
UNIVERSITÀ DEGLI STUDI DI PARMA

Dottorato di Ricerca in Tecnologie dell’Informazione

XXV Ciclo

SPECTRALLY EFFICIENT SYSTEMS

FOR SATELLITE COMMUNICATIONS

Coordinatore:

Chiar.mo Prof. Marco Locatelli

Tutor:

Chiar.mo Prof. Giulio Colavolpe

Dottorando:Nicolò Mazzali

Gennaio 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace a Parma

https://core.ac.uk/display/41182078?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




alla mia famiglia
ed ai miei amici





Contents

List of Figures v

List of Tables ix

Acronyms xi

Introduction 1

1 Backgrounds 3

1.1 Continuous phase modulations . . . . . . . . . . . . . . . . . . . . 3

1.2 MAP symbol detection strategy and BCJR algorithm . . . . . .. . 6

1.3 Factor graphs and sum-product algorithm . . . . . . . . . . . . .. 8

1.4 Iterative joint detection/decoding . . . . . . . . . . . . . . . . . . . 9

1.5 Information rate for channels with memory . . . . . . . . . . . .. 11

2 Synchronization for FDM-CPM systems 13

2.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Carrier synchronization algorithms . . . . . . . . . . . . . . . .. . 16

2.2.1 Multi-user joint detection and phase synchronization . . . . 16

2.2.2 Data-aided multi-user fine frequency synchronization . . . . 18

2.2.3 Data-aided multi-user carrier phase estimation . . . .. . . 20

2.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



ii Contents

3 Spread-spectrum CPM systems 27

3.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Multi-h CPM signal . . . . . . . . . . . . . . . . . . . . . 30

3.1.2 SS-FH-CPM . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Multi-user detectors . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 HIC-based receiver . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 SIC-based receivers . . . . . . . . . . . . . . . . . . . . . . 35

3.2.3 FG-based receiver . . . . . . . . . . . . . . . . . . . . . . 36

3.2.4 Complexity considerations . . . . . . . . . . . . . . . . . . 38

3.3 Spectral efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 Power spectral density . . . . . . . . . . . . . . . . . . . . 41

3.4.2 Overall spectral efficiency . . . . . . . . . . . . . . . . . . 41

3.4.3 BER with equal powers . . . . . . . . . . . . . . . . . . . 50

3.4.4 BER with unbalanced powers . . . . . . . . . . . . . . . . 54

3.5 Optimization of the index sequences . . . . . . . . . . . . . . . . .54

4 Conditioned pilots 57

4.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Sufficient statistics . . . . . . . . . . . . . . . . . . . . . . 60

4.1.2 Forney pilots . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.3 Ungerboeck pilots . . . . . . . . . . . . . . . . . . . . . . 63

4.1.4 Power spectral density . . . . . . . . . . . . . . . . . . . . 63

4.2 Optimal algorithms on expanded trellis . . . . . . . . . . . . . .. . 68

4.2.1 Forney pilots . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.2 Ungerboeck pilots . . . . . . . . . . . . . . . . . . . . . . 73

4.2.3 Factor graph representation . . . . . . . . . . . . . . . . . . 78

4.3 Suboptimal algorithms on reduced trellis . . . . . . . . . . . .. . . 79

4.3.1 Forney pilots . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.2 Ungerboeck pilots . . . . . . . . . . . . . . . . . . . . . . 82

4.3.3 Factor graph representation . . . . . . . . . . . . . . . . . . 84



Contents iii

4.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.1 First scenario . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.2 Second scenario . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.3 Third scenario . . . . . . . . . . . . . . . . . . . . . . . . 95

Conclusions 99

Bibliography 103

Acknowledgements 113





List of Figures

2.1 FG resulting from the approximation (2.7) and forU = 3. . . . . . . 19

2.2 FG for the multi-user DA phase estimator. . . . . . . . . . . . . .. 22

2.3 MSE of the multiuser frequency synchronization scheme in the pres-

ence of PN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 FG corresponding to (3.13) after stretching variablesσ
(u)
n in (α(u)

n ,σ
(u)
n )

and forU = 3. Circles and squares represent variable and function

nodes, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Power spectral densities for different single-h and SS-FH-CPM sig-

nals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Spectral efficiencies of the considered 2-RC binary SS-FH-CPM with

Nh = 16, p = 8, hmax = 39/8, and of different single-h 2-RC CPMs

with h= 1/8, h= 3/8, h= 1/2, h= 5/8, andh= 7/8, respectively. For

the SS-FH-CPM signal, we use the (suboptimal) single-user detector. 44

3.4 Spectral efficiencies of the proposed 2-RC binary SS-FH-CPM sys-

tem withh< 5, Nh = 16,U = 37, and two SSMH systems with{hi} =
{1/2,5/8}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Spectral efficiencies of the considered 2-RC binary and quaternary

SS-FH-CPM withNh = 16, p= 8, hmax= 39/8, and the same systems

with double bandwidth (hmax= 79/8). All curves have been obtained

with a single-user detector. . . . . . . . . . . . . . . . . . . . . . . 47



vi List of Figures

3.6 Spectral efficiencies of the proposed 2-RC binary SS-FH-CPM with

Nh = 16 andhmax= 311/8, GiLuRe 2-RC system withγ = 24, MuLa

system withγ =18 andα = 0, and Mu system withγ = 44. All curves

have been obtained with a single-user detector. . . . . . . . . . .. 49

3.7 Information rates of the proposed 2-RC binary SS-FH-CPMwith

Nh = 16 andhmax= 39/8. U = 3, U = 6, andU = 9 users have been

considered. All curves have been obtained with a single-user detector. 50

3.8 Bit error rate of the proposed 2-RC binary SS-FH-CPM withNh = 16

andhmax= 39/8. U = 3, U = 6, andU = 9 users have been considered. 51

3.9 BER performance of the SUD and different MUDs in the case of a

binary 2-RC system withU = 1 andU = 3, Nh= 8, p= 4,hmax= 19/4,

and a (64,51) eBCH code with rateR= 0.79. . . . . . . . . . . . . 53

3.10 BER performance of the SUD and different MUDs in the case of an

unbalanced binary 2-RC system withU = 1 andU = 3, Nh = 8, p= 4,

hmax= 19/4, and a (64,51) eBCH code with rateR= 0.79. . . . . . 55

4.1 Block scheme for a system using Forney pilots and Ungerboeck de-

tection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Block scheme of a system using Forney model for both pilots and

detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Block scheme of a system using Ungerboek model for both pilots and

detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Block scheme for a system with Ungerboek pilots and Forney detec-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Factor graph for the optimal algorithms forP> 3. . . . . . . . . . . 79

4.6 Factor graph for the suboptimal algorithm, withL = 3 andP≥ 4. . . 85

4.7 BER curves of the optimal and suboptimal detectors for Forney pi-

lots, compared with curves of the systems with pilot blocks and with-

out pilots, on the first ISI channel withP= 21. . . . . . . . . . . . 90



List of Figures vii

4.8 BER curves of the optimal and suboptimal detectors for Ungerboeck

pilots, compared with curves of the systems with pilot blocks and

without pilots, on the first ISI channel withP= 21. . . . . . . . . . 91

4.9 Spectral efficiencies of the systems with Forney pilots, Ungerboeck

pilots, block pilots, and without pilots in the first scenario. . . . . . 93

4.10 BER curves of the optimal and suboptimal detectors compared with

those of the systems with block pilots and without pilots, onthe sec-

ond ISI channel withP= 21. . . . . . . . . . . . . . . . . . . . . . 94

4.11 Spectral efficiencies of the systems with Forney pilots, Ungerboeck

pilots, block pilots, and without pilots in the second scenario. . . . 96

4.12 BER curves of the optimal and suboptimal detectors compared with

those of the systems with block pilots and without pilots, onthe sec-

ond ISI channel withP= 7. . . . . . . . . . . . . . . . . . . . . . 97

4.13 Spectral efficiencies of the systems with Forney pilots, Ungerboeck

pilots, block pilots, and without pilots in the third scenario. . . . . . 98





List of Tables

3.1 Bandwidths of single-h 2-RC CPMs with different modulation in-

dices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Bandwidths of the considered 2-RC binary SS-FH-CPM withNh =

16, p= 8, hmax= 39/8, and of the binary 2-RC SSMH schemes with

{hi} = {1/2,5/8}. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Bandwidths of 2-RC CPMs withNh = 16 andp= 8. . . . . . . . . 47

3.4 Parameters used to compare different systems with the same band-

width BT ≃ 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Forney ISI coefficients of time-packed channels with a RRC pulse,

roll-off α = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Pilot values, MSVs, and mean energies per symbol, for RRCpulse

with roll-off α = 0.2, relative to different pilot designs and spacings. 88

4.3 MSVs and mean energies per symbol, for RRC pulse with roll-off

α = 0.2, relative to different block pilot designs and spacings. . . . 89





Acronyms

AIS Automatic Identification Service

AWGN Additive White Gaussian Noise

BCJR Bahl Cocke Jelinek Raviv

BER Bit Error Rate

BPSK Binary Phase-Shift Keying

CDMA Code Division Multiple Access

CPCM Continuous Phase Chip Modulation

CPFSK Continuous Phase Frequency Shift Keying

CRB Cramér-Rao Bound

DA Data Aided

DS Direct Sequence

DTH Direct To Home

DVB Digital Video Broadcasting

DVB-RCS Digital Video Broadcasting - Return Channel Satellite

DVB-S2 Digital Video Broadcast - Satellite - 2nd generation



xii Acronyms

FDM Frequency Division Multiplexing

FH Frequency Hopping

FSK Frequency Shift Keying

FSM Finite-State Machine

GenMSK Generalized Minimum Shift Keying

HIC Hard Interference Cancellation

ICI Inter-Channel Interference

ISI Inter-Symbol Interference

LDPC Low-Density Parity-Check

LLR Log-Likelihood Ratio

LUT Look-Up Table

MAI Multiple Access Interference

MAP Maximum A posteriori Probability

MSS Mobile Satellite Service

MSV Mean Squared Value

MUD Multi-User Detector

PAM Pulse Amplitude Modulation

PAPR Peak-to-Average-Power Ratio

PDF Probability Density Function

PMF Probability Mass Function

PSD Power Spectral Density



Acronyms xiii

PSS Phase Spreading Sequence

RRC Root Raised Cosine

RV Random Variable

SE Spectral Efficiency

SIC Soft Interference Cancellation

SISO Soft-Input Soft-Output

SNR Signal-to-Noise Ratio

SS Spread Spectrum

SSMH Spread Spectrum Multi-h

SUD Single-User Detector





Introduction

Satellite communications are one of the most growing fields in communication indus-

try, and in the last decade a remarkable number of networks, providing many different

services, has been deployed. A general class of mobile satellite services (MSSs) is

supplied in aeronautical, land, and maritime scenarios. For example, systems such as

Thuraya, Telesat, Inmarsat, and Iridium (just to cite few ofthem) provide a telephone

connection similar to a cellular telephone link, except that the repeaters are in orbit

around the Earth. Moreover, MSSs include railway applications, security issues (e.g.,

the Automatic Identification Service, AIS, which supplies identification and local-

ization information to vessels and shore stations), traffic monitoring, disaster man-

agement, e-health applications, digital video transmission, and many more. We will

focus on digital video services, which range from custom services (such as interactive

applications) to professional and TV broadcasting services (e.g., the Direct-to-Home,

DTH). In particular, we will consider the Digital Video Broadcasting (DVB) service

and its two standards: the second generation of DVB-Satellite (DVB-S2), which de-

scribes the forward link (i.e., the connection between a gateway and the user terminal

through a satellite repeater) [1], and the DVB-Return Channel Satellite (DVB-RCS)

that defines the return link [2]. In all standards the spectrum allocation is critical since

the band occupation is severely regulated and the availablebandwidth is becoming

more and more scarce with the growing of the satellite market. Therefore, the need

for maximizing the broadcast information compels the adoption of spectrally efficient

transmission techniques.

After the introduction of some technical backgrounds in Chapter 1, in this The-
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sis we will propose three different solutions to the spectral efficiency issue. First, in

Chapter 2 we will consider a multi-user scenario with frequency multiplexing, that is

one of the scenarios included in the DVB-RCS standard. We will adopt continuous

phase modulations (CPMs) serially concatenated with an outer code through an in-

terleaver, and iterative detection/decoding. The choice of the modulation formats is

justified by the intrinsic high spectral efficiency of CPMs, which can be further in-

creased exploiting the frequency packing technique. Such an improvement does not

come for free, in fact an accurate synchronization has to be guaranteed to allow the

detector to work properly. To this purpose, new iterative frequency and phase estima-

tors will be derived and the synchronization accuracy tested.

Then, in Chapter 3 we will focus on code division multiple access (CDMA) sys-

tems employing CPMs. A brand new spectral spreading technique, especially tai-

lored to CPMs, will be presented. We will show how to easily obtain a large, flat, and

smooth power spectral density, without resorting to spreading sequences and then

getting rid of all the design problems that come with. Moreover, we will derive some

suboptimal multi-user detectors that will be employed to show that the proposed sys-

tem outperforms all the other considered systems, found in the literature, in terms of

bit error rate and spectral efficiency.

Finally, considering the DVB-S2 scenario, in Chapter 4 we will propose to in-

crease the spectral efficiency through time and frequency packing. This technique will

cause intersymbol and interchannel interferences to arise, requiring a significant in-

crease in the number of pilots used to carry out frequency andphase synchronization.

Therefore, new pilot designs will be introduced, and suitedoptimal and suboptimal

reduced-complexity algorithms derived. We will show that the proposed systems may

outperform the DVB-S2 standard in terms of bit error rate andspectral efficiency.

At last, we will draw some conclusions and sketch some possible future investi-

gations.



Chapter 1

Backgrounds

In this Chapter we give the basic frameworks, algorithms, and definitions extensively

used in this Thesis. First, the continuous phase modulations (CPMs) are defined

and their characteristics described. They will be employedin the first two Chap-

ters of this Thesis in two different scenarios. Then, maximum a posteriori proba-

bility (MAP) symbol detection strategy and the factor graph/sum-product algorithm

(FG/SPA) framework, pervasively adopted in every chapter, are illustrated. Finally,

we sketch the iterative joint detection/decoding procedure and the simulation-based

algorithm employed for the computation of the information rate.

1.1 Continuous phase modulations

CPMs are constant envelope modulations, hence low cost amplifiers can be used in

heavy saturation. Since the phase is continuous, these modulations result to be highly

spectral and power efficient [3].

Phase continuity introduces a memory in the modulated signal. The complex en-

velope of a CPM signal is therefore

s(t;α) =

√

2Es

T
exp















2πh
∑

i

αiq(t− iT )+ θ














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whereEs is the energy per symbol,T the symbol period,h a constant calledmodula-

tion index, {αk} are the information symbols belonging to the alphabet{±1, ...,±(M−1)},
q(t) is thephase smoothing responsedefined as

q(t) =



















0 whent < 0

1
2 whent > LT

and θ is the initial phase offset. ParameterL is thecorrelation lengthof the CPM

signal. The phase smoothing function can be expressed as integral of thefrequency

pulse

g(t) =
dq(t)

dt

whose duration is at mostLT. Since the frequency pulse is different from zero only

in the interval [0,LT], the phase of the signal can be expressed as the sum of three

terms (in addition to the initial phaseθ). Considering a finite-duration transmission,

we have

φ(t;αk,σk) = 2πh
k−L
∑

i=0

αi
1
2
+

+2πh
k−1
∑

i=k−L+1

αiq(t− iT )+

+2πhαkq(t−kT) kT ≤ t < (k+1)T .

The first of these terms depends on the “old” symbols whose responseq(t) has

reached its final value 1/2 and is calledphase state

ϕk =

















πh
k−L
∑

i=0

αi

















mod2π.

The second term depends on theL − 1 most recent symbolsαk−L+1, . . . ,αk−1. This

group of symbols defines thecorrelative stateand, together with the phase state,

contributes to the definition of themodulator stateat timekT, that is

σk = (αk−1, . . . ,αk−L+1;ϕk) .
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Given the symbol and the state at timekT, the phaseφ(t;αk,σk)—and hence the CPM

signal—results determined.

At time t = (k+1)T, the next modulator state becomes

σk+1 = (αk, . . . ,αk−L+2;ϕk+1)

where the new correlative state is obtained just right-shifting the old one, and the new

phase state is

ϕk+1 = (ϕk+πhαk−L+1) mod2π.

To evaluate the number of states of the modulator we observe that the number of

correlative states isML−1. Theoretically, the number of phase states may be infinite.

Fortunately, it results to be finite if the modulation index is a rational number [3]

h=
n
p

wheren and p are relatively prime. Ifn is even, there arep distinct phase states,

otherwise there are 2p possible phase states. Among these 2p values, onlyp can

be taken on in the even time epochs, while in the odd time epochs only the other

p values can be taken on. Hence, the total number of states of a CPM modulator is

alwayspML−1. If n and p are not relatively prime, the index definition is still valid

but the trellis is redundant and can be reduced.

An integer representation of the phase state and the information symbols allows to

work with a new phase state whose alphabet results to be time-invariant [4]. Defining

αk = 2ᾱk− (M−1)

ϕk = 2πhϕ̄k−πh(M−1)k

we have that ¯αk ∈ {0,1, . . . ,M− 1} and ϕ̄k ∈ {0,1, . . . , p− 1}, and the new update law

becomes

ϕ̄k+1 = (ϕ̄k+ ᾱk−L+1) modp

whereϕ̄k+1 takes on values in the same alphabet of ¯ϕk independently of the timek

(even or odd).

CPMs are grouped in two classes according to the correlationlength. Namely,

they are said to befull responseCPMs if L = 1, orpartial responseCPMs if L > 1.
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1.2 MAP symbol detection strategy and BCJR algorithm

Given a sequence of transmitted symbols{an} collected into vectora, wherea =

(a0, . . . ,aK−1), and a channel with memory, we denote by vectorr the sufficient statis-

tics of the received signalr(t), extracted by the receiver. In particular, then-th element

of vectorr can be a vector, denoted in the followingrn, since in general, at each time

epochn, the number of sufficient statistics can be greater than one. Thus, the MAP

symbol detection strategy minimizing the average symbol error probability is

ân = argmax
an

P(an|r ) (1.1)

whereP(.) denotes a probability mass function (PMF). We adopt this strategy because

it provides soft-output decisions and, as a by-product, thea posteriori probabilities

(APPs){P(an|r )}, which can be considered as reliability estimates on the chosen sym-

bols {ân}. These estimates allow us to derive soft-input soft-output(SISO) detection

(or decoding) algorithms, necessary to implement iterative joint detection/decoding

schemes [5].

In particular, by employing the Bayes rules, we can express the MAP symbol

strategy in (1.1) as

ân = argmax
an

p(r |an)P(an) (1.2)

where{P(an)} are the a priori probabilities of symbols{an} andp(.) denotes a proba-

bility density function (PDF). Thus, in order to accomplishthe proposed maximiza-

tion, we need to compute the PDFp(r |an). Considering a channel with memory de-

scribed as a finite-state machine (FSM), whose state is denoted byσn, we can solve

the MAP symbol problem by the Bahl, Cocke, Jelinek, Raviv (BCJR) algorithm [6]

based on a probabilistic derivation. In particular,p(r |an) expression is given by

p(r |an) =
∑

σn

αn(σn)βn+1(σn+1)p(rn|an,σn) (1.3)

where

• αn(σn) is the forward metric defined as

αn(σn) = p(rn−1
0 |σn)P(σn)
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where we denote byrn2
n1

the vector collecting all the sufficient statisticsrn from

n= n1 to n= n2;

• βn+1(σn+1) is the backward metric and reads

βn+1(σn+1) = p(r K−1
n+1 |σn+1) .

Forward and backward metrics can be recursively computed through the following

forward and backward recursions

αn+1(σn+1) =
∑

an,σn

αn(σn)p(rn|an,σn)P(an) (1.4)

βn(σn) =
∑

an,σn+1

βn+1(σn+1)p(rn|an,σn)P(an) . (1.5)

Hence the BCJR algorithm works as follows:

• forward and backward metrics are computed by means of (1.4) and (1.5) for

each time epochn and each state valueσn;

• the PDFp(r |an) is derived by (1.3) exploitingαn(σn), βn+1(σn+1), andp(rn|an,σn);

• finally, the MAP strategy (1.2) can be implemented and APPs{P(an|r )} ob-

tained.

However, this algorithm is usually unsuitable for direct implementation because of

the difficulties in numerically representing probabilities, nonlinear functions, and ba-

sic arithmetical operations (multiplication and sum) involving these values. There-

fore, a perfectly equivalent algorithm, working in the logarithmic domain, is usually

adopted since it does not present these problems of implementation [7]. In the loga-

rithmic domain, Equations (1.3), (1.4), and (1.5) are all inthe form

ln f (δ1, . . . , δn) = ln
(

eδ1 + . . .+eδn
)

which can be recursively calculated resorting to the Jacobian logarithm, i.e.

ln
(

eδ1 +eδ2
)

=max{δ1, δ2}+ ln
(

1+e−|δ1−δ2|
)

.
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Typically, when symbols{an} are generated from anM-ary alphabet, we choose the

set {ℓa,n} of M − 1 logarithmic ratios of APPs{P(an|r )} as reliability estimates of

decisions on symbols{an}. The log-likelihood ratio (LLR)ℓa,n is hence defined as

ℓa,n = ln
P(an = a|r )
P(an = 0|r )

(1.6)

wherea∈ {1, . . . ,M−1}.

1.3 Factor graphs and sum-product algorithm

An alternative derivation of the BCJR algorithm can be obtained by means of the fac-

tor graphs (FGs) and the sum-product algorithm (SPA) presented in [8]. These tools

are particularly suited to find the marginals of a joint PMF that can be expressed as

product of “local” functions, each of which depends on a subset of the variables. This

factorization can be visualized with a FG, which is a bipartite graph that indicates

which variables are argument of each local function. The SPAworks on the FG and

computes the marginal functions derived from the global function.

Let x = (x1, . . . , xn) be a collection of variables, wherexi takes on values on some

(usually finite) domainAi, and let f (x) be a multivariate function. Suppose thatf (x)

factors into a product of several local functionsf j , each having a subsetx j of x as

argument:

f (x) =
∏

j∈J
f j(x j)

whereJ is a discrete index set. A FG is a bipartite graph which has a variable node for

each variablexi, a factor node for each functionf j , and an edge connecting variable

nodexi to function nodef j if and only if xi is an argument off j. The SPA is defined by

the computation rules at variable and factor nodes, and by a suitable node activation

schedule. Denoting byµxi→ f j (xi) a message sent from the variable nodexi to the

factor nodef j , by µ f j→xi (xi) a message in the opposite direction, and byBi the set of

functions f j havingxi as argument, the message computations performed at variable
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and factor nodes are, respectively [8]

µxi→ f j (xi) =
∏

h∈Bi\{ f j }
µh→xi (xi) (1.7)

µ f j→xi (xi) =
∑

∼{xi }



















f j({y ∈ C j})
∏

y∈C j\{xi }
µy→ f j (y)



















(1.8)

whereC j is the set of variables argument off j and
∑

∼{xi } is thesummaryoperator,

i.e., a sum over all the variables inC j excludingxi .

Thus, we can factor the PMFP(a|r ) in order to find, through the SPA, the marginal

APPs{P(an|r )} required by the MAP symbol strategy (1.1). If the FG has cycles,

the SPA is inherently iterative and the convergence to the exact marginal PMFs is

not guaranteed. Nevertheless, for many relevant problems characterized by FGs with

cycles, the SPA was found to provide very good results and therefore it represents a

viable solution to the approximated marginalization of multivariate PMFs when exact

calculation is not feasible because of complexity.

Finally, we define the message-passing schedule in the SPA asthe specification

of the order in which messages are updated. In general, especially for graphs with

cycles, the so-called flooding schedule is adopted [9]: in each iteration, all variable

nodes and subsequently all factor nodes pass new messages totheir neighbors.

1.4 Iterative joint detection/decoding

When we consider a communication system characterized by anerror correcting code

and a channel with memory, the set of possible states of the overall system can have

a very large cardinality. Hence, the optimal MAP symbol (or sequence) detection

strategy at the receiver may become infeasible. In these cases, we can resort to a

suboptimal iterative joint detection/decoding scheme which exhibits a computational

complexity much lower than the complexity of the optimal scheme, but whose perfor-

mance approaches that of the optimal one (as verified by numerical results) [10]. In

particular, here we describe the operations of a serially concatenated scheme, which

is the scheme adopted in all the following Chapters for the detection of the transmit-



10 Chapter 1. Backgrounds

ted signal (a CPM or a linearly modulated signal) in the presence of an outer error

correcting code.

In an iterative concatenated joint detection/decoding scheme, each component

block (i.e., the detector and the decoder) works separatelyby implementing the MAP

symbol strategy optimal for the single block, assuming thatno other memory sources

are present in the system. They employ a detection (respectively, decoding) algorithm

based on the MAP symbol rule which provides reliability estimates on the algorithm

decisions. In general, an iterative concatenated scheme isbased on the following ba-

sic concept: each component block exploits the suggestionsprovided by the other

component block, in order to derive decisions which become more reliable with the

iterations. In detail, a serially concatenated scheme works as follows. First of all,

the detector performs an instance of the detection algorithm, operating on the chan-

nel sufficient statisticsr . Then, the soft decisions produced on each symbolan are

forwarded to the decoder, which employs the detector APPs asa priori probabili-

ties on symbols{an} while performing decoding. Thus, a new set of soft decisions

on the symbols are produced and passed to the detector. The detector exploits these

reliability estimates as a priori probabilities on{an} and starts a new iteration of the

serially concatenated scheme. The joint detection/decoding process continues for a

fixed number of iterations, then hard final decisions on symbols {an} are made.

In order to accelerate the convergence of the iterative detection/decoding process,

each component block must receive as input an information that is not self-produced.

With this purpose, in [11] and [12] the concept ofextrinsic informationis introduced,

which identifies the reliability information produced by a component block which

does not depend on the information received as input. If we denote byℓout
a,n the LLR

defined in (1.6) and produced by a block, representing the reliability measure of a

MAP symbol algorithm on the decision on the symbolan, the extrinsic information

ℓ
e,out
a,n generated by such block is given by

ℓe,out
a,n = ℓ

out
a,n− ℓe,in

a,n .

The FG/SPA tool intrinsically propagates extrinsic information,as described by (1.7)

and (1.8).
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The turbo principle, i.e., the exchange of information between two soft blocks,

can be employed also in iterative decoding applied to low-density parity-check (LDPC)

codes and turbo codes [13].

1.5 Information rate for channels with memory

The information rate I(x;y) quantifies the amount of information that can be trans-

mitted over a channel with input random processX and output random processY,

and is expressed in bits per channel use. In the following we will focus on the case

where bothX andY are stationary processes. From them we extract the discrete-time

stationary random sequencesx andy respectively, in general not of the same length.

From information theory results [14], we know that for everychannelI (x;y) can be

expressed as

I (x;y) = h(x)−h(x|y)

(

bit
ch.use

)

(1.9)

whereh(x) is thedifferential entropy rateof the input sequencex

h(x) = −E
{

log2 p(x)
}

=

∫ +∞

−∞
p(x) log2

1
p(x)

dx

andh(x|y) is theconditionaldifferential entropy rate of the input sequencex given

the channel output sequencey

h(x|y) = −E
{

log2 p(x|y)
}

=

∫ +∞

−∞
p(x,y) log2

1
p(x|y)

dxdy

which depends only on the channel characteristics. It can beshown that (1.9) is equiv-

alent to

I (x;y) = h(y)−h(y|x)

(

bit
ch.use

)

. (1.10)

A method to compute the information rate of a finite-state hidden Markov model is

described in [15], and employs the forward recursion of the BCJR algorithm. This

method can be extended to all channel models with an infinite number of states (for

example additive white Gaussian noise channels affected by phase noise) finding an

auxiliary finite-state channel that approximates the actual channel. In this case, the
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algorithm allows to compute a lower bound of the actual information rate—the better

the channel approximation, the tighter the bound.

The method is the following. Given a certain channel input sequencexN
1 = (x1, . . . , xN)

and the corresponding output sequence of the same lengthyN
1 = (y1, . . . ,yN), the com-

putation of the differential entropy rateh(y) and of the conditional differential entropy

rateh(y|x) can be carried out thanks to the Shannon-McMillian-Breimann theorem

[14] which ensures the convergence, with probability equalto one, of

h(y) = − lim
N→+∞

1
N

E
{

log2 p(yN
1 )

}

(1.11)

h(y|x) = − lim
N→+∞

1
N

E
{

log2 p(yN
1 |xN

1 )
}

(1.12)

if xN
1 andyN

1 are realizations of stationary ergodic finite-state hiddenMarkov pro-

cesses. Replacing (1.11) and (1.12) in (1.10), we get

I (x;y) = lim
N→+∞

1
N

E















log2

p(yN
1 |xN

1 )

p(yN
1 )















. (1.13)

Hence, to compute the information rate we just need to evaluate the PDFsp(yN
1 )

and p(yN
1 |xN

1 ). These values can be effectively obtained by the forward recursion of

the BCJR algorithm implementing the MAP symbol detection strategy. Finally, to

evaluate the expectation in (1.13) the Montecarlo method isadopted.



Chapter 2

Synchronization for FDM-CPM

systems

Spectral efficiency (SE) of frequency division multiplexed (FDM) systems can be in-

creased by reducing the spacing between two adjacent channels, thus allowing over-

lap in frequency and hence admitting a certain amount of interference [16][17]. This

aspect has been investigated from an information-theoretic point of view for linear

[18] as well as continuous phase modulations (CPMs) [19][20], showing that a sig-

nificant improvement can be obtained through packing even when at the receiver side

a single-user detector is employed. When a multi-user receiver is adopted, the bene-

fits in terms of SE can be even larger and the signals can be packed denser and denser

[16]–[21].

Since, as known, the complexity of the optimal multi-user detector increases ex-

ponentially with the number of channels, suboptimal detection schemes are required.

In the case of a satellite FDM system using linear modulations, the adoption of

reduced-complexity multi-user detection (MUD) algorithms borrowed from the liter-

ature on code division multiple access (CDMA) is investigated in [16]–[18] showing

that these techniques work well also in this scenario. Although this is, in principle,

possible for CPM systems as well, a new reduced-complexity MUD algorithm for

an additive white Gaussian noise (AWGN) channel is derived in [22] based on factor
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graphs (FGs) and the sum-product algorithm (SPA) [8]. This latter framework, often

used in the past to reinterpret known algorithms, is very useful for deriving new de-

tection schemes with an unprecedented complexity/performance trade-off [23]–[27]

or for applications where traditional probabilistic methods fail [28]. In this case, the

new algorithm designed in [22] by using this framework outperforms all other subop-

timal MUD algorithms both from performance and complexity points of view [20].

But a denser packing has an impact not only on the detection algorithm. In fact, once

satisfactorily suboptimal MUD algorithms are available, other subsystems become

critical. In particular, carrier synchronization schemesable to cope with the increased

interference must be adopted.

In this Chapter, we will focus on CPMs, since they are often employed in satellite

communications and they have been recently included in the 2nd-generation Digital

Video Broadcasting - Return Channel Satellite (DVB-RCS2) standard [2]. CPM sig-

nals are appealing for satellite systems for their robustness to nonlinearities, stem-

ming from the constant envelope, their claimed power and spectral efficiency, and

their recursive nature which allows to employ them in serially concatenated schemes

[29][30].

2.1 System model

We assume that the channel is shared byU independent users. Without loss of gen-

erality, we consider synchronous users, all employing the same modulation format,

equally spaced in the frequency domain, transmitting at thesame power, and a re-

turn link satellite channel. The extension to the case of asynchronous users, possibly

with different power and modulation formats can be pursued as described in [22].

The adoption of CPMs allows to use cheaper nonlinear amplifiers at the transmitters,

which can be driven in saturation and whose effect can be neglected in our anal-

ysis. On the other hand, we assume that the on-board satellite amplifier works far

from the saturation to avoid distortions on the composite signal—this is a common
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operating choice for this kind of systems1. We assume that each user transmitsN

symbols and we denote byα(u)
n the symbol transmitted by useru at discrete-time

n, which takes on values in theM-ary alphabet{±1,±3· · · ± (M − 1)}. Moreover,

α(u) = (α(u)
0 , . . . ,α

(u)
N−1)T is the vector of theN symbols transmitted by useru and we

also denoteαn = (α(1)
n , . . . ,α

(U)
n )T andα = (αT

0 , . . . ,α
T
N−1)T . In the following, (·)T de-

notes transpose and (·)H transpose conjugate. The complex envelope of the received

signal can be written as

r(t) =
U
∑

u=1

s(u)(t,α(u))eθ
(u)(t) +w(t) (2.1)

wherew(t) is a zero-mean circularly symmetric white Gaussian noise process with

power spectral density (PSD) 2N0 (N0 assumed perfectly known at the receiver),

θ(u)(t) is the phase noise (PN) affecting useru (θ(u)(t) andθ(v)(t) are assumed inde-

pendent foru , v), ands(u)(t,α(u)) is the CPM information-bearing signal of useru

which reads

s(u)(t,α(u)) =

√

2ES

T
exp















2π f (u)t+h
N−1
∑

n=0

α
(u)
n q(t−nT)















. (2.2)

In the generic time interval [nT,nT +T), the CPM signal of useru is completely

defined by symbolα(u)
n and stateσ(u)

n = (ωn,φn), where

ω
(u)
n = (α(u)

n−1, . . . ,α
(u)
n−L+1)

is the correlative state andφn, which takes onp values, is the phase state. In the

following, we defineσn = (σ(1)
n , . . . ,σ

(U)
n )T andσ = (σT

0 , . . . ,σ
T
N)T .

An approximated set of sufficient statistics can be obtained by extractingη sam-

ples per symbol interval from the received signal prefiltered by means of an analog

low-pass filter which leaves unmodified the useful signal andhas a vestigial sym-

metry aroundη/2T. The condition on the vestigial symmetry of the analog prefilter

1We are dealing with a multiple carrier per transponder scenario, which is common in the return link

of satellite systems.
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ensures that the noise samples are independent and identically distributed (i.i.d.) com-

plex Gaussian random variables with independent components, each with mean zero

and varianceΞ2 = N0η/T [22]. We will denote byrn,m the m-th received sample

(m= 0,1, . . . , η− 1) of the n-th symbol interval. Assumingθ(u)(t) constant over an

interval of lengthT, this sample can be expressed as

rn,m =

U
∑

u=1

s(u)
n,m(α(u)

n ,σ
(u)
n )eθ

(u)
n +wn,m (2.3)

whereθ(u)
n = θ

(u)(nT), {wn,m} are i.i.d. complex Gaussian noise samples, ands(u)
n,m(α(u),σ(u))

(whose dependence onα(u) andσ(u) will be omitted in the following when unnec-

essary) is the contribution of useru to the useful signal component. The random

process{θ(u)
n } is modeled according to a discrete-time Wiener process, whose incre-

mental standard deviation over a symbol intervalσ∆ is known at the receiver [27].

In the following, we will definern = (rn,0, rn,1, . . . , rn,η−1)T , r = (rT
0 , r

T
1 , . . . , r

T
N−1)T and

s(u)
n = (s(u)

n,0, s
(u)
n,1, . . . , s

(u)
n,η−1)T .

2.2 Carrier synchronization algorithms

2.2.1 Multi-user joint detection and phase synchronization

In the presence of PN, phase synchronization must be performed jointly with detec-

tion [23], [27]. We describe the extension of the reduced-complexity MUD scheme

in [22] to the case of channels affected by PN. This algorithm is obtained by means

of some graphical manipulations on the FG representing the joint distribution of the

transmitted symbols and the channel phase. We follow the Bayesian approach em-

ployed in [27] to design single-user detectors for the PN channel.

We can rewrite the signal of useru highlighting the component that depends on

the CPM phase state:

s(u)
n,m(α(u)

n ,σ
(u)
n ) = s(u)

n,m(α(u)
n ,ω

(u)
n )eφ

(u)
n
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Definingψ(u)
n = [φ(u)

n + θ
(u)
n ]2π, where [.]2π denotes the modulus 2π operator, the re-

ceived signal (2.3) can be expressed as

rn,m=

U
∑

u=1

s(u)
n,m(α(u)

n ,ω
(u)
n )eψ

(u)
n +wn,m. (2.4)

Let us now defineωn = (ω(1)
n , . . . ,ω

(U)
n )T , ω = (ωT

0 , . . . ,ω
T
N)T , ψn = (ψ(1)

n , . . . ,ψ
(U)
n )T ,

ψ = (ψT
0 , . . . ,ψ

T
N)T , ands(u)

n = (s(u)
n,0, s

(u)
n,1, . . . , s

(u)
n,η−1)T . Discarding the terms indepen-

dent of symbols and states and taking into account that a CPM signal has a constant

envelope, the joint distributionp(α,ω,ψ|r ) can be factored as

p(α,ω,ψ|r ) ∝
















U
∏

u=1

P(ω(u)
0 )P(ψ(u)

0 )

















N−1
∏

n=0

En(αn,ωn,ψn)·

·
U

∏

u=1

T(u)
n (α(u)

n ,ω
(u)
n ,ψ

(u)
n )G(u)

n (ψ(u)
n+1,ψ

(u)
n ,ω

(u)
n )I (u)

n (ω(u)
n+1,ω

(u)
n ,α

(u)
n )P(α(u)

n ) (2.5)

where

I (u)
n (ω(u)

n+1,ω
(u)
n ,α

(u)
n ) = P(ω(u)

n+1|ω
(u)
n ,α

(u)
n )

G(u)
n (ψ(u)

n+1,ψ
(u)
n ,ω

(u)
n ) = p(ψ(u)

n+1|ψ
(u)
n ,ω

(u)
n )

T(u)
n (α(u)

n ,ω
(u)
n ,ψ

(u)
n ) = exp

{

1

Ξ2
ℜ

[

r H
n s(u)

n eψ
(u)
n

]

}

En(αn,ωn,ψn) =
U−1
∏

i=1

U
∏

k=i+1

exp

{

− 1
Ξ2
ℜ

[

s(i)H
n s(k)

n e−(ψ(i)
n −ψ(k)

n )
]

}

(2.6)

Notice thatP(ω(u)
n+1|ω

(u)
n ,α

(u)
n ) is an indicator function, equal to one ifα(u)

n , ω(u)
n , and

ω
(u)
n+1 are compatible and to zero otherwise, andp(ψ(u)

n+1|ψ
(u)
n ,ω

(u)
n )= p(ψ(u)

n+1|ψ
(u)
n ,α

(u)
n−L+1)

is a Gaussian PDF inψ(u)
n+1 with mean [ψ(u)

n + πhαn−L+1]2π and standard deviation

σ∆. The FG corresponding to (2.5) has cycles of length four, that make unlikely the

convergence of the SPA, since they are too short. We remove these short cycles by

clustering the variablesω(u)
n andψ(u)

n and then stretching them in (α(u)
n ,ω

(u)
n ,ψ

(u)
n ) [8],

obtaining a graph with shortest cycles of length twelve. Assuming as in [22] that the
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interference among non-adjacent users is negligible, we approximate (2.6) as

En(αn,ωn,ψn) ≃
U−1
∏

i=1

E(i,i+1)
n (α(i)

n ,ω
(i)
n ,ψ

(i)
n ,α

(i+1)
n ,ω

(i+1)
n ,ψ

(i+1)
n ) (2.7)

where

E(i,i+1)
n (α(i)

n ,ω
(i)
n ,ψ

(i)
n ,α

(i+1)
n ,ω

(i+1)
n ,ψ

(i+1)
n )=exp

{

− 1

Ξ2
ℜ

[

s(i)H
n s(i+1)

n e−(ψ(i)
n −ψ(i+1)

n )
]

}

.

This FG is shown in Fig. 2.1 and is similar to that for the AWGN channel [22]. A ma-

jor difference is represented here by the fact that continuous variablesψ(u)
n are now

represented in the graph. Hence, the application of the SPA involves the computation

of continuous PDFs and is not suited for a practical implementation. To overcome

this problem, we may resort, as in [27], to the canonical distribution approach. Ex-

amples of commonly used canonical distributions for this channel can be found in

[27]. In the numerical results, we will consider a canonicaldistribution composed of

a weighted sum of impulses. In other words, each phaseψ
(u)
n is quantized toD equally

spaced values. Although the algorithm has been obtained by assuming a Wiener PN

with known incremental variance over a symbol variance, it can be employed even

when the PN follows a different model. In this case, the value ofσ2
∆

assumed at the

receiver must be optimized by simulation for the PN at hand. In any case, there is

in general a benefit from using at the receiver a value of thermal noise varianceσ2

larger than the actual one. The rationale of this trick is thefollowing: since there is an

overconfidence in the computed messages, we can make the algorithm less confident

simply by describing the channel as if it added more noise than it really does [31].

2.2.2 Data-aided multi-user fine frequency synchronization

The MUD algorithm requires the knowledge of the amplitude
√

2ES/T (possibly

different in case of users with different powers) and frequency valuesf (u) for each

user. For them, we resort to data-aided (DA) estimation algorithms based on known

data fields usually inserted in the frame. Amplitude estimation is not an issue. In fact,

the application ofU occurrences of a DA maximum-likelihood single-user estimation
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Figure 2.1: FG resulting from the approximation (2.7) and for U = 3.

algorithm provides amplitude estimates with a good accuracy for typical preamble

lengths. Instead, DA single-user frequency estimation algorithms do not provide the

required accuracy. This is obviously due to the interference of adjacent channels. For

this reason, we employ interference cancellation to refine the estimates.

A first set of estimates of the frequency valuesf (u) is obtained by applying the

DA algorithm in [32] to the preamble of each user. This algorithm does not require

the knowledge of the channel phase for each user. These estimates are then itera-

tively refined still using the same single-user algorithm tothe received signal after

the contribution of the adjacent signals has been removed. To perform interference

cancellation we need to employ not only the already estimated amplitude values and

the frequency values of the previous iteration, but also theinstantaneous (in case of

a time-varying channel phase) values of the channel phase for each user. These are

obtained by using the DA multi-user carrier phase estimation algorithm described in

the next paragraph, and refined every time a new set of frequency estimates becomes

available.

In summary, the algorithm proceeds as follows. The amplitude of each user is
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estimated first. Then, at each iteration a new set of frequency estimates is derived by

using the single-user DA algorithm in [32] after the contribution of adjacent users has

been removed. This set of frequency estimates is employed toperform DA multi-user

carrier phase estimation whose output will be employed for interference cancellation

at the next iteration. A few iterations are in general sufficient, provided the known

data fields of all users have been properly optimized.

2.2.3 Data-aided multi-user carrier phase estimation

We now describe a DA multi-user carrier phase estimation algorithm that requires the

knowledge of frequency and amplitude values of each user, estimated as described

in the previous paragraph. As mentioned, phase estimates are used for interference

cancellation necessary to improve frequency estimates.

Let us assume a known data field ofP symbols (K = ηP samples). Definingzk =

rn,m, x(u)
k = s(u)

n,m, andζk = wn,m, with k = nη+m, we will assume that the known data

field corresponds to valuesk= 0,1, . . . ,K−1. We also remove the hypothesis that the

PN is constant over a symbol interval and defineϕ
(u)
k = θ

(u)(kT/η). Hence, we may

express

zk =

U
∑

u=1

x(u)
k eϕ

(u)
k + ζk . (2.8)

Let us defineϕk = (ϕ(1)
k , . . . ,ϕ

(U)
k )T , ϕ = (ϕT

0 , . . . ,ϕ
T
K−1)T and z = (z0, . . . ,zK−1)T . As

before, we model the PN as a discrete-time Wiener process with incremental standard

deviation over a symbol intervalσ∆. We derive the MAP DA phase estimator as

ϕ̂
(u)
k = argmax

ϕ
(u)
k

p(ϕ(u)
k |z) u= 1, . . . ,U, k= 0, . . . ,K −1.

PDFs{p(ϕ(u)
k |z)} are obtained fromp(ϕ|z) by using the FG/SPA framework. From
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(2.8), we may express

p(ϕ|z) ∝ p(z|ϕ)p(ϕ) =
K−1
∏

k=0

















p(zk|ϕk)
U
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u=1

p(ϕ(u)
k |ϕ

(u)
k−1)


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











=

K−1
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















p(zk|ϕk)
U

∏

u=1

D(u)
k,k−1(ϕ(u)

k −ϕ
(u)
k−1)

















(2.9)

whereD(u)
k,k−1(ϕ(u)

k −ϕ
(u)
k−1) = p(ϕ(u)

k |ϕ
(u)
k−1) is a Gaussian PDF with meanϕ(u)

k−1 and stan-

dard deviationσ∆/
√
η, according to the Wiener model. Neglecting irrelevant multi-

plicative terms, we can further factor

p(zk|ϕk) ∝ exp



















− 1

2Ξ2

∣

∣

∣
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∣

∣

zk−
U
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u=1

x(u)
k eϕ

(u)
k

∣

∣

∣

∣

∣

∣

∣

2
















∝
U

∏

u=1

B(u)
k (ϕ(u)

k )
U−1
∏

u=1

U
∏

v=u+1

C(u,v)
k (ϕ(u)

k ,ϕ
(v)
k ) (2.10)

having defined

B(u)
k (ϕ(u)

k ) = exp

{

1

Ξ2
ℜ

[

zkx(u)∗
k e−ϕ

(u)
k

]

}

C(u,v)
k (ϕ(u)

k ,ϕ
(v)
k ) = exp

{

1

Ξ2
ℜ

[

x(u)
k x(v)∗

k e(ϕ(u)
k −ϕ

(v)
k )

]

}

.

From (2.9) and (2.10), we finally obtain the relevant factorization of p(ϕ|z). Node

C(u,v)
k in the resulting FG connects variable nodesϕ

(u)
k andϕ(v)

k . Since the interfer-

ence between two non-adjacent users is much smaller than theinterference between

adjacent users, we consider only functions connecting adjacent variable nodes, i.e.

functionsC(u,u+1)
k . The simplified FG is shown in Fig. 2.2.

Due to the presence of cycles in the FG of Fig. 2.2, the application of the SPA

gives an iterative algorithm which provides proper approximations of PDFs{p(ϕ(u)
k |z)}.

We adopt the canonical distribution approach and, as in [23], we model the messages
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Figure 2.2: FG for the multi-user DA phase estimator.

represented in Fig. 2.2 as Tikhonov PDFs, i.e.

p(u)
f ,k(ϕ

(u)
k ) = t(a(u)

f ,k;ϕ
(u)
k )

p(u)
b,k(ϕ

(u)
k ) = t(a(u)

b,k;ϕ
(u)
k )

p(u−1,u)
l,k (ϕ(u)

k ) = t(a(u−1,u)
l,k ;ϕ(u)

k )

p(u+1,u)
r,k (ϕ(u)

k ) = t(a(u+1,u)
r,k ;ϕ(u)

k )

wheret(ξ; x) is a Tikhonov distribution in the random variable (RV)x characterized

by the complex parameterξ:

t(ξ; x) =
1

2πI0(|ξ|) exp
{

ℜ
[

ξe− jx
]}

being I0(·) the zeroth-order modified Bessel function of the first kind.Hence, we

simply have to update and propagate the complex parameters describing the Tikhonov

PDFs. Let us first consider the update of parametera(u)
f ,k. By generalizing the results
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in [23], we have

a(u)
f ,k+1 = γ










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
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a(u)
f ,k+

zkx(u)∗
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σ∆√
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


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(2.11)

having defined

γ(ǫ, ζ) =
ǫ

1+ |ǫ|ζ2
.

Similarly,

a(u)
b,k−1 = γ






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





a(u)
b,k+

zkx(u)∗
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σ∆√
η


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
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. (2.12)

Regarding parametersa(u−1,u)
l,k anda(u+1,u)

r,k we have

a(u,u+1)
l,k = δ

















a(u)
f ,k+a(u)

b,k+
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(2.13)

and

a(u,u−1)
r,k = δ
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a(u)
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
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(2.14)

where

δ(ǫ, ζ) =
ǫζ

√

|ǫ|2+ |ζ |2
.

In order to obtain (2.13) and (2.14), two approximations have been employed: I0(|x|)≃
e|x| and

√
1+ x ≃ 1+ x/2. The following schedule is adopted: messagesa(u)

f ,k and

a(u)
b,k are first updated, fork = 0, . . . ,K − 1 (with initial parametera(u)

f ,0 = 0) andk =

K − 1, . . . ,0 (with initial parametera(u)
b,K−1 = 0), respectively. Then messagesa(u−1,u)

l,k

anda(u+1,u)
r,k are updated foru= 2, . . . ,U andu=U −1, . . . ,1, respectively (with initial

parametersa(0,1)
l,k = a(U+1,U)

r,k = 0). A few iterations are, in general, sufficient. Finally,

the phase estimates are

ϕ̂
(u)
k = arg

















a(u)
f ,k+a(u)

b,k+a(u−1,u)
l,k +a(u+1,u)

r,k +
zkx(u)∗

k

Ξ2

















.
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2.3 Numerical results

We limit our investigation to binary CPM formats. This choice is justified by the need

to illustrate the relevant concepts and by the results whichshow that we can design

transmission schemes with a very high efficiency using simple CPMs. We consider

binary CPM withh= 1/3, L= 2, and rectangular (REC) frequency pulse. This scheme

turned out to be the best one among those considered in [20].

As discussed in [19] and [20], the optimal spacing depends onthe considered

value ofEs/N0 (although this dependence is quite smooth). Hence, according to the

operatingEs/N0, we choose the optimal modulation format and the corresponding

optimal spacing. For the REC scheme,FT = 0.3 is the optimal spacing atEs/N0 = 10

dB when an infinite number of users is present and the mismatched MUD considers

only U′ = 5 users, handling the remaining users as AWGN. The scheme with REC

frequency pulse leads to a higher SE than the RC-based counterpart [20], even though

REC and RC formats perform similarly for low values of SE [20].

The described multi-user frequency synchronization scheme results unbiased.

Hence, in Fig. 2.3 we show the mean square error (MSE) of the frequency estimate

for the central user versusEs/N0, whenP = 60 symbols. A Wiener PN withσ∆ = 1

degree has been considered. As a reference curve, we show theCramér-Rao lower

bound (CRB) for a system withU = 1, computed according to [33]. WhenU = 1,

this bound is reached by the frequency estimation algorithmin [32] for Es/N0 ≥ 2

dB (curve with white circles). WhenU = 5 users are present, this algorithm gives a

very poor performance (curve labeled “1 iteration” since itcorresponds to the first it-

eration of the proposed multi-user algorithm). With 4 iterations we are able to reach,

for Es/N0 ≥ 5 dB, the CRB related to the presence of only one user. Hence, avery

effective interference cancellation is performed. A slightlybetter result is obtained

by using a genie-aided version of the proposed frequency synchronization algorithm

in which the true values of the channel phases are employed for interference cancel-

lation purposes.
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Figure 2.3: MSE of the multiuser frequency synchronizationscheme in the presence

of PN.





Chapter 3

Spread-spectrum CPM systems

Modern communications require modulation formats robust to nonlinearities and

multiple access interference (MAI), as well as power- and spectrally efficient. Ro-

bustness to nonlinearity is mandatory in order to use strongly saturated amplifiers,

and spectral efficiency is one of the most important quality figures in any communi-

cation system. For this reason the choice of using modulation formats such as con-

tinuous phase modulations (CPMs) comes quite naturally. CPMs are a family of very

appealing modulation formats. Their robustness to nonlinearity stemming from the

constant envelope is one of the main reasons of their popularity, along with excellent

power and spectral efficiencies [19].

Code division multiple access (CDMA) is one of the most studied methods for

multi-user communication systems. Based on the employed spread spectrum (SS)

technique, CDMA schemes are grouped in two major classes, namely direct-sequence

SS (DS-SS) and frequency-hopping SS (FH-SS).

DS-SS has been combined with CPMs in many different ways. Lane and Bush [34]

proposed a SS multi-h (SSMH) CPM whose drawbacks in a multi-user scenario will

be analyzed in the following. Giannettiet al. [35] studied a special subset of single-h

binary CPMs, known as generalized minimum-shift keying (GenMSK), which can

be approximately viewed as linear modulations. Hence, classical results of multi-

user communications for linear modulations apply. Obviously, the main drawback
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of this approach is the strict constraint on the modulation format. Hsu and Lehn-

ert [36] considered a multi-user system where each user transmits a SS signal that

is the product between a linear modulation (for the data) anda multi-h CPM (for

the spreading chips), giving up to phase continuity. This problem has been solved by

Yanget al.[37] mapping theM-ary information symbols intoM binary phase spread-

ing sequences (PSSs) modulated by a single-h CPM modulator. The main problem

of this approach is the time-consuming design of a unique setof M different and or-

thogonal PSSs for each user. Moreover, a simple receiver structure is not available

because the data and the spreading chips are not separable. The separation between

data and spreading chips has been preserved in the dual-phase technique proposed

by McDowellet al. [38]. Chips are modulated as a multi-h CPM, data are modulated

as a MSK signal, and finally multiplied. The receiver, as in the linearly-modulated

DS-SS systems, is composed by an analog (and therefore expensive) despreader and

a detector. Müller and Lampe proposed in [39] a DS-SS system using linear modu-

lations with constant envelope and continuous phase. To avoid phase jumps to occur

at every symbol change, they pose few constraints on the information symbol al-

phabet, the spreading factor, and the symbol waveform. Thislatter must depend on

the chip sequence and the chip waveform. This solution, called continuous phase

chip modulation (CPCM), has nevertheless big spectral sidelobes, incompatible with

spectral masks of most wireless communication standards. Therefore Müller recently

proposed in [40] a linear DS-SS system where each user is assigned a set of very

similar spreading sequences, which are chosen in a data-dependent fashion. These

sequences are generated by an iterative algorithm ensuringtheir high stop-band at-

tenuation, constant envelope and continuous phase.

To our knowledge, FH has never been studied as a multiple access technique in

CPM-based systems. Nevertheless, FH has been used with the purpose of spreading

the CPM power spectral density (PSD) for security issues in [41] and [42]. In this

Chapter, a new multiple access technique based on multi-h CPMs is proposed. The

main idea is to exploit the fact that each CPM can be viewed as afrequency modula-

tion where the frequency deviation is strictly related to the modulation index. Since

in multi-h CPMs the modulation index is replaced by a sequence of indices (with
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the index varying every symbol period), the resulting effect is a sort of frequency

hopping. This isexactlyan instance of FH when applied to a continuous phase FSK

(CPFSK). So, we will use multi-h CPM not to improve bit error rate (BER) perfor-

mance (as in [34], [36], and [38]) but to spread the PSD and allow multiple access

without resorting to spreading codes or to any other DS-CDMAtechnique. In other

words, we directly construct a modulation format with a PSD extremely flat, large,

and smooth at will. The corresponding single-user detectorhas practically the same

complexity of a classical single-h CPM detector with the same number of phase states

(which is a clear advantage if compared to the complexity of the receivers in [37] and

[38]). In the CPM literature, the modulation index is hardlyever chosen bigger than

one (except for [43] where satellite navigation systems have been addressed), even

though this would not invalidate the CPM definition. Therefore, the most natural way

to spread the CPM power spectral density is by using indices much bigger than one

and varying in a wide range [44]. Moreover, using a long sequence of indices the

CPM power spectral density will become smoother. Assigningto each user a differ-

ent and randomly generated sequence of indices, we will obtain a new and efficient

FH spread spectrum technique for CPM-based systems. With this approach, we will

get rid of the constraints on the modulation formats (since we consider generalM-

ary multi-h partial response CPMs). Obviously the phase continuity andthe constant

envelope are guaranteed. The spreading factor, usually defined in DS-CDMA sys-

tems with linear modulations as the ratio between the bandwidth of the spread signal

and the bandwidth of the signal before spreading, cannot be defined in the same way

here because in the proposed system there is no “signal before spreading”—the spec-

tral spreading effect is now embedded in the modulation format itself. On the other

hand, the definition of spreading factor proposed in [45], asthe ratio of the Fourier

bandwidth of the spread signal to its Shannon bandwidth, could be used. However, it

requires the computation of an orthonormal basis for the spread signal, not available

here in closed form.

Since we are considering a multi-user scenario, we also address the multi-user

detection (MUD) issue. Because the complexity of the optimal multi-user receiver

grows exponentially with the number of users, suboptimal detection schemes are re-
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quired. We consider different multi-user detectors, based on hard interference can-

cellation (HIC) [46], soft interference cancellation (SIC) [47], extended to frequency

division multiplexed CPM-based systems in [22], and an algorithm derived in [22]

by using factor graphs (FGs) and the sum-product algorithm (SPA) framework [8].

3.1 System model

3.1.1 Multi-h CPM signal

The complex envelope of a generic multi-h CPM signal is [3]

s(t) =

√

2Es

T
exp















2π
∑

i

hiαiq(t− iT )+ θ
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











(3.1)

whereEs is the energy per symbol,T is the symbol period,{αi} are theM-ary infor-

mation symbols,{hi} is the sequence ofNh modulation indices,i = i modNh, q(t) is the

phase-smoothing response characterizing the format, andθ is an initial phase offset.

The phase-smoothing response is still a continuous function satisfying the following

property:

q(t) =



















0 whent ≤ 0

1
2 whent ≥ LT

L being the correlation length of the signal. As done in Chapter 1, the frequency pulse

is defined as

g(t) =
d
dt

q(t)

and (3.1) can be rewritten as
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which is the expression of a frequency-modulated signal using a pulse amplitude

modulation (PAM) with shaping pulseg(t) as modulating signal. The most used fre-

quency pulses are the rectangular pulse (L-REC to denote its duration ofL symbol

periods) and the raised-cosine pulse (L-RC).
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CPMs are modulations with memory. In the generic symbol interval nT ≤ t < (n+

1)T, the CPM signal (3.1) is completely defined by symbolαn and stateσn= (ωn,ϕn),

whereωn = (αn−1,αn−2, . . . ,αn−L+1) is the correlative state and

ϕn =

















π

n−L
∑

i=−∞
hiαi


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
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mod2π

= (ϕn−1+πhn−Lαn−L)mod2π

(3.3)

is the phase state [4], [48]. The correlative state can assume ML−1 values, whereas the

phase state can assumep values, having definedhi = ki/p whereki andp are positive

integer numbers and integer values forhi are forbidden. Therefore, the total number

of states ispML−1. A correct definition of the modulation index requires thatki and

p are relative prime to have a minimal trellis representation. As it will be clear later,

the considered sequence of indices is chosen such thatp is kept constant whereas

ki is chosen randomly with the only constraint thathi cannot be integer. Whenki

andp are not relative prime, we still use, for simplicity, a trellis representation withp

states although it could be reduced. This allows to always use the same trellis without

the need to resort to a time-varying trellis. The CPM signal in the symbol interval

nT ≤ t < (n+1)T can thus be expressed as

s(t) =

√

2Es

T
e(ϕn+θ) exp
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(3.4)

3.1.2 SS-FH-CPM

In the proposed multi-user system, multiple access is guaranteed by assigning a dif-

ferent sequence of modulation indices to each user. We assume that each user trans-

mits K symbols, and we denote byα(u)
n andσ(u)

n the symbol transmitted by useru

at discrete-timen and the corresponding state. We defineα(u) = (α(u)
0 , . . . ,α

(u)
K−1)T as

the vector of theK symbols transmitted by useru, and alsoαn = (α(1)
n , . . . ,α

(U)
n )T

as the vector of all symbols transmitted at discrete-timen (one symbol per user),
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andα = (αT
0 , . . . ,α

T
K−1)T , where (.)T denotes transpose. Similarly, we defineσn =

(σ(1)
n , . . . ,σ

(U)
n )T andσ = (σT

0 , . . . ,σ
T
K−1)T . We also define
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the signal transmitted by useru and, without loss of generality, we assume that all

users employ the same values ofT, M, L, p, Nh, andhmax , hmax being the maximum

value taken on by the modulation index. We will also assume that all users employ

the same phase smoothing responseq(t).

We consider an asynchronous multiple access system on an additive white Gaus-

sian noise (AWGN) channel, so that the complex envelope of the received signal is

r(t) =
U
∑

u=1

s(u)(α(u), t− τ(u))+w(t)

= s(ℓ)(α(ℓ), t− τ(ℓ))+
U
∑

u=1
u,ℓ

s(u)(α(u), t− τ(u))+w(t) .

(3.6)

Initial phase offsetsθ(u) and delaysτ(u) are random variables uniformly distributed

in [0,2π) and [0,T), respectively. For userℓ, the reference user, without loss of gen-

erality we will assumeθ(ℓ) = τ(ℓ) = 0. The thermal noise is a zero-mean circularly

symmetric white Gaussian process with PSD 2N0.

Fixing the indices denominatorp is mandatory to keep constant the number of the

phase states, while fixing the maximum numerator allows every user to undergo the

same spectral spreading. Each user has a different sequence of randomly-generated

modulation indices. The spectral spreading depends only onthe range of values as-

sumed by the modulation index—the larger this range, the stronger the spreading

effect. The number of modulation indicesNh plays a role only in the smoothness of

the PSD. A CPM with highNh will show a smooth PSD with small oscillations and

no sidelobes (see the numerical results in Paragraph 3.4).

The number of users allowed in the system depends on the totalnumber of possi-

ble indicesν= phmax−⌊hmax⌋ (where⌊x⌋ denotes the maximum integer lower thanx).
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If we impose the absence of overlaps, in a synchronous systemthe maximum number

of users would coincide with the number of possible indices

Umax= ν .

3.2 Multi-user detectors

Although not necessary in the derivation of the algorithms,since it applies unmod-

ified independently of the employed set of sufficient statistics, we will adopt, as in

practical receiver implementations, an approximated set of sufficient statistics for

MAP symbol detection obtained as described in [49]. We assume the useful signal

component to be band-limited with bandwidth lower thanN/2T, whereN is a proper

positive integer. Although this is obviously an approximation in the case of CPM

signals, whose PSD has, strictly speaking, an infinite support, the choice of a proper

value ofN ensures that this approximation can be made good at will. Theapproxi-

mated statistics can be obtained by extractingN samples per symbol interval from the

received signal (3.6) prefiltered by means of a low-pass filter which leaves unmodi-

fied the useful signal and has a vestigial symmetry aroundN/2T [49]. The condition

on the vestigial symmetry ensures that the noise samples areindependent and identi-

cally distributed complex Gaussian random variables with independent components,

each with mean zero and varianceξ2 = N0N/T [49]. An alternative (and not approx-

imated) set of sufficient statistics can be obtained as described in [22]. We denote by

rn,m the m-th received sample (withm= 0, . . . ,N− 1) of then-th symbol interval. It

can be expressed as

rn,m=

U
∑

u=1

s(u)
n,m(α(u)

n ,σ
(u)
n )+wn,m (3.7)

where, as mentioned,{wn,m} are independent and identically distributed complex

Gaussian noise samples ands(u)
n,m(α(u)

n ,σ
(u)
n ) (whose dependence onα(u)

n andσ(u)
n will

be omitted in the following) is the contribution of useru to the useful signal compo-

nent. In the following, we will denote byrn = (rn,0, rn,1, . . . , rn,N−1)T the vector of the

received samples in then-th symbol interval, byr = (rT
0 , r

T
1 , . . . , r

T
K−1)T the vector of
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all the received samples, and bys(u)
n = (s(u)

n,0, s
(u)
n,1, . . . , s

(u)
n,N−1)T the vector collecting the

samples of the signal of useru in then-th symbol interval.

When considering coded CPM schemes where the CPM modulator is concate-

nated, possibly through an interleaver, with an outer encoder (as an example, see [30],

[50], and references therein), the receiver is usually based on a soft-input soft-output

(SISO) detector that iteratively exchanges soft information with the outer SISO de-

coder according to the turbo principle. Regarding single-user SISO CPM detection,

little can be added to what already said in the literature (asan example, see [27] and

references therein)—the adoption of multi-h CPM signals here entails only trivial

modifications with respect to the case of single-h CPMs or the adoption, in case of

simplified detectors, of the Laurent decomposition extended to multi-h signals [51].

As far as the optimal multi-user detector (MUD) is concerned, it has a complexity

which is exponential in the number of usersU and is thus infeasible. For its deriva-

tion, the reader can refer to [22, Section III.A]. In fact, although [22] deals with

CPM-based frequency-division-multiplexed systems, the derivation holds unmodi-

fied in the case of SS-FH-CPM systems. Suboptimal multi-userSISO CPM detectors

can also be conceived by extending those described in [22] for frequency-division-

multiplexed CPM systems.

3.2.1 HIC-based receiver

The most trivial multi-user detector is that based on HIC [46]. The receiver for each

user is composed by a SISO single-user detector (SUD), a SISOdecoder, an encoder

and a modulator. The SUD receiver for useru estimates its own information bits

through a proper number of iterations of the soft detector and the soft decoder. If

the estimated bits form a valid codeword, this is re-encodedand re-modulated. The

resulting signal is then passed to the SUD detectors of all other users to allow the

interference cancellation. Then, this process of iterative soft detection/decoding, in-

terference estimation and cancellation is iterated until avalid codeword cannot be

decoded.
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3.2.2 SIC-based receivers

One of the reduced-complexity SIC algorithms with a very good performance avail-

able in the CDMA literature is that proposed in [47]. Being based on a Gaussian

approximation of the MAI, the algorithm can be obtained by replacing the PMF of

the interfering symbols with a complex circularly symmetric Gaussian PDF with the

same mean and variance. In the following, we will denote byP(.) (respectively,p(.))

the PMF (respectively, the PDF) of a discrete (respectively, continuous) random vec-

tor.

Users will employ a SISO SUD each, and will exchange soft information to can-

cel out the interference. For the sake of simplicity, let us considerU synchronous

users. We assume the discrete-time equivalent channel for userℓ to be

r (ℓ)
n,m = s(ℓ)

n,m+z(ℓ)
n,m

wherez(ℓ)
n,m accounts for both interference and noise, that is

z(ℓ)
n,m =

U
∑

u=1
u,ℓ

s(u)
n,m+wn,m.

The vectorz(ℓ)
n = (z(ℓ)

n,0, . . . ,z
(ℓ)
n,N−1)T is assumed Gaussian with mean vectorµ

(ℓ)
n and

covariance matrixΦ(ℓ)
n , respectively, defined as

µ
(ℓ)
n =

U
∑

u=1
u,ℓ

µ̄
(u)
n (3.8)

µ̄
(u)
n =

∑

(α(u)
n ,σ

(u)
n )

P̂(α(u)
n ,σ

(u)
n |r )s(u)

n (3.9)

Φ
(ℓ)
n =

U
∑

u=1
u,ℓ

∑

(α(u)
n ,σ

(u)
n )

P̂(α(u)
n ,σ

(u)
n |r )(s(u)

n − µ̄(u)
n )(s(u)

n − µ̄(u)
n )H +2ξ2I (3.10)

whereI is the identity matrix, (.)H denotes conjugate transpose, and{P̂(α(u)
n ,σ

(u)
n |r )}

are the estimates of the APPs provided by the single-user SISO detector related to
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the interfering useru. The SISO detector for userℓ, in the form of a BCJR algorithm

[6], will employ the following branch metric (dependenciesare omitted for the sake

of notational convenience)

G(ℓ)
n ∝ exp

{

2ℜ
[

s(ℓ)H
n Φ

(ℓ)−1
n (r −µ(ℓ)

n )
]

−s(ℓ)H
n Φ

(ℓ)−1
n s(ℓ)

n

}

(3.11)

whereℜ[.] stands for the real part operator and∝ denotes a proportionality relation.

Denoting byI (ℓ)
n (σ(ℓ)

n+1,σ
(ℓ)
n ,α

(ℓ)
n ) the indicator function equal to one ifα(ℓ)

n , σ(ℓ)
n , and

σ
(ℓ)
n+1 satisfy the trellis constraint for userℓ, and equal to zero otherwise, we define

C(ℓ)
n (σ(ℓ)

n+1,σ
(ℓ)
n ,α

(ℓ)
n ) = I (ℓ)

n (σ(ℓ)
n+1,σ

(ℓ)
n ,α

(ℓ)
n )P(α(ℓ)

n ) .

The outputs of the SISO detector are the estimates of the APPsneeded by the other

users’ SISO detectors to perform soft cancellation:

P̂(α(ℓ)
n ,σ

(ℓ)
n |r ) ∝ An(σ(ℓ)

n )Bn+1(σ(ℓ)
n+1)G(ℓ)

n C(ℓ)
n (3.12)

whereAn(σ(ℓ)
n ) and Bn(σ

(ℓ)
n ) are the forward and backward messages of the BCJR

algorithm.

The SIC MUD is then formed byU enhanced SISO SUDs, each of which com-

putes the mean vectorµ(ℓ)
n and the covariance matrixΦ(ℓ)

n for every symbol interval

through (3.8) and (3.10), invertsΦ(ℓ)
n and then computes the branch metric in (3.11).

Finally, it computes the APPs{P̂(α(ℓ)
n ,σ

(ℓ)
n |r )} with (3.12) and passes them to all the

other SISO detectors for soft cancellation. In the following, this algorithm will be

referred to as SIC 1. Its complexity is quadratic in the number of users [47].

This algorithm can be simplified by neglecting the off-diagonal elements ofΦ(ℓ)
n

[47]. Consequently, the matrix inversion results to be computationally less expensive

at the price of a performance degradation. This simplified detector will be referred to

as SIC 2 and has a complexity that linearly depends on the number of users.

3.2.3 FG-based receiver

This algorithm, proposed in [22] for FDM-CPM systems and based on the application

of the FG/SPA framework, derives from a suitable factorization of thePMFP(α,σ|r ):
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P(α,σ|r ) ∝ p(r |α,σ)P(σ|α)P(α) .

Each term can be further factored as follows:

P(α) =
U

∏

u=1

K−1
∏

n=0

P(α(u)
n )

P(σ|α) =
U

∏

u=1

P(σ(u)
0 )

K−1
∏

n=0

P(σ(u)
n+1|α

(u)
n ,σ

(u)
n )

p(r |α,σ) ∝
K−1
∏

n=0

Fn(αn,σn)
U

∏

u=1

H(u)
n (α(u)

n ,σ
(u)
n )

where
P(σ(u)

n+1|α
(u)
n ,σ

(u)
n ) ∝ I (u)

n (σ(u)
n+1,σ

(u)
n ,α

(u)
n )

Fn(αn,σn) =
U−1
∏

i=1

U
∏

j=i+1

exp

{

− 1

ξ2
ℜ

[

s(i)H
n s( j)

n

]

}

H(u)
n (α(u)

n ,σ
(u)
n ) = exp

{

1
ξ2
ℜ

[

r H
n s(u)

n

]

}

.

Hence, we finally have

P(α,σ|r ) ∝
















U
∏

u=1

P(σ(u)
0 )

















K−1
∏

n=0

Fn(αn,σn)·

·
U

∏

u=1

H(u)
n (α(u)

n ,σ
(u)
n )I (u)

n (σ(u)
n+1,σ

(u)
n ,α

(u)
n )P(α(u)

n ) . (3.13)

The resulting FG has cycles of length four. As known, the application of the SPA to

a FG with cycles allows an approximate (because of the presence of cycles) compu-

tation of the APPs{P(α(u)
n |r )} required for the implementation of the MAP symbol

detection strategy [8]. However, the presence of shortest cycles of length four makes

the convergence of the SPA to good approximations of the APPs{P(α(u)
n |r )} very un-

likely [8]. It is possible to remove these short cycles by stretching [8] variablesσ(u)
n

in (α(u)
n ,σ

(u)
n ). In other words, instead of representing variablesα

(u)
n alone, we define
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σ
(2)
n

Fn+1

H
(2)
n+1I

(2)
n+1

(α
(1)
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n+1)

(α
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n , σ

(1)
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σ
(1)
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σ
(1)
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H
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n
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Figure 3.1: FG corresponding to (3.13) after stretching variablesσ(u)
n in (α(u)

n ,σ
(u)
n )

and forU = 3. Circles and squares represent variable and function nodes, respectively.

a new variable given by the couple (α
(u)
n ,σ

(u)
n ). This transformation does not involve

approximations, since the resulting graph preserves all the information of the orig-

inal graph. The resulting FG, shown in Fig. 3.1, has cycles oflength twelve. Since

cycles are still present, the SPA applied to this graph is iterative and still leads to an

approximate computation of the APPs{P(α(u)
n |r )} [8]. However, the absence of short

cycles allows us to obtain very good approximations, as shown later. As the SIC 2,

this algorithm has a complexity which is linear in the numberof users [22].

3.2.4 Complexity considerations

With respect to the optimal detector for a single-h CPM signal, the SUD for a SS-

FH-CPM signal has the same number of states (provided that the values ofp, M,

andL are the same) and the same number of trellis branches. In order to evaluate the

branch metrics, we need theN sampless(u)
n of all the possible waveforms that can

be transmitted in a symbol period. These samples will be thencorrelated with the
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received samples in a given symbol period, i.e., the productr H
n s(u)

n has to be com-

puted. For a single-h signal, these waveforms areML and can be precomputed and

stored in a look-up table (LUT). On the other hand, for a SS-FH-CPM signal the

number of possible waveforms also depends on the possibleL-tuple of consecutive

modulation indices in the sequence ofNh modulation indices adopted by the con-

sidered user, which are min
{

Nh,
(

ν
L

)}

ML, although not all are employed in the same

trellis section. If this number is too high, it could not be convenient to store them,

but could be preferable to precompute and store the samples of the L waveforms
{

exp
[

2π
p q(t− iT )

]}

, i = 0,1, . . . ,L−1, in (3.4) and then use them to compute the needed

waveforms in each symbol period. The same waveforms are alsorequired to be com-

puted every symbol epoch or precomputed and stored for the implementation of all

MUDs as well.

With respect to traditional DS-SS systems based on linear modulations, a much

larger number of correlations has to be computed. This is theprice to be paid to

have signals with constant envelope (and large spectral efficiency, as shown later).

However, we point out that a significant complexity reduction can be obtained by

extending the technique described in [27] for single-h CPM signals to the case of

multi-h signals using the decomposition in [51] that allows to express a multi-h signal

as a sum of linearly-modulated components. In this case, thenumber of trellis states

of the SUD is reduced top and also the branch metrics computation results to be

greatly simplified.

3.3 Spectral efficiency

The main quality figure we consider in this work is the overallspectral efficiencyηU

of the system. Since we are considering a multiple access scenario where all users

share the same bandwidth, the most intuitive way to computeηU is to evaluate the

spectral efficiencyη of a reference user, and then defineηU = Uη.

The spectral efficiency for the reference user can be computed as

η =
I

BT
[bit/s/Hz] (3.14)
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whereB is the bandwidth occupied by the CPM signal andI is the information rate of

the user. CPM bandwidth is theoretically infinite because the PSD of a CPM signal

has rigorously an infinite support. Hence, we consider the traditional definition of

bandwidth based on the power concentration, that is the bandwidth that contains a

given fraction of the overall power. Being this fraction a parameter, we choose to

use the 99.9% of the overall power. This definition is coherent with systems where a

limitation on the out-of-band power exists. To compute thisbandwidth we need the

CPM power spectral density, which cannot be evaluated analytically in closed form,

but only numerically. The adopted algorithm is the one proposed in [52] and [53].

To compute the information rateI for the reference user, we can use the simulation-

based technique described in [15], which only requires the existence of an optimal

MAP symbol detector for the considered system. Unfortunately, the complexity of

the optimal MUD is exponential inU, making the evaluation ofI practically infea-

sible. Therefore, we can evaluate an achievable lower boundby resorting to the con-

cept of mismatched detection [54]. We can consider an approximated channel model

(the auxiliary channel) for which an exact MAP symbol detection with affordable

complexity exists—the more similar the auxiliary channel to the actual channel, the

tighter the obtained bound on the spectral efficiency.

As done in [19], we approximate the channel model at the receiver side by mod-

eling the interference as a zero-mean circularly symmetricwhite Gaussian process

with PSD 2NI , NI being a design parameter independent of the thermal noise. This

approximation is exploited only by the receiver, while in the actual channel the in-

terference is generated as in (3.6). Hence, the considered auxiliary channel model is

that for which the received signal reads

r(t) = s(ℓ)(t)+ ζ(t) (3.15)

whereζ(t) is a zero-mean circularly symmetric white Gaussian process with PSD

2(N0 +NI ). The simulation-based method described in [15] allows to evaluate the

achievable information rate for the mismatched receiver, i.e.

I(α(ℓ), r )= lim
J→∞

1
J

E

{

log
p(r J|α(ℓ)J)

p(r J)

}

[bit/ch.use] (3.16)



3.4. Numerical results 41

where we used the superscriptJ to remark that a sequence is truncated to its firstJ

elements. In (3.16)p(r J|α(ℓ)J) andp(r J) are PDFs according to the auxiliary channel

model (3.15), while the statistical average is with respectto the input and the output

sequences evaluated according to the actual channel model (3.6). Both p(r J|α(ℓ)J)

and p(r J) can be evaluated recursively through the forward recursion of the MAP

detection algorithm matched to the auxiliary channel model[15]. The mismatched

receiver can assure communication with arbitrarily small nonzero error probability

when the transmission rate at the CPM modulator input does not exceedI (α(ℓ), r ) bits

per channel use.

3.4 Numerical results

3.4.1 Power spectral density

In order to describe the spectral behavior of the proposed system, we consider three

different binary CPM signals using the 2-RC pulse and show their PSDs in Fig. 3.2,

computed by using the technique described in [52], [53]. Thefirst signal is a single-

h signal withh = 3/8. The remaining ones are SS-FH-CPM signals withh < 5 and

characterized by sequences of modulation indices of different lengthNh. It is possible

to see that increasing the number of indices the PSD becomes smoother. Moreover,

the sidelobes disappear (since there are no frequency notches) and are replaced by a

small ripple. This spectral behavior is not surprising, since the PSD of a CPM signal

with a long index sequence is—intuitively speaking—the average of the PSDs of all

the single-h signals that use as index one of theν possible indices.

3.4.2 Overall spectral efficiency

We consider an asynchronous SS-FH-CPM system using a 2-RC frequency pulse,

Nh = 16, andp= 8. Since we are not interested in a particular sequence of indices but

in the average behavior of the system, we consider a packet transmission (with 1024

symbols per packet) and, for each user, we change the sequence of indices{h(u)
i }

Nh−1
i=0 ,

the time delayτ(u), and the initial phase offset θ(u) every packet. We generate the
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Figure 3.2: Power spectral densities for different single-h and SS-FH-CPM signals.
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indices in a quasi-random way. For the first user we generate the index sequence

randomly, while the sequences of the remaining users are shifted versions (modulus

hmax) of the sequence of the first user. The shifts are chosen in order to maximize the

pairwise index distance defined as

d =min
u,v

∣

∣

∣

∣

h(u)
i −h(v)

i

∣

∣

∣

∣

between each couple of users. Obviouslyd remains the same fori = 0, . . . ,Nh− 1.

Using the maximum distance, the correlations of all the possible couples of users are

minimized and our system becomes more similar to an orthogonal system. Finally,

to remove the correlation introduced by the shift, a random interleaver is used to

scramble the simultaneous indices among the users.

In order to make some comparisons with the proposed SS-FH-CPM system, we

first consider single-user systems using binary single-h CPMs with a 2-RC frequency

pulse andh< 1, as traditionally done in literature. There is no interestin considering

single-h systems withh > 1 because they have a larger bandwidth than those with

h< 1 [3], resulting in a lower spectral efficiency. For the single-h systems the signal

bandwidth strongly depends onh (as shown in Table 3.1), and so does the spectral

efficiency.

h 1/8 3/8 1/2 5/8 7/8

BT 0.94 1.28 1.62 1.87 2.12

Table 3.1: Bandwidths of single-h 2-RC CPMs with different modulation indices.

Hence, we chooseh= 1/8, h= 3/8, h= 1/2, h= 5/8, andh= 7/8, and compare

the corresponding spectral efficiencies versusEb/N0, Eb being the received mean

energy per information bit, with the overall spectral efficiency of the SS-FH-CPM

binary system withhmax = 39/8 andU = 37 asynchronous users. The number of

usersU has been found maximizingηU (via numerical simulations) as a function

of U and the interference varianceNI assumed at the receiver for a fixed signal-to-

noise ratio (SNR) value. As it can be seen in Fig. 3.3, the SS-FH-CPM system has

a better spectral efficiency than all single-user single-h systems for medium to high
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Figure 3.3: Spectral efficiencies of the considered 2-RC binary SS-FH-CPM with

Nh = 16, p = 8, hmax = 39/8, and of different single-h 2-RC CPMs withh = 1/8,

h= 3/8, h= 1/2, h= 5/8, andh= 7/8, respectively. For the SS-FH-CPM signal, we

use the (suboptimal) single-user detector.

SNR values. At low SNR,ηU is in the same range of values as the single-h spectral

efficiencies. According to the well-known results in information theory, the curve in

Fig. 3.3 can be approached, even withU ≫ 1, using a SUD and a proper channel

code. Then, we compare the proposed SS-FH-CPM system with two SSMH systems,

described in [34]. In a multi-user scenario, the SSMH-CPM system in [34] needs

the use of spreading sequences of lengthNc chips per symbol period, withNc ≥ U

(even though some overload is possible). The normalized bandwidth of the unspread

signal is then multiplied by a factorNc, and therefore the global spectral efficiency is

very low. For the considered SSMH-CPM systems, the adopted spreading sequences

are random binary sequences generated every packet period together with the time

delays and the initial phase offsets. We show the maximum spectral efficienciesηU
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SS-FH-CPM SSMH

Nc � 1 3 4

BT 6.04 1.75 5.26 7.01

Table 3.2: Bandwidths of the considered 2-RC binary SS-FH-CPM with Nh = 16,

p= 8, hmax= 39/8, and of the binary 2-RC SSMH schemes with{hi} = {1/2,5/8}.

achievable by the SSMH systems (obtained by the joint optimization ofU andNI )

for Nc = 3 andNc = 4 in Fig. 3.4. We chose these values of spreading factor in order

to compare our SS-FH-CPM system to SSMH systems with similarbandwidths, as

shown in Table 3.2. From Fig. 3.4, it is easy to see that the SSMH systems have values

of ηU much lower than that of the proposed SS-FH system, for which the considered

number of usersU has been found jointly maximizingηU as a function of the number

of usersU and the interferers noise varianceNI for a fixed SNR value. We also

consideredNc = 16 (in analogy to the length of the indices sequences of the SS-FH

systemNh), but the maximum achievableηU fell down to zero. The same happened

with U = 37 users. These considerations suggest that the SSMH technique is not

suitable for multi-user systems.

In traditional DS-SS systems, the number of users that maximizes the global spec-

tral efficiency linearly depends on the total occupied bandwidth. Since in the pro-

posed system the theoretical results obtained for linear modulations cannot be used,

we will show via numerical simulations that this dependenceis approximately linear

also for the SS-FH-CPM system. In Fig. 3.5 we show the optimized ηU of the SS-

FH-CPM system considered before, and the optimizedηU of a system with the same

parameters but doubled bandwidth (i.e., a higher value ofhmax). For comparison,

we show the same curves also for two quaternary systems. It isclear from Table 3.3

and Fig. 3.5 that doubling the bandwidth allows (approximately) doubling the num-

ber of users. Moreover, optimized binary systems outperform optimized quaternary

systems.
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Figure 3.4: Spectral efficiencies of the proposed 2-RC binary SS-FH-CPM system

with h< 5, Nh = 16,U = 37, and two SSMH systems with{hi} = {1/2,5/8}.
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Figure 3.5: Spectral efficiencies of the considered 2-RC binary and quaternary SS-

FH-CPM withNh = 16, p= 8, hmax= 39/8, and the same systems with double band-

width (hmax= 79/8). All curves have been obtained with a single-user detector.

M 2 4

hmax 39/8 79/8 39/8 79/8

BT 6.03 12.25 15.43 30.31

Table 3.3: Bandwidths of 2-RC CPMs withNh = 16 andp= 8.

This last result is the reason why in the following we will discard higher or-

der modulations and focus only on binary modulations. Therefore, a comparison

among the SS-FH-CPM system and other binary systems, namelythose proposed

in [35], [39], and [40], named in the following GiLuRe, MuLa,and Mu, respectively,

is needed. We set the total bandwidthBT ≃ 38 for all the four systems and chose the

spreading factors of GiLuRe, MuLa, and Mu systems, and the value of hmax for the

proposed system accordingly. The resulting parameters areshown in Table 3.4, where
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γ is the spreading factor andTc = T/γ is the chip period.

format hmax,γ BTc BT

SS-FH-CPM 311/8 � 38.25

GiLuRe 24 1.62 38.83

MuLa 18 2.21 39.78

Mu 44 0.88 38.63

Table 3.4: Parameters used to compare different systems with the same bandwidth

BT ≃ 38.

The number of asynchronous users has been optimized, jointly with the interfer-

ence varianceNI , for all systems in order to maximize the global spectral efficiency.

For the GiLuRe system we have chosen the 2-RC format (for a fair comparison with

the proposed SS-FH-CPM system) and random chips as described in [35]. For the

MuLa system we have chosen a roll-off factorα = 0 since it is the value providing

the best spectral efficiency [39]. Finally, for the Mu system we used the same param-

eters used in [40], i.e.,p= 1/3, 104 primary iterations, 103 secondary iterations, and

random initial binary chips. The results reported in Fig. 3.6 show that our proposed

system outperforms all other systems.

Finally, in order to show that it is possible to approach the performance promised

by the information-theoretic analysis, we show the information rates forU = 3, 6,

and 9 synchronous users (Fig. 3.7) and the corresponding BERcurves (Fig. 3.8) ob-

tained with rate-1/2 convolutional code with constraint length 5, generators [2,32]8
and codewords of length 64000 information bits, concatenated with the modulator

through a random interleaver. It is clear that the larger thenumber of users, the lower

the information rate of each user (see Fig. 3.7). Hence, for ahigh number of users the

information rate of each user is very low. For this reason, inorder to employ codes

with a rate sufficiently high, we consider a limited number of users (at most 9). For

both figures, the interference varianceNI has been optimized through numerical sim-

ulations. The interleavers (one for each user) used in the BER simulations have been

generated randomly. At the receiver, iterative detection and decoding is performed
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Figure 3.6: Spectral efficiencies of the proposed 2-RC binary SS-FH-CPM withNh =

16 andhmax= 311/8, GiLuRe 2-RC system withγ= 24, MuLa system withγ=18 and

α = 0, and Mu system withγ = 44. All curves have been obtained with a single-user

detector.
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Figure 3.7: Information rates of the proposed 2-RC binary SS-FH-CPM withNh = 16

andhmax = 39/8. U = 3, U = 6, andU = 9 users have been considered. All curves

have been obtained with a single-user detector.

for a maximum of 20 allowed iterations. As it can be observed,the loss with respect

to the information rate curve is around 1 dB forU = 3, 2 dB forU = 6, and 3 dB for

U = 9, despite the use of a very simple coding scheme [30]. An extensive search of

the optimal convolutional codes for the three cases would further improve the BER

performance (in particular for the system withU = 9).

3.4.3 BER with equal powers

In order to assess the performance of the described suboptimal MUDs, we consid-

ered a coded SS-FH-CPM system withU = 3 synchronous users using a binary 2-RC

CPM with p= 4, hmax= 19/4, andNh= 8. All users have the same energy per symbol

(i.e., E(u)
s = Es, u = 1,2,3) and employ the (64,51) extended Bose, Ray-Chaudhuri,

Hocquenghem (eBCH) code with rateR= 0.79 and codewords of length 1024 bits
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hmax= 39/8. U = 3, U = 6, andU = 9 users have been considered.
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described in [50], serially concatenated with the modulator through anS-random in-

terleaver, withS = 22. As a benchmark, we consider the BER of a SUD withU = 3

users and the BER of a SUD in the absence of interference (U = 1 user). Again,

we optimized the noise variance assumed by each detector andallowed 20 detec-

tion/decoding iterations.

For the suboptimal multi-user detector described in [22], the performance also

depends on the adopted schedule. Serial or parallel schedules are usually consid-

ered in the literature. Since the difference in performance is practically negligible in

this scenario of users transmitting at the same power, we only consider the parallel

schedule. In this case, at each iteration all users are activated simultaneously. The

computed soft-outputs are then provided to the other users for the next iteration and,

after deinterleaving, to the decoders.

Since SIC 1 and SIC 2 detectors show the same performance whenusers are un-

correlated (or weakly correlated) [55], we decided to introduce a correlation to point

out the different behavior of the two algorithms. Therefore, we generated the index

sequence for useru = 1 randomly, and from that we derived all the other sequences

as

h(u)
i = h(1)

i +
u−1

p
.

If h(u)
i is an integer, then we changed its value inh(1)

i +u/p. In other words, the mod-

ulation indices of all users are close to each other as much aspossible. The perfor-

mance of the considered detectors is shown in Fig. 3.9. The HIC algorithm performs

as the SUD because the interference prevents a correct bit estimation, which implies

that (almost) no cancellation is done.

The SIC 2 algorithm performs much better than the HIC, but, asexpected, even

better does the SIC 1. However, the FG-based receiver has thebest performance be-

cause the Gaussian approximation of the interference is notaccurate with only two

interferers. To see the SIC algorithms outperform the FG-based receiver, we should

consider a much higher number of users.
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Figure 3.9: BER performance of the SUD and different MUDs in the case of a binary

2-RC system withU = 1 andU = 3, Nh = 8, p= 4, hmax= 19/4, and a (64,51) eBCH

code with rateR= 0.79.
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3.4.4 BER with unbalanced powers

We also considered the case of unbalanced powers in a system with the same charac-

teristics and parameters as the one described in the previous section. Without loss of

generality, we chose to order users in a decreasing way according to their energy, i.e.,

E(1)
s ≥E(2)

s ≥ . . .≥E(U)
s . We considered as reference user the central userℓ and fixed its

powerP(ℓ), while the powers of the other users are assumed to beP(u) = P(ℓ)+2(ℓ−u)

dB. We employedS-random interleavers and we adopted a serial schedule, starting

the detection from the user with the highest power. The computed soft-outputs are

then provided to the users with lower powers for interference cancellation and, after

deinterleaving, to the decoders.

In Fig. 3.10 we show the performance of the different receivers. Again, the HIC

algorithm performs as the SUD because the interference prevents a correct bit estima-

tion. The SIC 2 has a poor performance, and again the FG-basedreceiver outperforms

the SIC algorithms.

3.5 Optimization of the index sequences

In traditional linearly-modulated CDMA systems, the optimization of the spreading

sequences (also calledsignature sequences) is a well-studied topic. Theoretical anal-

yses have found the optimum sequences in synchronous systems, under either the

conditionU ≤ γ [56] or U > γ [57], whereγ is the spreading factor. In these cases, an

iterative algorithm to determine the optimum sequence setsis available [58]. More re-

cently a new approach to the optimization problem has been carried out by exploiting

mathematical tools coming from game theory [59].

Nevertheless, none of these techniques can be applied to CPM-based systems

because of the nonlinearity of the modulation format. In linearly-modulated CDMA

systems, waveforms are independent of the information symbols and depend only

on the signature sequence of each user. On the contrary, in CPM-based systems the

waveforms depend in a nonlinear fashion not only on the indexsequence, but also on

all transmitted symbols because of the modulation memory. Therefore it is no longer

possible to assume the orthogonality condition as an optimality criterion because
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Figure 3.10: BER performance of the SUD and different MUDs in the case of an

unbalanced binary 2-RC system withU = 1 andU = 3, Nh = 8, p= 4, hmax= 19/4,

and a (64,51) eBCH code with rateR= 0.79.
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symbols and waveforms are no more separable. Therefore, even though it might be

possible to further investigate this issue, there is no evidence that a simple (or, at

least, a practical) solution even exists.



Chapter 4

Conditioned pilots

In modern satellite communications one of the most challenging impairments to over-

come is the phase noise. A satisfactory frequency and phase synchronization is again

one of the most common requirements for all kinds of practical wireless systems.

Carrier synchronization is often performed through the aidof some pilot symbols

periodically inserted in the transmitted data stream (e.g.DVB-S2 [1]). These topics

have been studied so well during the last decades that an impressive amount of algo-

rithms and techniques may be easily found in the literature.To gain an insight (far

from being exhaustive), the reader is referred to [60]–[66]and references therein. As

far as pilot symbols are concerned, their optimal position inside the data packet has

been object of a thorough study in [67] where it has been shownthat, under mild con-

ditions, equally-spaced single pilots are one of the possible optimal configurations in

the sense that they minimize the Cramér-Rao bound (CRB) for channel estimation.

Moreover, in [62] it is shown that arranging pilots in clusters induces a substantial

performance penalty on a channel with additive white Gaussian noise (AWGN) and

Wiener phase noise.

For any kind of communication system, one of the merit figuresthat must be

reckoned with during the system design process is certainlythe spectral efficiency

(SE). In a multi-user scenario it has been shown that for bothlinear [18] and contin-

uous phase [19] modulations it is possible to increase the spectral efficiency of the
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system simply giving up the orthogonality condition among users and packing them

in the time and frequency domains [68]. This procedure causes known inter-symbol

interference (ISI) and inter-channel interference (ICI) to arise. If the ISI, native of

the channel or caused by the aforementioned technique, may be described by a high

number of coefficients, the optimal detector presents an extremely high complexity

since this latter grows exponentially in the size of the channel memory. In such a

scenario, an effective method to reduce the complexity of the detection algorithm

and maximize the information rate is the channel shortening[69]. Roughly speak-

ing, this technique consists of optimizing the ISI coefficients assumed by the detector

(and different from the actual ones) and the front-end filter with a constraint on the

global complexity. The presence of ISI implies that phase and frequency synchro-

nization must be performed through clusters of pilots. These clusters must be at least

longer than the channel memory in order to force the channel state and allow the syn-

chronization algorithm to employ at least one known observed value to perform the

impairment compensation. This pilot insertion obviously induces an energy loss and

a spectral efficiency degradation due to the fact that pilots do not convey information

but are just necessary to properly compensate for phase and frequency impairments.

Moreover, since multiple clusters distributed all over thedata packet allow a more

reliable estimation than concentrated pilots [67], the resulting penalties may be im-

portant.

In this Chapter, we propose a new design of the pilot symbols aiming at minimiz-

ing the overhead and guaranteeing the best performance on ISI channels. The main

idea is to give up on pilot clusters and use instead equally-spaced, time-varying, data-

dependent isolated pilots, allowing a dramatic reduction of the overhead and of the

consequent wasted energy and bandwidth. The value assumed by each pilot is not

kept constant over the whole data packet but depends on theL previous (and possi-

bly the L following) data symbols, whereL is the size of the channel memory. This

dependence causes an increase in the number of possible states of the modulator

and an expansion of the optimal detector trellis, but permits the receiver to observe,

at sample epochs corresponding to pilots, a known value (constant over the whole

transmission) that can be exploited during the synchronization for a more efficient
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estimation of the carrier frequency and the phase noise. Thetime-variation of the

trellis occurs when a pilot goes through the channel memory.Since the optimal de-

tector for ISI channels has complexity which grows exponentially with the size of the

channel memory, even when this latter is time-varying, in case of severe ISI it be-

comes infeasible. Reduced-complexity solutions are then to be envisaged, and in this

Chapter we propose different suboptimal detectors whose definition and performance

depend on the ISI model (namely those developed by Forney [70] and Ungerboeck

[71]) independently adopted by the pilots and by the detector. We chose to investi-

gate all the possible combinations of models because the classical low-complexity

algorithms for ISI channels in the literature provide a satisfactory performance when

the Forney observation model is adopted by the receiver (see[24] and references

therein), but do not work well with the Ungerboeck model [72], [73]. On the other

hand, the implementation of the whitening filter is criticalin several practical sce-

narios [74], and for applications when the detector is designed to cope only with a

portion of the existing interference, a receiver working onthe matched filter output

results to be more robust to the unmanaged interference [68], [69]. Therefore, the

recently proposed detector based on the Ungerboeck observation model and derived

in [55] and [75] is tested as well. Concerning the pilot definition, the Forney pilot

model is adopted because all the estimation algorithms require samples corrupted by

white noise [23]. Nevertheless, the adoption of the Forney model for pilots may entail

a dangerous increase in the pilot mean squared value (MSV), which translates into an

energy loss and an increase in the sensitivity to nonlinearities that cannot be avoided,

as it will be shown later. Since the Ungerboeck model appearsto greatly reduce this

MSV increase, and since it allows to get rid of the whitening filter, we chose to de-

velop the Ungerboeck pilot model as well. Moreover, if isolated pilots are employed,

the noise samples corrupting the useful part of the sampled received signal result to

be approximately uncorrelated even though the Ungerboeck pilot model is adopted,

provided that the spacing between two consecutive pilots isbig enough.
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4.1 System model

We consider a packet transmission where each packet contains a sequence ofK M-

ary symbols{ak} and a sequence of⌊K/(P−1)⌋ pilots {bk}, where⌊x⌋ denotes the

maximum integer lower thanx, which may not belong to the symbol constellationA.

A single pilot is inserted everyP−1 information symbols. Focusing our investigation

on linear modulations, the transmitted signal reads

s(t) =
+∞
∑

k=−∞
(ak+bk) p(t−kT) (4.1)

whereT is the symbol period andp(t) the shaping pulse (typically a root raised cosine

pulse, denoted by RRC). The transmission policy is the following: whenk=mPwith

m∈N+, the symbolamP is fictitious and only the pilotbmP is transmitted. Conversely,

for all the other values of the time indexk, bk is fictitious and only the information

symbolak is transmitted.

We consider a transmission over a channel that introduces ISI and AWGN. The

ISI coefficients are assumed to be known and we also suppose that the number of

these coefficients is finite. For the sake of simplicity, and in order to limit the trel-

lis expansion (as will be explained in the following), we consider only values ofP

higher than the duration of the channel memory. This impliesthat when a pilot is

transmitted, the previous pilot has already left the channel memory. In other words,

two consecutive pilots never interfere on each other. In thefollowing, we will con-

sider different systems, differing from one another only in the ISI model adopted by

pilots and by the detector.

4.1.1 Sufficient statistics

The baseband equivalent of the received signal can be viewedas

r(t) =
+∞
∑

k=−∞
(ak+bk) p(t−kT)+w(t) (4.2)

wherew(t) is a complex circularly-symmetric white Gaussian processwith zero mean

and varianceσ2= N0 per component. The sufficient statistics necessary for the detec-
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tion can be derived simply filtering the received signal witha whitened matched filter

and sampling its output at symbol periods [70]. The resulting Forney model reads

yk = xk+wk

=

L
∑

ℓ=0

(ak−ℓ +bk−ℓ) fℓ+wk (4.3)

where{ fℓ} are theL+1 Forney ISI coefficients,{yk} are the Forney sufficient statistics,

and{wk} are the uncorrelated samples of the AWGN.

A different set of sufficient statics can be obtained just replacing the whitened

matched filter with a matched filter [71], and the resulting sufficient statistics{rk}
become

rk = sk+nk

=

L
∑

ℓ=−L

(ak−ℓ +bk−ℓ)gℓ +nk

(4.4)

where{nk} are samples of a complex circularly-symmetric colored Gaussian process

with zero mean and autocorrelation functionRn(m) = 2σ2gm. The 2L+1 Ungerboeck

ISI coefficients{gℓ} may be computed as

gℓ =
L

∑

m=0

fm f ∗m−ℓ

with ℓ ∈ [−L,L].

4.1.2 Forney pilots

If we adopt for the pilots the ISI model derived by Forney, synchronization is per-

formed on observed samples corrupted by white noise, i.e., the sampled output of a

whitened matched filter is employed. We want the useful part of the received samples

to have a constant and known valuec(F) at pilot epochs. In other words, fork =mP

we force the observed noiseless sample to be

xmP= f0b(F)
mP+

L
∑

ℓ=1

fℓamP−ℓ = c(F)
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and therefore the pilot value may be computed by the transmitter as

b(F)
mP=

1
f0

















c(F) −
L

∑

ℓ=1

fℓamP−ℓ

















(4.5)

where the superscript (F or, in the next Paragraph,U) just indicates the pilot design

adopted. Denoting with E{.} the expectation operator, the MSV of the information

symbols is

Ea = E
{

|ak|2
}

while the pilot MSV becomes

E(F)
b = E

{∣

∣

∣

∣

b(F)
k

∣

∣

∣

∣

2}

=
1

| f0|2

















∣

∣

∣c(F)
∣

∣

∣

2
+Ea

L
∑

ℓ=1

| fℓ|2
















if E{ak} = 0 and the symbols are uncorrelated. The subscriptF (and in the following,

U) specifies the ISI representation adopted (Forney’s or Ungerboeck’s, respectively).

In order to limit the sensitivity to amplifier nonlinearities, we choose to impose

E(F)
b = Ea (4.6)

and usec(F) to try to satisfy this constraint. Being the MSVs real, we have

∣

∣

∣c(F)
∣

∣

∣

2
= Ea

















| f0|2−
L

∑

ℓ=1

| fℓ|2
















> 0

which unfortunately cannot always be satisfied. In fact, it may happen that

| f0|2 <
L

∑

ℓ=1

| fℓ|2

especially in case of severe ISI. Moreover, it may occur thatthe value|c(F) |2 satisfying

(4.6) is extremely small, namely too small to allow a correctsynchronization. Hence

we set a threshold—a real constantκ > 0—and impose

∣

∣

∣c(F)
∣

∣

∣

2
= argmin
|c(F)|2≥κ

∣

∣

∣

∣

E(F)
b −Ea

∣

∣

∣

∣

. (4.7)
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The constantκ is chosen in order to have observed samples with enough powerat pilot

epoch to perform reliable estimation. Of course, a high value ofκ implies thatE(F)
b ≫

Ea, hence the peak-to-average-power ratio (PAPR) increases making the system more

sensitive to the amplifier nonlinearities. Therefore, there exists a trade-off between the

PAPR (or the nonlinearity sensitivity) and the synchronization accuracy.

4.1.3 Ungerboeck pilots

Adopting the Ungerboeck ISI model, synchronization is carried out by using the sam-

pled output of a matched filter. Again we force the observed noiseless samples to be

smP= g0b(U)
mP+

L
∑

ℓ=−L
ℓ,0

gℓamP−ℓ = c(U) .

Hence, pilots are now defined as

b(U)
mP =

1
g0

























c(U)−
L

∑

ℓ=−L
ℓ,0

gℓamP−ℓ




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




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


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. (4.8)

The resulting MSV reads

E(U)
b =

Ea

|g0|2


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


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1+
L
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and the constraint (4.7) becomes

∣

∣

∣c(U)
∣
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2
= argmin
|c(U) |2≥κ

∣

∣

∣

∣

E(U)
b −Ea

∣

∣

∣

∣

. (4.9)

4.1.4 Power spectral density

Since symbols and pilots are correlated, the power spectraldensity (PSD) of the trans-

mitted signal is modified by this pilot design. First, we prove the cyclostationarity of
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the signal (4.1) with periodPT, and then we compute the PSD of a stationarized ver-

sion of (4.1). In order to be cyclostationary, the signal must have periodic statistics

[76]. Its mean value and a delayed version of it read

η(t) = E{s(t)} =
+∞
∑

k=−∞
E{ak+bk} p(t−kT) =

+∞
∑

k=−∞
ηsp(k)p(t−kT)

η(t+PT) = E{s(t+PT)} =
+∞
∑

k=−∞
ηsp(k+P) p[t− (k+P)T] (4.10)

where

ηsp(k) =























E{ak} = 0 k,mP

E{bk} =
c
h0

k=mP

having definedh0 = f0 if Forney pilots are used, orh0 = g0 if Ungerboeck pilots are

adopted. Hence, definingm= k+P and substituting it in (4.10),η(t) results to be

periodic of periodPT.

The autocorrelation function of the processs(t) is defined as

R(t,α) = E
{

s(t+α)s∗(t)
}

=

+∞
∑

k=−∞

+∞
∑

m=−∞
E
{

(ak+bk) (am+bm)∗
}

p(t+α−kT) p∗ (t−mT)

=

+∞
∑

k=−∞

+∞
∑

ℓ=−∞
Rsp(k, ℓ) p(t+α−kT) p∗ (t−kT+ ℓT)

whereℓ = k−m. Since the delayed version of the autocorrelation functionreads

R(t+PT,α) =
+∞
∑

k,ℓ=−∞
Rsp(k−P, ℓ) p[t+α− (k−P)T] p∗ [t− (k− ℓ−P)T]

definingn= k−P and substituting it in the last equation, we find that also theauto-

correlation function is periodic int with periodPT. Hence, the signals(t) is a cyclo-

stationary random process and must be stationarized. To this purpose, we introduce a

random delayτ uniformly distributed in [0,PT) and define the delayed signal

s̄(t) = s(t− τ)
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whose mean value is

η̄(t) = E{s̄(t)} = E{s(t− τ)}

=

+∞
∑

k=−∞
Ea,b,n {ak−n+bk−n}Eτ {p(t−kT− τ)}

wheren= ⌊τ/T⌋ is a discrete random variable (RV) uniformly distributed in[0,P−1].

We can compute the first expectation with respect ton and the second with respect to

τ, obtaining

η̄(t) =
+∞
∑

k=−∞

















1
P

P−1
∑

n=0

Ea,b {ak−n+bk−n}
















1
PT

∫ PT/2

−PT/2
p(t−kT− τ)dτ .

Noticing that

η̄sp=
1
P

P−1
∑

n=0

Ea,b {ak−n+bk−n}

is independent ofk and decomposing the delay asτ = µT + ξ whereµ is a discrete

RV uniformly distributed in [−⌊(P−1)/2⌋ , ⌊(P−1)/2⌋] andξ is a continuous RV uni-

formly distributed in [−T/2,T/2), it is possible to split the integral in the sum ofP

integrals, leading to

η̄(t) =
η̄sp

PT

+∞
∑

k=−∞

⌊ P−1
2 ⌋

∑

µ=−⌊ P−1
2 ⌋

∫ t−kT−2µT+T/2

t−kT−2µT−T/2
p(α)dα

=
η̄sp

T

∫ +∞

−∞
p(α)dα = η̄

where we exploited the fact that all the intervals of integration are disjoint andα =

t − kT − µT − ξ. Finally, we find that the mean value of the stationarized signal is

independent of time, as expected.
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A similar approach is to be considered for the autocorrelation function, yielding

R̄(t,α) = E
{

s(t− τ+α)s∗(t− τ)}

=

+∞
∑

k,m=−∞
Ea,b,n

{

(ak−n+bk−n)
(

a∗m−n+b∗m−n
)}

Eτ
{

p(t−kT−τ+α)p∗(t−mT−τ)}

=

+∞
∑

k,ℓ=−∞

















1
P

P−1
∑

n=0

Rsp(k−n, ℓ)

















[

1
PT

∫ PT/2

−PT/2
p(t−kT−τ+α) p∗(t−kT+ℓT−τ)dτ

]

=

+∞
∑

ℓ=−∞
R̄sp(ℓ)

1
PT

+∞
∑

k=−∞

⌊ P−1
2 ⌋

∑

µ=−⌊ P−1
2 ⌋

∫ B

A
p(β+α− ℓT)p∗(β)dβ

where the delay has been decomposed asτ = µT + ξ and we have defined

β = t− (k+µ− ℓ)T − ξ

A= t− (k+2µ− ℓ)T − T
2

B= t− (k+2µ− ℓ)T + T
2

and

R̄sp(ℓ) =
1
P

P−1
∑

n=0

Rsp(k−n, ℓ) . (4.11)

Since all the intervals of integration are disjoint, it is possible to write

R̄(t,α) =
1
T

+∞
∑

ℓ=−∞
R̄sp(ℓ)

∫ +∞

−∞
p(β+α− ℓT)p∗(β)dβ (4.12)

= R̄(α)

that is independent of the time epoch. Now the PSD of the signal can be easily ob-

tained just Fourier-transforming (4.12), and the result is

W( f ) =
1
T
|P( f )|2 S( f )

that is extremely similar to the classic PSD of a pulse amplitude modulated (PAM)

signal [76] (whereP( f ) is the spectrum of the shaping pulse), the only difference

being the PSDS( f ) defined as the discrete Fourier transform of (4.11).
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Hence, for Forney pilots (4.11) becomes

R̄(F)
sp (ℓ) =

1
P

(

E(F)
b + (P−1)Ea

)

δ[ℓ] − Ea

P

L
∑

k=1

(

fk
f0
δ[k− ℓ] +

f ∗k
f ∗0
δ[k+ ℓ]

)

whereδ[ℓ] denotes the Kronecker delta, and the corresponding PSD results to be

S(F)( f ) = F
{

R̄(F)
sp (ℓ)

}

=
1
P

(

E(F)
b + (P−1)Ea

)

− 2Ea

P

L
∑

ℓ=1

ℜ
{

fℓ
f0

}

cos(2π f ℓT)

whereℜ{.} is the real part operator. If we define

EP =

∫ +∞

−∞
|P( f )|2 d f

the mean energy per transmitted symbol reads

E(F)
s = T

∫ +∞

−∞
W( f )d f

=
EP

P

[

E(F)
b + (P−1)Ea

]

− 2Ea

P

L
∑

ℓ=1

ℜ
{

fℓ
f0

}∫ +∞

−∞
|P( f )|2cos(2π f ℓT)d f .

In order to compute this integral, we need the analytical expression of the shaping

pulse spectrum. After a few algebra, we obtain that the mean energy per symbol for

the RRC pulse is

E(F)
s,RRC=

EP

P

(

E(F)
b + (P−1)Ea

)

.

When Ungerboeck pilots are employed, the averaged autocorrelation of symbols

and pilots in (4.11) reads

R̄(U)
sp (ℓ) =

1
P

(

E(U)
b + (P−1)Ea

)

δ[ℓ] − 2Ea

P

L
∑

k=−L
k,0

ℜ
{

gk

g0

}

δ[k− ℓ]

and the corresponding PSD becomes

S(U)( f ) =
1
P

(

E(U)
b + (P−1)Ea

)

− 4Ea

P

L
∑

ℓ=1

ℜ
{

gℓ
g0

}

cos(2π f ℓT) .
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Finally, the mean energy per transmitted symbol is

E(U)
s = T

∫ +∞

−∞
Ws( f )d f

=
EP

P

(

E(U)
b + (P−1)Ea

)

− 4Ea

P

L
∑

ℓ=1

ℜ
{

gℓ
g0

}∫ +∞

−∞
|P( f )|2cos(2π f ℓT)d f .

With the same calculations done before, we obtain the mean energy per symbol for

the RRC pulse

E(U)
s,RRC=

EP

P

(

E(U)
b + (P−1)Ea

)

.

4.2 Optimal algorithms on expanded trellis

The optimal maximum a posteriori probability (MAP) symbol detector is the classic

Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [6] whose trellis and metrics depend on

the adopted type of pilots and on the ISI model assumed by the receiver. In the fol-

lowing, we denote bya= (a0, . . . ,aK−1)T the vector of the data symbols, and similarly

byσ andr the vectors of states and received samples, respectively. By p(.) we denote

the probability density function (PDF) of a continuous random variable (RV), while

by P(.) we denote the probability mass function (PMF) of a discreteRV. As it will

be clear later, since the state definition is not straightforward, we start this algorithm

derivation with some preliminary results. The optimal MAP symbol strategy is

âk = argmax
ak

{P(ak|r )} (4.13)

whereP(ak|r ) may be evaluated marginalizing the joint PMFP(a|r ). This latter can

be obtained as follows:

P(a|r ) ∝ p(r |a) P(a)
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where∝ denotes a proportionality relation, and each term can be factored as

P(a) =
K−1
∏

k=0

P(ak)

p(r |a) =
K−1
∏

k=0

p(rk|a) ∝
K−1
∏

k=0

Hk (a) . (4.14)

Vector r contains the output samples{rk} of the matched filter if the Ungerboeck

ISI model (4.4) is adopted. Otherwise, if the ISI model employed is the Forney’s

one, then it contains the output samples{yk} of the whitened matched filter (4.3). In

other words, the factorization (4.14) is independent of theISI model adopted by the

receiver.

In order to correctly define the state, we have to examine factors{Hk (a)} and con-

sider separately Forney and Ungerboeck pilots. So as to avoid misunderstandings, we

defineHk (a) = H(F)
k (a) if Forney pilots are used, andHk (a) = H(U)

k (a) if Ungerboeck

pilots are employed. The superscript is introduced only to point out the adopted pilot

design. As done in the previous Section, the subscriptF (respectively,U) specifies

that the ISI representation adopted by the receiver is that derived by Forney (respec-

tively, by Ungerboeck).

4.2.1 Forney pilots

Since the expression for factors{H(F)
k (a)} depends on the ISI model employed by the

receiver, we consider separately the two cases.

Forney pilots with Ungerboeck detection

The system with Forney pilots and Ungerboeck detection can be represented by the

block diagram in Fig. 4.1. The sufficient statistics needed for the detection are ex-

tracted from the received signal by means of a matched filter [71], whose output is

(4.4).

As stated before, we defineHk(a) = H(F)
U,k(a). The general expression for factors
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ESTIM

DET/DECMF

WF

rk âk

e
−

(

θ̂k+2πf̂kkT
)

r(t)

yk

Figure 4.1: Block scheme for a system using Forney pilots andUngerboeck detection.

{H(F)
k (a)} using the Ungerboeck model is [28]

H(F)
U,k (a) = exp















1

σ2
ℜ

















rk

(

a∗k+b(F)∗
k

)

−1
2

g0

∣

∣

∣

∣

ak+b(F)
k

∣

∣

∣

∣

2
−

L
∑

ℓ=1

gℓ
(

a∗k+b(F)∗
k

) (

ak−ℓ+b(F)
k−ℓ

)































.

(4.15)

Whenk=mP+ j, with j ∈ [L+1,P−1], there are no pilots, neither transmitted nor in

the channel memory. ThereforeH(F)
U,k (a) may be reduced to the classical expression

[77]

H(F)
U,k (a) = exp















1

σ2
ℜ

















rka
∗
k−

1
2

g0 |ak|2−
L

∑

ℓ=1

gℓa
∗
kak−ℓ































. (4.16)

Now it is possible to correctly define the state asσ
(F)
U,k = (ak−1, . . . ,ak−L), i.e., the set

of past symbols needed for the computation ofH(F)
U,k (a). It is worth noting that, when

j ∈ [L+ 1,P− 1], the factorH(F)
U,k (a) and the state coincide with the classical metric

[77] and state [8] of the BCJR for ISI channels, and the numberof possible states

is ML. When j = 0, a pilot is transmitted andH(F)
U,mP(a) may be evaluated simply by

computing the pilot value as in (4.5) and by substituting this value in (4.15), obtaining

H(F)
U,mP(a) = exp















1

σ2
ℜ

















rmPb(F)∗
mP −

1
2

g0

∣

∣

∣

∣

b(F)
mP

∣

∣

∣

∣

2
−

L
∑

ℓ=1

gℓb
(F)∗
mP amP−ℓ































. (4.17)

Again, the state isσ(F)
U,mP= (amP−1, . . . ,amP−L) and the cardinality of the state set is still

ML, which implies that no trellis expansion occurs. Finally, when j ∈ [1,L], a pilot

is present in the channel memory and factorH(F)
U,k (a) may be written by substituting
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ESTIM

DET/DECWMF

âk

e
−

(

θ̂k+2πf̂kkT
)

ykr(t)

Figure 4.2: Block scheme of a system using Forney model for both pilots and detec-

tion.

(4.5) in the corresponding term in (4.15), yielding

H(F)
U,k (a) = exp



























1

σ2
ℜ



























rka
∗
k−

1
2

g0|ak|2−
L

∑

ℓ=1
ℓ, j

gℓa
∗
kak−ℓ−g ja

∗
kb

(F)
mP





















































= exp



























1
σ2
ℜ



























(

rk−g j
c(F)

f0

)

a∗k−
1
2

g0|ak|2+
g j

f0

L
∑

ℓ=1

fℓa
∗
kamP−ℓ−

L
∑

ℓ=1
ℓ, j

gℓa
∗
kak−ℓ





















































.

(4.18)

Now the state must be defined asσ(F)
U,k = (ak−1, . . . ,amP+1,amP−1, . . .amP−L). Since it

includes a higher number of past symbols, the cardinality ofthe state set grows up to

ML+ j−1, entailing a trellis expansion. �

Forney pilots with Forney detection

This system is described in Fig. 4.2. The sufficient statistics needed for detection

can now be extracted by the received signal by means of a whitened matched filter

(or a matched filter followed by a whitening filter), whose sampled output is (4.3).

DefiningHk(a) = H(F)
F,k (a), the general expression for factorH(F)

F,k (a) is

H(F)
F,k (a) = exp



















− 1

2σ2

∣

∣

∣

∣

∣

∣

∣

yk−
L

∑

ℓ=0

(

ak−ℓ +b(F)
k−ℓ

)

fℓ

∣

∣

∣

∣

∣

∣

∣

2
















. (4.19)
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Whenk =mP+ j, with j ∈ [L+1,P−1], there are no pilots, neither transmitted nor

in the channel memory, and factorH(F)
F,k (a) reduces to the classical expression [70]

H(F)
F,k (a) = exp



















− 1
2σ2

∣

∣

∣

∣

∣

∣

∣

yk−
L

∑

ℓ=0

ak−ℓ fℓ

∣

∣

∣

∣

∣

∣

∣

2
















. (4.20)

As in the previous case, we can define the state asσ
(F)
F,k = (ak−1, . . . ,ak−L). When j = 0,

since the noiseless observed value isxmP= c(F), H(F)
F,mP(a) is constant and independent

of a

H(F)
F,mP(a) = exp

{

− 1

2σ2

∣

∣

∣ymP−c(F)
∣

∣

∣

2
}

. (4.21)

Therefore, apparently there is no need to define the state. Actually, we have to prop-

agate theL previous symbols because they will be employed in the following L

evaluations ofH(F)
F,k (a), as will be clear later. Hence, we define the state asσ

(F)
F,mP=

(amP−1, . . . ,amP−L). Finally, when j ∈ [1,L], a pilot is present in the channel memory

and therefore a trellis expansion occurs. FactorH(F)
F,k (a) can be obtained by combining

(4.5) and (4.19), that yields

H(F)
F,k (a) = exp


























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2σ2

∣

∣

∣

∣
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∣

∣

∣

∣

∣

yk−
L

∑

ℓ=0
ℓ, j
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f j
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




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∑

i=1

fiamP−i




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
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∣

∣

∣

∣

∣
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
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











. (4.22)

Therefore, we can define the state asσ
(F)
F,k = (ak−1, . . . ,amP+1,amP−1, . . . ,amP−L). �

Having properly defined the state for every discrete-timek in both cases, it ap-

pears thatσ(F)
F,k = σ

(F)
U,k for everyk, i.e., the state definition is independent of the ISI

model adopted by the receiver. Hence, we defineσ
(F)
k = σ

(F)
F,k = σ

(F)
U,k and we can now

safely replace the vectora in the left hand side of (4.16), (4.17), (4.18), (4.20), (4.21),

and (4.22) with the couple (ak,σ
(F)
k ). This can be done because not all the symbols in

vectora are used in the computation of factors{H(F)
k }. Namely, only a subset ofa is

relevant, and this subset is composed by the present symbolak and some past sym-

bols (whose number depends on the discrete-timek) grouped in the stateσ(F)
k . Hence,

factors{H(F)
k } result to be proportional to another conditional probability, equivalent

to p(rk|a), that is

H(F)
k (ak,σ

(F)
k ) ∝ p(rk|ak,σ

(F)
k )
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which leads to
K−1
∏

k=0

H(F)
k (ak,σ

(F)
k ) ∝

K−1
∏

k=0

p(rk|ak,σ
(F)
k ) =

K−1
∏

k=0

p(rk|a,σ(F)) = p(r |a,σ(F)) .

The usefulness of this result will be clear later. Obviously, sinceσ(F)
F,k = σ

(F)
U,k , all the

considerations done on the dimension of the state set and thetrellis expansion hold

unchanged also in the case of Forney detection.

4.2.2 Ungerboeck pilots

A trivial adaptation of the previous derivation to the case of Ungerboeck pilots entails

the replacement of the pilot definition (4.5) with (4.8) in (4.15) and (4.19), yielding

to

H(U)
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H(U)
F,k (ak,σ
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k ) = exp
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where the state definitions obtained in the previous analysis have been kept. Unfor-

tunately, the present symbolak and the present stateσ(F)
k are not sufficient for the

evaluation of (4.23) and (4.24). In fact, (4.8) prevents thecalculation of the pilot

value since the future symbolsamP+1, . . . ,amP+L are needed. Hence, if we straightfor-

wardly extend the previous analysis to the case of Ungerboeck pilots, we find that the

computation of factors{H(U)
k (a)} is impossible. This implies that the stateσ(F)

k is no

more correctly defined and a new derivation is needed. Fortunately, we just need to

step backward and a simple trick will sort things out.

From the last term of the factorization (4.14) and the general expressions (4.15)

and (4.19), we have that

p(r |a) ∝
K−1
∏

k=0

H(F)
k (a) . (4.25)



74 Chapter 4. Conditioned pilots

ESTIM

DET/DECMF

âk
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Figure 4.3: Block scheme of a system using Ungerboek model for both pilots and

detection.

Since we need to know all symbolsamP−L, . . . ,amP+L to compute the pilot valueb(U)
mP

according to (4.8), we just replaceb(F)
mP with b(U)

mP in (4.25) (as we did in the triv-

ial adaptation previously tried) and delay the computationof all the terms in (4.25)

depending onb(U)
mP. These terms, instead of being evaluated whenk = mP+ j, with

j ∈ [0,L], will be computed when all symbolsamP−L, . . . ,amP+L are past, that is when

j = L+1. The total PDFp(r |a) is unchanged (except for the substitution ofb(F)
mP with

b(U)
mP) and no approximation has been done. In other words, we rearrange the terms in

(4.25) obtaining new factors{H(U)
k (a)} such that

p(r |a) ∝
K−1
∏

k=0

H(F)
k (a) =

K−1
∏

k=0

H(U)
k (a)

where all terms depending on pilotb(U)
mP are included in factorH(U)

mP+L+1(a).

Now we proceed as before by analyzing separately the cases ofForney and

Ungerboeck detection.

Ungerboeck pilots with Ungerboeck detection

This system is depicted in Fig. 4.3. The received samples arestill in the form 4.4.

Hence the MAP symbol detection strategy in (4.13) and the factorization in (4.14)

hold unmodified, the only difference with respect to the previous cases being factor

Hk(a) = H(U)
U,k (a).
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When j ∈ [L+2,P−1], factorH(U)
U,k (a) reads

H(U)
U,k (a) = exp


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and the state can be defined asσ(U)
U,k = (ak−1, . . .ak−L) as with Forney pilots. When

j ∈ [1,L], we define the new factorH(U)
U,k (a) as

H(U)
U,k (a) = exp
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(4.26)

and the state asσ(U)
U,k = (ak−1, . . . ,amP+1,amP−1, . . .amP−L). It is worth noting that sym-

bols older thanak−L are not directly used in (4.26), anyway they are present in the

state since they must be propagated until timek = mP+ L + 1, when they will be

properly employed to evaluate the pilot value. Whenj = 0, there is no term in (4.15)

that can be computed, thereforeH(U)
U,mP(a) = 1. However, we still need to define the

state asσ(U)
U,mP = (amP−1, . . . ,amP−L) to propagate theL previous symbols. Finally,

when j = L+ 1, we can consider all previously neglected terms. Therefore, factor

H(U)
U,mP+L+1(a) becomes

H(U)
U,mP+L+1(a) = exp

{

1

σ2
ℜ
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(4.27)

and the state may be defined asσ
(U)
U,mP+L+1 = (amP+L, . . . ,amP+1,amP−1, . . .amP−L). The

propagation of symbolsamP+ j−1−L, . . . ,amP−L (respectively, symbolsamP−1, . . . ,amP−L)

is necessary whenj ∈ [1,L] (respectively, whenj = 0) in order to be able to com-

puteH(U)
U,mP+L+1 in (4.27). If statesσ(U)

U,k were defined, whenj ∈ [0,L], taking in ac-

count only the symbols effectively necessary for the computation ofH(U)
U,k (a), i.e.,
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Figure 4.4: Block scheme for a system with Ungerboek pilots and Forney detection.

if they were defined asσ(U)
U,k = (ak−1, . . . ,amP+1,amP−1, . . .ak−L), when j ∈ [1,L], and

σ
(U)
U,mP= 0, whenj = 0, then we would lose track of symbolsak−L−1, . . . ,amP−L (respec-

tively, amP−1, . . . ,amP−L) when j ∈ [1,L] (respectively, whenj = 0). This loss would

prevent the computation ofH(U)
U,mP+L+1 since we would not be able to evaluate the last

factor in (4.27).

Concerning the trellis dimension, it can be easily seen thatwhen j = 0 and j ∈
[L + 2,P− 1] the number of possible states is stillML, i.e., no expansion occurs.

Again, when j ∈ [1,L+ 1] the number of possible states isML+ j−1. With respect to

the case of Forney pilots, the trellis is exactly the same except for j = L+1, when the

cardinality of the state set isM2L (for Ungerboeck pilots) instead ofML (for Forney

pilots). �

Ungerboeck pilots with Forney detection

This system is represented in Fig. 4.4. The received samplesare now in the form

(4.3), and the MAP symbol detection strategy in (4.13) and the factorization in (4.14)

still hold. The only difference, with respect to the Forney pilots case, is factorHk(a)

that now isHk(a) = H(U)
F,k (a). Since

|x+y|2 = |x|2+ |y|2+2ℜ {

xy∗
}

the new factorH(U)
F,k (a) for symbol epochk results to be

H(U)
F,k (a) = exp
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for k=mP+ j, with j ∈ [0,L]. Therefore, the stateσ(U)
F,k = (ak−1, . . . ,amP+1,amP−1, . . .amP−L)

may be defined. As in the case of Ungerboeck detection, symbols older thanak−L are

not used inH(U)
F,k (a). Nevertheless, the propagation of these symbols is necessary since

they will be employed at discrete-timek=mP+L+1. It is worth noting that now we

have a non constant factorH(U)
F,k (a) also whenj = 0, since at pilot epoch a perfect

ISI cancellation is no more possible. Whenj ∈ [L+2,P−1] the “classic” expression

holds, that is

H(U)
F,k (a) = exp
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and the state is simplyσ(U)
F,k = (ak−1, . . . ,ak−L). Finally, when j = L+1, H(U)

F,mP+L+1(a)

includes all terms neglected before, becoming

H(U)
F,mP+L+1(a) = exp
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whereb(U)
mP is computed according to (4.8). The state can be defined asσ

(U)
F,mP+L+1 =

(amP+L, . . . ,amP+1,amP−1, . . .amP−L). �

Since the statesσ(U)
F,k andσ(U)

U,k coincide for everyk, we can now remove the de-

pendence of the state on the ISI model adopted by the receiverdefiningσ(U)
k =σ

(U)
F,k =

σ
(U)
U,k. Moreover, all the considerations done on the trellis variation and the state set

dimension for the system with Ungerboeck pilots and Ungerboeck detection hold

unmodified also when Forney detection is used. Hence, we can now replace the sym-

bol vectora in all factors{H(U)
k (a)} derived for Ungerboeck pilots with the couple

(ak,σ
(U)
k ). As previously done with Forney pilots, we can introduce a conditional

PDF p(rk|ak,σ
(U)
k ), equivalent top(rk|a), such that

H(U)
k (ak,σ

(U)
k ) ∝ p(rk|ak,σ

(U)
k )
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which leads to
K−1
∏

k=0

H(U)
k (ak,σ

(U)
k ) ∝

K−1
∏

k=0

p(rk|ak,σ
(U)
k ) =

K−1
∏

k=0

p(rk|a,σ(U)) = p(r |a,σ(U)) .

4.2.3 Factor graph representation

We define the generic stateσk = σ
(F)
k if Forney pilots are used, andσk = σ

(U)
k if

Ungerboeck pilots are employed. Since the a posteriori probability P(ak|r ) needed

for the MAP strategy in (4.13) can be obtained also marginalizing the joint PMF

P(a,σ|r ), we choose to use the following factorization

P(a,σ|r ) ∝ p(r |a,σ) P(σ|a) P(a)

where each term can be further factored as

P(a) =
K−1
∏

k=0

P(ak)

P(σ|a) = P(σ0)
K−1
∏

k=1

P(σk|σk−1,ak−1) = P(σ0)
K−1
∏

k=1

I (σk,σk−1,ak−1)

p(r |a,σ) =
K−1
∏

k=0

p(rk|ak,σk) ∝
K−1
∏

k=0

Hk (ak,σk) (4.28)

being I (.) an indicator function equal to one whenσk, σk−1, andak−1 satisfy the

trellis constraint, and equal to zero otherwise. From (4.28) it is possible to derive the

factor graph, presented in Fig. 4.5, and almost coinciding with the Wiberg graph of

the classical BCJR algorithm [8], the only difference being the absence of the variable

node corresponding to the symbol transmitted at pilot epochs. Applying the SPA to

the FG in Fig. 4.5, we will be able to compute the marginal APPsneeded for the MAP

strategy in (4.13). In Fig. 4.5 we denote

Gk =Gk (ak,σk,σk−1) = Hk (ak,σk) I (σk,σk−1,ak−1) .

The generic optimal MAP symbol detector is therefore the BCJR algorithm running

on a time-varying trellis. It is worth noting that the factorization (4.28) and the corre-

sponding FG in Fig. 4.5 are independent of the models adoptedfor pilots and by the
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Figure 4.5: Factor graph for the optimal algorithms forP> 3.

detector. On the contrary, the state definition and hence thetrellis structure depend

on the assumed pilot model. With Forney pilots, the number ofstates varies fromML

(in the case of absence of trellis expansion) up toM2L−1 (in the case of maximum

expansion), whereas with Ungerboeck pilots the cardinality increase reachesM2L.

Moreover, according to the adopted pilot and ISI models, factors {Hk(ak,σk)} have

different expressions. In other words, the choice of the ISI model affects only factors

{Hk(ak,σk)}, while the choice of the pilot design impacts also on the state definition

(and therefore on the trellis structure). Nevertheless, the FG is always the same.

4.3 Suboptimal algorithms on reduced trellis

Since the complexity of the optimal MAP symbol detection algorithms derived in

the previous Paragraph grows exponentially with the size ofthe memory, reduced-

complexity suboptimal algorithms are to be envisaged. For this purpose, we resort to

the FG/SPA framework to obtain suboptimal algorithms on a reduced trellis. As will

be shown in the following, all the proposed algorithms have the same FG and the

same trellis structure independently of the ISI models adopted by pilots and by the

detector.

In the following, we denote by̺ k a hidden variable playing a role similar to

that played by stateσk in the derivation of the optimal algorithms in the previous

Paragraph. It is worth noting that̺k is not a proper state since the couple (ak, ̺k) is

not enough to perfectly describe the system in a given discrete-timek, as will be clear

later. However, the same notation used for stateσk is adopted for̺ k as well, i.e., the

superscript denotes the employed pilot design, while the subscript indicates the ISI
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model used by the receiver.

4.3.1 Forney pilots

We follow the same approach adopted before, that is we separately analyze the cases

of Forney and Ungerboeck detection.

Forney pilots with Ungerboeck detection

The trellis expansion occurs when a pilot enters in the channel memory, that is when

k = mP+ j, with j ∈ [1,L]. In this situation, the third term at the exponential of the

Ungerboeck factor (4.15) becomes

L
∑

ℓ=1

a∗k
(

ak−ℓ +b(F)
k−ℓ

)

gℓ =
L

∑

ℓ=1
ℓ, j

a∗mP+ jamP+ j−ℓgℓ +a∗mP+ jb
(F)
mPg j .

To avoid the trellis expansion we move the computation of thelast terma∗mP+ jb
(F)
mPg j ,

that is responsible of the expansion, from discrete-timek=mP+ j to k=mP. In other

words, we define a new factorization

p(r |a) ∝
K−1
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k=0

H(F)
U,k (a) =

K−1
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k=0

C(F)
U,k (a)

where all terms depending onb(F)
mP are now taken into account in factorC(F)

U,mP(a). We

have now two types of factor. Namely, whenj ∈ [1,P−1], the new factorC(F)
U,k (a) is

deprived of the ISI term caused by the pilot, yielding
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U,k(a) = exp



























1

σ2
ℜ



























rka
∗
k−

1
2
|ak|2g0−

L
∑

ℓ=1
ℓ, j

a∗kak−ℓgℓ





















































(4.29)

and whenj = 0, C(F)
U,mP(a) includes all the ISI terms previously neglected, becoming

C(F)
U,mP(a) = exp
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The total PDFp(r |a) results to be unchanged, hence no approximation is introduced.

When j ∈ [L+1,P−1], factor (4.29) depends on theL previous symbols. These

latter can be grouped forming the hidden variable̺
(F)
U,k= (ak−1, . . . ,ak−L), taking onML

possible values. When a pilot enters in the channel memory, that is whenj ∈ [1,L],

factor C(F)
U,k (a) (4.29) depends only on theL − 1 previous symbols. Therefore, the

hidden variable may be reduced to̺(F)
U,k = (ak−1, . . . ,amP+1,amP−1, . . . ,ak−L) and the

number of possible values it can take on is onlyML−1. When j = 0, C(F)
U,mP(a) de-

pends not only on theL previous symbols, grouped in thepresenthidden variable

̺
(F)
U,mP= (amP−1, . . . ,amP−L), but also on theL next symbols, which may be grouped

in the future hidden variable̺ (F)
U,mP+L+1 = (amP+L, . . . ,amP+1). Both the hidden vari-

ables, the present one̺(F)
U,mP and the future one̺(F)

U,mP+L+1, can take onML different

values. The future hidden variable definition, found considering C(F)
U,mP(a) in (4.30),

is identical to the present hidden variable definition that can be obtained consider-

ing C(F)
U,mP+L+1(a) in (4.29). Therefore, the hidden variable is well defined for every

discrete-timek and no conflicts arise. Hence, we can safely replace the symbol vector

a in (4.29) and (4.30) with the couple (ak, ̺
(F)
U,k) when j ∈ [1,P−1], and with the triplet

(amP, ̺
(F)
U,mP, ̺

(F)
U,mP+L+1) when j = 0. �

Forney pilots with Forney detection

In a similar way, it is possible to obtain the new factors{C(F)
F,k(a)} for the Forney model

just moving all terms depending onb(F)
mP to factorC(F)

F,mP(a) computed at pilot epochs.

Hence, the new factorization reads

p(r |a) ∝
K−1
∏

k=0

H(F)
F,k (a) =

K−1
∏

k=0

C(F)
F,k (a) .

New factorC(F)
F,k (a) for symbol epochs results to be

C(F)
F,k(a) = exp
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for k=mP+ j, with j ∈ [1,P−1], while factorC(F)
F,mP(a) for pilot epochs becomes

C(F)
F,mP(a) = exp
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Again, whenj ∈ [1,L], we can define the hidden variable as̺
(F)
F,k = (ak−1, . . . ,amP+1,amP−1, . . . ,ak−L).

As before we have trellis reduction, namely fromML+ j−1 possible values (with the

optimal MAP symbol detector) toML−1. When j ∈ [L+ 1,P− 1], C(F)
F,k (a) in (4.31)

depends on theL previous symbols, hence the hidden variable can be defined once

more as̺ (F)
F,k = (ak−1, . . . ,ak−L). Finally, whenj = 0,C(F)

F,mP(a) in (4.32) depends on the

present and future hidden variables, respectively defined as̺(F)
F,mP= (amP−1, . . . ,amP−L)

and̺(F)
F,mP+L+1 = (amP+L, . . . ,amP+1). As in the previous case with Ungerboeck detec-

tion, the future hidden variable is well defined and no ambiguity is present. Moreover,

all the considerations on the hidden variable set dimensionhold unchanged. As done

before, we can replacea in the left hand side of expressions (4.31) and (4.32) with

the couple (ak, ̺
(F)
F,k) and the triplet (amP, ̺

(F)
F,mP, ̺

(F)
F,mP+L+1), respectively. �

Since̺(F)
F,k = ̺

(F)
U,k for every discrete timek, we introduce the generic hidden vari-

able̺(F)
k = ̺

(F)
F,k = ̺

(F)
U,k. Hence, as we previously showed in the derivation of the opti-

mal MAP symbol detection algorithm, factors{C(F)
k (a)} result to be proportional to a

conditional probability, equivalent top(r |a), that is

p(r |a,̺(F)) ∝
K−1
∏

k=0
k,mP

C(F)
k (ak, ̺

(F)
k )
⌊ K−1

P ⌋
∏

m=1

C(F)
mP(amP, ̺

(F)
mP, ̺

(F)
mP+L+1) .

4.3.2 Ungerboeck pilots

Once more, we study the different combinations of models separately.
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Ungerboeck pilots with Ungerboeck detection

Considering the expressions in (4.29) and (4.30), we find that they can be used also

for a system based on Ungerboeck pilots with Ungerboeck detection, the only change

needed being the pilot definition to employ—namely, (4.8) instead of (4.5). The sub-

stitution of the proper pilot design yields

C(U)
U,k(a) =C(F)

U,k(a) (4.33)

C(U)
U,mP(a) = exp
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where (4.33) holds fork = mP+ j, with j ∈ [1,P−1], and (4.34) forj = 0. At sym-

bol epochs, that is whenj ∈ [1,P− 1], the pilot design is irrelevant in the factor

computation. Hence, the hidden variable definitions hold unchanged. In other words,

̺
(U)
U,k = ̺

(F)
k for everyk,mP. At pilot epochs, whenj = 0, it can be seen that the pilot

design affects only the value of (4.34), not the set of symbols the factor depends on.

Therefore, we can define the present hidden variable and the future hidden variable as

done before, that is̺(U)
U,mP= ̺

(F)
mP and̺(U)

U,mP+L+1 = ̺
(F)
mP+L+1. Since we reuse the hidden

variable definitions introduced for the Forney pilots case,also̺(U)
U,k is well defined for

every discrete-timek. Hence, we can safely replace symbol vectora in the left hand

side of (4.33) and (4.34) with the couple (ak, ̺
(U)
U,k), when j ∈ [1,P−1], and with the

triplet (amP, ̺
(U)
U,mP, ̺

(U)
U,mP+L+1), when j = 0. �
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Ungerboeck pilots with Forney detection

Similarly, the expressions in (4.31) and (4.32) can be adopted for Ungerboeck pilots

with Forney detection, calculating pilot values with (4.8)instead of (4.5). This yields

C(U)
F,k (a) =C(F)

F,k(a) (4.35)

C(U)
F,mP(a) = exp
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where (4.35) holds fork=mP+ j, with j ∈ [1,P−1], whereas (4.36) holds whenj = 0.

As in the case of Ungerboeck detection, the pilot design modifies only the value of

(4.36) but does not affect the set of symbols on which (4.35) and (4.36) depend.

Therefore, we can define the hidden variable̺
(U)
F,k = ̺

(F)
k for every discrete-timek. �

As we found for the Forney pilots, we have that̺
(U)
F,k = ̺

(U)
U,k for everyk. Hence,

the generic hidden variable̺(U)
k = ̺

(U)
F,k = ̺

(U)
U,k may be introduced. As we showed

in the previous Paragraph, factors{C(U)
k (a)} result again to be proportional to the

conditional probability

p(r |a,̺(U)) ∝
K−1
∏

k=0
k,mP

C(U)
k (ak, ̺

(U)
k )
⌊ K−1

P ⌋
∏

m=1

C(U)
mP(amP, ̺

(U)
mP, ̺

(U)
mP+L+1) .

4.3.3 Factor graph representation

Since in the previous Paragraphs we showed that̺
(U)
k = ̺

(F)
k for every discrete-time

k, we can now define the general hidden variable̺k = ̺
(U)
k = ̺

(F)
k . This result implies

that the corresponding FG, on which the suboptimal algorithms run, is independent

of the pilot design. Since the APPs{P(ak|r )} needed for the MAP symbol detection

strategy in (4.13) can be obtained also marginalizing the joint PMF P(a,̺|r ), we

choose to use the following new factorization

P(a,̺|r ) ∝ p(r |a,̺)P(̺|a) P(a)
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amP+3
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Figure 4.6: Factor graph for the suboptimal algorithm, withL = 3 andP≥ 4.

where each term can be further factored as

P(a) =
K−1
∏

k=0

P(ak)

P(̺|a) = P(̺0)
K−1
∏

k=1

P(̺k|̺k−1,ak−1) = P(̺0)
K−1
∏

k=1

I (̺k, ̺k−1,ak−1)

p(r |a,̺) =
K−1
∏

k=0

p(rk|ak, ̺k) ∝
K−1
∏

k=0
k,mP

Ck (ak, ̺k)
⌊ K−1

P ⌋
∏

m=1

CmP(amP, ̺mP, ̺mP+L+1) (4.37)

being I (.) an indicator function equal to one when̺k, ̺k−1, andak−1 satisfy the new

trellis constraint, and equal to zero otherwise. In (4.37) factors{Ck} and{CmP} have

different expressions according to the pilot design and the ISI model adopted by the

receiver, as shown in the previous Paragraphs. From (4.37) it is possible to derive the

FG of the final suboptimal algorithms, presented in Fig. 4.6,where we defined

Dk =



















Dk (ak, ̺k, ̺k−1) =Ck (ak, ̺k) I (̺k, ̺k−1,ak−1) if k ,mP

Dk (ak, ̺k, ̺k−1, ̺k+L+1) =Ck (ak, ̺k, ̺k+L+1) I (̺k, ̺k−1,ak−1) if k=mP.

The resulting graph has a structure similar to that of the FG of the optimal algorithms

in Fig. 4.5. With respect to this latter, the new FG now presents a branch connecting

factor nodeDmP with hidden variable̺ mP+L+1, which represents the dependence of

CmP on the future symbols. Obviously, factors{Ck} and {Hk} of the two FGs are

different, as well as the definitions of stateσk and hidden variable̺k. However, the
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FG shown in Fig. 4.6 is the same for all the suboptimal algorithms, independently

of the ISI models adopted by the pilots and by the detector. Inother words, the ISI

models affect only factors{Ck} (their expression and their value), since the trellis (i.e.,

the hidden variable definition) and the FG are the same irrespectively of the type of

pilots and the ISI representation adopted. Factors{Ck} not only prevent the trellis

expansion when a pilot enters in the channel memory, but alsoreduce the number of

trellis states. In fact, when a pilot is in the channel memory, the number of values

that ̺k can take on is reduced toML−1 whenk = mP+ j, with j ∈ [1,L]. We want

to highlight that the reduction of complexity has been obtained just by rearranging

factors in a proper way.

The dependence of nodeDmPon future hidden variable̺mP+L+1 introduces cycles

in the resulting FG, as shown in Fig. 4.6. The presence of cycles yields an approx-

imated computation of the symbol APPs, but since in the casesof practical interest

(i.e., ISI channels withL > 1) the girth of the graph is 2(L+1)> 4, their convergence

to the exact APPs is expected [8]. Since the graph has cycles,the SPA does not have

a natural termination but a proper schedule must be defined. We denoteζF,mP+L+1 and

ζB,mPas the messages going forward and backward (respectively) on the upper branch

of the graph and connecting the function nodeDmP to the hidden variable̺mP+L+1.

Since the main structure of the FG in Fig. 4.6 is identical to the Wiberg graph of the

BCJR algorithm [8] (except for the upper branch), the SPA applied to the FG [8] will

produce a slightly modified instance of the BCJR algorithm. The adopted schedule is

therefore the following:

1. forward recursion of the BCJR algorithm; during the forward recursion, when

k=mP+ L+1 the messageζF,mP+L+1 is computed;

2. backward recursion of the BCJR algorithm; during the backward recursion,

whenk=mPthe messageζB,mP is computed;

3. update of the messagesζF,mP+L+1;

4. completion of the BCJR algorithm considering also the contribution of mes-

sagesζF,mP+L+1.
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In order to correctly evaluate the messageζF,mP+L+1 in step 1, the messages com-

ing from ̺mP and̺mP+1 toward nodeDmP are needed. However, only the message

coming from̺mP is available, since the other will be calculated in step 2 during the

backward recursion. Therefore, messagesζF,mP+L+1 are re-computed in step 3 when

all the necessary messages are available, and this time the computation is correct.

Since we consider serially concatenated schemes, we propose to perform a single

detector iteration and then to pass the extrinsic information produced by the detec-

tor as a priori information to the decoder, in order to perform iterative detection and

decoding.

4.4 Numerical results

We restrict our analysis to three different scenarios, as explained in the following.

In all simulations concerning the bit error rate (BER), we use packets of 2000 infor-

mation bits, a spread interleaver, a non-systematic non-recursive convolutional code

with rate 0.5, polynomial generators [5,7]8 and four states, a Gray mapper with sym-

bol MSV Ea = 1, a binary phase-shift keying (BPSK) modulator (i.e.M = 2), a RRC

pulse with roll-off α= 0.2, a maximum of 20 iterations between detector and decoder,

and pilot insertion with periodP = 7 or P = 21. In order to determine the ISI coef-

ficients to be assumed, we act as follows. We compute the induced ISI coefficients

of a time-packed signaling system with a RRC pulse, roll-off α = 0.2 andτ = 0.9 or

τ = 0.5, whereτ is the time compression factor [78], defined as the ratio between

the used symbol interval and symbol interval for which the Nyquist condition for ISI

absence is respected. Since these coefficients would be too many (theoretically infi-

nite) for the implementation of the optimal detectors, we keep only the firstL+1= 7

taps of the Forney model. The resulting coefficients are reported in Table 4.1 for both

channels. Notice that the lower the time compression factor, the heavier the ISI.

We will consider three different scenarios: in the first one we will transmit on the

first channel (τ = 0.9 in Table 4.1) with pilot periodP= 21. Then we worsen the ISI

considering the second channel (τ = 0.5 in Table 4.1) but keeping the same spacing

between pilots, in order to outline the role of the ISI coefficients in the performance
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τ ℓ 0 1 2 3 4 5 6

0.9
fℓ

0.98 0.15 -0.12 0.089 -0.059 0.034 -0.016

0.5 0.12 0.44 0.68 0.44 -0.094 -0.28 -0.00059

Table 4.1: Forney ISI coefficients of time-packed channels with a RRC pulse, roll-off

α = 0.2.

τ P c(F) c(U) E(F)
b E(U)

b E(F)
s,RRC E(U)

s,RRC

0.9 21 0.95 0.97 1 1 1 1

0.5 21 1 1 131.29 2.026 7.204 1.049

0.5 7 1 1 131.29 2.026 19.613 1.133

Table 4.2: Pilot values, MSVs, and mean energies per symbol,for RRC pulse with

roll-off α = 0.2, relative to different pilot designs and spacings.

of the detectors. Finally, in the third scenario we keep the second channel (heavy ISI)

but reduce the pilot period toP = 7, that is the minimum period preventing interfer-

ence between two consecutive pilots. We chose to include this scenario in our work to

stress the effect of the pilot MSV on the BER performance. In Table 4.2 we report the

pilot values, the MSVs, and the resulting mean energies per symbol corresponding

to the adopted scenarios. When the constraint (4.6) cannot be satisfied, we arbitrarily

setc = 1. In all the suboptimal detectors we employσ2 = N0+NI , whereN0 is the

one-sided power spectral density of the AWGN andNI is a parameter, independent of

N0, optimized via numerical simulation aiming at minimizing the BER.NI reduces

the confidence of the BCJR algorithm in the computed messages, and therefore con-

tributes to take into account the suboptimality caused by the cycles in the FG.

In order to do some comparisons, we add in all the following BER figures also the

curve corresponding to a system without pilots. Moreover, we consider two systems

equivalent to the current DVB-S2 standard, which entails pilot insertion in blocks of

pilots. So as to be fair, we need to make comparisons among systems having the same

synchronization capability. The bottle-neck of the synchronization is the carrier esti-

mation, and being it dependent on the spacing between pilots[32], we keep constant
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τ P E(A)
b E(noA)

b E(A)
s,RRC E(noA)

s,RRC

0.9 21 1 0.14 1 0.96

0.5 21 1 0.14 1 0.96

0.5 7 1 0.14 1 0.88

Table 4.3: MSVs and mean energies per symbol, for RRC pulse with roll-off α = 0.2,

relative to different block pilot designs and spacings.

the number of symbols between two consecutive pilot insertions. For the systems

with pilot blocks, in order to reduce the overhead, we consider only blocks of size

Np = L+ 1, that is the minimum size allowing to have one known observed sample

to be exploited for synchronization (the previousL pilots being necessary to force

the state of the channel). We will show the performance curves for random block

pilots belonging to the symbol alphabet. Moreover, since our pilots are not in the

sameM-ary alphabet of the symbols, we decided to give this degree of freedom also

to the system with block pilots, whether it be based on the Forney model or on the

Ungerboeck model. Therefore, since the energy loss may be important, we choose to

set theL state forcing pilots to 0, and toEa the (L+1)-th pilot used for synchroniza-

tion. The resulting MSVs and mean energy per symbol are shownin Table 4.3, where

the superscriptA (respectively,noA) denotes pilots that belong (respectively, do not

belong) to the symbol alphabet.

System performance will not be evaluated only in terms of BERbut also in terms

of spectral efficiency. This latter can be computed as

η =
I

BT
(bits/s/Hz)

whereI is the information rate in bits per channel use andBT is the bandwidth nor-

malized to the symbol period. The information rate of all systems are evaluated with

the simulation-based technique described in [15] resorting to the corresponding op-

timal MAP symbol detector. For what concerns the bandwidth,since we are consid-

ering linear modulations employing RRC pulses withα = 0.2, the normalized band-

width is known and equal toBT = τ(1+α) for all the systems.
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Figure 4.7: BER curves of the optimal and suboptimal detectors for Forney pilots,

compared with curves of the systems with pilot blocks and without pilots, on the first

ISI channel withP= 21.

4.4.1 First scenario

The BER performance of all the investigated systems in the first scenario are shown

in Fig. 4.7 for the Forney pilots, and in Fig. 4.8 for the Ungerboeck pilots. In the

legends we denote as “FU” the system using Forney pilots and Ungerboeck detection,

“UU” the system completely based on the Ungerboeck model, “UF” the system with

Ungerboeck pilots and Forney detection, and “FF” the systembased on the Forney

model. In the first scenario the ISI is very light (see Table 4.1), and all BER curves

almost overlap—except the curve relative to the system withblock pilots belonging

to the symbol alphabet, which shows approximately a loss of 1dB. In this case,

the suboptimal algorithms have a loss of few tenth of dB if compared to the system

without pilots. Moreover, at low signal-to-noise ratio (SNR) the optimal algorithm

slightly outperforms the suboptimal one, but at target BER (<10−4) the performance
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Figure 4.8: BER curves of the optimal and suboptimal detectors for Ungerboeck pi-

lots, compared with curves of the systems with pilot blocks and without pilots, on the

first ISI channel withP= 21.
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is indistinguishable. With respect to the system without pilots, the proposed systems

show an insertion loss equal to

Ib =
Eb

(P−1)r log2M
(4.38)

while, if the pilots belong to the symbol alphabet, for the system with block pilots the

energy loss increases to

Ib =
NpEa

(P−1)r log2M

whereNp ≥ L + 1 (Np = L + 1 in the considered case). It can be seen that, if the

pilots are 0 (when forcing the channel) orEa (when used for synchronization), the

performance in terms of BER is the same of the proposed systems. Nevertheless,

two are the major drawbacks of block pilots which do not belong to the symbol

alphabet. First, they make the PAPR increase becauseEb = Ea/Np ≪ Ea, and this

causes detrimental effects due to the nonlinearity of the amplifiers used in the satellite

link. Second, the SE is heavily reduced. At high SNR, the lossin terms of SE is the

same that can be seen adopting block pilots belonging to the symbol alphabet.

The SE curves are reported in Fig. 4.9. It can be seen that the proposed systems

greatly outperform systems with block pilots. If compared to the SE of the system

without pilots, a loss due to the pilot insertion can be noticed. This loss may be

reduced only by increasing the spacing between the consecutive pilots, which entails

a reduction in the synchronization capability of the receiver. The classical trade-off

between estimation accuracy and spectral efficiency is always present and cannot be

avoided.

The anomalous behavior ofη at low Eb/N0 is the result of the mathematical so-

lution of the fixed-point equation

I

(

Es

N0

)

Eb

N0
=

Es

N0

If we plot η as a function ofEs/N0, this behavior disappears since, for physical rea-

sons,I is a non-decreasing function ofEs/N0 [79].
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Figure 4.9: Spectral efficiencies of the systems with Forney pilots, Ungerboeck pilots,

block pilots, and without pilots in the first scenario.
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Figure 4.10: BER curves of the optimal and suboptimal detectors compared with

those of the systems with block pilots and without pilots, onthe second ISI channel

with P= 21.

4.4.2 Second scenario

The BER curves of the different algorithms are shown in Fig. 4.10. For both the types

of pilots, the suboptimal detector based on the Ungerboeck model (marked as FU

and UU) performs as the optimal one, while the detector basedon the Forney model

(marked as FF and UF) shows worse performance at low SNR. Thisbehavior may

be ascribed to the higher sensitivity of Forney detection tothe suboptimality of the

detection algorithm, as pointed out in [68]. All the systemswith Forney pilots present

an impressive energy loss with respect to the system withoutpilots due to two dif-

ferent contributions. The first one is an obvious insertion loss due to the presence of

pilots (4.38) (which is also present in the systems with Ungerboeck pilots), while the

second and predominant is a penalty due to the difference between the symbol and

pilot MSVs. Since pilots have MSV higher than the symbols, the interference they
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cause to the followingL symbols is much heavier than the interference caused by a

symbol. Hence, from the symbol point of view, when it undergoes the interference of

a previous pilot, it is as if it underwent the interference ofanother symbol but with

stronger ISI. In other words, it is a sort of channel modification. Since for the cho-

sen channelEa < E(U)
b ≪ E(F)

b as shown in Table 4.2, the transmitter has to employ a

lot of energy to transmit a Forney pilot. That is why the ISI due to the pilots is much

lower when the Ungerboeck pilot design (4.8) is adopted. This energy loss, caused by

the difference between the MSVs, is definitely the major drawback of this technique

since it is deeply rooted in the chosen pilot design and cannot be avoided. However,

systems with Ungerboeck pilots still outperform the traditional system with block

pilots belonging to the symbol alphabet. On the other hand, the loss with respect to

the system with block pilots not belonging to the symbol alphabet is caused by the

different mean energy per symbol, as can be shown in Tables 4.2 and4.3.

In terms of SE, the performance is shown in Fig. 4.11. At high SNR the proposed

systems outperform the system with block pilots, but at low SNR the systems with

Forney pilots exhibit a great loss due to the much heavier ISIthat the pilots induce

on the information symbols.

4.4.3 Third scenario

The performance of all the investigated systems in the thirdscenario is shown in

Fig. 4.12. Increasing the number of pilots obviously the insertion loss for both the

types of system (with Forney or Ungerboeck pilots) increases. The suboptimal detec-

tors based on the Forney ISI model always perform poorer thanthe detectors based

on the Ungerboeck model at low SNR, while at high SNR they all perform as the op-

timal detectors. The systems with Forney pilots present a slope change in their BER

curves because the channel modification induced by the different MSVs of symbols

and pilots has become much heavier in this scenario with respect to the previous one.

However, the systems with Ungerboeck pilots still outperform the system with block

pilots belonging to the symbol alphabet, but the loss with respect to the system with

block pilots not belonging to the symbol alphabet further increases because of the

bigger difference between the mean energies per symbol (see Tables 4.2 and 4.3).
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Figure 4.11: Spectral efficiencies of the systems with Forney pilots, Ungerboeck pi-

lots, block pilots, and without pilots in the second scenario.
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Figure 4.12: BER curves of the optimal and suboptimal detectors compared with

those of the systems with block pilots and without pilots, onthe second ISI channel

with P= 7.



98 Chapter 4. Conditioned pilots

 0

 0.5

 1

 1.5

 2

 0  5  10  15  20  25

η 
(b

it/
s/

H
z)

Eb/N0 (dB)

no pilot
F opt
U opt
block, alphab.
block, no alphab.

Figure 4.13: Spectral efficiencies of the systems with Forney pilots, Ungerboeck pi-

lots, block pilots, and without pilots in the third scenario.

The corresponding SE curves are shown in Fig. 4.13. The behavior of the different

systems is similar to that shown in the second scenario. Now the loss due to the pilot

insertion is very high, especially for the system with blockpilots. Still, the system

with Ungerboeck pilots is the one with the best BER and SE performance.



Conclusions

In this Thesis we considered three satellite communicationscenarios and proposed

proper techniques aimed at increasing their spectral efficiency.

First, we examined frequency division multiplexed systemsbased on continu-

ous phase modulations (i.e. a scenario described in the DVB-RCS standard [2]), and

proposed reduced-complexity schemes for multi-user detection, possibly in the pres-

ence of phase noise, and multi-user data-aided phase and frequency synchronization

schemes. We showed that it is possible to implement transmission schemes with an

unprecedented spectral efficiency at a price of a limited complexity increase with re-

spect to a receiver which neglects the interference, but in order to do so, synchroniza-

tion issues have to be addressed. With this purpose, we proposed a data-aided MAP

multi-user phase estimator to be used iteratively with a data-aided frequency esti-

mator. The excellent performance of this synchronization scheme is testified by the

mean squared estimation error reaching the Cramér-Rao bound at low SNR. Hence,

the proposed reduced-complexity scheme for multi-user detection can be effectively

employed to increase the system spectral efficiency also in the presence of phase and

frequency impairments.

Then, we proposed a brand new technique allowing to use multi-h CPM in CDMA

systems. We showed that it is possible to set the spectral spreading of the CPM signal

tuning the highest value the modulation index can assume, and that the PSD smooth-

ness is attainable using a long enough sequence of modulation indices. Moreover,

this technique shows the same linear relation between the total occupied bandwidth

and the number of allowed users that characterizes the DS-SStechnique with linear
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modulations. The proposed binary multi-h CPM-based system not only outperforms

all the other alternative solutions that can be found in the literature, but outperforms

also a similar quaternary system—and this is a totally unexpected result, opposite to

what is known for linear modulations. Therefore, there is noneed to resort to higher

order modulation formats. In a multi-user scenario, the proposed SS-FH-CPM sys-

tem can surpass the spectral efficiency of a single-user single-h system, whereas the

BER performance can be improved by a suboptimal multi-user detector.

Finally, we have proposed a new design for pilot symbols to beused for synchro-

nization over channels with known ISI. This scenario may be obtained starting from

the DVB-S2 standard [1] and employing the time-packing technique to improve the

spectral efficiency. Our pilots are time-varying, data-dependent, isolated, and prop-

erly defined according to the Forney model or the Ungerboeck model in order to

make the detector receive, at pilot epochs, a known and constant value. For these pi-

lots we also derived the optimal MAP symbol detection algorithms, which turned out

to run over time-varying trellises with an extremely high number of states. Hence, we

also proposed suboptimal algorithms based on the FG/SPA framework, whose BER

performance is as good as the optimal one when Ungerboeck detection is adopted

(a small penalty at low SNR may be seen when Forney detection is used). The re-

markable complexity reduction has been obtained without resorting to any kind of

modification of the joint PMF, but just rearranging factors in a proper way. If the ISI

is light, symbol and pilot MSVs are almost the same. This implies that the PAPR is

unchanged with respect to the PAPR of a system without pilots, and this is a desirable

feature in presence of nonlinearities due to the amplifiers.With respect to the tradi-

tional pilots inserted in blocks, as required by the DVB-S2 standard, the proposed

detectors gain in terms of BER and SE, and the choice of the design (Forney’s or

Ungerboeck’s) is irrelevant. On the contrary, if the ISI is heavy the pilot design entails

great differences in the performance of the systems. Namely, those with Ungerboeck

pilots still outperform the system with block pilots both interms of BER and SE,

whereas the systems with Forney pilots show an impressive energy loss, due to the

pilot MSV, degrading the BER and SE performance. Therefore,the system entirely

based on the Ungerboeck model is the most performing one, andalso exhibits the
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appealing absence of whitening filters, often critical to design.

Once the detection algorithms with the new pilot designs arederived and tested,

the extension of the phase estimation algorithm described in [23] to the Ungerboeck

ISI model becomes fundamental. Hence, future works will include the extension of

this algorithm to known ISI channels and its validation through numerical simula-

tions, which are currently underway. Moreover, the whole system, highly spectrally

efficient, including time-packing, the new pilot designs, ISI channels with phase

noise, channel shortening, the extended phase estimation algorithm, and reduced-

complexity suboptimal detection will be investigated.

Concerning the CPM-CDMA scenario analyzed in Chapter 3, thephase noise

will be included and the system behavior further studied. Moreover, new criteria for

the choice of the index sequences will be investigated.
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