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Abstract

The stiffness and strength of laminated glass, a composite of glass layers bonded together

by polymeric interlayers, depend upon shear coupling between the glass plies through the

polymer. In the design practice, this effect is commonly considered by defining the effective

thickness, i.e., the thickness of a monolith with equivalent bending properties. Traditional

formulations have been proposed for a package of two layers of glass and one polymeric

interlayer, but their extrapolation to a higher number of layers gives in general inaccurate

results. Here, the recently-proposed Enhanced Effective Thickness method is extended to

the case of laminated glass beams composed i) by three layers of glass of arbitrary thickness,

or ii) by an arbitrary number of equally-thick glass layers. Comparison with numerical

experiments confirms the accuracy of the proposed approach.
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1 Introduction

Laminated glass is a composite widely used in civil engineering, as well as in automotive,

aeronautics and shipbuilding. It is typically made of two glass plies bonded by a thermo-

plastic polymeric interlayer with a treatment in autoclave at high pressure and temperature.

This process induces a strong chemical bond between materials, due to the union between

hydroxyl groups along the polymer and silanol groups on the glass surface. Through lamina-

tion, safety in the post-glass-breakage phase is increased because fragments remain attached

to the interlayer; risk of injuries is reduced and broken glass maintains a certain cohesion

that prevents catastrophic collapse.

In the pre-glass-breakage phase, the polymeric interlayers are too soft to present flexural

stiffness per se, but they can provide shear stresses that constrain the relative sliding of the

glass plies ([1]). The precise calculation of this coupling is quite difficult and usually requires

numerical analysis, complicated by the fact that response of the polymer is nonlinear,

viscoelastic and temperature dependent. A common practice is to consider the polymer

as linear elastic accounting for its viscoelasticity through an equivalent elastic modulus,

assumed equal to the relaxed modulus under constant strain after a time comparable to the

duration of the design action. Of course, the degree of coupling of the glass layers depends

upon the shear stiffness of the interlayer ([2]). Thus, the flexural performance is somehow

intermediate between the two borderline cases ([3], [4]) of i) monolithic limit, with perfect

bonding between glass plies (shear-rigid interlayers) and ii) layered limit, with frictionless

sliding glass plies. Since stress and strain are much lower in the monolithic than in the

layered limit, to avoid redundant design a large number of studies, also in recent years,
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have considered this subject ([5, 6, 7]).

In numerical computations, laminated glass may be modeled with layered shell elements

that take into account the competing stiffness between glass and interlayer, but the libraries

of most commercial numerical codes do not contain such elements; on the other hand, a full

three-dimensional analysis is complicated and time consuming. This is why, in the practice

and especially in the preliminary design, it is useful to rely upon simple methods. The most

common approach consists in defining the so called effective thickness, i.e., the thickness

of a glass monolith with bending properties equivalent to the laminated element. More

precisely, the effective thickness of a laminated glass plate is the (constant) thickness of

a monolithic plate that, under the same boundary and load conditions, presents the same

maximal stress or maximal deflection. This is a very practical definition, but the literature

and the technical standards record various conflicting formulas for its quantification.

The most used formulations are the one prescribed by the European Project Norm prEN-

13474 [8] and that recorded in ASTM E1300 [9] following the proposal by Bennison et al.

[10, 11] and the original work byWölfel [12]. The first formulation condenses all the effects of

the interlayer in one coefficient ω provinding a linear interpolation between the layered and

the monolithic limit; however, as it will be demonstrated later on in Section 4.2, this method

is quite crude and leads to contradictory results. On the other hand the method of ASTM

E1300, as discussed in [13, 14], gives excellent results for laminated beams under uniformly

distributed loading, but is inaccurate in other cases. Very recently, an alternative method

[13], called Enhanced Effective Thickness, has been proposed by the authors. This is based

upon a variational approach where, through minimization of the strain energy functional,

the best approximation for the response of laminated glass is selected among a restricted

class of shape functions for the deflection surface. The main underlying hypotheses are:

i) the interlayer has no axial or bending stiffness, but only shear stiffness; ii) shear strain

of glass is negligible; iii) both glass and polymer are linear elastic materials; iv) geometric
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non-linearities are ineffective. Remarkably the method, originally conceived of for beams

under bending [13], can be naturally extended to the two-dimensional case of plates [14]

under the most various load and boundary conditions.

In general, all the aforementioned methods have been formulated for laminates with

two glass layers and one interlayer. Attempts have been made to extend the prEN-13474

and the ASTM E1300 methods to the case of three of more glass plies, but the accuracy is

in general not satisfactory, as it will be shown later on in Section 4. The purpose of this

Article is to show that the Enhanced Effective Thickness method can be naturally extended

to the case of multilayered laminated glass beams. More specifically, the cases that will

be treated here are laminated beams composed either by three glass layers of arbitrary

thickness, or by an arbitrary number of equally-thick glass layers. By defining an effective

moment of inertia of the composed beam as the weighted harmonic mean of the moments of

inertia corresponding to the layered and monolithic limit, practical formulas for the stress-

and deflection-effective thickness are proposed. The method covers various boundary and

loading conditions. Comparisons with numerical experiments highlight the much higher

accuracy of the proposed approach with respect to the other formulations.

2 Five-layered beams with glass plies of arbitrary thickness.

With respect to a reference system (x, y) as in Fig. 1, consider the laminated beam of length

l and width b, composed of three glass plies, of thickness h1, h2 and h3 and Young’s mudulus

E, bonded by thin polymeric interlayers (of thickness t1 and t2 respectively), whose shear

modulus is denoted by G. The beam is loaded by an arbitrary load per unit length p(x),
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not necessarily uniformly distributed. Let

Ai = hib, Ii =
bh3i
12

(i = 1, .., 3), H1 = t1 +
h1 + h2

2
, H2 = t2 +

h2 + h3
2

. (2.1)
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Figure 1: Five-layered simply-supported laminated glass beam composed of three glass
plies bonded by polymeric interlayers. Longitudinal view and cross section (not in the same
scale).

2.1 The model

Under the hypotheses that glass-polymer bond is perfect and the interlayer strain in direc-

tion y is negligible, provided that strains are small and rotations moderate, the kinematics

is completely described by the vertical displacement v(x), the same for the three glass com-

ponents, and the horizontal displacements u1(x), u2(x) and u3(x) of the centroid of the

cross-sectional areas of glass plies. Following the same procedure of [13], the shear strain

in the two interlayers is given by

γ1(x) =
1

t1
[u1(x)− u2(x) + v′(x)H1] , γ2(x) =

1

t2
[u2(x)− u3(x) + v′(x)H2] . (2.2)
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The total strain energy of the laminated glass beam [15] is provided by the flexural and

extensional contributions of the three glass layers, by the part corresponding to the shear

deformation of the interlayers, by the work of the external loads p(x), and reads

E[u1(x), u2(x), u3(x), v(x)] =∫ l/2

−l/2

{1

2

[
E(I1 + I2 + I3)v

′′(x)2 + E[A1u
′
1(x)

2 +A2u
′
2(x)

2 +A3u
′
3(x)

2]+

+Gb
[ 1
t1
(u1(x)− u2(x) + v′(x)H1)

2 +
1

t1
(u2(x)− u3(x) + v′(x)H2)

2
]]

+ p(x)v(x)
}
dx .

(2.3)

The first variation of this functional with respect to the variables v(x) and ui(x), i = 1, .., 3,

gives respectively the Euler-Lagrange equilibrium equations

E(I1+I2+I3)v
′′′′(x)−Gb

[H1

t1
(u1(x)−u2(x)+v′(x)H1)

′+
H2

t2
(u2(x)−u3(x)+v′(x)H2)

′
]
+p(x) = 0 ,

(2.4)

EA1u
′′
1(x)−

Gb

t1
(u1(x)− u2(x) + v′(x)H1) = 0 , (2.5)

EA2u
′′
2(x)−Gb

[
− 1

t1
(u1(x)− u2(x) + v′(x)H1)+

1

t2
(u2(x)− u3(x) + v′(x)H2)

]
= 0 , (2.6)

EA3u
′′
3(x) +

Gb

t2
(u2(x)− u3(x) + v′(x)H2) = 0 . (2.7)
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Recalling that EAiu
′′
i (x) is the derivative of the axial force Ni(x) in the i−th glass layer,

conditions (2.5), (2.6) and (2.7) represent the axial equilibrium of the glass plies under the

mutual shear force per unit length τi(x) = Gbγi(x), transmitted by the polymeric interlayer,

as schematically represented in Fig. 2.a. Moreover, from fig. 2.b, it can be observed that

the shear coupling offered by the upper interlayer is statically equipollent to a distributed

torque per unit length in the upper glass ply (layer 1) equal to −(h1/2+ t∗1)τ1(x), where t∗1

is arbitrary, and equal to −(h2/2 + t1 − t∗1)τ1(x) in the middle ply (layer 2). Similarly, the

shear stress in the lower interlayer gives in the middle glass ply (layer 2) the distributed

torque per unit length −(h2/2 + t∗2)τ2(x), with t∗2 arbitrary, and −(h3/2 + t2 − t∗2)τ2(x) in

the bottom ply (layer 3). Summing up the contributions, the total torque per unit length

acting on the whole layered beam is equal to

m(x) = −
(
h1 + h2

2
+ t1

)
τ1(x)−

(
h2 + h3

2
+ t2

)
τ2(x) = −H1τ1(x)−H2τ2(x) . (2.8)

Hence, (2.4) represents the equilibrium equation of the whole laminated package under

bending, due to the external load p(x) and a distributed torque per unit length m(x).

In conclusion, equations (2.4), (2.5), (2.6) and (2.7) may be conveniently rewritten as

EIv′′′′(x) + p(x) +m′(x) = 0 ,

N ′
1(x) = τ1(x) ,

N ′
2(x) = −τ1(x) + τ2(x) ,

N ′
3(x) = −τ2(x) .

(2.9)

Standard arguments in the calculus of variation [16] furnish the boundary conditions
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Figure 2: Physical interpretation of Euler-Lagrange equations.

[
−

(
E(I1 + I2 + I3)v

′′′(x) +Gb(γ1H1 + γ2H2)
)
δv(x)

]l/2
−l/2

= 0 ,[
E(I1 + I2 + I3)v

′′(x)δv′(x)
]l/2
−l/2

= 0 ,[
EA1u

′
1(x)δu1(x)

]l/2
−l/2

= 0 ,[
EA2u

′
2(x)δu2(x)

]l/2
−l/2

= 0 ,[
EA3u

′
3(x)δu2(x)

]l/2
−l/2

= 0 ,

(2.10)

where δv(x), δui(x) (i = 1, .., 3) denote the variations of v(x) and ui(x), respectively. The

meaning of (2.10) is that, in order to rended each term equal to zero, at the boundary

points x = ±l/2 one can either prescribe the value of the unknown field, so that the

corresponding variation is null (geometric boundary condition); or when the variation is

arbitrary because the value at the boundary is not prescribed, the corresponding coefficient

must be zero (natural boundary condition). For example, if the i− th glass layer the beam

is not constrained at, say, x = l/2, so that δui(l/2) ̸= 0, then the correspondent axial force

EAiu
′
i(l/2) must be null.

A relationship between the horizontal displacement of the glass plies can be found by
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rearranging equations (2.5), (2.6) and (2.7) in the form

(EA1u
′
1(x) + EA2u

′
2(x) + EA3u

′
3(x))

′ = 0

⇒ EA1u
′
1(x) + EA2u

′
2(x) + EA3u

′
3(x) = N1(x) +N2(x) +N3(x) = const =: N, (2.11)

where N represents the constant resultant axial force. This finding is not surprising because

no axially oriented force is supposed to act on the beam.

If the axial displacement of the glass plies is not constrained at one of extremities, say

x = −l/2, so that δui(−l/2) ̸= 0 and from (2.10)3−4−5 EAiu
′
i(−l/2) = 0 (i = 1, .., 3),

equation (2.11) leads to N1(x) +N2(x) +N3(x) = 0, ∀x ∈ (−l/2, l/2). In the most general

case in which the beam is constrained at both its ends so that δui(±l/2) = 0, we suppose

that no overall axial elongation is given to each glass ply, i.e.,
∫ l/2
−l/2 u

′
i(x)dx = 0 (i = 1, .., 3).

This allows to evaluate from (2.11)

0 =

∫ l/2

−l/2
(EA1u

′
1(x) + EA2u

′
2(x) + EA3u

′
3(x))dx =

∫ l/2

−l/2
N dx = Nl ⇒ N = 0. (2.12)

In conclusion, in both cases the following relation holds:

N1(x) +N2(x) +N3(x) = (EA1u1(x) + EA2u2(x) + EA3u3(x))
′ = 0

⇒ A1u1(x) +A2u2(x) +A3u3(x) = const. (2.13)

In order to prevent the rigid body motion in x direction, the horizontal displacement

has to be constrained. Since this constrain is quite arbitrary, we suppose that it is such

that



10 L. Galuppi & G. Royer-Carfagni

A1u1(x) +A2u2(x) +A3u3(x) = 0 . (2.14)

In other words, there is always a horizontal rigid translation for which the constant in (2.13)

is null. Condition (2.14) allows noteworthy simplifications in the following analysis.

2.2 Layered and monolithic limits

It should be observed that whenever G → 0, the Euler’s equations (2.4), (2.5), (2.6) and

(2.7) become



E(I1 + I2 + I3)v
′′′′(x) + p(x) = 0 ,

EA1u
′′
1(x) = 0 ,

EA2u
′′
2(x) = 0 ,

EA3u
′′
3(x) = 0 .

(2.15)

It can be recognized that these correspond to the the equilibrium of three frictionless sliding

glass beams. This case is the layered limit.

In the case that G → +∞, a relationship between horizontal and vertical displacements

can be obtained by imposing that γ1(x) = 0 and γ2(x) = 0. Using (2.2) and adding

condition (2.14), a system of equations is obtained in the form


h1u1(x) + h2u2(x) + h3u3(x) = 0,

u1(x)− u2(x) + v′(x)H1 = 0,

u2(x)− u3(x) + v′(x)H2 = 0,

⇒


u1(x) = −h2H1+h3(H1+H2)

h1+h2+h3
v′(x) ,

u2(x) =
h1H1−h3H2
h1+h2+h3

v′(x) ,

u3(x) =
h2H2+h1(H1+H2)

h1+h2+h3
v′(x) .

(2.16)
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Denoting with di (i = 1, .., 3) the distance with sign (positive in the direction of increasing

y) of the mid-plane of the i-th glass layer from the mid-plane of the whole laminated glass

beam (shown in figure 1), it can be easily found that

d1 =
h2H1+h3(H1+H2)

h1+h2+h3
,

d2 = −h1H1−h3H2
h1+h2+h3

,

d3 = −h2H2+h1(H1+H2)
h1+h2+h3

.

(2.17)

Hence, relations (2.16) may be rearranged to give

ui(x) = −div
′(x) , i = 1, ..3. (2.18)

Then, using the first and fourth equation of (2.9), the shear force per unit length transmitted

by the interlayer can be simply written as

 b τ1(x) = EA1u
′′
1(x) = −EA1d1v

′′′(x) ,

b τ2(x) = −EA3u
′′
3(x) = EA3d3v

′′′(x) ,
(2.19)

while in the first relationship of (2.9) the term m′(x) can be rewritten as

m′(x) = −b [τ1(x)H1+τ2(x)H2]
′ = E(A1d1H1−A3d3H3)v

′′′′(x) = E(A1d
2
1+A2d

2
2+A3d

2
3)v

′′′′(x) .

(2.20)

In conclusion, the relevant equations of the system (2.9) reduce to
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EItotv

′′′′(x) + p(x) = 0 ,

b τ1(x) = −EA1d1v
′′′(x) ,

b τ2(x) = EA3d3v
′′′(x) ,

(2.21)

where Itot is the moment of inertia associated with the monolithic limit, given by

Itot = I1 + I2 + I3 +A1d
2
1 +A2d

2
2 +A3d

2
3. (2.22)

This expression is quite important because, in general, the monolithic limit is erroneously

associated with a ply whose thickness is the sum of the thicknesses of the glass plies; on the

other hand, (2.22) gives the inertia of the glass layers properly spaced of the interlayer gaps

t1 and t2 (Figure 1). The last two equations in (2.21) are the shear stress in the interlayers,

calculated according with Jourawski’s formulation.

2.3 The Enhanced Effective Thickness (EET) approach

Once external load p(x) and boundary conditions are given, the fields v(x) and ui(x) can be

determined by integrating the differential system (2.4), (2.5), (2.6) and (2.7), with boundary

conditions derived from (2.10). An approximation can be found by choosing an appropriate

class of shape functions for the unknown fields v(x) and ui(x), defined up to a few parameters

that will be determined from energy minimization. This procedure has already been used

in [13] for the case of three-layered beams.

The shape functions for the vertical displacement v(x) and for the horizontal displace-

ments ui(x) (i = 1, ..., 3), must be compatible with the qualitative properties of the exact

solution and, in particular, must comprehend the monolithic-limit solution, when G → ∞,
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and the layered-limit solution, when G → 0. In terms of the field v(x), such borderline

cases correspond, respectively, to the fields vM (x) and vL(x) that, being the solutions of

the differential equations

EItotv
′′′′
M (x) + p(x) = 0 , E(I1 + I2 + I3)v

′′′′
L (x) + p(x) = 0 , (2.23)

have to be of the form

vM (x) = − g(x)

EItot
, vL(x) = − g(x)

E(I1 + I2 + I3)
, (2.24)

where g(x) is a function that is uniquely determined from the form of the external load

and the geometric boundary conditions of the beam. It is thus natural to think of an

approximating class of solutions in the form

v(x) = −g(x)

EIR
, (2.25)

where g(x) plays the role of a shape function for the vertical displacement and IR is the

effective moment of inertia of the laminate glass beam, comprised between the values (I1 +

I2 + I3), corresponding to the layered limit, and Itot, associated with the monolithic limit.

It is convenient to define IR as the weighted harmonic mean of this two values through the

parameter η, a non-dimensional quantity tuning the plate response from the layered limit

(η = 0) to the monolithic limit (η = 1). In conclusion, we can write

1

IR
=

η

Itot
+

1− η

I1 + I2 + I3
. (2.26)
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For what the horizontal displacement is concerned, consider first the layered and mono-

lithic limit. In the layered limit, one finds from the last three equations of (2.15) that the

horizontal displacement, say uiL(x) (i = 1, .., 3) to distinguish, is a linear function. But if we

suppose, as done to derive (2.12), that the overall axial elongation in each glass ply is zero,

it can be easily concluded that uiL = 0 (i = 1, .., 3), which is also compatible with condition

(2.14). In the monolithic limit, the horizontal displacements, say uiM (x) (i = 1, .., 3), are

related with the vertical component v(x) through equations (2.18). In conclusion, one has

uiL = 0 , uiM = −div
′(x) = di

g′(x)

EItot
, i = 1, .., 3 , (2.27)

so that an approximate solution for the horizontal displacement can be sought in the form

ui(x) = β di
g′(x)

EItot
, (2.28)

where β is another nondimensional parameter, again tuning the response from the layered

limit (β = 0), implying null horizontal force in the glass layers, to the monolithic limit

(β = 1), leading to γi(x) = 0, i = 1, 2.

The corresponding strain energy (2.3) can thus be re-written as a function of the shape

function and the parameters η and β in the form
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E[u1(x), u2(x), u3(x), v(x)] = Ê[η, β, g(x)]

=

∫ l/2

−l/2

{(I1 + I2 + I3)

2E

[ η

Itot
+

1− η

I1 + I2 + I3

]2
[g′′(x)]2 +

β2

2EI2tot
(A1d

2
1 +A2d

2
2 +A3d

2
3)[g

′′(x)]2

+
Gb

2E2Itot

[(β(−d1+d2)
Itot

−
(

η
Itot

+ 1−η
I1+I2+I3

)
H1

)2

t1
+

(
β(−d2+d3)

Itot
−

(
η

Itot
+ 1−η

I1+I2+I3

)
H2

)2

t2

]
[g′(x)]2

−p(x)

E

[ η

Itot
+

1− η

I1 + I2 + I3

]
g(x)

}
dx , (2.29)

in which g(x) is given because its depends on loading and boundary conditions for the beam.

Moreover, noticing that d1 − d2 = H1 and d2 − d3 = H2 (figure 1), the strain energy may

be simplified as

E[u1(x), u2(x), u3(x), v(x)] = Ê[η, β, g(x)]

=

∫ l/2

−l/2

{(I1 + I2 + I3)

2E

[ η

Itot
+

1− η

I1 + I2 + I3

]2
[g′′(x)]2+

β2

2EI2tot
(A1d

2
1+A2d

2
2+A3d

2
3)[g

′′(x)]2

+
Gb

2E2Itot

(H2
1

t1
+
H2

2

t2

)[ β

Itot
+

( η

Itot
+

1− η

I1 + I2 + I3

)]2
[g′(x)]2−p(x)

E

[ η

Itot
+

1− η

I1 + I2 + I3

]
g(x)

}
dx .

(2.30)

Minimization has to be performed with respect to the free parameters η and β only.

Conditions ∂Ê
∂β = 0 and ∂Ê

∂η = 0 lead respectively to
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(I1 + I2 + I3)
[ η

Itot
+

1− η

I1 + I2

] ∫ l/2

−l/2
[g′′(x)]2dx

−Gb

E

(H2
1

t1
+

H2
2

t2

)[ β

Itot
− η

Itot
− 1− η

I1 + I2

] ∫ l/2

−l/2
[g′(x)]2dx−

∫ l/2

−l/2
p(x)g(x)dx = 0 ,

(2.31)

β

Itot
(A1d

2
1 +A2d

2
2 +A3d

2
3)

∫ l/2

−l/2
[g′′(x)]2dx

+
Gb

E

(H2
1

t1
+

H2
2

t2

)[ β

Itot
− η

Itot
− 1− η

I1 + I2

] ∫ l/2

−l/2
[g′(x)]2dx = 0 ,

(2.32)

As done in [13], these expressions may be simplified by observing from (2.23) and (2.24) that

v(x) of (2.25) is the exact solution of the elastic bending of a beam with constant flexural

inertia IR under the same load p(x) and boundary condition of the problem. Consider the

virtual work equality for this system in which the aforementioned v(x) is selected as the

strain/displacement field, whereas the bending moment in equilibrium with p(x) is given

by M(x) = v′′(x)EIR. The external and internal work can be written as

Lve = − 1

EIR

∫ l/2

−l/2
p(x)g(x)dx , Lvi = −

∫ l/2

−l/2
M(x)v′′(x)dx =

1

EIR

∫ l/2

−l/2
[g′′(x)]2dx ,

(2.33)

so that one has

∫ l/2

−l/2
p(x)g(x)dx =

∫ l/2

−l/2
[g′′(x)]2dx . (2.34)

This condition can be used to simplify (2.31) and (2.32), yielding the noteworthy relationship
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η = β =
1

1 + E

GbItot

(
H2
1

t1
+

H2
2

t2

)(I1 + I2 + I3)(A1d21 +A2d22 +A3d23)Ψ
, (2.35)

where the coefficient Ψ reads

Ψ =

∫ l/2
−l/2[g

′′(x)]2dx∫ l/2
−l/2 [g

′(x)]2dx
. (2.36)

Evidently, the value of Ψ depends upon the geometry, boundary and loading conditions of

the beam, and it is reported in Table 1 for the most common cases. Remarkably, these data

are identical to those recorded in [17] for a three-layered beam. Indeed, (3.17) represents

the natural extension of the corresponding expression obtained in [13].

Loading and boundary
conditions Y

168

15 14

42

10 5

10 45

2121

17 l

l +2ab l5

l

l l2

l l14

ll

2

2 2

2

2 2

2 2

22

l l

l

l

l

l

l

l

l

l

a b

l/2

l

Loading and boundary
conditions Y

Table 1: Values of coefficient Ψ for laminated glass beams under different boundary and
load conditions.

The parameter η = β can be used to define the effective thickness of the laminated glass

beam. Recalling (2.26), the deflection-effective thickness ĥw, associated with the value η,

can be written in the form
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1

(ĥw)3
=

η

h31 + h32 + h33 + 12(h1d21 + h2d22 + h3d23)
+

(1− η)

(h31 + h32 + h33)
. (2.37)

The stress-effective thickness may be defined as the (constant) thickness ĥi;σ of a monolithic

beam for which the maximum bending stress is equal to the maximum stresses in the i− th

glass layer of the laminated package. The bending stress in the i−th glass ply is given by

|σ(i)|max =
max
x

|M(x)|
1
6b ĥ

2
i;σ

= max
x

∣∣∣∣Ni(x)

Ai
± Mi(x)

Ii

hi
2

∣∣∣∣ , (2.38)

where Ni(x) = EAiu
′
i(x) =

Aiβd1
Itot

g′′(x) and Mi = EIiv
′′(x) = − Ii

IR
g′′(x). By substituting

such values into equation (2.38), one obtains

1

(ĥi;σ)2
=

2η |di|
h31 + h32 + h33 + 12(h1d21 + h2d22 + h3d23)

+
hi

ĥ3w
. (2.39)

The maximal stress in the i−th glass ply is calculated by considering a monolithic beam of

thickness ĥi;σ under the same loading and boundary condition of the layered beam.

3 Multi-layered beams with glass plies of equal thickness

Consider now a package composed by N glass plies of equal thickness h, bonded by N − 1

polymeric interlayers of thickness t (Figure 3). Again, the beam length is l, its width is b,

while E denotes the Young’s modulus of glass and G is the shear modulus of the polymer.

3.1 The strain energy functional

Let
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h
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h

t
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h
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h
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H

H

h

H

y

z

Figure 3: Laminated glass package composed of N (N = 5 in the picture) glass plies bonded
by polymeric interlayers.

A = hb; I =
bh3

12
; H = t+ h. (3.1)

Under the same hypotheses of section 2, and denoting with ui(x) the horizontal displacement

of the centroid of the i−th glass ply, the shear strain in the i−th interlayer may be written

as γi(x) =
1
t [ui(x)− ui+1(x) + v′(x)H] (i = 1, .., N − 1). Analogously with equation (2.3),

the strain energy of the laminated glass beam is

E[ui(x), v(x)] =

∫ l/2

−l/2

{1

2

[
ENIv′′(x)2 + EA

N∑
i=1

u′i(x)
2
]
+

+
Gb

t

N−1∑
i=1

[ui(x)− ui+1(x) + v′(x)H]2 + p(x)v(x)
}
dx . (3.2)

Minimization of this functional with respect to v(x) and ui(x), (i = 1, .., N) leads to the

N + 1 Euler-Lagrange equations
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ENIv′′′′(x)− GbH

t

N−1∑
i=1

[ui(x)− ui+1(x) + v′(x)H]′ + p(x) = 0 , (3.3)

EAu′′1(x)− Gb
t (u1(x)− u2(x) + v′(x)H) = 0 ,

EAu′′i (x) +
Gb
t [(ui−1(x)− ui(x) + v′(x)H)− (ui(x)− ui+1(x) + v′(x)H)] = 0 , i = 2, .., N − 1 ,

EAu′′N (x) + Gb
t (uN−1(x)− uN (x) + v′(x)H) = 0 ,

(3.4)

with boundary conditions

[
−

(
ENIv′′′(x) + GbH

t

N−1∑
i=1

[ui(x)− ui+1(x) + v′(x)H]
)
δv(x)

]l/2
−l/2

= 0 ,[
ENIv′′(x)δv′(x)

]l/2
−l/2

= 0 ,[
EAu′i(x)δui(x)

]l/2
−l/2

= 0 ∀ i = 1, .., N ,

(3.5)

where δv(x), δui(x) (i = 1, .., N) denote the variations of v(x) and ui(x). The interpretation

of these equations is the same of Section 2.

Furthermore, with the same argument that has led to (2.13), it can be demonstrate that

a relationship between horizontal displacements of the glass plies exists, of the type

N∑
i=1

ui(x) = 0 , (3.6)

which is of this simple form because all the glass plies have the same cross sectional area. If

the glass plies were of different thickness, in (3.6) each term ui(x) would have been multiplied

by the corresponding cross sectional area Ai as in (2.14), but it would be difficult then to
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find simple formulas for the most general case.

3.2 Layered and monolithic limit

Whenever the layered limit is attain, the governing equilibrium equations of the laminated

glass beam can be obtained simply by imposing G = 0 in (3.2) so that

 ENIv′′′′(x) + p(x) = 0 ,

EAu′′i (x) = 0 . ∀i = 1, .., N .
(3.7)

On the other hand, whenever G → ∞, the shear strain in the interlayer tends to zero, i.e,

γi(x) = 0, i = 1, .., N − 1, leading to

ui+1(x) = ui(x) + v′(x)H , ∀i = 1, .., N − 1. (3.8)

Henceforth, relationships between horizontal and vertical displacements may be obtain by

solving the system of equations (3.8) and (3.6). One obtains

u1 =
2i− (N + 1)

2
v′(x)H = −div

′(x)H; (3.9)

where di =
(N+1)−2i

2 H is again the distance with sign of the mid-plane of the i−th glass

ply from the mid-plane of the laminated glass package, positive with increasing y (figure 3).

The shear force per unit length τi(x) = Gbγi(x) can be evaluated by rearranging equations

(3.4), to give
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τi(x) = Gbγi(x) = EA
i∑

j=1

u′′j (x) = EAv′′′(x)H
i∑

j=1

2i− (N + 1)

2
= EAv′′′(x)H

i(i−N)

2
.

(3.10)

Now, the second term of (3.3) can be evaluated as

GbH

N−1∑
i=1

γ′i(x) = EAH2v′′′′(x)

N−1∑
i=1

i(i−N)

2
= −EAH2

12
(N − 1)N(N + 1)v′′′′(x). (3.11)

By substituting such result in (3.3), the equilibrium equations for the monolithic limit turn

out to be

EItotv
′′′′(x) + p(x) = 0 , (3.12)

where Itot = NI + AH2

12 (N − 1)N(N + 1) represents the moment of inertia of a monolithic

plate, whose inertia is that of the two glass plies properly spaced of the gap given by the

thickness of the interlayer. It can be shown that this quantity corresponds to

Itot = NI+A

N∑
i=1

d2i = NI+A

N∑
i=1

((N + 1)− 2i

2
H
)2

= NI+
AH2

12
(N−1)N(N+1) , (3.13)

which represents the analogous of (2.22).
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3.3 The EET approach

Following the same procedure of Section 2.3, the solution for the vertical displacement can

be found in the form (2.25), where g(x) is a shape function, chosen according to the loading

and boundary condition, and the effective moment of inertia of the beam is defined as

1

IR
=

η

Itot
+

1− η

N · I
. (3.14)

The shape function for the horizontal displacement can be found of the same form (2.28).

Under these assumption, since di − di+1 = H, the shear strain in the ith interlayer is

γi =
H

Et

[ β

Itot
−

( η

Itot
+

1− η

NI

)]
g′(x) , i = 1, .., N − 1 . (3.15)

Henceforth, the strain energy (3.2) may be written as

E[ui(x), v(x)] = Ê[η, β, g(x)] =

=

∫ l/2

−l/2

{NI

2E

[ η

Itot
+

1− η

NI

]2
[g′′(x)]2 +

β2

2EI2tot

AH2(N − 1)N(N + 1)

12
[g′′(x)]2 +

+
GbH2(N − 1)

2tE2

[ β

Itot
−

( η

Itot
+

1− η

NI

)]2
g[g′(x)]2 − p(x)

E

[ η

Itot
+

1− η

NI

]
g(x)

}
dx ,

(3.16)

where, we recall, g(x) is known.

Analogously to Section 2.3, the minimization of such energy with respect to the param-

eter η and β leads to
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η = β =
1

1 + Et
Gb

N2IA(N+1)
Itot

Ψ
, (3.17)

where the coefficient Ψ is again given by (2.36) and recorded in Table 1 for several cases of

relevant importance. Finally, in analogy with equations (2.37) and (2.39), it can be shown

that the deflection- and stress-effective thickness can be defined as

1

(ĥw)3
=

η

Nh3 + hH2(N − 1)N(N + 1)
+

(1− η)

Nh3
, (3.18)

1

(ĥi;σ)2
=

2η |di|
Nh3 + hH2(N − 1)N(N + 1)

+
h

ĥ3w
. (3.19)

It is evident that the maximum stress occurs in the external glass plies, i.e. for i = 1

and i = N . Since the absolute value of the distance of the mid-plane from the mid-plane

of the laminated package is N+1
2 H, the maximum bending stress in the laminated package

may be calculated by using the stress-effective thickness of the external plies

1

(ĥσEXT )2
=

η (N + 1)H

Nh3 + hH2(N − 1)N(N + 1)
+

h

ĥ3w
. (3.20)

The conclusion is that the EET approach can be easily extended to the case of multi-layered

laminated beams, with no particular difficulties.

4 Comparison with other methods

Diverse alternative formulations have been proposed to calculate the effective thickness of

laminated glass. Although having been conceived for a composite package of two glass
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layers and one interlayer, their extrapolation to the case of multi-layered laminated glass

has been attempted. The aim of this Section is to compare results from these formulations

with those obtainable with the EET method.

4.1 Iterative Wölfel- Bennison method according to ASTM-E1300

The formulation based upon the original approach by Wölfel [12], later developed by Ben-

nison et al. [10, 18] and mentioned in the American standard ASTM-E1300 [9], relies upon

several simplifying assumptions that, as discussed at length in [13], render it accurate for

the case of simply supported beams under uniformly distributed loading.

With the same notation of (2.1), the method defines an equivalent moment of inertia Ieq

of a laminated glass beam, of length l and width b, composed by two glass plies of thickness

h1 and h2 bonded by one polymeric interlayer of thickness t, as the arithmetic mean of the

inertiae of monolithic and layered limit. If Ai = bhi, Ii = bhi/12, H = (h1+h2)/2+ t, then

Ieq reads

Ieq = I1 + I2 + Γ
A1A2

A1 +A2
H2 , (4.1)

where the shear transfer coefficient Γ is given by

Γ =
1

1 + β tE
Gbl2

A1A2
A1+A2

. (4.2)

In particular, Γ = 0 corresponds to the layered limit, whereas Γ = 1 to perfect bonding.

The coefficient β depends upon load and boundary conditions and, for the most common

cases, the corresponding values are recorded in [12] and [13]. Bennison et al. [10, 18] have

proposed to use β = 9.6 as in the case of uniformly distributed loading.
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From (4.1), it is immediate to evaluate the deflection-effective thickness

hef ;w = 3

√
h31 + h32 + 12Γ

h1h2
h1 + h2

H2 . (4.3)

The maximum stress in glass can be estimated through the stress-effective thicknesses

h1;ef ;σ =

√
h3ef ;w

h1 + 2Γhs;2
, h2;ef ;σ =

√
h3ef ;w

h2 + 2Γhs;1
, (4.4)

where hs;i =
hiH

h1+h2
.

As mentioned in [13], Wölfel-Bennison approach is accurate only for simply supported

beams under uniformly distributed load and in those cases where the deflection curve is

similar in type to this reference-case. Besides, it has been verified in [14] that, when ap-

plied to a two-dimensional plate, the method is reliable only when the deformed surface is

cylindrical, so that the plate response is similar to that of a beam.

For the calculation of the effective thickness of multi-layered laminated glass, a rule

of thumb, also suggested in an preliminary version of the project of European Standard

prEN 13474 [8], indicates to iterate the procedure. In terms of deflection, one can calculate

the effective thickness of the first and second glass layer (hef ;w;12); from this, the effective

thickness of the package composed by the equivalent monolith just determined and the third

glass layer (hef ;w;123), and so on.

In terms of stress, the procedure is not without ambiguity. In fact, one may calculate

the stress-effective thickness of the first two glass layers (h1;ef ;σ, h2;ef ;σ), but for the second

step it is not clear whether to use h1;ef ;σ or h2;ef ;σ for the combination with the successive

glass ply; in general, it should be safe to use the minor between these two values, and to

maintain this choice also for the the successive steps. However, only the stress effective
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thickness of the last glass ply at the end of the iterations is significant, because all the

values obtained at the previous steps are intermediate passage of no practical utility. In

particular, the stress-effective thicknesses for the internal layers can never be calculated.

It should also be remarked that when the laminated glass package is composed by glass

layers (or interlayers) of different thickness, the resulting values of effective thicknesses for

what both stress and deflection is concerned, depend upon which layer is chosen as layer

1”, i.e., upon the order in which the iterative combination is performed. Furthermore, the

iterative procedure usually requires a considerable computation.

4.2 The approach proposed by prEN-13474 and its critical discussion

In its latest version, the project of European Standard prEN 13474 [8] suggests a very simple

method, which is assumed to be valid for a package of N glass layers of arbitrary thickness.

With the same notation of before, the deflection- and stress-effective thicknesses may be

calculated as

hef ;w = 3

√√√√ N∑
i=1

h3i + 12ω

N∑
i=1

(hid2i ) , hef ;σ;i =

√
h3ef ;w

hi + 2ω|di|
, , (4.5)

where ω is a coefficient representing the degree of shear transfer, varying between 0 (layered

limit) and 1 (monolithic limit). The value of ω is tabulated in [8], Table 11, as a function

of i) the “interlayer stiffness family” to which the polymer belongs1; ii) the environmental

temperature and characteristic duration of the applied loads. It is important to note that the

shear transfer coefficient ω is independent upon the geometry, the thickness of the interlayer,

the loading and boundary conditions. Furthermore, no explicit formula is provided to

1The various types of polymers used as interlayers are classified in four different families according to
their stiffeness.
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evaluate ω when the shear modulus of the interlayer, G, is known.

In our opinion, the formulation (4.5) should be questioned on a theoretical basis.

To illustrate, reference will be made to the case of a simply supported beam under

uniformly distributed loading, composed by two glass plies only of thickness h1 and h2 is

now considered. For this case, as proved in [13], the EET method provides a very accurate

solution. The the shear transfer coefficient η is given by (3.17) for H2, I3 , A3 = 0 and reads

η2layers =
1

1 + Gb
tE

I1+I2
Itot

A1A2
A1+A2

Ψ
, (4.6)

where the coefficient Ψ, depending on the loading and boundary conditions, is given by

(2.36) and, for the case simply supported beam under uniform load, is Ψ = 168
17l2

, (for

different loading and boundary conditions, values of Ψ are tabulated in 1). The deflection-

and stress-effective thickness can be evaluated by setting h3 = 0 into equations (2.37) and

(2.39), respectively.

Now, in the prEN13474, the coefficient ω depends only on the stiffness family of the

interlayer, hence on his shear modulus only. We can verify that such an assumption leads to

a contradiction. In fact, consider two simply supported beams, one of length l = 1.5 m and

the other of length l = 3 m. We investigate four composite packages: i) 8.8.2 (h1 = h2 = 8

mm and t = 2× 0.38 = 0.76 mm); ii) 8.8.4 (h1 = h2 = 8 mm and t = 4× 0.38 = 1.52 mm);

iii) 12.12.2 (h1 = h2 = 12 mm and t = 2× 0.38 = 0.76 mm); iv) 12.12.4 (h1 = h2 = 12 mm

and t = 4× 0.38 = 1.52 mm).

In the considered examples, the shear modulus of the interlayer G is varied in the range

of interest for common interlayers (from 10−2 MPa to 101 MPa); consequently, the coeffi-

cient η2Layers is calculated through (4.6),together with the deflection- and stress-effective

thickness. Calculate now the value of the shear transfer coefficient ω giving the same values
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of deflection- and stress-effective thickness acording to (4.5). Note that, for a given values of

the shear modulus G and for a given geometry, the deflection- and stress-effective thickness

of the EET approach correspond to an unique value of ω.

If ω depended upon G only, and if the formulation (4.5) was correct, one should find

a unique correspondence between G and ω, independently of the problem under consid-

erations. Figure 4.a) shows instead that, in a simply supported laminated glass beam of

length l = 1.5, for the same value of G there are different values of ω depending upon the

composition of the laminated package. Figure 4.b) shows that also the length of the beam

(l = 1.5 m or l = 3 m) is important. Therefore, the shear coupling depends not only upon

the stiffeness of the interlayer, but also on the size and composition of the laminate.
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Figure 4: Relationship between the shear transfer coefficient ω and the shear modulus G of
the interlayer for different values of beam length and thickness.

If the formulation proposed in the prEN13474 was correct, all the graphs would collapse

in one curve. On the other hand, we notice noteworthy differences; for example, doubling

of the length of the beam may increase ω by more than 100% (Figure 4.b). Indeed, we

have verified in Sections 2 and 3 that the state of stress in a laminated glass beam strongly

depends upon the length, composition, boundary and load conditions of the beam. This
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dependence is lost in the prEn13474 approach.

4.3 Comparison with numerical experiments

The reference example will be that of a simply supported beam of length l = 3000 mm

and width b = 500 mm under uniformly distributed load p = 1 N/mm. Other loading or

boundary conditions can be analyzed with the same methods used in [13]. The Young’s

modulus of glass plies is E = 70 GPa, while the modulus G of the polymeric interlayer is

varied from 10−2 MPa to 101 MPa, while its Poisson’s ratio is supposed equal ν = 0.49. For

the sake of comparison, two different laminated glass package are here taken into account:

• three glass plies of thickness h1 = 5 mm, h2 = 8 mm, h3 = 10 mm, bonded by two

polymeric interlayer of thickness t1 = 0.76 mm and t2 = 1.52mm (Package A);

• five glass plies of the same thickness h = 6 mm bonded by polymeric interlayers of

the same thickness t = 0.76 mm (Package B).

Numerical simulations have been made with the program Abaqus, using a 3-D mesh with

solid 20-node quadratic bricks with reduced integration, available in the program library

[19]. As shown in Fig. 5, the structured mesh has been crated by dividing the length of

the beam in 100 elements, its width in 20 elements and the thickness of each glass layer in

3 elements.

The effective thicknesses obtained numerically are now compared with those obtainable

with the EET method and with those calculated from the “Iterative” Wölfel- Bennison

method and from the formulations of the the European Norm prEN-13474 (2012). For what

the latter case is concerned, a correlation between G and ω is established by calculating, for

each value of G, the deflection-effective thickness of a two-glass-ply laminated beam with
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Figure 5: The mesh used in the FEM simulations for Package A.

the boundary and load conditions, and finding the value of ω that gives the same value

through (4.5). It should be mentioned, however, that if the layers are not of the same

thickness, the obtained value of ω depends upon which layers are chosen. Here, we have

selected the two layers of the package that give the best approximation.

For Package A, Figure 6 shows the comparison of the deflection- and stress-effective

thicknesses (for glass ply # 3, the one under maximum tensile stress) obtained with the

Enhanced Effective Thickness approach through (2.37) and (2.39), the iterative Wölfel-

Bennison approach, the method prescribed by prEN 13474 (equations 4.5), as well as the

results of the numerical experiments. It is evident that the result achieved through EET

and WB model are very accurate, whereas the prEN 13474 approach gives different results

at the qualitative level. Most of all, the last method is not on the side of safeness, because it

predicts deflection and stress values much lower than those predicted EET nd WB (higher

effetive thicknesses).
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Figure 6: Simply supported beam under uniformly distributed load, Package A. Comparison
of deflection- and stress-effective thicknesses obtained with: enhanced effective thickness ap-
proach (ETT); iterative Bennison-Wölfel approach (iterative WB); prEN 13474; numerical
simulations.

For Package B Figure 7 compares the the deflection- and stress-effective thicknesses (of

the external glass ply) obtained with the same four methods. Again, the best approximation

is obtained with the EET method. The prEN13474 method is by far the less accurate.
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Figure 7: Simply supported beam under uniformly distributed load, Package B. Comparison
of the effective thicknesses obtained with: the enhanced effective thickness approach (ETT);
iterative Bennison- Wölfel approach (iterative WB); prEN 13474; the numerical simulations.
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More examples could be made by varying the load and boundary conditions of the model

problem. In general, the EET approach is the one that gives the best accuracy, especially

when the boundary and load conditions are different from the case of simply supported

beams under uniform loading.

5 Conclusions

The main result of this article has been to provide a natural extension of the Enhanced

Effective Thickness (EET) method proposed in [13] to the case of multi-layered laminated

glass beams. The formulas (2.37) and (2.39) allow to calculate the deflection- and stress-

effective stiffness for a composite package of three glass layers of any thickness with no

particular difficulty. If the thickness of the glass layers is constant, the expressions (3.18)

and (3.19) provide a ready-to-use practical tool for the design of laminates formed by an

arbitrary number of layers. The coefficients needed for these calculations are similar to

those obtained for the case of a three-layered beam (two glass layers and one interlayer)

and recorded in [17]. The results that can be obtained are in excellent agreement with

numerical experiments, performed with accurate three-dimensional models.

Other methods that have been proposed in technical standards give in general inaccurate

results when extended to the multi-layered case. For example, the iteration of the Bennison-

Wölfel approach [12] [18], mentioned in the ASTM standards [9], is rather complicated,

provides formulas for the calculation of the state of stress in the external glass plies only

(not necessarily the most stressed) and turns out to be sufficiently accurate just for simply

supported beams under uniformly distributed loads. Moreover, the result depends in general

upon the order in which the iteration is performed.

The formulation adopted by the project norm prEN13474 [8] is apparently very simple
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because it considers only the shear stiffness of the interlayer, but it is conceptually not

justifiable. In fact, it does not take into account the important role played by load-type and

size-effect (length, width and package composition) on the shear coupling that the interlayer

can offer. In general, this formulation cannot be recommended in the case of three-layered

beams, worst of all for multi-layered laminates.

On the contrary, the enhanced effective-thickness approach seems to represent an accu-

rate and powerful tool for the practical calculation of laminated glass. The theory proposed

here could also be applied to a package composed by an arbitrary number of layers of any

thickness, even if the resulting design formulas would be slightly more complicated than

those presented here. Moreover, following the same rationale, the method could be applied

to the case of multilayered laminated plates, providing an extension of the theory already

presented in [14].
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