddynzing a Wiener PN
with known incremental variance over a symbol varianceait be employed even
when the PN follows a dlierent model. In this case, the valueooﬁ assumed at the
receiver must be optimized by simulation for the PN at handarly case, there is
in general a benefit from using at the receiver a value of theruise variancer?
larger than the actual one. The rationale of this trick isf¢ilewing: since there is an
overconfidence in the computed messages, we can make thighaigtess confident
simply by describing the channel as if it added more noise thaeally does [31].

2.2.2 Data-aided multi-user fine frequency synchronizatio

The MUD algorithm requires the knowledge of the amplitug@Es/T (possibly
different in case of users withftérent powers) and frequency valut® for each
user. For them, we resort to data-aided (DA) estimationrdlgos based on known
data fields usually inserted in the frame. Amplitude estiomais not an issue. In fact,
the application ofJ occurrences of a DA maximume-likelihood single-user estioma
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Figure 2.1: FG resulting from the approximation (2.7) andUdo= 3.

algorithm provides amplitude estimates with a good acgufactypical preamble
lengths. Instead, DA single-user frequency estimatioorélgms do not provide the
required accuracy. This is obviously due to the interfegenfcadjacent channels. For
this reason, we employ interference cancellation to refireestimates.

A first set of estimates of the frequency valug¥ is obtained by applying the
DA algorithm in [32] to the preamble of each user. This altjoni does not require
the knowledge of the channel phase for each user. Theseatstirare then itera-
tively refined still using the same single-user algorithnthe received signal after
the contribution of the adjacent signals has been remowegeiform interference
cancellation we need to employ not only the already estichateplitude values and
the frequency values of the previous iteration, but alsdrie&ntaneous (in case of
a time-varying channel phase) values of the channel phassatd user. These are
obtained by using the DA multi-user carrier phase estimatigorithm described in
the next paragraph, and refined every time a new set of freguestimates becomes
available.

In summary, the algorithm proceeds as follows. The ampitafieach user is
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estimated first. Then, at each iteration a new set of frequestimates is derived by
using the single-user DA algorithm in [32] after the conitibn of adjacent users has
been removed. This set of frequency estimates is employeerform DA multi-user
carrier phase estimation whose output will be employedrtarference cancellation
at the next iteration. A few iterations are in generdfisient, provided the known
data fields of all users have been properly optimized.

2.2.3 Data-aided multi-user carrier phase estimation

We now describe a DA multi-user carrier phase estimatioardlgn that requires the
knowledge of frequency and amplitude values of each usema®ed as described
in the previous paragraph. As mentioned, phase estimatessad for interference
cancellation necessary to improve frequency estimates.

Let us assume a known data field®symbols K = P samples). Definingy =
rnm, X = s andZi = Wnm, with k = n +m, we will assume that the known data
field corresponds to valuds=0,1,...,K— 1. We also remove the hypothesis that the
PN is constant over a symbol interval and detjaﬁ‘@ = 0M(kT/n). Hence, we may
express

U
()
2= ) x4 + 4. (2.8)
u=1

Let us definep, = (¢,....0")T, o = (],....0% )T andz = (zo,...,z¢-1)". As
before, we model the PN as a discrete-time Wiener procebsneitemental standard
deviation over a symbol intervat,. We derive the MAP DA phase estimator as

sﬁ(k”)=argrrg§1xp(go(k“)lz) u=1,...,U, k=0,.. K-1.
‘1‘7ku

PDFs{p(ga(k“)lz)} are obtained fronp(p|z) by using the FEPA framework. From



2.2. Carrier synchronization algorithms 21

(2.8), we may express

K-1
pPel2) x p(Zle)p(y) = n p(zdley) n p(go(u) (u)
k=0 u=1
K-1 U
= l_[ p(Zk|¢k)l_[D(ku|z_1(90(u) so(kli)l) (2.9)
k=0 u=1

whereDf(‘:') 1(g0(u) go(ku)l) = p(go(u) (Li)l) is a Gaussian PDF with mea{ﬂl and stan-
dard deviatiornra/ 4/, according to the Wiener model. Neglecting irrelevant mult
plicative terms, we can further factor
2
u=1 }
u-1 U

o< ]‘[ BO@ [ | [] ¢ (2.10)

u=1v=u+1

U
(Ut
7=7 A 2% O

-

having defined

B (¢ = exp{ [kaﬁu)*e “ ]}

Cl((u,v)(gp(ku)’go(kV)) exp{ [Xl(<U)XI(<V)* (90(ku)—90k )]}

From (2.9) and (2.10), we finally obtain the relevant factation of p(¢|z). Node
C(“") in the resulting FG connects variable nod;é('é) and go(v) Since the interfer-
ence between two non-adjacent users is much smaller thant#nkerence between
adjacent users, we consider only functions connectingcadiavariable nodes, i.e.
functionsCl((“’“”). The simplified FG is shown in Fig. 2.2.

Due to the presence of cycles in the FG of Fig. 2.2, the apjpitaf the SPA
gives an iterative algorithm which provides proper appradions of PDF$p(<,o(“)|z)}.
We adopt the canonical distribution approach and, as in {#8model the messages
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Figure 2.2: FG for the multi-user DA phase estimator.
represented in Fig. 2.2 as Tikhonov PDFs, i.e.

Pl = @ el
pg“&(so“’) (8l o)
(u 1u)( (u)) _t(ai(u Lu). (ku))

(u+1 u)(w(u)) t(a.ru+l ,u). (ku))

wheret(£; X) is a Tikhonov distribution in the random variable (R¥tharacterized
by the complex parametér

16 = gy 0l e

being b(:) the zeroth-order modified Bessel function of the first kiktnce, we
simply have to update and propagate the complex parametecsiloing the Tikhonov
PDFs. Let us first consider the update of parama%%r By generalizing the results
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in [23], we have

a) =yl + 2k ity g glurt) 7 (2.11)
Af ki1 ikt Tm2 Tk \/,—7
having defined
red) =7 +| T
Similarly,
kal(<u)*
o B g ) e
\/ﬁ
Regarding parametes, " anda{ ) we have
(u)s (u) (u+1)x
Z
R O e = T
and
(u)+ (u-1), (u)=
wu-1) _ o 0 o0 R i K K
&« [ Akttt /2 Tak T 2 (2.14)
where
8(e.0) =~
e[ + 1212

In order to obtain (2.13) and (2.14), two approximationseiaeen employedp(|x]) ~
eX and V1+x =~ 1+ x/2. The following schedule is adopted: messag%%. and
ag“i)( are first updated, fok = 0,...,K — 1 (with initial parametera(“) =0) andk =
K —1,...,0 (with initial parametelag?< , = 0), respectively. Then messa@% LU
anda&‘;l’”) are updated fou=2,...,U andu=U —1,...,1, respectively (with’initial
parameters},” = &, "*") = 0). A few iterations are, in general, figient. Finally,

the phase estimates are

(U)+
(u+1, u) ZkX

+ta =2

o = arglal) + &l + a1
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2.3 Numerical results

We limit our investigation to binary CPM formats. This cheis justified by the need
to illustrate the relevant concepts and by the results whlgw that we can design
transmission schemes with a very highi@ency using simple CPMs. We consider
binary CPM withh=1/3, L = 2, and rectangular (REC) frequency pulse. This scheme
turned out to be the best one among those considered in [20].

As discussed in [19] and [20], the optimal spacing dependtherconsidered
value of Es/Ng (although this dependence is quite smooth). Hence, acaptdithe
operatingEs/Ng, we choose the optimal modulation format and the correspgnd
optimal spacing. For the REC schemd, = 0.3 is the optimal spacing &s/Ng = 10
dB when an infinite number of users is present and the misreatbhiUD considers
only U’ = 5 users, handling the remaining users as AWGN. The schenmeREC
frequency pulse leads to a higher SE than the RC-based cparitf20], even though
REC and RC formats perform similarly for low values of SE [20]

The described multi-user frequency synchronization seheesults unbiased.
Hence, in Fig. 2.3 we show the mean square error (MSE) of #gufincy estimate
for the central user versuss/Ng, whenP = 60 symbols. A Wiener PN withrp = 1
degree has been considered. As a reference curve, we sh@vaher-Rao lower
bound (CRB) for a system withl = 1, computed according to [33]. Wheh = 1,
this bound is reached by the frequency estimation algorithii32] for Es/Ng > 2
dB (curve with white circles). Whebl = 5 users are present, this algorithm gives a
very poor performance (curve labeled “1 iteration” sinceoitresponds to the first it-
eration of the proposed multi-user algorithm). With 4 itemas we are able to reach,
for Es/Np > 5 dB, the CRB related to the presence of only one user. Henaerya
effective interference cancellation is performed. A slighistter result is obtained
by using a genie-aided version of the proposed frequenaghsgnization algorithm
in which the true values of the channel phases are employadtésference cancel-
lation purposes.
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Figure 2.3: MSE of the multiuser frequency synchronizasoheme in the presence
of PN.






Chapter 3

Spread-spectrum CPM systems

Modern communications require modulation formats roboshdnlinearities and
multiple access interference (MAI), as well as power- anecsplly dficient. Ro-
bustness to nonlinearity is mandatory in order to use slyosgfurated amplifiers,
and spectral ficiency is one of the most important quality figures in any camm
cation system. For this reason the choice of using moduldtionats such as con-
tinuous phase modulations (CPMs) comes quite naturallji<are a family of very
appealing modulation formats. Their robustness to noatite stemming from the
constant envelope is one of the main reasons of their papulalong with excellent
power and spectralfiéciencies [19].

Code division multiple access (CDMA) is one of the most stddinethods for
multi-user communication systems. Based on the employezhdpspectrum (SS)
technique, CDMA schemes are grouped in two major classeglyalirect-sequence
SS (DS-SS) and frequency-hopping SS (FH-SS).

DS-SS has been combined with CPMs in marfiedent ways. Lane and Bush [34]
proposed a SS mulh-(SSMH) CPM whose drawbacks in a multi-user scenario will
be analyzed in the following. Gianneéi al.[35] studied a special subset of singdie-
binary CPMs, known as generalized minimum-shift keying (&K), which can
be approximately viewed as linear modulations. Hence sidakresults of multi-
user communications for linear modulations apply. Obigufie main drawback
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of this approach is the strict constraint on the modulatiormfit. Hsu and Lehn-
ert [36] considered a multi-user system where each usesrrigsm a SS signal that
is the product between a linear modulation (for the data) amdulti-h CPM (for
the spreading chips), giving up to phase continuity. Thisofam has been solved by
Yanget al.[37] mapping theM-ary information symbols intd binary phase spread-
ing sequences (PSSs) modulated by a sihgPM modulator. The main problem
of this approach is the time-consuming design of a uniquefskt different and or-
thogonal PSSs for each user. Moreover, a simple receivastste is not available
because the data and the spreading chips are not separhblseparation between
data and spreading chips has been preserved in the dud-amique proposed
by McDowell et al.[38]. Chips are modulated as a mutticPM, data are modulated
as a MSK signal, and finally multiplied. The receiver, as ia limearly-modulated
DS-SS systems, is composed by an analog (and thereforesipedespreader and
a detector. Muller and Lampe proposed in [39] a DS-SS syswngudinear modu-
lations with constant envelope and continuous phase. Tid a¥tase jumps to occur
at every symbol change, they pose few constraints on theniafiion symbol al-
phabet, the spreading factor, and the symbol waveform. [ltiesr must depend on
the chip sequence and the chip waveform. This solutione@dabntinuous phase
chip modulation (CPCM), has nevertheless big spectralatids, incompatible with
spectral masks of most wireless communication standatdsefore Miller recently
proposed in [40] a linear DS-SS system where each user gnaskia set of very
similar spreading sequences, which are chosen in a daemdept fashion. These
sequences are generated by an iterative algorithm ensingéghigh stop-band at-
tenuation, constant envelope and continuous phase.

To our knowledge, FH has never been studied as a multiplesadeehnique in
CPM-based systems. Nevertheless, FH has been used withriesp of spreading
the CPM power spectral density (PSD) for security issue<ij ind [42]. In this
Chapter, a new multiple access technique based on ma&#Ms is proposed. The
main idea is to exploit the fact that each CPM can be viewedfeejaency modula-
tion where the frequency deviation is strictly related te thodulation index. Since
in multi-h CPMs the modulation index is replaced by a sequence of iadieéh
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the index varying every symbol period), the resultirffeet is a sort of frequency
hopping. This iexactlyan instance of FH when applied to a continuous phase FSK
(CPFSK). So, we will use multi- CPM not to improve bit error rate (BER) perfor-
mance (as in [34], [36], and [38]) but to spread the PSD armhathultiple access
without resorting to spreading codes or to any other DS-CDistzhnique. In other
words, we directly construct a modulation format with a PS@amely flat, large,
and smooth at will. The corresponding single-user detdwsrpractically the same
complexity of a classical single-CPM detector with the same number of phase states
(which is a clear advantage if compared to the complexityhefreceivers in [37] and
[38]). In the CPM literature, the modulation index is hardiyer chosen bigger than
one (except for [43] where satellite navigation systemsHasen addressed), even
though this would not invalidate the CPM definition. Therefdhe most natural way
to spread the CPM power spectral density is by using indicashnbigger than one
and varying in a wide range [44]. Moreover, using a long saqeeof indices the
CPM power spectral density will become smoother. Assigningach user a tfer-
ent and randomly generated sequence of indices, we willroataew and ficient
FH spread spectrum technique for CPM-based systems. Vistlapproach, we will
get rid of the constraints on the modulation formats (sineecansider generad\-
ary multi-h partial response CPMs). Obviously the phase continuitytaeaonstant
envelope are guaranteed. The spreading factor, usuallyedeiin DS-CDMA sys-
tems with linear modulations as the ratio between the baditivaf the spread signal
and the bandwidth of the signal before spreading, cannoefiead! in the same way
here because in the proposed system there is no “signaksioeading’—the spec-
tral spreading fect is now embedded in the modulation format itself. On theiot
hand, the definition of spreading factor proposed in [45}thasratio of the Fourier
bandwidth of the spread signal to its Shannon bandwidthddoeiused. However, it
requires the computation of an orthonormal basis for theagpsignal, not available
here in closed form.

Since we are considering a multi-user scenario, we alsceaddhe multi-user
detection (MUD) issue. Because the complexity of the optimalti-user receiver
grows exponentially with the number of users, suboptim&ct®n schemes are re-



30 Chapter 3. Spread-spectrum CPM systems

quired. We consider flierent multi-user detectors, based on hard interference can
cellation (HIC) [46], soft interference cancellation ($1@7], extended to frequency
division multiplexed CPM-based systems in [22], and an rtigo derived in [22]

by using factor graphs (FGs) and the sum-product algoritBRA] framework [8].

3.1 System model

3.1.1 Multi-h CPM signal

The complex envelope of a generic mitEPM signal is [3]

S(t) = w/%exp{znz hi_aiq(t—iT)+9} (3.1)

whereEs is the energy per symbadl, is the symbol periodi;} are theM-ary infor-
mation symbols{h;} is the sequence &, modulation indices,= i modN, q(t) is the
phase-smoothing response characterizing the formatd &dn initial phase fiset.
The phase-smoothing response is still a continuous fumstdisfying the following

property:
0 whent<O
qt) =

3 whent>LT

L being the correlation length of the signal. As done in Chahtthe frequency pulse
is defined as

o) = S0

and (3.1) can be rewritten as

S(t) = 4 /%exp{[&rfj Zhi_a/ig(r—iT)dT+9 } (3.2)

which is the expression of a frequency-modulated signaigusi pulse amplitude
modulation (PAM) with shaping pulsgt) as modulating signal. The most used fre-
quency pulses are the rectangular pulsdREC to denote its duration df symbol
periods) and the raised-cosine pulkeRC).
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CPMs are modulations with memory. In the generic symbohialen T <t < (n+
1)T, the CPM signal (3.1) is completely defined by symiagphnd stater,, = (wn, ¢n),
wherewn = (an_1,an_2,...,an_L+1) iS the correlative state and

n-L
¢n = [JT Z hi_a/i] mod 2t (3.3)

i=—o0

= (¢n-1+mhn_Lan-L) mod 2

is the phase state [4], [48]. The correlative state can as$fitn' values, whereas the
phase state can assuipgalues, having defineld = k;/ p wherek; and p are positive
integer numbers and integer values lfpare forbidden. Therefore, the total number
of states ispM'~1. A correct definition of the modulation index requires tka&nd

p are relative prime to have a minimal trellis representatiasit will be clear later,
the considered sequence of indices is chosen suchptisakept constant whereas
ki is chosen randomly with the only constraint thgtcannot be integer. Whek
andp are not relative prime, we still use, for simplicity, a trellepresentation witp
states although it could be reduced. This allows to alwagghessame trellis without
the need to resort to a time-varying trellis. The CPM signathie symbol interval
NnT <t < (n+1)T can thus be expressed as

L-1
s(t) = \/ ZEs gl exp{ZyrZ hni@n- Iq(t—nT+|T)}

L-1 Kncicrn-i
= 4/ ZESe(*"””’) [exp{%q(t —nT+ iT)}] (3.4)

i=0

3.1.2 SS-FH-CPM

In the proposed multi-user system, multiple access is gteed by assigning a dif-
ferent sequence of modulation indices to each user. We asthaheach user trans-
mits K symbols, and we denote b;ﬁ“) and a(“) the symbol transmitted by user
at discrete-timen and the corresponding state. We defirld = (a(“) . (“) "7 as
the vector of theK symbols transmitted by user, and alsoan, = (a(l) S]U))T
as the vector of all symbols transmitted at discrete-ttm@ne symbol per user),
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ande = (f,...,ap_,)", where ()7 denotes transpose. Similarly, we defing =
©@,....al"T ando = (0],....0%_,)T. We also define

2EY S
W (W 1) = —-exp 22" h9aMg(t-iT) + 6" (3.5)
i=0

the signal transmitted by userand, without loss of generality, we assume that all
users employ the same valuesigfM, L, p, Nk, andhmax , hmax being the maximum
value taken on by the modulation index. We will also assura¢ @i users employ
the same phase smoothing respog$e

We consider an asynchronous multiple access system on @ivaddhite Gaus-
sian noise (AWGN) channel, so that the complex envelopeefdheived signal is

U
1) = > sV, t-) +w(t)
. ! (3.6)
= 9®,t-70)+ 3" 9™, t- M)+ w(t).

u=1
u£l

Initial phase @setsé™ and delaysr are random variables uniformly distributed
in [0,27) and [QT), respectively. For useh, the reference user, without loss of gen-
erality we will assume® = () = 0. The thermal noise is a zero-mean circularly
symmetric white Gaussian process with PSSy 2

Fixing the indices denominatqris mandatory to keep constant the number of the
phase states, while fixing the maximum numerator allowsyeuser to undergo the
same spectral spreading. Each user hadtardnt sequence of randomly-generated
modulation indices. The spectral spreading depends onth@mnange of values as-
sumed by the modulation index—the larger this range, thengér the spreading
effect. The number of modulation indic&, plays a role only in the smoothness of
the PSD. A CPM with high\y, will show a smooth PSD with small oscillations and
no sidelobes (see the numerical results in Paragraph 3.4).

The number of users allowed in the system depends on thentotaber of possi-
ble indicesy = phnax— Lhmax] (Where| x| denotes the maximum integer lower thgn



3.2. Multi-user detectors 33

If we impose the absence of overlaps, in a synchronous sykEmaximum number
of users would coincide with the number of possible indices

Unmax=v.

3.2 Multi-user detectors

Although not necessary in the derivation of the algoritheisce it applies unmod-
ified independently of the employed set offstient statistics, we will adopt, as in
practical receiver implementations, an approximated $etufficient statistics for
MAP symbol detection obtained as described in [49]. We asstima useful signal
component to be band-limited with bandwidth lower tiN2T , whereN is a proper
positive integer. Although this is obviously an approximatin the case of CPM
signals, whose PSD has, strictly speaking, an infinite saipthee choice of a proper
value of N ensures that this approximation can be made good at will.apipeoxi-
mated statistics can be obtained by extrachihgamples per symbol interval from the
received signal (3.6) prefiltered by means of a low-pasg fitdich leaves unmodi-
fied the useful signal and has a vestigial symmetry ardufgT [49]. The condition
on the vestigial symmetry ensures that the noise samplésdependent and identi-
cally distributed complex Gaussian random variables wittependent components,
each with mean zero and variang€e= NoN/T [49]. An alternative (and not approx-
imated) set of sfficient statistics can be obtained as described in [22]. Wetddny
nm the mth received sample (witm=0,...,N - 1) of then-th symbol interval. It
can be expressed as

U
fam= ) Sin(@l, o) + Wom (3.7)
u=1

where, as mentionedw, } are independent and identically distributed complex
Gaussian noise samples asigh(e, ") (whose dependence af’ ando will

be omitted in the following) is the contribution of uaeto the useful signal compo-
nent. In the following, we will denote b§, = (rno,Mm1....,Mmn-1)" the vector of the
received samples in theth symbol interval, by = (r],r1,....r¢_,)" the vector of
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all the received samples, and &) = (s&%, sf:‘i e sf:’?\l_l)T the vector collecting the

samples of the signal of usaiin the n-th symbol interval.

When considering coded CPM schemes where the CPM modutatamicate-
nated, possibly through an interleaver, with an outer eacfas an example, see [30],
[50], and references therein), the receiver is usually dasea soft-input soft-output
(SISO) detector that iteratively exchanges soft infororatvith the outer SISO de-
coder according to the turbo principle. Regarding singlerit51SO CPM detection,
little can be added to what already said in the literatureat@example, see [27] and
references therein)—the adoption of multcPM signals here entails only trivial
modifications with respect to the case of singl&PMs or the adoption, in case of
simplified detectors, of the Laurent decomposition extdridemulti-h signals [51].
As far as the optimal multi-user detector (MUD) is concegniethas a complexity
which is exponential in the number of usétsand is thus infeasible. For its deriva-
tion, the reader can refer to [22, Section IlIl.A]. In factthalugh [22] deals with
CPM-based frequency-division-multiplexed systems, thgvdtion holds unmodi-
fied in the case of SS-FH-CPM systems. Suboptimal multi-8¢80© CPM detectors
can also be conceived by extending those described in [2Ftdquency-division-
multiplexed CPM systems.

3.2.1 HIC-based receiver

The most trivial multi-user detector is that based on HIC [4®ie receiver for each
user is composed by a SISO single-user detector (SUD), a 8&8aer, an encoder
and a modulator. The SUD receiver for useestimates its own information bits
through a proper number of iterations of the soft detectat ttwe soft decoder. If
the estimated bits form a valid codeword, this is re-encaaledi re-modulated. The
resulting signal is then passed to the SUD detectors of a#iraisers to allow the
interference cancellation. Then, this process of iteeagioft detectiofiecoding, in-
terference estimation and cancellation is iterated untiflédd codeword cannot be
decoded.
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3.2.2 SIC-based receivers

One of the reduced-complexity SIC algorithms with a verydyperformance avail-
able in the CDMA literature is that proposed in [47]. Beingsdad on a Gaussian
approximation of the MAI, the algorithm can be obtained bplaeing the PMF of
the interfering symbols with a complex circularly symme@aussian PDF with the
same mean and variance. In the following, we will denotéby (respectivelyp(.))
the PMF (respectively, the PDF) of a discrete (respectiv@gtinuous) random vec-
tor.

Users will employ a SISO SUD each, and will exchange softrinftion to can-
cel out the interference. For the sake of simplicity, let oasiderU synchronous
users. We assume the discrete-time equivalent channe$éof to be

(0= e 2

wherezﬁf?n accounts for both interference and noise, that is

U
Zg?n = Z Sgur)n +Wnm.
u=1

u#l

The vectorz{) = (£),...,9_,)T is assumed Gaussian with mean vegtfft and
covariance matrixDEf), respectively, defined as
)
uh =) (38)
u=1
u#l
A=Y Rl ond @9
(o.o)
U
o =) D, Pl o - A - + 24 (3.10)
GO

wherel is the identity matrix, "' denotes conjugate transpose, #R®", |}
are the estimates of the APPs provided by the single-used 8kector related to
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the interfering useu. The SISO detector for uséyin the form of a BCJR algorithm
[6], will employ the following branch metric (dependenci® omitted for the sake
of notational convenience)

GY o exp2R [ @1 - uff)| - S0} (3.11)

whereR[.] stands for the real part operator andlenotes a proportionality relation.
Denoting byl{’(c' ,o, o)) the indicator function equal to onedt, o), and
o-gzl satisfy the trellis constraint for usérand equal to zero otherwise, we define

0,00, =100, oD, ofO)Pal?).

n+1° n+1°
The outputs of the SISO detector are the estimates of the AP&ded by the other
users’ SISO detectors to perform soft cancellation:

P, 01r) o An(0?)Bnya (eGP (3.12)

n+l

WhereAn(o-ff)) and Bn(o-ff)) are the forward and backward messages of the BCJR
algorithm.

The SIC MUD is then formed by enhanced SISO SUDs, each of which com-
putes the mean vect¢n§f) and the covariance matr'mﬁf) for every symbol interval
through (3.8) and (3.10), invermff) and then computes the branch metric in (3.11).
Finally, it computes the APP®(, ' O|r)} with (3.12) and passes them to all the
other SISO detectors for soft cancellation. In the follagyithis algorithm will be
referred to as SIC 1. Its complexity is quadratic in the nundfeisers [47].

This algorithm can be simplified by neglecting th@diagonal elements GI)Ef)
[47]. Consequently, the matrix inversion results to be comtonally less expensive
at the price of a performance degradation. This simplifiedater will be referred to
as SIC 2 and has a complexity that linearly depends on the euaflusers.

3.2.3 FG-based receiver

This algorithm, proposed in [22] for FDM-CPM systems anddobsn the application
of the FGSPA framework, derives from a suitable factorization offiF P(«, or):
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P(a,olr) « p(rla,o)P(ola)P().

Each term can be further factored as follows:

X

-1

P(e) = P(a})

Il
o

n

P(crler) = 1‘[ P(y’) ]‘[ P e, o)

c ¥ c
(o

p(ria, o) o« nFn(an,Un)nH(u)(a’(u) EU))

where
P(a(“) E]U), o ))ocl(u)(o'(u) (TS]U)’ (U))

n+1 n+1’

u-1 U 1 -
Fn(an,on) = l_[ l_[exp{_?$R [SE)HSEJ)]}

i=1 j=i+1
1
HY (e o) = exp{?% [r#sﬁ“)]} -

Hence, we finally have

U K-1
P alr) o | [ [PES)|] [ Falan. o)
u=1 n=0
U
] [P, e Pel), ol eP)PEd). (3.13)
u=1

The resulting FG has cycles of length four. As known, the iappibn of the SPA to
a FG with cycles allows an approximate (because of the pcesafncycles) compu-
tation of the APPQP(a(“)lr)} required for the implementation of the MAP symbol
detection strategy [8]. However, the presence of shoriedes of length four makes
the convergence of the SPA to good approximations of the APBé“)H) } very un-
likely [8]. It is possible to remove these short cycles bytsthing [8] varlablesm-(“)

in (aﬁ“),crn )) In other words, instead of representing vanabié’% alone, we define
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Figure 3.1: FG corresponding to (3.13) after stretchingaeso in (@V,s¥)
and forU = 3. Circles and squares represent variable and functiorsnoekpectively.

a new variable given by the coupleﬂ(),o-ﬁ“)). This transformation does not involve
approximations, since the resulting graph preserves allrtformation of the orig-
inal graph. The resulting FG, shown in Fig. 3.1, has cycleogth twelve. Since
cycles are still present, the SPA applied to this graph ratitee and still leads to an
approximate computation of the APH%(QE]“)H)} [8]. However, the absence of short
cycles allows us to obtain very good approximations, as shiater. As the SIC 2,
this algorithm has a complexity which is linear in the numbleusers [22].

3.2.4 Complexity considerations

With respect to the optimal detector for a singl€sPM signal, the SUD for a SS-
FH-CPM signal has the same number of states (provided thatdhues ofp, M,
andL are the same) and the same number of trellis branches. Intordealuate the
branch metrics, we need tié sampless(qu) of all the possible waveforms that can
be transmitted in a symbol period. These samples will be twerelated with the
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received samples in a given symbol period, i.e., the prod{;ﬁs%’) has to be com-
puted. For a singlésignal, these waveforms aM' and can be precomputed and
stored in a look-up table (LUT). On the other hand, for a SSE&#PM signal the
number of possible waveforms also depends on the podsihlele of consecutive
modulation indices in the sequence N modulation indices adopted by the con-
sidered user, which are miNy, (})} M", although not all are employed in the same
trellis section. If this number is too high, it could not bengenient to store them,
but could be preferable to precompute and store the samplidwe &. waveforms
{exp|Zq(t-iT)|},i=0,1,...,L-1,in (3.4) and then use them to compute the needed
waveforms in each symbol period. The same waveforms aregedgired to be com-
puted every symbol epoch or precomputed and stored for tpkementation of all
MUDs as well.

With respect to traditional DS-SS systems based on linealubations, a much
larger number of correlations has to be computed. This isptiee to be paid to
have signals with constant envelope (and large spediialemcy, as shown later).
However, we point out that a significant complexity reductzan be obtained by
extending the technique described in [27] for singl€&PM signals to the case of
multi-h signals using the decomposition in [51] that allows to expremultih signal
as a sum of linearly-modulated components. In this casenuher of trellis states
of the SUD is reduced t@ and also the branch metrics computation results to be
greatly simplified.

3.3 Spectral dficiency

The main quality figure we consider in this work is the ovesakctral &iciencyny
of the system. Since we are considering a multiple accessasoewhere all users
share the same bandwidth, the most intuitive way to compytes to evaluate the
spectral iciencyn of a reference user, and then define= Un.

The spectral ficiency for the reference user can be computed as

I ,
n=gT [bit/s/HZz] (3.14)
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whereB is the bandwidth occupied by the CPM signal dnslthe information rate of
the user. CPM bandwidth is theoretically infinite becauseRBD of a CPM signal
has rigorously an infinite support. Hence, we consider thditional definition of
bandwidth based on the power concentration, that is theviditd that contains a
given fraction of the overall power. Being this fraction agraeter, we choose to
use the 99% of the overall power. This definition is coherent with syss where a
limitation on the out-of-band power exists. To compute tiasdwidth we need the
CPM power spectral density, which cannot be evaluated &oally in closed form,
but only numerically. The adopted algorithm is the one psggbin [52] and [53].

To compute the information ratdor the reference user, we can use the simulation-
based technique described in [15], which only requires #igtence of an optimal
MAP symbol detector for the considered system. Unfortupatee complexity of
the optimal MUD is exponential itJ, making the evaluation df practically infea-
sible. Therefore, we can evaluate an achievable lower bbymdsorting to the con-
cept of mismatched detection [54]. We can consider an appaigd channel model
(the auxiliary channel) for which an exact MAP symbol detactwith afordable
complexity exists—the more similar the auxiliary chanmethe actual channel, the
tighter the obtained bound on the spectiéilc&ncy.

As done in [19], we approximate the channel model at the vecside by mod-
eling the interference as a zero-mean circularly symmethite Gaussian process
with PSD |, N, being a design parameter independent of the thermal nogg. T
approximation is exploited only by the receiver, while i thctual channel the in-
terference is generated as in (3.6). Hence, the considerélihay channel model is
that for which the received signal reads

r(t) = SO) + (1) (3.15)

where/(t) is a zero-mean circularly symmetric white Gaussian proceish PSD
2(Np + N). The simulation-based method described in [15] allowsviauate the
achievable information rate for the mismatched receiver, i

p(rlle™)

(@9, 1)=lim %E{Iog S } [bit/ch.use] (3.16)
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where we used the superscripto remark that a sequence is truncated to its flrst
elements. In (3.16)(rY|e(?7) and p(r?) are PDFs according to the auxiliary channel
model (3.15), while the statistical average is with respecthe input and the output
sequences evaluated according to the actual channel m@6&l Both p(r?|a()Y)
and p(r?) can be evaluated recursively through the forward recarsiothe MAP
detection algorithm matched to the auxiliary channel m¢dig]. The mismatched
receiver can assure communication with arbitrarily smatizero error probability
when the transmission rate at the CPM modulator input doesxoeed (a9, r) bits
per channel use.

3.4 Numerical results

3.4.1 Power spectral density

In order to describe the spectral behavior of the proposstesy we consider three
different binary CPM signals using the 2-RC pulse and show ti&lrsHin Fig. 3.2,
computed by using the technique described in [52], [53]. flis¢ signal is a single-
h signal withh = 3/8. The remaining ones are SS-FH-CPM signals with5 and
characterized by sequences of modulation indicesftéraint lengtiNy. It is possible
to see that increasing the number of indices the PSD becamestiser. Moreover,
the sidelobes disappear (since there are no frequencye®tahd are replaced by a
small ripple. This spectral behavior is not surprisingeseithe PSD of a CPM signal
with a long index sequence is—intuitively speaking—therage of the PSDs of all
the singleh signals that use as index one of thpossible indices.

3.4.2 Overall spectral dficiency

We consider an asynchronous SS-FH-CPM system using a 24@0dncy pulse,
Np = 16, andp = 8. Since we are not interested in a particular sequence iokisndut

in the average behavior of the system, we consider a packetrtrission (with 1024
symbols per packet) and, for each user, we change the seelqubim:iices{hi(“)}i'\i"o‘ L
the time delayr™, and the initial phaseftset6) every packet. We generate the
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Figure 3.2: Power spectral densities foffelient singléh and SS-FH-CPM signals.
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indices in a quasi-random way. For the first user we genehmténdex sequence
randomly, while the sequences of the remaining users aftedlviersions (modulus
hmax) Of the sequence of the first user. The shifts are chosen er tsdnaximize the
pairwise index distance defined as

d = min
U#V

between each couple of users. Obvioudlyemains the same far=0,...,N, — 1.
Using the maximum distance, the correlations of all the iptesssouples of users are
minimized and our system becomes more similar to an ortreigeystem. Finally,
to remove the correlation introduced by the shift, a randaterieaver is used to
scramble the simultaneous indices among the users.

In order to make some comparisons with the proposed SS-AHA-Btem, we
first consider single-user systems using binary silgiERPMs with a 2-RC frequency
pulse anch < 1, as traditionally done in literature. There is no intefrastonsidering
singleh systems withh > 1 because they have a larger bandwidth than those with
h < 1 [3], resulting in a lower spectrakigciency. For the singlé-systems the signal
bandwidth strongly depends dn(as shown in Table 3.1), and so does the spectral
efficiency.

h — h¥)
1 1

| h | ys |38 | 12]58] 78|
| BT || 004 128 162 187 ] 212 |

Table 3.1: Bandwidths of single2-RC CPMs with diferent modulation indices.

Hence, we choosk=1/8,h=3/8,h=1/2,h=5/8, andh = 7/8, and compare
the corresponding spectraffieiencies versug,/No, Ep being the received mean
energy per information bit, with the overall spectréii@ency of the SS-FH-CPM
binary system withhyax = 39/8 andU = 37 asynchronous users. The number of
usersU has been found maximizing, (via numerical simulations) as a function
of U and the interference variand assumed at the receiver for a fixed signal-to-
noise ratio (SNR) value. As it can be seen in Fig. 3.3, the BSEPM system has
a better spectralfficiency than all single-user singlesystems for medium to high
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Figure 3.3: SpectralfBciencies of the considered 2-RC binary SS-FH-CPM with
Nh = 16, p = 8, hmax = 39/8, and of diferent singléh 2-RC CPMs withh = 1/8,
h=3/8,h=1/2,h=5/8, andh = 7/8, respectively. For the SS-FH-CPM signal, we
use the (suboptimal) single-user detector.

SNR values. At low SNRyy is in the same range of values as the sirtgkpectral
efficiencies. According to the well-known results in infornoatitheory, the curve in
Fig. 3.3 can be approached, even with> 1, using a SUD and a proper channel
code. Then, we compare the proposed SS-FH-CPM system witB 8¥H systems,
described in [34]. In a multi-user scenario, the SSMH-CPMtamy in [34] needs
the use of spreading sequences of lengtichips per symbol period, withle > U
(even though some overload is possible). The normalizedvaaith of the unspread
signal is then multiplied by a factd., and therefore the global spectréligiency is
very low. For the considered SSMH-CPM systems, the adogteshding sequences
are random binary sequences generated every packet pegether with the time
delays and the initial phasdtsets. We show the maximum spectréiaenciesny
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SS-FH-CPM SSMH
Nc / 1 3 4
BT 6.04 1.75] 5.26| 7.01

Table 3.2: Bandwidths of the considered 2-RC binary SS-FHAGvith N, = 16,
p = 8, hnax= 39/8, and of the binary 2-RC SSMH schemes with} = {1/2,5/8}.

achievable by the SSMH systems (obtained by the joint opéitiin ofU andN;)
for Nc = 3 andN; = 4 in Fig. 3.4. We chose these values of spreading factor ierord
to compare our SS-FH-CPM system to SSMH systems with sirbdadwidths, as
shown in Table 3.2. From Fig. 3.4, itis easy to see that the I3S)étems have values
of ny much lower than that of the proposed SS-FH system, for whiettbnsidered
number of usert) has been found jointly maximizing, as a function of the number
of usersU and the interferers noise varianbg for a fixed SNR value. We also
considered\; = 16 (in analogy to the length of the indices sequences of thEI$S
systemNy), but the maximum achievablg, fell down to zero. The same happened
with U = 37 users. These considerations suggest that the SSMH d¢eehis not
suitable for multi-user systems.

In traditional DS-SS systems, the number of users that magshe global spec-
tral eficiency linearly depends on the total occupied bandwidthc&in the pro-
posed system the theoretical results obtained for lineatutations cannot be used,
we will show via humerical simulations that this dependeiscapproximately linear
also for the SS-FH-CPM system. In Fig. 3.5 we show the optohig, of the SS-
FH-CPM system considered before, and the optimizedf a system with the same
parameters but doubled bandwidth (i.e., a higher valub,@f). For comparison,
we show the same curves also for two quaternary systemscli#as from Table 3.3
and Fig. 3.5 that doubling the bandwidth allows (approxehatdoubling the num-
ber of users. Moreover, optimized binary systems outperfoptimized quaternary
systems.
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Figure 3.4: Spectralficiencies of the proposed 2-RC binary SS-FH-CPM system
with h< 5, N, = 16, U = 37, and two SSMH systems with;} = {1/2,5/8}.
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Figure 3.5: Spectralfiiciencies of the considered 2-RC binary and quaternary SS-
FH-CPM with N, = 16, p = 8, hmax= 39/8, and the same systems with double band-
width (hmax = 79/8). All curves have been obtained with a single-user detecto

om] 2 | 4 |
hmax || 39/8 | 79/8 | 39/8 | 79/8
BT | 6.03 | 1225 | 1543 | 3031

Table 3.3: Bandwidths of 2-RC CPMs willy, = 16 andp = 8.

This last result is the reason why in the following we will cisd higher or-
der modulations and focus only on binary modulations. Tioeee a comparison
among the SS-FH-CPM system and other binary systems, nahmdg proposed
in [35], [39], and [40], named in the following GiLuRe, MuLand Mu, respectively,
is needed. We set the total bandwidgf ~ 38 for all the four systems and chose the
spreading factors of GiLuURe, MuLa, and Mu systems, and theevaf hy,ax for the
proposed system accordingly. The resulting parameteshaken in Table 3.4, where
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v is the spreading factor ari = T/y is the chip period.

‘ format ‘hmax,')" BTC‘ BT ‘

SS-FH-CPM| 311/8 | ~ | 3825
GiLuRe 24 162 | 3883
MulLa 18 221 | 3978
Mu 44 0.88 | 38.63

Table 3.4: Parameters used to compaiféedint systems with the same bandwidth
BT ~ 38.

The number of asynchronous users has been optimizedyjeiitt the interfer-
ence variancd\,, for all systems in order to maximize the global spectfiatiency.
For the GiLuRe system we have chosen the 2-RC format (for @danparison with
the proposed SS-FH-CPM system) and random chips as detaénijds]. For the
MuLa system we have chosen a roft-éactor o = 0 since it is the value providing
the best spectralfigciency [39]. Finally, for the Mu system we used the same param
eters used in [40], i.ep = 1/3, 10 primary iterations, 1®secondary iterations, and
random initial binary chips. The results reported in Fi§. 8how that our proposed
system outperforms all other systems.

Finally, in order to show that it is possible to approach taggrmance promised
by the information-theoretic analysis, we show the infaiorarates forU = 3, 6,
and 9 synchronous users (Fig. 3.7) and the correspondingdBRs (Fig. 3.8) ob-
tained with rate-22 convolutional code with constraint length 5, generat@82]s
and codewords of length 64000 information bits, concatzhatith the modulator
through a random interleaver. It is clear that the largemntmaber of users, the lower
the information rate of each user (see Fig. 3.7). Hence, fidglanumber of users the
information rate of each user is very low. For this reasorgriter to employ codes
with a rate s#ficiently high, we consider a limited number of users (at mysEeér
both figures, the interference variandghas been optimized through numerical sim-
ulations. The interleavers (one for each user) used in the Sifulations have been
generated randomly. At the receiver, iterative detectiod decoding is performed
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Figure 3.6: Spectralfciencies of the proposed 2-RC binary SS-FH-CPM Wih=

16 andhmax = 311/8, GiLURe 2-RC system with = 24, MuLa system witly =18 and

a =0, and Mu system witl = 44. All curves have been obtained with a single-user
detector.
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Figure 3.7: Information rates of the proposed 2-RC binanFEISCPM withN = 16
andhmax = 39/8. U = 3, U = 6, andU = 9 users have been considered. All curves
have been obtained with a single-user detector.

for a maximum of 20 allowed iterations. As it can be obsertld,loss with respect
to the information rate curve is around 1 dB fdr= 3, 2 dB forU = 6, and 3 dB for

U =9, despite the use of a very simple coding scheme [30]. Amekte search of
the optimal convolutional codes for the three cases woutithén improve the BER
performance (in particular for the system with= 9).

3.4.3 BER with equal powers

In order to assess the performance of the described sulmpgiitdDs, we consid-

ered a coded SS-FH-CPM system wlith= 3 synchronous users using a binary 2-RC
CPM with p =4, hmax= 19/4, andNy = 8. All users have the same energy per symbol
(i.e., E(s“) = Eg, u=1,2,3) and employ the (6%1) extended Bose, Ray-Chaudhuri,
Hocquenghem (eBCH) code with rae= 0.79 and codewords of length 1024 bits
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Figure 3.8: Bit error rate of the proposed 2-RC binary SSE&#PM with Ny, = 16 and
hmax=39/8.U =3, U =6, andU = 9 users have been considered.
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described in [50], serially concatenated with the modul#ioough anS-random in-
terleaver, withS = 22. As a benchmark, we consider the BER of a SUD witk 3
users and the BER of a SUD in the absence of interfereblce { user). Again,
we optimized the noise variance assumed by each detectoaleed 20 detec-
tion/decoding iterations.

For the suboptimal multi-user detector described in [22¢, performance also
depends on the adopted schedule. Serial or parallel sgsedot usually consid-
ered in the literature. Since thefldirence in performance is practically negligible in
this scenario of users transmitting at the same power, weanisider the parallel
schedule. In this case, at each iteration all users areagativsimultaneously. The
computed soft-outputs are then provided to the other usethé next iteration and,
after deinterleaving, to the decoders.

Since SIC 1 and SIC 2 detectors show the same performance wgkes are un-
correlated (or weakly correlated) [55], we decided to idtree a correlation to point
out the diferent behavior of the two algorithms. Therefore, we geedr#te index
sequence for user= 1 randomly, and from that we derived all the other sequences
as

OO
| | :

If hi(“) is an integer, then we changed its valuehﬁjr’] +u/p. In other words, the mod-
ulation indices of all users are close to each other as muglssible. The perfor-
mance of the considered detectors is shown in Fig. 3.9. Theatjorithm performs
as the SUD because the interference prevents a correctibiagisn, which implies
that (almost) no cancellation is done.

The SIC 2 algorithm performs much better than the HIC, bubxa®cted, even
better does the SIC 1. However, the FG-based receiver hdmttgerformance be-
cause the Gaussian approximation of the interference iagatrate with only two
interferers. To see the SIC algorithms outperform the F&#08aeceiver, we should
consider a much higher number of users.
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Figure 3.9: BER performance of the SUD anételient MUDs in the case of a binary
2-RC system withJ =1 andU = 3, N,, = 8, p=4, hnax=19/4, and a (6451) eBCH
code with rateR = 0.79.
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3.4.4 BER with unbalanced powers

We also considered the case of unbalanced powers in a systbrih&same charac-
teristics and parameters as the one described in the pses@mtion. Without loss of
generality, we chose to order users in a decreasing waydingdo their energy, i.e.,
Egl) > E(SZ) >...2> E&U). We considered as reference user the centralfesed fixed its
powerP®, while the powers of the other users are assumed Bbe: P() +2(¢£—u)
dB. We employeds-random interleavers and we adopted a serial scheduléngtar
the detection from the user with the highest power. The caetpaoft-outputs are
then provided to the users with lower powers for interfeeecancellation and, after
deinterleaving, to the decoders.

In Fig. 3.10 we show the performance of théelient receivers. Again, the HIC
algorithm performs as the SUD because the interference&ptga correct bit estima-
tion. The SIC 2 has a poor performance, and again the FG-baseiter outperforms
the SIC algorithms.

3.5 Optimization of the index sequences

In traditional linearly-modulated CDMA systems, the optiation of the spreading
sequences (also callsijnature sequenceis a well-studied topic. Theoretical anal-
yses have found the optimum sequences in synchronous systeter either the
conditionU <y [56] or U > y [57], wherey is the spreading factor. In these cases, an
iterative algorithm to determine the optimum sequenceiseigilable [58]. More re-
cently a new approach to the optimization problem has begiedaut by exploiting
mathematical tools coming from game theory [59].

Nevertheless, none of these techniques can be applied to-li2B&tl systems
because of the nonlinearity of the modulation format. lediy-modulated CDMA
systems, waveforms are independent of the information sisrdnd depend only
on the signature sequence of each user. On the contrary,NMili2Bed systems the
waveforms depend in a nonlinear fashion not only on the irsgepience, but also on
all transmitted symbols because of the modulation memdrgréfore it is no longer
possible to assume the orthogonality condition as an ofitimeriterion because
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Figure 3.10: BER performance of the SUD andfefient MUDs in the case of an
unbalanced binary 2-RC system wilth= 1 andU =3, N, = 8, p = 4, hmax = 19/4,
and a (6451) eBCH code with rat® = 0.79.
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symbols and waveforms are no more separable. Therefore,tewagh it might be
possible to further investigate this issue, there is noengd that a simple (or, at
least, a practical) solution even exists.



Chapter 4

Conditioned pilots

In modern satellite communications one of the most chalfgnignpairments to over-
come is the phase noise. A satisfactory frequency and plrasarenization is again
one of the most common requirements for all kinds of prakttideeless systems.
Carrier synchronization is often performed through the afidome pilot symbols
periodically inserted in the transmitted data stream @\B-S2 [1]). These topics
have been studied so well during the last decades that aegsipe amount of algo-
rithms and techniques may be easily found in the literatlioegain an insight (far
from being exhaustive), the reader is referred to [60]—f&] references therein. As
far as pilot symbols are concerned, their optimal posititside the data packet has
been object of a thorough study in [67] where it has been shibatunder mild con-
ditions, equally-spaced single pilots are one of the ptessiptimal configurations in
the sense that they minimize the Cramér-Rao bound (CRB)Hanmel estimation.
Moreover, in [62] it is shown that arranging pilots in clusténduces a substantial
performance penalty on a channel with additive white Gaimsabise (AWGN) and
Wiener phase noise.

For any kind of communication system, one of the merit figuteg must be
reckoned with during the system design process is certdiirdyspectral giciency
(SE). In a multi-user scenario it has been shown that for #ar [18] and contin-
uous phase [19] modulations it is possible to increase teetsg dficiency of the
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system simply giving up the orthogonality condition amosgns and packing them
in the time and frequency domains [68]. This procedure cakeewn inter-symbol
interference (I1S1) and inter-channel interference (I@atise. If the ISI, native of
the channel or caused by the aforementioned technique, mdgdzribed by a high
number of cofficients, the optimal detector presents an extremely highptaxity
since this latter grows exponentially in the size of the clghnmemory. In such a
scenario, an féective method to reduce the complexity of the detection rittyn
and maximize the information rate is the channel shortef®3y Roughly speak-
ing, this technique consists of optimizing the ISI fla@ents assumed by the detector
(and diferent from the actual ones) and the front-end filter with astramt on the
global complexity. The presence of ISI implies that phasa faequency synchro-
nization must be performed through clusters of pilots. €hagsters must be at least
longer than the channel memory in order to force the charatd and allow the syn-
chronization algorithm to employ at least one known obsgtmadue to perform the
impairment compensation. This pilot insertion obviousiguces an energy loss and
a spectral fliciency degradation due to the fact that pilots do not conmyrination
but are just necessary to properly compensate for phaseemaehcy impairments.
Moreover, since multiple clusters distributed all over tiaga packet allow a more
reliable estimation than concentrated pilots [67], thellteg) penalties may be im-
portant.

In this Chapter, we propose a new design of the pilot symbuoiig at minimiz-
ing the overhead and guaranteeing the best performancel chd8nels. The main
idea is to give up on pilot clusters and use instead equplyed, time-varying, data-
dependent isolated pilots, allowing a dramatic reductibthe overhead and of the
consequent wasted energy and bandwidth. The value assumegth pilot is not
kept constant over the whole data packet but depends ol pinevious (and possi-
bly the L following) data symbols, wherk is the size of the channel memory. This
dependence causes an increase in the number of possilde efahe modulator
and an expansion of the optimal detector trellis, but perthié receiver to observe,
at sample epochs corresponding to pilots, a known valuestanhover the whole
transmission) that can be exploited during the synchrdioizgor a more éicient
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estimation of the carrier frequency and the phase noise.tifif@variation of the
trellis occurs when a pilot goes through the channel men&ince the optimal de-
tector for ISI channels has complexity which grows expoiadigtwith the size of the
channel memory, even when this latter is time-varying, isecaf severe ISl it be-
comes infeasible. Reduced-complexity solutions are thée tenvisaged, and in this
Chapter we propose ftierent suboptimal detectors whose definition and perforemanc
depend on the ISI model (namely those developed by Forngyaft® Ungerboeck
[71])) independently adopted by the pilots and by the detett¥e chose to investi-
gate all the possible combinations of models because tlssicéd low-complexity
algorithms for ISI channels in the literature provide asfatitory performance when
the Forney observation model is adopted by the receiver [&Heand references
therein), but do not work well with the Ungerboeck model [7]ZB]. On the other
hand, the implementation of the whitening filter is crititalseveral practical sce-
narios [74], and for applications when the detector is dexigto cope only with a
portion of the existing interference, a receiver workingtibea matched filter output
results to be more robust to the unmanaged interference [[B8] Therefore, the
recently proposed detector based on the Ungerboeck olisermaodel and derived
in [55] and [75] is tested as well. Concerning the pilot deiom, the Forney pilot
model is adopted because all the estimation algorithmsneegamples corrupted by
white noise [23]. Nevertheless, the adoption of the Forneglehfor pilots may entalil
a dangerous increase in the pilot mean squared value (M3\hwranslates into an
energy loss and an increase in the sensitivity to nonlitiearihat cannot be avoided,
as it will be shown later. Since the Ungerboeck model appeagseatly reduce this
MSV increase, and since it allows to get rid of the whitenidigifi we chose to de-
velop the Ungerboeck pilot model as well. Moreover, if isethpilots are employed,
the noise samples corrupting the useful part of the sampglegived signal result to
be approximately uncorrelated even though the Ungerboiakrpodel is adopted,
provided that the spacing between two consecutive pildigignough.
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4.1 System model

We consider a packet transmission where each packet cergaaquence df M-
ary symbols{ay} and a sequence ¢K/(P-1)] pilots {bx}, where| x| denotes the
maximum integer lower thar, which may not belong to the symbol constellati@in

A single pilot is inserted everly — 1 information symbols. Focusing our investigation
on linear modulations, the transmitted signal reads

st)= > (ak+bJ p(t—KT) (4.1)
k=—00

whereT is the symbol period ang(t) the shaping pulse (typically a root raised cosine
pulse, denoted by RRC). The transmission policy is theiotig: whenk = mPwith
me N, the symbobpis fictitious and only the pilobyp is transmitted. Conversely,
for all the other values of the time indéx by is fictitious and only the information
symbolay is transmitted.

We consider a transmission over a channel that introdudesnkBAWGN. The
ISI codficients are assumed to be known and we also suppose that theenom
these cofficients is finite. For the sake of simplicity, and in order taitithe trel-
lis expansion (as will be explained in the following), we swter only values oP
higher than the duration of the channel memory. This implied when a pilot is
transmitted, the previous pilot has already left the chimm@mory. In other words,
two consecutive pilots never interfere on each other. Infeewing, we will con-
sider diferent systems, ffering from one another only in the I1SI model adopted by
pilots and by the detector.

4.1.1 Sdficient statistics

The baseband equivalent of the received signal can be viesied

r(®)= ) (@+b) pt—KT) +w() (42)

k=—oo
wherew(t) is a complex circularly-symmetric white Gaussian proaeitis zero mean
and variancer? = Ng per component. The ficient statistics necessary for the detec-



4.1. System model 61

tion can be derived simply filtering the received signal vativhitened matched filter
and sampling its output at symbol periods [70]. The resgliEorney model reads

Yk = Xk + Wk

L
= Z (B¢ + bi¢) To+ Wi (4.3)
=0
where{f,} are thel. + 1 Forney ISI cofficients,{yx} are the Forney dficient statistics,
and{wy} are the uncorrelated samples of the AWGN.

A different set of sflicient statics can be obtained just replacing the whitened
matched filter with a matched filter [71], and the resultingfisient statisticsry}
become

Nk = S+ Nk

L (4.4)
= Z (Aw—¢ + br_r) 9 + Nk
—L

where{ng} are samples of a complex circularly-symmetric colored Gamsprocess
with zero mean and autocorrelation functigg(m) = 20°gm. The 4+ 1 Ungerboeck
ISI codficients{g,} may be computed as

L
9= fmfr,
m=0

with ¢ € [-L, L].

4.1.2 Forney pilots

If we adopt for the pilots the ISI model derived by Forney, dymonization is per-
formed on observed samples corrupted by white noise, he.sampled output of a
whitened matched filter is employed. We want the useful gatereceived samples
to have a constant and known valdi® at pilot epochs. In other words, fér= mP
we force the observed noiseless sample to be

L
Xmp = fobl )+ Z framp¢ = cP)

=1
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and therefore the pilot value may be computed by the tratengis

L
n_1|F
blop =+ [c( )—; foamp¢ (4.5)

where the superscripE(or, in the next Paragraphl) just indicates the pilot design
adopted. Denoting with £} the expectation operator, the MSV of the information
symbols is

&a = E{la?]

while the pilot MSV becomes

L
) e ]
[ fol =1

if E{ax} = 0 and the symbols are uncorrelated. The subs€ri@nd in the following,
U) specifies the ISI representation adopted (Forney’s or thugek’s, respectively).
In order to limit the sensitivity to amplifier nonlineariiewe choose to impose

&P =g, (4.6)
and use) to try to satisfy this constraint. Being the MSVs real, weédayv

L
<P = aa[| fol?= > lez] >0

(=1

which unfortunately cannot always be satisfied. In fact,ayrhappen that

L
[fol? < D 1Fel?
(=1

especially in case of severe ISI. Moreover, it may occurttiavalugc™)|? satisfying
(4.6) is extremely small, namely too small to allow a corgichronization. Hence
we set a threshold—a real constant 0—and impose

|C(F)|2 = argmin |8ff) - 8a| . 4.7)

ERlE



4.1. System model 63

The constant is chosen in order to have observed samples with enough Et\wiot
epoch to perform reliable estimation. Of course, a highevalix implies thataff) >
&Ea, hence the peak-to-average-power ratio (PAPR) increaakmgithe system more
sensitive to the amplifier nonlinearities. Therefore, éhexists a tradefbbetween the
PAPR (or the nonlinearity sensitivity) and the synchrotic@aaccuracy.

4.1.3 Ungerboeck pilots

Adopting the Ungerboeck ISI model, synchronization isiearout by using the sam-
pled output of a matched filter. Again we force the observdadat@ss samples to be

L
Smp = gob&’.%+ Z ramp-¢ = V).
—L
££0

Hence, pilots are now defined as
W - Llw_ 3 (4.8)
mP = 5, 9r@mp-¢ | - .

The resulting MSV reads

v _ S C
eV = 2014 ) gyl
b |QO|2 [:Z_L

{+0

and the constraint (4.7) becomes

|cVJ? = argmin &V -&,. (4.9)

S

4.1.4 Power spectral density

Since symbols and pilots are correlated, the power spetdraity (PSD) of the trans-
mitted signal is modified by this pilot design. First, we pedte cyclostationarity of
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the signal (4.1) with perio®T, and then we compute the PSD of a stationarized ver-
sion of (4.1). In order to be cyclostationary, the signal thas/e periodic statistics
[76]. Its mean value and a delayed version of it read

n(t) = E(s(t) = " Efax+hbi pt—KT) = > nspk)p(t—KT)

K=—c0 k=—c0
n(t+PT) = E{s(t+PT)} = i nsp(k+P) p[t—(k+P)T] (4.10)
k=—00

where

having definedy = fg if Forney pilots are used, dy = gg if Ungerboeck pilots are
adopted. Hence, defining = k+ P and substituting it in (4.10)}(t) results to be
periodic of periodPT.

The autocorrelation function of the procegt is defined as

R(t,a) = E{s(t+ a)s"(t)}

= > > El(a+b) (@n+bn)") plt+a—KkT) p' (t-mT)

k=—00 M=—00
+00 400
= > > Rep(k O p(t+a—KT) p’ (t—KT +£T)
k=—00 {=—00

wheref = k—m. Since the delayed version of the autocorrelation funatézuls

+00
R(t+PT,a)= Z Rsp(k=P ) p[t+a—(k-P)T] p*[t—(k—¢-P)T]
k,{=—c0
definingn = k— P and substituting it in the last equation, we find that alsoathi®-
correlation function is periodic itwith period PT. Hence, the signad(t) is a cyclo-
stationary random process and must be stationarized. §ptinpose, we introduce a
random delay uniformly distributed in [QPT) and define the delayed signal

S(t) = s(t-7)
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whose mean value is

n(t) = E{s(t)} = E{s(t—7)}

= > Eapnfacn+balEc{plt—KT -1)}

k=—o0

wheren=|7/T ] is a discrete random variable (RV) uniformly distributeddnP — 1].
We can compute the first expectation with respect amd the second with respect to
7, obtaining

+00 1 P-1 1 PT/2
n(t) = = > Eapfaxn+bc }]—f p(t-kT-7)dr.
k:z—;)o P n=0 * " " PT -PT/2

Noticing that

P-1

_ 1

Nsp= E Z Ea,b{ak—n + by_n}
n=0

is independent ok and decomposing the delay as uT + & whereyu is a discrete
RV uniformly distributed in [ (P-1)/2],|(P - 1)/2]] and¢ is a continuous RV uni-
formly distributed in FT/2,T/2), it is possible to split the integral in the sum Bf
integrals, leading to

T
W=s1 >, D
k:—ooll:_l_EJ

ﬁsp +00 _
=22 [ pla)da=1

t—KT—2uT+T/2
f p(@)da
t—KkT—2uT-T/2

where we exploited the fact that all the intervals of int¢éigraare disjoint andr =
t— KT —uT - ¢£. Finally, we find that the mean value of the stationarizechaids
independent of time, as expected.
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A similar approach is to be considered for the autocorm@tatiinction, yielding

R(t, @) = E{s(t—7+a)S'(t— 7))

= ", Eabnl(8cn+bicn) (@ + D) Er{pt-KT-7+a) p'(t-mT-7)}

k,m:—oo

+00 1 P-1 1 PT/2
:Z = > Rspk—n,¢) [— p(t—KT—1+a) p*(t—KT+(T-7)dr
k,f=—co Pn=0 PTJ-p1/2

v |57

oo B
DR > D fA p(-+a— (T)p'(5)dB
{=—00

k=—eoy=—| B ]

where the delay has been decomposed-=agT + ¢ and we have defined

B=t—(K+u—OT ¢
A:t—(k+2,u—€)T—%

B:t—(k+2,u—£)T+%

and
_ =
Rel)= 5 n; Rsp(k—n,£). (4.11)

Since all the intervals of integration are disjoint, it isspible to write

Rta)=1 ) R0 [ plg+a-Mpo)s @12)

{=—c0

=R(e)
that is independent of the time epoch. Now the PSD of the kiarabe easily ob-
tained just Fourier-transforming (4.12), and the result is
1
W(f) = ?IP(f)IZS(f)

that is extremely similar to the classic PSD of a pulse amgiitmodulated (PAM)
signal [76] (whereP(f) is the spectrum of the shaping pulse), the onlffedence
being the PSOB(f) defined as the discrete Fourier transform of (4.11).
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Hence, for Forney pilots (4.11) becomes

f*
RE)(0) = —(a(F) +(P-1)&)ol(] - 8a (%5[1«5} + f—§5[k+f])
ke 0 0
wheres[¢] denotes the Kronecker delta, and the corresponding PSlis¢s be
SF(f) = 77{ F)(g)}
L
1 28 f
_ (F a 4
=58+ (P-1)&a)- Z%{f—o}cos(ZﬂffT)

whereR{.} is the real part operator. If we define

+00
Ep= | |P(f)Pdf

the mean energy per transmitted symbol reads

+00
EP =T | w(f)df

—00

L
&P +(P-1)8a ]-%Za&{ } |P(f)|2cos(27rf£T)df
=1 -

8P

In order to compute this integral, we need the analyticaresgion of the shaping
pulse spectrum. After a few algebra, we obtain that the maargg per symbol for

the RRC pulse is

()

aRc= &p (8(F> +(P-1)&).

When Ungerboeck pilots are employed, the averaged auwation of symbols
and pilots in (4.11) reads

L
R0 = 5(68 + -eaoln - 22 3 w{S otk
0
Koo
and the corresponding PSD becomes
L

1 48 Or

Wy = = (V) _ _ A 2t
sU(f) P(ab +(P-1)&a) = ;%{go}cos@rfﬂ).
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Finally, the mean energy per transmitted symbol is

+00
EV =T [ wy(f)df

—00

5

Ep (V) A, (9) [
_ a 2
_F(Sb +(P-1)Ea) - ;:19%{&}  IP(f)Pcos(2r f(T)df .

(%)

With the same calculations done before, we obtain the mearggmper symbol for
the RRC pulse

u Sp (o
Erc= = (65 + (P~ 1)&a).

4.2 Optimal algorithms on expanded trellis

The optimal maximum a posteriori probability (MAP) symbetector is the classic
Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [6] whoseltssind metrics depend on
the adopted type of pilots and on the ISI model assumed byettever. In the fol-
lowing, we denote by = (ag,...,ax_1)" the vector of the data symbols, and similarly
by o- andr the vectors of states and received samples, respectively(.Bwe denote
the probability density function (PDF) of a continuous ramdvariable (RV), while
by P(.) we denote the probability mass function (PMF) of a discite As it will

be clear later, since the state definition is not straightéod, we start this algorithm
derivation with some preliminary results. The optimal MARbol strategy is

& = argmaxP (ar)} (4.13)
a

whereP(ay|r) may be evaluated marginalizing the joint PN®Far). This latter can
be obtained as follows:

P(ar) « p(rla) P(a)
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whereoc denotes a proportionality relation, and each term can berfad as

K-1

P@=]|P@
k=0

K-1 K-1
pria) = [ [ p(ra) o« [ [He(@). (4.14)
k=0 k=0

Vector r contains the output samplé¢s} of the matched filter if the Ungerboeck
ISI model (4.4) is adopted. Otherwise, if the ISI model ergptb is the Forney’s
one, then it contains the output sampfgg of the whitened matched filter (4.3). In
other words, the factorization (4.14) is independent ofi8lenodel adopted by the
receiver.

In order to correctly define the state, we have to examinefaftk (a)} and con-
sider separately Forney and Ungerboeck pilots. So as td avisunderstandings, we
defineHy (a) = HI((F) (a) if Forney pilots are used, artdi (a) = Hl((U) (a) if Ungerboeck
pilots are employed. The superscript is introduced onlydintpout the adopted pilot
design. As done in the previous Section, the subsérifitespectively,U) specifies
that the ISI representation adopted by the receiver is th@tet by Forney (respec-
tively, by Ungerboeck).

4.2.1 Forney pilots

Since the expression for facto[rlsll(f) (a)} depends on the ISI model employed by the
receiver, we consider separately the two cases.

Forney pilots with Ungerboeck detection

The system with Forney pilots and Ungerboeck detection earepresented by the
block diagram in Fig.4.1. The fiicient statistics needed for the detection are ex-
tracted from the received signal by means of a matched filt}, whose output is
(4.4).

As stated before, we defindy(a) = HEJF’IZ(a). The general expression for factors
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@ ME 7% 'k ®a DET/DEC ﬁ
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Figure 4.1: Block scheme for a system using Forney pilotsémgerboeck detection.

Q*J(ék‘+27rfkkT)

{Hl((F)(a)} using the Ungerboeck model is [28]

1
H (@) = exp{;%

L
* * 1 2 * *
o) ) oot |
=1
(4.15)

Whenk = mP+ j, with j € [L+1,P—1], there are no pilots, neither transmitted nor in
the channel memory. Therefo (FIZ (a) may be reduced to the classical expression
[77]

F 1 .1 S
HG) @) = eXp{p‘R lrkak - 590|ak|2 - ; g[akak_[]} . (4.16)

Now it is possible to correctly define the stateoegl)( = (ak_1,...,a_L), i.€., the set
of past symbols needed for the computatiom-lé'flz (a). It is worth noting that, when
je[L+1,P-1], the factoerR (a) and the state coincide with the classical metric
[77] and state [8] of the BCJR for ISI channels, and the nunadbgrossible states
is M. Whenj = 0, a pilot is transmitted anblffr)np(a) may be evaluated simply by
computing the pilot value as in (4.5) and by substituting tkilue in (4.15), obtaining

L
1 L 1 2 .
Hl(_fr)np(a) = eXp{;‘R lrmpbs:g, - Ego|b$2, — Z ggbs:g, amp-¢
=1

} . (417

Again, the state is{i)np: (8mp-1,...,amp-L) and the cardinality of the state set is still

ML, which implies that no trellis expansion occurs. Finallyyem j € [1,L], a pilot
is present in the channel memory and fadttéﬁz (a) may be written by substituting
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Figure 4.2: Block scheme of a system using Forney model fdr pitots and detec-
tion.

e—] (ék+27rfkk’T>

(4.5) in the corresponding term in (4.15), yielding

HE) (a) = expl = R| ey - —golakl Zggakak —gjabf)

m

1 c(P) L S
=expi =R (fk—gj s ) ——9 lal®+ f—JZ feafiamp—f—z Ordy ¢
=
| ]

(4.18)

Now the state must be defined ag?( = (a_1,.-.>8mP+1,8mp-1,. .- @mp_L)- Since it
includes a higher number of past symbols, the cardinalitheftate set grows up to
ML*i-1  entailing a trellis expansion. O

Forney pilots with Forney detection

This system is described in Fig. 4.2. Thdiwent statistics needed for detection
can now be extracted by the received signal by means of anéatenatched filter
(or a matched filter followed by a whitening filter), whose gdeal output is (4.3).
DefiningHy(a) = H(;k)(a), the general expression for factldglz @is

L 2
HE) (@) = exp{ Ye— Y (ake+b)) } (4.19)
=0
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Whenk = mP+ j, with j € [L+ 1, P—1], there are no pilots, neither transmitted nor
in the channel memory, and factldt(FFlz (a) reduces to the classical expression [70]

L 2
Yo > a e } (4.20)

=0
As in the previous case, we can define the state@s: (ak-1,...,a-L). Whenj =0,
since the noiseless observed valugis = c(F), H(FF%P(a) is constant and independent
ofa

202

H (FF|2 (a) = exp{

1 2
HE) (@) = exp{—ﬁ lymp— ¢ } . (4.21)

Therefore, apparently there is no need to define the stataaly¢ we have to prop-
agate thel previous symbols because they will be employed in the fatigwL
evaluations oiH(F’Flz(a), as will be clear later. Hence, we define the stategﬁp =
(&mp-1,---»amp-L)- Finally, whenj € [1,L], a pilot is present in the channel memory
and therefore a trellis expansion occurs. Fabtgﬁ (a) can be obtained by combining
(4.5) and (4.19), that yields ’

2

L L
1 fi
(Fq) — R VI § N (o § : )
HF,k(a) = exp 202 Yk Zs ax_fe o [C £ flamP—I] . (4.22)

l#]

Therefore, we can define the state;é%l = (a_1,--->8mP+1,8mP-1, - - -»8mP-L)- O
Having properly defined the state for every discrete-tkrie both cases, it ap-
pears thab-(FFz = o-EJFI)( for everyk, i.e., the state definition is independent of the ISI
model adopfed by 'Ehe receiver. Hence, we dea‘:'rffé = cr(FFlz = O—EJFI)< and we can now
safely replace the vectarin the left hand side of (4.16), (4.17), (4.18), (4.20), .2
and (4.22) with the couplea,(,o-ff)). This can be done because not all the symboils in
vectora are used in the computation of factqrstl(f)}. Namely, only a subset @fis
relevant, and this subset is composed by the present syaplaold some past sym-
bols (whose number depends on the discrete-knggouped in the sta’r@(kF). Hence,
factors{Hi((F)} result to be proportional to another conditional probahikquivalent
to p(rkla), that is

HE (o) o plrdac o)
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which leads to
K-1

K-1 - K-1
[ [HP @) o [ [ prdaced) = [ | prda o) = p(ria,o®).

k=0 k=0 k=0

The usefulness of this result will be clear later. Obviousiyceo-(FFlz = o-fi)( , all the
considerations done on the dimension of the state set artdellie expansion hold

unchanged also in the case of Forney detection.

4.2.2 Ungerboeck pilots

A trivial adaptation of the previous derivation to the cat&ngerboeck pilots entails
the replacement of the pilot definition (4.5) with (4.8) in8) and (4.19), yielding
to

HGR @) = exp{éx[rk(aﬁbﬁ“)*)— %go|ak+b(k“)|2]}'
L
':exp{%% 2 gf(a%b(k”)*)(ak—wb‘kﬂ)u (423

2
} (4.24)

where the state definitions obtained in the previous armalyaie been kept. Unfor-
tunately, the present symbaj and the present statel(f) are not sfiicient for the
evaluation of (4.23) and (4.24). In fact, (4.8) prevents ¢h&ulation of the pilot
value since the future symbddgp.1,...,ampsL are needed. Hence, if we straightfor-
wardly extend the previous analysis to the case of Ungekbpidats, we find that the
computation of factor$H|((U) (a)} is impossible. This implies that the statép) is no
more correctly defined and a new derivation is needed. Fatlyy we just need to
step backward and a simple trick will sort things out.

From the last term of the factorization (4.14) and the gdreqaressions (4.15)
and (4.19), we have that

L

Yk— Z (a-e + b)) T
=0

1
H(thlz(ak,ff(k':)) = exp{—ﬁ

K-1
p(ria) o« [ [H(@). (4.25)
k=0
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Figure 4.3: Block scheme of a system using Ungerboek moddbdth pilots and
detection.

Since we need to know all symbdg,p_,...,anp;L t0 compute the pilot valubfrﬁ’g
according to (4.8), we just replacb%fl), with bﬁf,ﬁ in (4.25) (as we did in the triv-
ial adaptation previously tried) and delay the computatiball the terms in (4.25)
depending orbf;’g. These terms, instead of being evaluated wkenmP+ j, with

j €0, L], will be computed when all symbobs,p_,...,anp;L are past, that is when
j = L+1. The total PDFp(r|a) is unchanged (except for the substitutiorbfp?: with
bf#g) and no approximation has been done. In other words, weargggrthe terms in
(4.25) obtaining new factorgd”)(a)} such that

K-1 K-1
prla) o« [ [HP @ =] [HP @
k=0 k=0

where all terms depending on pilbﬁfg are included in factoHr(#P)ﬂﬂ(a).
Now we proceed as before by analyzing separately the cas€sroty and

Ungerboeck detection.

Ungerboeck pilots with Ungerboeck detection

This system is depicted in Fig. 4.3. The received samplestidrén the form 4.4.
Hence the MAP symbol detection strategy in (4.13) and theofemation in (4.14)
hold unmodified, the only flierence with respect to the previous cases being factor
Hi(a) = H{ ().
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Whenj e [L +2,P~1], factorH{\)(a) reads

U 1] .1 S
H M (8) = eXp{;% lrkak - 5lad®go - ; akak_zgz}}

and the state can be definedaa%’k = (ak_1,...a_L) as with Forney pilots. When
j €[1.L], we define the new factdd () (a) as

1 1 L
H{Y(@) = exp % N~ 5 a0 - > aac g (4.26)

=1
t#]

and the state asEJUIZ = (ak_1,-..,8mP+1, 8mP-1,- .- 8mp_L)- It is worth noting that sym-
bols older tharak_’L are not directly used in (4.26), anyway they are presentén th
state since they must be propagated until tknre mP+ L + 1, when they will be
properly employed to evaluate the pilot value. WhenO, there is no term in (4.15)
that can be computed, therefdﬂ{%,,(a) = 1. However, we still need to define the
state asfﬁfgnpz (amp-1,...,a8mp-L) to propagate thé. previous symbols. Finally,
when j = L+ 1, we can consider all previously neglected terms. Theeeffactor
H ., ,.(a) becomes

,m

1 i} 1
HS,Jrz\P+L+1(a) = exp{;‘R [rmP+L+lamP+L+1 5 |amps L4112 go]} :

1. |le .
: EXP{—;‘R lz aTnp+|_+1a1’nP+L+l—t’gt"} .
=1

L
-exp %‘R fmpbf#,g* - % |b§f,3|290 - KZL b#:g*amP—{’gt’ (4.27)
0
and the state may be definedcs{%rzﬂp+L+l = (8mpsL, - --»@mP+r1,BmpP-1,...8mp_L). The
propagation of symbolgmp, j-1-L,...,amp-L (respectively, symbolamp-1,...,a8mp-L)
is necessary whene [1,L] (respectively, whenj = 0) in order to be able to com-
pute HEJL,Jrsz+L+1 in (4.27). If states;-fjuz were defined, wherj € [0, L], taking in ac-
count only the symbolsfiectively nécessary for the computation Hﬂj()(a), i.e.,
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Figure 4.4: Block scheme for a system with Ungerboek pilats Borney detection.
if they were defined as-fjuﬁ = (a_1,...,8mP+1,8mpP-1,..-a_L), Whenj € [1,L], and
aﬁﬂnpz 0, whenj =0, theﬁ we would lose track of symbag | _1,...,amp_L (respec-
tively, amp_1,...,amp-L) Whenj € [1,L] (respectively, wherj = 0). This loss would
prevent the computation M&%Pﬂﬂ since we would not be able to evaluate the last
factor in (4.27). ’

Concerning the trellis dimension, it can be easily seenwisn j =0 andj
[L +2,P— 1] the number of possible states is still, i.e., no expansion occurs.
Again, whenj € [1,L + 1] the number of possible statesM-*i-1. With respect to
the case of Forney pilots, the trellis is exactly the samegixior j = L + 1, when the
cardinality of the state set 2" (for Ungerboeck pilots) instead ®- (for Forney

pilots). m|

Ungerboeck pilots with Forney detection

This system is represented in Fig.4.4. The received sangpesiow in the form
(4.3), and the MAP symbol detection strategy in (4.13) aeddistorization in (4.14)
still hold. The only diterence, with respect to the Forney pilots case, is fadi¢a)
that now isHy(a) = H))(a). Since

X+ Y% = X2+ ]y + 2R {xy'}

the new factoH(FL’Jk)(a) for symbol epoctk results to be

2

L
1
H(Fi)(a) = eXpy 5 [k Z a—cfe
=0

£
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for k=mP+ j, with j € [0, L]. Therefore, the state(FLj() =(ak-1,...,8mP+1,@mP-1,---8mP-L)
may be defined. As in the case of Ungerboeck detection, syabaér thare,_| are
not used im(Flfl()(a). Nevertheless, the propagation of these symbols is nagesiace
they will be employed at discrete-tinke= mP+ L + 1. It is worth noting that now we
have a non constant factM(FEJk)(a) also whenj = 0, since at pilot epoch a perfect
ISI cancellation is no more possible. Whega [L+ 2, P—1] the “classic” expression

holds, that is
2}

and the state is simplyt) = (@c1.....a-L). Finally, whenj = L+ 1, HS) . | (a)
includes all terms neglected before, becoming
2}

L

Yk — Z axrfe

=0

1
HE(a) = exp{—ﬁ

L
YmPsL+1— Z ampsL+1-¢ fr

) _ 1
HE mpsL41(8) = exp{—T‘_z

=0
LS |leqP N )
eXp\ -5, |fibmp — 2R || YmPi _ZamP+i—€ fe| f7bp
i=0 =0
C#i
WherebfTL]’F), is computed according to (4.8). The state can be definetﬁj%gﬂ_+1 =
(@mP+Ls - - - BmP+1, 8mP-1, - - . 8mP-L)- O

Since the states(FUk) ando-fjuz coincide for evenk, we can now remove the de-
pendence of the state on the ISI model adopted by the rectfieingo ) = a(FUk) -
O—EJUIZ Moreover, all the considerations done on the trellis yeEmnaand the state set
dimension for the system with Ungerboeck pilots and Ungeckadetection hold
unmodified also when Forney detection is used. Hence, weaameaplace the sym-
bol vectora in all factors{HI((U)(a)} derived for Ungerboeck pilots with the couple
(ak,O'(kU)). As previously done with Forney pilots, we can introduceoaditional

PDF p(rilax, o), equivalent tap(rila), such that

HY (e, o) o p(rilax, o)
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which leads to

K-1 K-1 K-1
[ [HP @) o [ [ ptrdac o) = [ | p(rda.o™) = p(ria. o).
k=0 k=0 k=0

4.2.3 Factor graph representation

We define the generic state = o-(kF) if Forney pilots are used, andy = o-(ku) if
Ungerboeck pilots are employed. Since the a posteriorialitiby P(akr) needed
for the MAP strategy in (4.13) can be obtained also margiirai the joint PMF
P(a, or), we choose to use the following factorization

P(a,olr) e p(rja, o) P(ola) P(a)

where each term can be further factored as
K-1

P@= [P
k=0
K-1 K-1
P(ola) = P(0o) n P(oklok-1,8-1) = P(00) nl (0% k-1, 8k 1)
K-1 “ K-1 !
p(rla,o) = l_[ p(relak, o) o l_[ Hk (&, ok) (4.28)
k=0 k=0

being I(.) an indicator function equal to one wherk, o1, andax_; satisfy the
trellis constraint, and equal to zero otherwise. From (Yit28 possible to derive the
factor graph, presented in Fig. 4.5, and almost coincidiith the Wiberg graph of
the classical BCJR algorithm [8], the onlyfiirence being the absence of the variable
node corresponding to the symbol transmitted at pilot epo8pplying the SPA to
the FGin Fig. 4.5, we will be able to compute the marginal AR&=ded for the MAP
strategy in (4.13). In Fig. 4.5 we denote

Gk = Gk (&, ok 0k-1) = Hk (&, o) | (0%, 01, A1) -

The generic optimal MAP symbol detector is therefore the B@lporithm running
on a time-varying trellis. It is worth noting that the fadation (4.28) and the corre-
sponding FG in Fig. 4.5 are independent of the models addptaulots and by the
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Figure 4.5: Factor graph for the optimal algorithms For 3.

detector. On the contrary, the state definition and hencéréfies structure depend
on the assumed pilot model. With Forney pilots, the numbetaies varies fronvi-
(in the case of absence of trellis expansion) upM@& 1 (in the case of maximum
expansion), whereas with Ungerboeck pilots the cardinaiitrease reaches?.
Moreover, according to the adopted pilot and ISI modelstofadHy(ax, o)} have
different expressions. In other words, the choice of the ISI iraftkcts only factors
{Hk(ax, o)}, while the choice of the pilot design impacts also on theestigtfinition
(and therefore on the trellis structure). NeverthelessH@ is always the same.

4.3 Suboptimal algorithms on reduced trellis

Since the complexity of the optimal MAP symbol detectionoaiinms derived in
the previous Paragraph grows exponentially with the sizén@fmemory, reduced-
complexity suboptimal algorithms are to be envisaged. Risrgurpose, we resort to
the FGSPA framework to obtain suboptimal algorithms on a reduceltis. As will
be shown in the following, all the proposed algorithms hdwe $ame FG and the
same trellis structure independently of the ISI models sgtbpy pilots and by the
detector.

In the following, we denote byy a hidden variable playing a role similar to
that played by state, in the derivation of the optimal algorithms in the previous
Paragraph. It is worth noting thag is not a proper state since the coupdg, k) is
not enough to perfectly describe the system in a given dis¢mmek, as will be clear
later. However, the same notation used for statés adopted fopy as well, i.e., the
superscript denotes the employed pilot design, while thsaipt indicates the ISI
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model used by the receiver.

4.3.1 Forney pilots

We follow the same approach adopted before, that is we depaemalyze the cases
of Forney and Ungerboeck detection.

Forney pilots with Ungerboeck detection

The trellis expansion occurs when a pilot enters in the chlamemory, that is when
k=mP+ j, with j € [1,L]. In this situation, the third term at the exponential of the
Ungerboeck factor (4.15) becomes
L
Za;;(ak—f + bE(F)g gt’ = ZampﬂamPﬂ Qe +anpy Sﬁlz’gl
=1

m

To avoid the trellis expansion we move the computation oiaBEtermamPHb(F)gJ,
that is responsible of the expansion, from discrete-tiraenP+ j to k= mP. In other
words, we define a new factorization

p(rla) « ]‘[H“@(a) ]‘[c“a(a)

where all terms depending (blffp are now taken into account in fact@ff) (). We
have now two types of factor. Namely, whe¢e [1, P — 1], the new faCtOC(Fk @ is
deprived of the ISI term caused by the pilot, yielding

C(@) = exp) = Lx rkak——|ak| do- Zakak 9 (4.29)

€$J

and whenj =0, CEJF’%P(a) includes all the I1SI terms previously neglected, becoming

1 . 1
CEJFmP(a) exp ;% Frpb{F -5 b(F)| Jo— b(F) amp_cOe|t.  (4.30)

€=—L
t#0
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The total PDFp(r|a) results to be unchanged, hence no approximation is intemtiu
Whenj e [L+ 1,P-1], factor (4.29) depends on theprevious symbols. These
latter can be grouped forming the hidden variag}ﬁ% =(a1,...,a_L), taking onM"
possible values. When a pilot enters in the channel memiay,is whenj € [1,L],
factor CER(a) (4.29) depends only on the— 1 previous symbols. Therefore, the
hidden variable may be reduced @fﬂ( = (ak_1,...,8mpP+1,8mp-1,...,8-L) and the
number of possible values it can take on is oMy~t. Whenj =0, CEJF’%P(a) de-
pends not only on thé& previous symbols, grouped in thgesenthidden variable
gffr)np = (@mp-1,....amp-L), but also on thd. next symbols, which may be grouped
in the future hidden variableo(; ) o, .1 = (@mpL.....8mpe1). Both the hidden vari-

ables, the present or@éir)np and the future On@EJF,r)nP+L+l’ can take orM" different

values. The future hidden variable definition, found coesity C). (a) in (4.30),
is identical to the present hidden variable definition tret be obtained consider-
ing Cb'?nmul(a) in (4.29). Therefore, the hidden variable is well defineddwery
discrete-timek and no conflicts arise. Hence, we can safely replace the dyrabior
ain (4.29) and (4.30) with the coupleo{;) whenj e [1, P 1], and with the triplet

(amP’QEJ?nP”QEJF,r)nP+L+l) whenj =0. =

Forney pilots with Forney detection

In a similar way, it is possible to obtain the new fact{ﬁglz(a)} for the Forney model
just moving all terms depending dﬂﬁ:)a to factorC(FF) p(a) computed at pilot epochs.

Hence, the new factorization reads

,M

K-1 K-1
p(r|a) o ]—[ H(FFk) @) = ]—[ C(FF|2 @).
k=0 k=0

New factorC(FFlz (a) for symbol epochs results to be

2

L
1
C(@) = expi > vi— > acfr (4.31)
=0

l#]
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F)

for k=mP+ j, with j € [1,P - 1], while factorC(F’mP(a) for pilot epochs becomes

2}
1 L 2 L

. ex —ﬁz |fib§§g, — 2R || ympsi = > ampeicfe | OGN ||} (4.32)
i=1 =0

C#i

L
Ymp— Z amp-¢ fr— bf:,):fo
=1

1
Cmp(@) = eXP{—ﬁ

Again, whenj € [1, L], we can define the hidden variablegfi =(ak-1,---,8mP+1, 8mP-1,...,8k_L)-
As before we have trellis reduction, namely fravtt*i-1 possible values (with the
optimal MAP symbol detector) tM"~%. When | e [L+1,P-1], CF) (a) in (4.31)
depends on thé previous symbols, hence the hidden variable can be definegl on
more ap\) = (81.....a-L). Finally, whenj = 0,C{) _(a) in (4.32) depends on the
present and future hidden variables, respectively defisgg}gp: (@mp-1,-.-,8mp-L)
z:mdg(:rquﬂ_+l = (ampsL,--->8mps1). AS in the previous case with Ungerboeck detec-
tion, the future hidden variable is well defined and no amibygs present. Moreover,
all the considerations on the hidden variable set dimensidth unchanged. As done
before, we can replacain the left hand side of expressions (4.31) and (4.32) with
the couple Qk,g(:lz) and the tripletQmp,g(;r)np,g(:rquﬂ_ﬂ), respectively. m|
Sinceg(Fiz = QEJF’I)( for every discrete tim&, we introduce the generic hidden vari-
ableg{ ) = off) = o} ). Hence, as we previously showed in the derivation of the opti
mal MAP symbol detection algorithm, facto{l@ff) (a)} result to be proportional to a

conditional probability, equivalent tp(r|a), that is

K-1 L]
p(r1a.e®) o [ [CP (@) [ | ChMamp.ofbolpu)-
k=0 m=1
k#mP

K—
P

4.3.2 Ungerboeck pilots

Once more, we study theftiirent combinations of models separately.
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Ungerboeck pilots with Ungerboeck detection

Considering the expressions in (4.29) and (4.30), we findttiey can be used also
for a system based on Ungerboeck pilots with Ungerboeclctiete the only change
needed being the pilot definition to employ—namely, (4.8jéad of (4.5). The sub-
stitution of the proper pilot design yields

cii@ =c @) (4.33)

L
1 L 1 2 U)e
C&U%p(a) = exp ;‘P\ rmeETl;JIg - E |bETl;JF),| Jo— Z bEnF)’ amp-r9r (434)
i—L
(0

where (4.33) holds fok = mP+ j, with j € [1,P-1], and (4.34) forj = 0. At sym-
bol epochs, that is whefpe [1,P — 1], the pilot design is irrelevant in the factor
computation. Hence, the hidden variable definitions hokthanged. In other words,
Q(uljz = g(kF) for everyk = mP. At pilot epochs, wherj = 0, it can be seen that the pilot
design #ects only the value of (4.34), not the set of symbols the fadépends on.
Therefore, we can define the present hidden variable andtinethidden variable as
done before, that igj - = ol ando{ ) o, .1 =0\ b, ,1- Since we reuse the hidden
variable definitions introduced for the Forney pilots ch(ULjZ is well defined for
every discrete-tim&. Hence, we can safely replace symbol veetan the left hand
side of (4.33) and (4.34) with the couplac(o{;}), whenj € [1,P - 1], and with the

triplet (amP’QEJL{gﬁPQEJL{rLP+L+l)’ whenj =0. O
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Ungerboeck pilots with Forney detection

Similarly, the expressions in (4.31) and (4.32) can be aabfiir Ungerboeck pilots
with Forney detection, calculating pilot values with (dit&3tead of (4.5). This yields

ctl@=cta) (4.35)
|
-exp ——ZZ |fb(U> — 2R || Ympsi Zamp+. [0 L (4.36)
(’¢|

where (4.35) holds fdt= mP+ j, with j € [1, P—1], whereas (4.36) holds whgr= 0.
As in the case of Ungerboeck detection, the pilot design fiezdonly the value of
(4.36) but does notfeect the set of symbols on which (4.35) and (4.36) depend.
Therefore, we can define the hidden vanadzﬂ@ ) for every discrete-timé. O

As we found for the Forney pilots, we have tl@élﬂz ) for everyk. Hence,
the generic hidden vanab@( V) = Q(U) QEJUIZ may be mtroduced. As we showed

in the previous Paragraph, facto[l@(u)(a) result again to be proportional to the
conditional probability

5 [Ymp— Zamp (’ft’_b fo

U
C(F n)]P(a) exp{

K
K-1 T
p(rla.e™) « [ | C¥(ak.0f”) l_[ CO(@mp. 02,080 ).
k=0

k#mP

4.3.3 Factor graph representation

Since in the previous Paragraphs we showedg[jﬁt— ®) for every discrete-time
k, we can now define the general hidden variahle Q(U) = F). This result implies
that the corresponding FG, on which the suboptimal algarstiun, is independent
of the pilot design. Since the APRB(ax|r)} needed for the MAP symbol detection
strategy in (4.13) can be obtained also marginalizing tfet BMF P(a,o|r), we
choose to use the following new factorization

P(a,olr) o p(rla,o) P(ola) P(a)
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Figure 4.6: Factor graph for the suboptimal algorithm, vith 3 andP > 4.

where each term can be further factored as

K-1
P@@ =] [P@
k=0

K-1 K-1
P(0la) = P(oo) | | Ploxlox-1.a-1) = P(oo) | |1 (ox- -1, 81)
k=1 k=1
K-1 K-1 L5 ]
p(riao) = | | prace « | [Celacan) | | Crplamp.ompompiier)  (4.37)
k=0 k=0 m=1

k#mP

beingl(.) an indicator function equal to one wheg ok_1, anday_; satisfy the new
trellis constraint, and equal to zero otherwise. In (4.2€}drs{Cy} and{C,p} have
different expressions according to the pilot design and the tBletradopted by the
receiver, as shown in the previous Paragraphs. From (4.B7passible to derive the
FG of the final suboptimal algorithms, presented in Fig. digere we defined

Dy =

Dk (a, 0k, 0k-1) = Cy(ax, 0k) | (ok,0k-1,8-1) if kK#=mP
Dk (8, 0k> Ok-1,0k+1+1) = Ck (8> 0ks Ok L+1) | (0K 0k-1,84-1)  If k=mP.

The resulting graph has a structure similar to that of the R@Geooptimal algorithms

in Fig. 4.5. With respect to this latter, the new FG now préserbranch connecting
factor nodeD,p with hidden variableomp, 1, Which represents the dependence of
Cmp on the future symbols. Obviously, factof€y} and {Hg} of the two FGs are
different, as well as the definitions of statg and hidden variableyx. However, the
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FG shown in Fig. 4.6 is the same for all the suboptimal alpor&, independently
of the ISI models adopted by the pilots and by the detectoother words, the ISI
models &ect only factorgCy} (their expression and their value), since the trellis (i.e.
the hidden variable definition) and the FG are the same iemisely of the type of
pilots and the ISI representation adopted. Fact®g not only prevent the trellis
expansion when a pilot enters in the channel memory, butratiuce the number of
trellis states. In fact, when a pilot is in the channel memirg number of values
that ox can take on is reduced td-~1 whenk = mP+ j, with j € [1,L]. We want
to highlight that the reduction of complexity has been olsdi just by rearranging
factors in a proper way.

The dependence of nodg,p on future hidden variablenp, 11 introduces cycles
in the resulting FG, as shown in Fig. 4.6. The presence ofsyygields an approx-
imated computation of the symbol APPs, but since in the cakpsactical interest
(i.e., ISI channels witl. > 1) the girth of the graph is 2(+ 1) > 4, their convergence
to the exact APPs is expected [8]. Since the graph has cyhke§PA does not have
a natural termination but a proper schedule must be definedléNote’r mp,+1 and
{B.mpas the messages going forward and backward (respectivetieaipper branch
of the graph and connecting the function ndaigp to the hidden variablemp, 1.
Since the main structure of the FG in Fig. 4.6 is identicahi Wiberg graph of the
BCJR algorithm [8] (except for the upper branch), the SPAiado the FG [8] will
produce a slightly modified instance of the BCJR algorithime &dopted schedule is
therefore the following:

1. forward recursion of the BCJR algorithm; during the foreveecursion, when
k=mP+L+ 1 the messagé- mp:L+1 IS computed,;

2. backward recursion of the BCJR algorithm; during the laakl recursion,
whenk = mPthe messagés mp is computed,;

3. update of the messag&smp:L+1;

4. completion of the BCJR algorithm considering also thetrgomtion of mes-

sagesr mpsL+1-
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In order to correctly evaluate the messagep..+1 in step 1, the messages com-
ing from omp andomp;1 toward nodeD,p are needed. However, only the message
coming fromgmp is available, since the other will be calculated in step 2rduthe
backward recursion. Therefore, messafiasp;+1 are re-computed in step 3 when
all the necessary messages are available, and this timeothputation is correct.
Since we consider serially concatenated schemes, we @dpgserform a single
detector iteration and then to pass the extrinsic inforomagiroduced by the detec-
tor as a priori information to the decoder, in order to parféterative detection and
decoding.

4.4 Numerical results

We restrict our analysis to threefidirent scenarios, as explained in the following.
In all simulations concerning the bit error rate (BER), we packets of 2000 infor-
mation bits, a spread interleaver, a non-systematic nomsive convolutional code
with rate 05, polynomial generators [B]g and four states, a Gray mapper with sym-
bol MSV &, = 1, a binary phase-shift keying (BPSK) modulator (M= 2), a RRC
pulse with roll-df « = 0.2, a maximum of 20 iterations between detector and decoder,
and pilot insertion with period® = 7 or P = 21. In order to determine the ISI coef-
ficients to be assumed, we act as follows. We compute the éndifgl codficients

of a time-packed signaling system with a RRC pulse, rfillko= 0.2 andr = 0.9 or

7 = 0.5, wherer is the time compression factor [78], defined as the ratio betw
the used symbol interval and symbol interval for which theydigt condition for ISI
absence is respected. Since thesdfments would be too many (theoretically infi-
nite) for the implementation of the optimal detectors, wegkenly the firsL+1=7
taps of the Forney model. The resulting fta@ents are reported in Table 4.1 for both
channels. Notice that the lower the time compression fattterheavier the ISI.

We will consider three dierent scenarios: in the first one we will transmit on the
first channel £ = 0.9 in Table 4.1) with pilot period® = 21. Then we worsen the ISI
considering the second channel0.5 in Table 4.1) but keeping the same spacing
between pilots, in order to outline the role of the ISI ffiméents in the performance
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T | ¢ 0 1 2 3 4 5 6
0.9 ¢ 0.98| 0.15| -0.12| 0.089| -0.059| 0.034| -0.016
05| ‘| 012]0.44| 0.68 | 0.44 | -0.094] -0.28 | -0.00059

Table 4.1: Forney ISI cdicients of time-packed channels with a RRC pulse, rfill-o
a=0.2.

F U F U
Lt [P[O ] &) | &) | Efnc | Enc
09| 21| 0.95]| 0.97 1 1 1 1
05121 1 1 |131.29| 2.026| 7.204 | 1.049

05| 7 1 1 | 131.29| 2.026| 19.613| 1.133

Table 4.2: Pilot values, MSVs, and mean energies per symtmoRRC pulse with
roll-off a = 0.2, relative to diferent pilot designs and spacings.

of the detectors. Finally, in the third scenario we keep #woad channel (heavy ISI)
but reduce the pilot period 8 = 7, that is the minimum period preventing interfer-
ence between two consecutive pilots. We chose to includestignario in our work to
stress thefect of the pilot MSV on the BER performance. In Table 4.2 werethe
pilot values, the MSVs, and the resulting mean energies yabesl corresponding
to the adopted scenarios. When the constraint (4.6) caensdtisfied, we arbitrarily
setc = 1. In all the suboptimal detectors we empley = No + N;, whereNy is the
one-sided power spectral density of the AWGN &hids a parameter, independent of
No, optimized via numerical simulation aiming at minimizirtgetBER.N, reduces
the confidence of the BCJR algorithm in the computed messagdsherefore con-
tributes to take into account the suboptimality caused byctitles in the FG.

In order to do some comparisons, we add in all the followindgrBigures also the
curve corresponding to a system without pilots. Moreover,cansider two systems
equivalent to the current DVB-S2 standard, which entailst isertion in blocks of
pilots. So as to be fair, we need to make comparisons amotgnsydaving the same
synchronization capability. The bottle-neck of the syotiization is the carrier esti-
mation, and being it dependent on the spacing between [f#diswe keep constant
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A A
‘ T ‘ P ‘ 85)) ‘ SgwA) ‘ E(S.I%RC ESF?QC
09|21 1 0.14 1 0.96
05|21 1 0.14 1 0.96

05| 7 1 0.14 1 0.88

Table 4.3: MSVs and mean energies per symbol, for RRC pulgerali-off @ = 0.2,
relative to diferent block pilot designs and spacings.

the number of symbols between two consecutive pilot inmesti For the systems
with pilot blocks, in order to reduce the overhead, we carsihly blocks of size
Np = L+1, that is the minimum size allowing to have one known obsiksample
to be exploited for synchronization (the previdugilots being necessary to force
the state of the channel). We will show the performance cufee random block
pilots belonging to the symbol alphabet. Moreover, since plots are not in the
sameM-ary alphabet of the symbols, we decided to give this degiéeedom also
to the system with block pilots, whether it be based on the&pmodel or on the
Ungerboeck model. Therefore, since the energy loss may pertemt, we choose to
set thel state forcing pilots to 0, and ®, the (L + 1)-th pilot used for synchroniza-
tion. The resulting MSVs and mean energy per symbol are shmowable 4.3, where
the superscripA (respectivelynoA) denotes pilots that belong (respectively, do not
belong) to the symbol alphabet.

System performance will not be evaluated only in terms of BERalso in terms
of spectral éiciency. This latter can be computed as

I .
=37 (bitysHz)

wherel is the information rate in bits per channel use &Wis the bandwidth nor-
malized to the symbol period. The information rate of allteyss are evaluated with
the simulation-based technique described in [15] respitinthe corresponding op-
timal MAP symbol detector. For what concerns the bandwisliiice we are consid-
ering linear modulations employing RRC pulses witk 0.2, the normalized band-
width is known and equal tBT = (1 + «) for all the systems.
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Figure 4.7: BER curves of the optimal and suboptimal deteckor Forney pilots,
compared with curves of the systems with pilot blocks andhexit pilots, on the first
ISI channel withP = 21.

4.4.1 Firstscenario

The BER performance of all the investigated systems in teedgenario are shown
in Fig. 4.7 for the Forney pilots, and in Fig. 4.8 for the Urlgmeck pilots. In the
legends we denote as “FU” the system using Forney pilots amgbtthoeck detection,
“UU” the system completely based on the Ungerboeck moddttHe system with
Ungerboeck pilots and Forney detection, and “FF” the sydtased on the Forney
model. In the first scenario the ISl is very light (see Tablgdand all BER curves
almost overlap—except the curve relative to the system hiitbk pilots belonging
to the symbol alphabet, which shows approximately a loss dB1In this case,
the suboptimal algorithms have a loss of few tenth of dB if pared to the system
without pilots. Moreover, at low signal-to-noise ratio (8Nthe optimal algorithm
slightly outperforms the suboptimal one, but at target BERO(*) the performance
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Figure 4.8: BER curves of the optimal and suboptimal detedr Ungerboeck pi-
lots, compared with curves of the systems with pilot bloakd without pilots, on the
first ISI channel withP = 21.
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is indistinguishable. With respect to the system witholdtpj the proposed systems
show an insertion loss equal to

Ep

o = (P-2)rlog,M

(4.38)
while, if the pilots belong to the symbol alphabet, for theteyn with block pilots the
energy loss increases to

b= (P-2)rlog,M

whereNp > L+1 (Np = L+1 in the considered case). It can be seen that, if the
pilots are 0 (when forcing the channel) &5 (when used for synchronization), the
performance in terms of BER is the same of the proposed sgstBevertheless,
two are the major drawbacks of block pilots which do not bgléa the symbol
alphabet. First, they make the PAPR increase becéyse&s/Np < E,, and this
causes detrimentatfects due to the nonlinearity of the amplifiers used in thdlgate
link. Second, the SE is heavily reduced. At high SNR, the ingerms of SE is the
same that can be seen adopting block pilots belonging toythbd alphabet.

The SE curves are reported in Fig. 4.9. It can be seen thatrtpeged systems
greatly outperform systems with block pilots. If comparedhe SE of the system
without pilots, a loss due to the pilot insertion can be regticThis loss may be
reduced only by increasing the spacing between the corgegqilots, which entails
a reduction in the synchronization capability of the reeeilhe classical tradefio
between estimation accuracy and spectfidtiency is always present and cannot be
avoided.

The anomalous behavior gfat low Ep/Ng is the result of the mathematical so-
lution of the fixed-point equation

I ES Eb _ Es
No/No  No

If we plot  as a function oEs/Ng, this behavior disappears since, for physical rea-
sons,| is a non-decreasing function &f/Ng [79].
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Figure 4.9: Spectralficiencies of the systems with Forney pilots, Ungerboeckgilo
block pilots, and without pilots in the first scenario.
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Figure 4.10: BER curves of the optimal and suboptimal detectompared with
those of the systems with block pilots and without pilots tlem second ISI channel
with P = 21.

4.4.2 Second scenario

The BER curves of the ffierent algorithms are shown in Fig. 4.10. For both the types
of pilots, the suboptimal detector based on the Ungerboeattein(marked as FU
and UU) performs as the optimal one, while the detector basdtie Forney model
(marked as FF and UF) shows worse performance at low SNR.bBEhiavior may
be ascribed to the higher sensitivity of Forney detectiotheéosuboptimality of the
detection algorithm, as pointed out in [68]. All the systemith Forney pilots present
an impressive energy loss with respect to the system withitots due to two dif-
ferent contributions. The first one is an obvious insertimssldue to the presence of
pilots (4.38) (which is also present in the systems with Wbgeck pilots), while the
second and predominant is a penalty due to tifierince between the symbol and
pilot MSVs. Since pilots have MSV higher than the symbolg, ititerference they
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cause to the followind. symbols is much heavier than the interference caused by a
symbol. Hence, from the symbol point of view, when it undegjthe interference of
a previous pilot, it is as if it underwent the interferenceanbther symbol but with
stronger ISI. In other words, it is a sort of channel modifaat Since for the cho-
sen channet, < Sf)U) < SI()F) as shown in Table 4.2, the transmitter has to employ a
lot of energy to transmit a Forney pilot. That is why the ISéda the pilots is much
lower when the Ungerboeck pilot design (4.8) is adopteds €hergy loss, caused by
the diference between the MSVs, is definitely the major drawbachkisftechnique
since it is deeply rooted in the chosen pilot design and dame@voided. However,
systems with Ungerboeck pilots still outperform the tradial system with block
pilots belonging to the symbol alphabet. On the other hamel)dss with respect to
the system with block pilots not belonging to the symbol alpdt is caused by the
different mean energy per symbol, as can be shown in Tables 4£2and

In terms of SE, the performance is shown in Fig. 4.11. At hijiRShe proposed
systems outperform the system with block pilots, but at IdMRShe systems with
Forney pilots exhibit a great loss due to the much heavieth&t the pilots induce
on the information symbols.

4.4.3 Third scenario

The performance of all the investigated systems in the thighario is shown in
Fig. 4.12. Increasing the number of pilots obviously theeitien loss for both the
types of system (with Forney or Ungerboeck pilots) increasbe suboptimal detec-
tors based on the Forney ISI model always perform poorer tiiamletectors based
on the Ungerboeck model at low SNR, while at high SNR theyetiggm as the op-
timal detectors. The systems with Forney pilots presenvesthange in their BER
curves because the channel modification induced by tiiereint MSVs of symbols
and pilots has become much heavier in this scenario witreodsp the previous one.
However, the systems with Ungerboeck pilots still outperféhe system with block
pilots belonging to the symbol alphabet, but the loss wilpeet to the system with
block pilots not belonging to the symbol alphabet furtherrégases because of the
bigger diference between the mean energies per symbol (see Tablewl4423.
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Figure 4.11: Spectralfgciencies of the systems with Forney pilots, Ungerboeck pi-
lots, block pilots, and without pilots in the second scemari
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Figure 4.12: BER curves of the optimal and suboptimal detectompared with
those of the systems with block pilots and without pilots tloe second ISI channel
with P=7.



98 Chapter 4. Conditioned pilots

2
1.5 a— o
= = =i
~N
F / / f/
= 1
a
: ra
W -+ no pilot
& = FOpt .
i Z/Z/d - U opt
X -+ block, alphab.
-~ block, no alphab.
10 15 20 25
Ey/Np (dB)

Figure 4.13: Spectralfgciencies of the systems with Forney pilots, Ungerboeck pi-
lots, block pilots, and without pilots in the third scenario

The corresponding SE curves are shown in Fig. 4.13. The mtafthe diferent
systems is similar to that shown in the second scenario. HeWoss due to the pilot

insertion is very high, especially for the system with blgilots. Still, the system
with Ungerboeck pilots is the one with the best BER and SEoperénce.



Conclusions

In this Thesis we considered three satellite communicataenarios and proposed
proper techniques aimed at increasing their specfii@iency.

First, we examined frequency division multiplexed systdrased on continu-
ous phase modulations (i.e. a scenario described in the REZB-standard [2]), and
proposed reduced-complexity schemes for multi-user dete@ossibly in the pres-
ence of phase noise, and multi-user data-aided phase anekfrey synchronization
schemes. We showed that it is possible to implement trasfnischemes with an
unprecedented spectrdfieiency at a price of a limited complexity increase with re-
spect to a receiver which neglects the interference, butdardo do so, synchroniza-
tion issues have to be addressed. With this purpose, we sedpdata-aided MAP
multi-user phase estimator to be used iteratively with a-@éded frequency esti-
mator. The excellent performance of this synchronizaticmeme is testified by the
mean squared estimation error reaching the Cramér-Raaltauow SNR. Hence,
the proposed reduced-complexity scheme for multi-usexatieh can be féectively
employed to increase the system spectfiatiency also in the presence of phase and
frequency impairments.

Then, we proposed a brand new technique allowing to use-mG@EM in CDMA
systems. We showed that it is possible to set the spectiehdimg of the CPM signal
tuning the highest value the modulation index can assunketheat the PSD smooth-
ness is attainable using a long enough sequence of modulatieces. Moreover,
this technique shows the same linear relation between thkedocupied bandwidth
and the number of allowed users that characterizes the DigeB8ique with linear
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modulations. The proposed binary muitEPM-based system not only outperforms
all the other alternative solutions that can be found in ieedture, but outperforms
also a similar quaternary system—and this is a totally ueetgal result, opposite to
what is known for linear modulations. Therefore, there isired to resort to higher
order modulation formats. In a multi-user scenario, theppsed SS-FH-CPM sys-
tem can surpass the spectréii@ency of a single-user singlesystem, whereas the
BER performance can be improved by a suboptimal multi-ustgador.

Finally, we have proposed a new design for pilot symbols tadeal for synchro-
nization over channels with known ISI. This scenario may Is&ioed starting from
the DVB-S2 standard [1] and employing the time-packing némhe to improve the
spectral éiciency. Our pilots are time-varying, data-dependentaisal, and prop-
erly defined according to the Forney model or the Ungerboeolahin order to
make the detector receive, at pilot epochs, a known andamingilue. For these pi-
lots we also derived the optimal MAP symbol detection aldponis, which turned out
to run over time-varying trellises with an extremely highther of states. Hence, we
also proposed suboptimal algorithms based on thi&SP& framework, whose BER
performance is as good as the optimal one when Ungerboeektibet is adopted
(a small penalty at low SNR may be seen when Forney deteiosdd). The re-
markable complexity reduction has been obtained withcsmrtang to any kind of
modification of the joint PMF, but just rearranging factansai proper way. If the ISI
is light, symbol and pilot MSVs are almost the same. This iegpthat the PAPR is
unchanged with respect to the PAPR of a system without péotd this is a desirable
feature in presence of nonlinearities due to the amplififigh respect to the tradi-
tional pilots inserted in blocks, as required by the DVB-&hdard, the proposed
detectors gain in terms of BER and SE, and the choice of thigrd€Borney’s or
Ungerboeck’s) is irrelevant. On the contrary, if the ISIésatay the pilot design entails
great diferences in the performance of the systems. Namely, thokdUmigerboeck
pilots still outperform the system with block pilots bothterms of BER and SE,
whereas the systems with Forney pilots show an impressiesggross, due to the
pilot MSV, degrading the BER and SE performance. Therefihve system entirely
based on the Ungerboeck model is the most performing oneakaodexhibits the
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appealing absence of whitening filters, often critical teige.

Once the detection algorithms with the new pilot designsdarazed and tested,
the extension of the phase estimation algorithm describ¢23] to the Ungerboeck
ISI model becomes fundamental. Hence, future works willuide the extension of
this algorithm to known ISI channels and its validation tigh numerical simula-
tions, which are currently underway. Moreover, the wholgtemy, highly spectrally
efficient, including time-packing, the new pilot designs, I®kgonels with phase
noise, channel shortening, the extended phase estimdtoritam, and reduced-
complexity suboptimal detection will be investigated.

Concerning the CPM-CDMA scenario analyzed in Chapter 3,ptheese noise
will be included and the system behavior further studiedrédwer, new criteria for
the choice of the index sequences will be investigated.
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