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Abstract

A practical way to calculate the response of laminated glass is to consider both
glass and polymeric interlayer as linear elastic materials; the viscoelastic behavior of
the polymer is evaluated assuming equivalent elastic moduli, that is, the relaxed moduli
under constant strain after a time equal to the duration of the design action. Here,
we analytically solve the time-dependent problem of simply-supported laminated-glass
beams, modeling the response of the polymer by a Prony’s series of Maxwell elements.
The obtained results, in agreement with a full 3-D viscoelastic finite-element numerical
analysis, emphasize that there is a noteworthy difference between the state of strain
and stress calculated in the full-viscoelastic case or in the aforementioned “equivalent”
elastic problem. The second approach gives in general results that are on the side of
safeness, but the design may be too conservative for short-time actions, whose duration
depends upon the polymer type.

Keywords: Viscoelastic composite beam, polymer, viscoelasticity, Laminated glass, time-

dependence.

1 Introduction

Three-layered sandwich structures that can be schematized as the composition of two ex-
ternal elastic elements bonded by one interlayer with anelastic response are commonly used
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in modern constructions. The applications may range from structural insulating panels,
consisting in a layer of polymeric foam sandwiched between two layers of structural board,
to steel beams supporting concrete slabs connected by ductile studs, to wood elements made
of layers glued together. Although the problem here considered is general and may apply to
various cases, the particular application to which it will be specialized is that of laminated
glass.

Laminated glass is a composite structure typically made of two glass plies bonded by
a thermoplastic polymeric interlayer with a treatment in autoclave at high pressure and
temperature. This process induces a strong chemical bond between materials, due to the
union between hydroxyl groups along the polymer and silanol groups on the glass surface.
In this way, safety in the the post-glass-breakage phase is increased because the fragments
remain attached to the interlayer: risk of injuries is reduced and the damaged element
maintains a certain cohesion that prevents catastrophic detachment from fixings.

In the pre-glass-breakage phase, the polymeric interlayers are too soft to present flexural
stiffness per se, but they can provide shear stresses that constrain the relative sliding of the
glass plies [4]. The degree of coupling of the two glass layers depends upon the shear stiffness
of the polymeric interlayer [11]; thus, flexural stiffness is somehow intermediate between the
two borderline cases usually referred to [16] as layered limit, i.e., frictionless relative sliding
of the plies, and monolithic limit, i.e., perfect bonding of the plies. Since stress and strain
in the monolithic limit are much lower than in the layered limit, appropriate consideration
of the shear coupling offered by the interlayer is important to achieve an economical design.
A number of studies have pursued this issue [3, 5, 12].

The response of the polymer is highly viscoelastic and temperature dependent. There
are three main commercial polymeric films: Polyvinyl Butyral (PVB), Ethylene Vinyl Ac-
etate (EVA), and Ionoplastic polymers (IP) [5, 6]. PVB is a polyvinyl acetate with addition
of softeners that imparts plasticity and toughness, enhancing adhesion-strength and in-
creasing glass transition temperature Tg up to 20− 25◦C. Commercial EVA is a polyolefine
with addiction of vinyl acetate that improves strength and ultimate elongation, to attain
mechanical properties that are similar to PVB. A somehow innovative materials is IP, a
ionoplast polymer that, when compared with PVB, presents higher stiffness (> 100×PVB),
strength (> 5×PVB), glass-transition temperature (Tg ∼ 55◦C).

In general, the rheological properties are furnished by the manufacturer in the form
of tables, which record the relaxed shear modulus of the polymer under constant shear
strain as a function of temperature and time. Such values are used in the common design
practice, by considering the polymer as a linear elastic materials whose shear modulus
is chosen according to the environmental temperature and the characteristic duration of
the design load [7]. Depending upon polymer type, room-temperature T and characteristic
load-duration t0, the relaxed shear modulus of the interlayer may vary from 0.01 MPa (PVB
at T = +60oC under permanent load) up to 300 MPa (IP at T = 0oC and t0 = 1 sec).
Assumption that both glass and polymer are linear elastic allows for drastic simplifications in
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the structural analysis and simplified approaches may also be provided for ready calculations
in the cases of most practical interest. For example, the well-known model by Newmark [15]
considers the interaction of two beams bonded by shear connectors that provide a linear
and continuous relationship between the relative interface slip and the corresponding shear
stress, and may be conveniently used when the bending moment is known a priori, as in the
case of statically-determined structures. A comprehensive discussion about various possible
simplified methods of analysis can be found in [10].

A more precise rheological analysis should consider the polymer as a linear viscoelas-
tic materials, that can be usually interpreted by a Prony’s series of units arranged in the
Maxwell-Wiechert model [19]. The parameters that define the constitute properties may
be found through creep or relaxation tests [14, 17], or by measuring the response to cyclic
oscillations [2, 13]; in some cases they are directly furnished by the manufactures [7]. Tem-
perature dependence may be taken into account using the Williams-Landel-Ferry model [20].
However, a full viscoelastic analysis is seldom performed in the design practice, because it
is time consuming and requires a special software. Numerical experiments can be found in
the technical literature on specific particular examples, comparing the results with those
obtained through the aforementioned linear solution that makes use of the relaxed modulus
for the polymer. However, to our knowledge, no systematic study exists that discusses the
viscoelastic interaction of the glass plies and, in particular, the specific effects of various
different relaxation times characterizing the Maxwell-Wiechert model.

Here, we analytically solve the time-dependent problem of a laminated-glass simply-
supported beam under constant loading, modeling the response of the polymer by a Prony’s
series in the Maxwell-Wierchert model. It will be shown that the “memory effect” of
viscoelasticity may affect the gross response of the laminated glass beams, producing in same
cases a noteworthy differences with respect to those practical approaches that consider the
secant stiffness of the polymer only. The influence of the various parameters of the Prony’s
series, and in particular the effects of the various relaxation times, is discussed. Applicative
examples to the most commercial types of polymers used as interlayers are developed.

2 Composite sandwich beam with viscoelastic interaction

Consider the simply-supported sandwich beam of length L shown in figure 1, composed
of two external linear elastic plies of thickness h1 and h2, bonded by a thin viscoleastic
interlayer of thickness h. The structures is loaded under a generic load per unit length
p(x, t), not necessarily time-independent and uniformly distributed.

This example perfectly adapts to the case of laminated glass, where the external plies are
made of glass, whereas the interlayer is a polymeric sheet. In the following, without loosing
generality, we will refer to this particular application. Therefore, the two external glass
layers present linear-elastic response, with Young’s modulus E, whereas the interlayer is
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Figure 1: Sandwich beam composed of two linear-elastic external layers, bonded by a vis-
coelastic interlayer.

made of a viscoelastic polymer, with time-dependent shear modulus G(t).

2.1 Viscoelastic constitutive response

The most general model for linear viscoelasticity is the well-known Maxwell-Wiechert model
[19], schematically represented in Figure 2, which combines in parallel a series of Maxwell
spring-dashpot units (with spring constant Gi and dashpot viscosity ηi) and a Hookean
spring. This model takes into account that relaxation does not occur at a single time-scale,
but at a number of different time scales, each one associated with a Maxwell unit.

G

G1 GNG2

1 2 N

Figure 2: Schematic representation of the Maxwell-Wiechert model.

When subjected to a fixed constant shear-strain, the shear modulus of the viscoelastic
material decays with time according to an expression usually referred to as Prony series,
defined as



Composites beams with viscoelastic bonding 5

G(t) = G∞ +

N∑
i=1

Gie
−t/τi = G0 −

N∑
i=1

Gi(1− e−t/τi), (2.1)

where G∞ represents the long-term shear modulus (when the material is totally relaxed),
whereas the terms Gi and τi =

ηi
Gi

, i = 1..N are respectively the relaxation shear moduli and
the relaxation times, associated with the i − th Maxwell element composing the Maxwell-
Wiechert unit (Figure 2). The instantaneous shear modulus G0 is thus given by G∞ +∑N

i=1Gi. Whenever N = 1, the Maxwell-Wiechert model reduces to the Standard Linear
Solid Model, that combines a Maxwell spring-dashpot element and a Hookean spring in
parallel.

When the shear strain varies with time, i.e. γ = γ(t), under the hypothesis of linear
viscoelasticity, the corresponding shear stress τ(x, t) can be obtained by the Boltzmann
superposition principle [8], that can be equivalently written in the forms

τ(t) = G(t)γ(0) +

∫ t

0
G(t− ξ)

∂γ(ξ)

∂ξ
dξ = G(0)γ(t)−

∫ t

0

∂G(t− ξ)

∂ξ
γ(ξ)dξ . (2.2)

Clearly, when the imposed shear strain is constant in time (γ = const), equation (2.2)
reduces to τ(t) = G(t)γ. Whenever the strain is time-dependent, the stress depends on
both the current strain and the strain history up to the current time, through the hered-
itary integral appearing in (2.2). This implies, for example, that when the applied strain
increases with time, the relaxation of the correspondent stress is delayed with respect to the
relaxation of the shear modulus calculated according to (2.1) because, roughly speaking,
strain increases before stress has the time to relax.

The aforementioned observation is a keypoint for the present work. In fact, the common
design practice for laminated glass consists in modeling the polymer as a linear elastic ma-
terial, taking at each instant t its equivalent elastic modulus to be G(t) calculated according
to the expression (2.1). In other words, for a load history leading to the shear strain γ(t),
the shear stress τinst(t) is assumed not to be given by (2.2) but of the form

τinst(t) = G(t)γ(t) . (2.3)

However, if the strain history is sufficiently fast, at each instant t the modulus G does
not have the time to reach the value G(t) given by (2.1). Figure 3 shows the qualitative
comparison between the shear stress evaluated through equation (2.2) (continuous line)
and through the approximation (2.3) (dashed line) in the case of a linear increasing strain
γ(t) = αt, for the case of a material modeled through a Prony’s series with N = 1 and
relaxation time τ1.
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Figure 3: Qualitative comparison between the shear stress τ , evaluated through equation
(2.2), and τinst, evaluated through (2.3), in the case of linear-increasing shear strain.

It is evident the aforementioned “delay” in the stress response and the consequently stress
stiffening. It will be demonstrated later on the relevance of such a delay in the global
response of a laminated glass beam.

2.2 Governing integral-differential equations

The analysis of a linear-elastic sandwich beam of the type represented in Figure 1 has already
been presented elsewhere. Referring to [10] for the details, here the governing equations are
briefly recalled and specialized to the case of viscoelasticity.

With reference to Figure 1, a right-handed orthogonal reference frame (x, y) is intro-
duced with x parallel to the beam axis, supposed horizontal, and y directed upwards. The
glass-polymer bond is supposed to be perfect and the interlayer normal strain in direction
y is negligible. Under the hypothesis that strains are small and the rotations moderate, the
kinematics is completely described by the vertical displacement v(x, t), the same for the
three layers, and the horizontal displacements u1(x, t) and u2(x, t) of the centroid of the
upper and lower layers, respectively. The transversal displacement v(x, t) is positive if in
the same direction of increasing y, the transversal load p(x, t) > 0 if directed downwards,
while the bending moment M(x, t) is such that M(x, t) > 0 when v′′(x, t) > 0. In the se-
quel, (′) will denote differentiation with respect to the variable x, whereas ( ˙ ) will represent
differentiation with respect to t.
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Let us define

Ai = hib, Ii =
bh3i
12

(i = 1, 2), H = t+
h1 + h2

2
, A∗ =

A1A2

A1 +A2
, Itot = I1+I2+A∗H2, (2.4)

and observe that Itot represents the moment of inertia of the full composite section, corre-
sponding to the monolithic limit.

It can be verified [10] that the shear strain in the interlayer is constant through its
thickness h and given by

γ(x, t) =
1

h
[u1(x, t)− u2(x, t) + v′(x, t)H] . (2.5)

From (2.2), the sher stress in the interlayer can be written as

τ(x, t) = G(0)γ(x, t)−
∫ t

0

∂G(t− ξ)

∂ξ
γ(x, ξ)dξ , (2.6)

so that the equilibrium in the y direction results to be [10]

E(I1 + I2)v
′′′′(x, t)− b

{
G(0)γ′(x, t)−

∫ t

0

∂G(t− ξ)

∂ξ
γ′(x, ξ)dξ

}
H + p(x, t) = 0 . (2.7)

This expression can be easily justified because the quantity
{
G(0)γ′(x, t)−

∫ t
0

∂G(t−ξ)
∂ξ γ′(x, ξ)dξ

}
coincides with τ ′(x, t), i.e., the derivative of the the shear stress in the interlayer. Figure
4.a shows the the equilibrium of an infinitesimal beam voussoir, divided into two pieces by
an ideal horizontal cut in the interlayer at the level s∗ (s∗ may be chosen arbitrarily). It is
then clear that the shear stress τ(x, t) gives a distributed torque per unit length equal to
−bτ(h1/2+s∗) in the upper piece, and −bτ(h2/2+s−s∗) in the lower piece. Consequently,
condition (2.7) represents the equilibrium in the y−direction under bending of the whole
composite package, i.e., EIv′′′′(x, t) +m′(x, t) + p(x, t) = 0, with I = I1 + I2 and

m(x, t) = −bτ(x, t)(h1/2 + s∗)− bτ(x, t)(h2/2 + s− s∗) = −bτ(x, t)H . (2.8)

It is the effect of such a distributed torque due the shear stress transferred by the interlayer,
that increases the stiffness of the laminated glass beam.



8 L. Galuppi & G. Royer-Carfagni

N2

t

N +d2 N2

N +d1 N1
N1

dxdx

t

h1

h2

H

b)a)

s*

s-s*

Figure 4: Equilibrium of an infinitesimal voussoir of the composite package.

Furthermore, equilibrium in x direction of each one of the two pieces (Figure 4.b) leads to

EA1u
′′
1(x, t) = b

{
G(0)γ(x, t)−

∫ t

0

∂G(t− ξ)

∂ξ
γ(x, ξ)dξ

}
, (2.9)

EA2u
′′
2(x, t) = −b

{
G(0)γ(x, t)−

∫ t

0

∂G(t− ξ)

∂ξ
γ(x, ξ)dξ

}
. (2.10)

In fact, the axial force in the i− th glass layer is Ni = EAiu
′
i(x, t), so that (2.9) and (2.10)

represent the axial equilibrium of the two glass plies under the mutual shear force per unit
length bτ(x, t) transmitted by the polymeric interlayer, i.e., EA1u

′′
1(x, t) = −EA2u

′′
2(x, t) =

bτ(x, t).

The boundary conditions may be of two classes: essential (geometric) and natural
(force). For this case, at the boundary x̄ = 0 or x̄ = L, ∀t one can prescribe [10]:

E(I1 + I2)v
′′′(x̄, t) + b

(
G(0)γ(x̄, t)−

∫ t
0

∂G(t−ξ)
∂ξ γ(x̄, ξ)dξ

)
= 0 or v(x̄, t) = 0 ,

E(I1 + I2)v
′′(x̄, t) = 0 or v′(x̄, t) = 0 ,

EA1u
′
1(x̄, t) = 0 or u1(x̄, t) = 0 ,

EA2u
′
2(x̄, t) = 0 or u2(x̄, t) = 0 ,

(2.11)

In the case of a simply supported beam, first and second of (2.11) are respectively satisfied
by the essential conditions v(x̄, t) = 0 and the natural conditions v′′(x̄, t) = 0 at x̄ = 0 and
x̄ = L. For what concerns the last two of (2.11), observe that

• if the beam is axially constrained at one of its ends, the conditions are identically
satisfied if u1(x̄, t) = u2(x̄, t) = 0 at the considered edge x̄ = 0 or x̄ = L;
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• if the beam is not axially constrained and the borders are traction-free, thenEAiu
′
i(x̄, t) =

Ni(x̄, t) = 0, i = 1, 2 at the considered edge x̄ = 0 or x̄ = L.

As it is shown in the sequel, equations (2.7), (2.9) and (2.10) can be re-arranged in
one partial integro-differential equation for the function v(x, t) with the same procedure
outlined in [10]. To illustrate, observe that equations (2.9) and (2.10) provide condition

A1u
′′
1(x, t) = −A2u

′′
2(x, t) , (2.12)

from which, up to a Rigid Body displacement,(see [10]),

u2(x, t) = −A1

A2
u1(x, t), (2.13)

which implies that N1(x, t) = −N2(x, t). Observe now that the bending moment in the
ith glass layer, i = 1, 2, is Mi(x, t) = EIiv

′′(x, t). Consequently, the resulting bending
moment in the whole cross-section of the composite beam (see Figure 4) is M(x, t) =
M1(x, t) +M2(x, t) +N2(x, t)H = M1(x, t) +M2(x, t)−N1(x, t)H, that is

M(x, t) = E(I1 + I2)v
′′(x, t) + EAu′2(x, t)H = E(I1 + I2)v

′′(x, t)− EAu′1(x, t)H. (2.14)

From this, one finds the relationships


HA1u

′
1(x, t) = (I1 + I2)v

′′(x, t)−M(x, t)/E ,

HA2u
′
2(x, t) = −(I1 + I2)v

′′(x, t) +M(x, t)/E .
(2.15)

By substituting (2.15) in (2.5) and, afterwards, in (2.7), one finds the governing partial
integral-differential equation for the function v(x, t) in the form

E(I1 + I2)v
′′′′(x, t)− bItot

hA∗

{
G(0)v′′(x, t)−

∫ t

0

∂G(t− ξ)

∂ξ
v′′(x, ξ)dξ

}
+

+
b

hEA∗

{
G(0)M(x, t)−

∫ t

0

∂G(t− ξ)

∂ξ
M(x, ξ)dξ

}
+ p(x, t) = 0 . (2.16)

This form is more convenient whenever the beam is statically determined, i.e., when the
bending moment M(x, t) is defined by the external loads. Equation (2.16) can be considered
as the viscoelastic generalization of Newmark’s equation [15].
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In the particular case of time-independent load, p(x, t) = p̃(x), the equilibrium equation
(2.16) reduces to

E(I1 + I2)v
′′′′(x, t)− bItot

hA∗

{
G(0)v′′(x, t)−

∫ t

0

∂G(t− ξ)

∂ξ
v′′(x, ξ)dξ

}
+

+
b

hEA∗G(t)M̃(x) + p̃(x) = 0 , (2.17)

in which M̃(x) is the bending moment due to p̃(x). In this expression the second and
the third terms represent the effect of the bonding offered by the polymeric interlayer. In
particular, the second term represents the interfacial shear strain, dependent on the shear
strain history; the effect of such a contribution on the behavior of the sandwich structure
is, in general, benefic.

A general method to solve (2.16) is to make use of Laplace transforms L(·) and the
anti-transform L−1(·), using the fact that the convolution integrals can be written as


G(0)v′′(x, t)−

∫ t
0

∂G(t−ξ)
∂ξ v′′(x, ξ)dξ = L−1

{
sL(G(t))L(v′′(x, t))

}
,

G(0)M(x, t)−
∫ t
0

∂G(t−ξ)
∂ξ M(x, ξ)dξ = L−1

{
sL(G(t))L(M(x, t))

}
.

(2.18)

However, for the case of constant loading and when the Prony’s series contains several
terms, it is more convenient to perform an analysis à la Galerkin.

2.3 Solution via Galerkin Analysis

A method for solving equation (2.16) is to apply the Galerkin’s method [9] for the spatial
domain, i.e. to express the vertical displacement v(x, t) by a series expansion of the form

v(x, t) =

M∑
j=1

aj(t)ϕj(x) (2.19)

where ϕj(x) is the j-th shape function and aj(t) is the corresponding time-dependent am-
plitude. The spatial shape functions have to satisfy the boundary condition and to be linear
independent; if the ϕj(x) are choose to be orthogonal one to another, i.e.,
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∫ L

0
ϕj(x)ϕk(x)dx =

{
K if j = k ,
0 if j ̸= k ,

(2.20)

(where K is a generic constant) the resulting set of equations will be uncoupled. An
appropriate choice of the shape functions for the case of simply supported beams is

ϕj(x) = sin
πxj

L
. (2.21)

Consequently, aj(t) gives the time-dependent maximum sag of the beam vmax(t) = v(L/2, t) =
|aj(t)|, associated with the j-th shape function.

By defining λj =
ϕ′′′′
j (x)

ϕj(x)
= j4π4

L4 and µj =
ϕ′′
j (x)

ϕj(x)
= − j2π2

L2 , the expansion (2.19) for v(x, t)

is substituted into the equilibrium equation (2.16). The result is

E(I1 + I2)
M∑
i=1

ai(t)λiϕi(x)−
bItot
hA∗

M∑
i=1

µiϕi(x)
{
G(0)ai(t)−

∫ t

0

∂G(t− ξ)

∂ξ
ai(ξ)dξ

}
+

+
b

hEA∗

{
G(0)M(x, t)−

∫ t

0

∂G(t− ξ)

∂ξ
M(x, ξ)dξ

}
+ p(x, t) = 0 . (2.22)

Multiplying each term for the j − th shape function, integrating over the spatial domain
and applying (2.20), where K = L

2 , one finally obtains

E(I1 + I2)
L

2
aj(t)λj −

bItot
hA∗

L

2
µj

{
G(0)aj(t)−

∫ t

0

∂G(t− ξ)

∂ξ
aj(ξ)dξ

}
+

+
b

hEA∗

{
G(0)

∫ L

0
M(x, t)ϕj(x)dx−

∫ t

0

∂G(t− ξ)

∂ξ

[ ∫ L

0
M(x, ξ)ϕj(x)dx

]
dξ

}
+

+

∫ L

0
p(x, t)ϕj(x)dx = 0 , (2.23)

In the case of constant loading, (2.23) reduces to

E(I1 + I2)j
j4π4

L4
aj(t) +

bItot
hA∗ j

j2π2

L2

{
G(0)aj(t)−

∫ t

0

∂G(t− ξ)

∂ξ
aj(ξ)dξ

}
+

+
bG(t)

hEA∗

∫ L

0
M̃(x) sin

πxj

L
dx+

∫ L

0
p̃(x) sin

πxj

L
dx = 0 . (2.24)
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But the load function p̃(x) can also be expanded into a Fourier sine of the form

p̃(x) =

∞∑
n=1

cn sin
nπx

L
, cn =

1

L

∫ L

0
p̃(x) sin

nπx

L
dx . (2.25)

Observing that in a simply supported beam the corresponding bending moment is given
by M̃(x) =

∑∞
n=1

L2

n2π2 cnsin
nπx
L , such a procedure allows to obtain, from (2.24), the set of

uncoupled equations for the time-dependent amplitude aj(t)

E(I1+I2)
j4π4

L4
aj(t)+

bItot
hA∗

j2π2

L2

{
G(0)aj(t)−

∫ t

0

∂G(t− ξ)

∂ξ
aj(ξ)dξ

}
+

bG(t)

hEA∗
L2

j2π2
cj+cj = 0 .

(2.26)

In the sequel, the paradigmatic case of a simply-supported beam subjected to a sinu-
soidal load will be discussed.

3 Case study: simply supported laminated glass beam under
sinusoidal loading

Suppose that the simply-supported laminated glass beam is subjected to a time-independent
sinusoidal loading p̃(x) to which corresponds the bending moment M̃(x) given by

p̃(x) = p0 sin
πx

L
, M̃(x) =

L2

π2
p0 sin

πx

L
. (3.27)

3.1 Full viscoelastic solution

Equation (2.17) reduces to

E(I1 + I2)v
′′′′(x, t) +

bItot
hA∗

{
G(0)a1(t)−

∫ t

0

∂G(t− ξ)

∂ξ
v′′(x, ξ)dξ

}
+

bG(t)

hEA∗
L2

π2
p0 + p0 = 0 ,

(3.28)

Hence, the exact solution for the vertical displacement (2.19) is given by

v(x, t) = a1(t) sin
πx

L
, (3.29)
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where the time-dependent amplitude a1(t) is the solution of the integral-differential equation

E(I1 + I2)a1(t)
π4

L4
+

bItot
hA∗

π2

L2

{
G(0)a1(t)−

∫ t

0

∂G(t− ξ)

∂ξ
a1(ξ)dξ

}
+

bG(t)

hEA∗
L2

π2
p0 + p0 = 0 .

(3.30)

Obviously, a1(t) represents the maximum sag of the beam at the instant t.

By substituting for G(t) the expression (2.1), the integral differential equation (3.30) for
the time-dependent amplitude a1(t) may be rearranged in the form

a1(t) +

∫ t

0

N∑
i=1

Aie
− (t−ξ)

τi a1(ξ)dξ = f(t) , (3.31)

where

Ai =
bItotπ

2Gi

hA∗L2τi

1
E(I1+I2)π4

L4 + bItotπ2G0
hA∗L2

, (3.32)

f(t) = −p0

b
(
G∞ +

∑N
i=1Gie

−t/τi
)
L2

hA∗Eπ2
+ 1

 1
E(I1+I2)π4

L4 + bItotπ2G0
hA∗L2

. (3.33)

Whenever N = 1, i.e., the polymer response can be modeled thorough a Standard Linear
Solid Model, equation (3.31) may be easily solved by using the Laplace transform, obtaining

a1(t) = f(t)−A1

∫ t

0
e
− (t−ξ)

τ1 f(ξ)dξ . (3.34)

In the most general case, the solution of equation (3.31) can be represented in the form
[18]

a1(t) = f(t) +

∫ t

0

N∑
i=1

Bie
µi(t−ξ)f(ξ)dξ , (3.35)

where the unknown constants µi are the root of the algebraic equation:
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N∑
i=1

Ai

z + 1/τi
+ 1 = 0 , (3.36)

and the coefficient Bi can be found from the linear system of algebraic equations

N∑
i=1

Bi

−1/τm − µi
+ 1 = 0 m = 1, ..., n . (3.37)

In the sequel, this analysis will be referred to as the Full Viscoelastic Solution (FVS).

3.2 The “secant stiffness” solution

As already mentioned in Section 2.1, the common design practice of laminated glass is to
neglect the delayed response consequent to Boltzmann superposition formula (2.2), and
assume that the shear stress in the interlayer is simply of the form τS(t) = G(t)γ(t), where
γ(t) is the strain in the polymer, whereas G(t) is given by (2.1). This is equivalent to
assume that at each instant t the stiffness of the polymer is the same that it would exhibit
if the strain had been kept constant for the whole load history. In other words, the shear
modulus used in the calculations is that corresponding to the secant stiffness at the end
of a constant-strain process; because of this, the solution obtained under this simplifying
assumption will be referred to as the Secant Stiffness Solution (SSS). Parameters associated
with it will be indicated with the suffix S.

In the SSS, the governing equation (2.16) simplifies in the form

E(I1 + I2)v
′′′′
S (x, t) +

bItot
hA∗G(t)v′′S(x, t) +

bG(t)

hEA∗M(x, t) + p(x, t) = 0 . (3.38)

When the load is sinusoidal and time-independent as per (3.27), one has vS(x, t) = aS(t) sin
πx
L ,

where aS(t) solves

E(I1 + I2)aS(t)
π4

L4
+

bItot
hA∗

π2

L2
G(t)aS(t) +

bG(t)

hEA∗
L2

π2
p0 + p0 = 0 . (3.39)

This is an algebraic equation that can be readily solved since G(t) is known.
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4 Comparison between the “full viscoelastic” and the “se-
cant stiffness” solutions

Results obtainable with the full viscoelastic approach are now compared with those obtain-
able through the secant stiffness approach (3.39) and with the numerical solutions of a FEM
model, accounting for time-dependent material behavior of the interlayer in the composite
package. Numerical simulations have been made with the FEM code Abaqus, using a 3-D
mesh with solid 20-node quadratic bricks with reduced integration, available in the program
library [1]. The structured mesh has been created by dividing the length of the beam into
50 elements, its width into 10 elements and the thickness of each glass ply into 3 elements.

As a representative example, consider the case of a laminated-glass beam under the
sinusoidal load (3.27), with p0 = 0.75 N/m. With the notation of Figure 1, assumed
parameters are L = 3000 mm, b = 500 mm, h1 = h2 = 10 mm, s = 0.76 mm, E = 70000
MPa, while the interlayer shear modulus G(t) is given by (2.1).

4.1 Influence of the polymer shear modulus. Static analyis

First of all, it is useful to point out the influence of the interlayer-stiffness itself on the
response of the laminated glass beam, by considering both material (glass and polymer) to
be linear elastic and time-independent. Such static analysis has been discussed at length in
[10] and here we recall the main results.

The response of laminated glass beams may vary between two borderline cases [16]: i)
the layered limit, corresponding to G → 0 so that the beam is composed of free-sliding
glass plies, ; ii) the monolithic limit, with G → ∞, where no relative slippage between the
glass plies occurs. The flexural response turns out to be that of a beam whose cross section
has moment of inertia I that, recalling the definitions (2.4), takes the value I = I1 + I2
for the layered limit and I = Itot in the monolithic limit. In general, the actual response
is intermediate, depending upon the shear stiffness of the polymeric interlayer, through its
shear modulus G.

Figure 5 shows the values of the maximum sag as a function of G, when this is varied
from 10−4 MPa to 102 MPa. It is evident form the graph that for values of G higher
than, approximatively, 10 MPa, the laminated glass beam exhibits a monolithic behavior,
whereas for G < 10−3 MPa the layered limit is attained. Of course, such threshold values
depend on the geometric and mechanical properties of the beam, as well as on the boundary
and loading conditions. However, for the most recurrent cases in the design practice for
laminated glass, they may be considered reference values.
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Figure 5: Simply supported beam under a sinusoidal load: maximum sag for different values
of the shear modulus G of the interlayer (static analysis).

4.2 Influence of viscosity. Discussion

Two different viscoelastic material are here taken into account, for the sake of compari-
son. The first one, referred to as Material A can be model thorough a Standard Linear
Solid Model, where in (2.1) N = 1 and G0 = 471 MPa, G1 = 0.999G0, τ1 = 1 s. The
full viscoelastic solution a1(t) may evaluated through equation (3.34). The correspondent
maximum sag vmax = |a1(t)| is plotted as a function of time in Figure 6, where the graph
is compared with the Secant Stiffness Solution as well as with numerical experiments.

It is important to note that the maximum sag of the laminated beam assumes values
comprised between:

• the “instantaneous solution” vmax0, i.e., the solution associated with G(t) = G0; such
a limit is attained for t < τ1;

• the “long-term solution” vmax∞, associated with G(t) = G∞.

Observed that the deformation of the FVS is time-increasing and, as already pointed
out in Section 2.1, there is a delay in the material stress response with respect to the
SSS. Consequently, the response of the laminated glass beam is stiffer than the response
evaluated through the Secant Stiffness approach, and the beneficial effect of the shear stress
transferred among the glass plies by the interlayer is higher. It is also evident that numerical
experiments are in complete agreement with the FVS.
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Figure 6: Material A: comparison of the maximum sag obtained with: the Full Viscoelastic
Solution (FVS), the Secant Stiffness Solution (SSS), numerical experiments.

Consider then the second case for Material B, whose instantaneous shear modulus is
G0 = 471 MPa and exhibits three different relaxations (three terms in the Prony’s series),
at times τ1 = 10−2 s, τ2 = 1 s and τ3 = 102 s with corresponding moduli G1 = 0.99G0, G2 =
0.009G0 and G3 = 0.0009G0. Figure 7 shows again the comparison between the maximum
sag obtained by the FVS of (3.35) and the SSS of (3.39). The numerical experiments
confirm again the exactness of the FVS.

As in the previous example, the FVS exhibits a delay in the relaxation with respect to
the SSS. It is important to note, here, that the first relaxation, although associated with
a decrease of about 99% of the shear modulus G(t), does not influence substantially the
behavior of the laminated glass beam. In fact, the value of the shear modulus after the first
relaxation, is high enough to attain the monolithic limit in the sandwich structure behavior,
as recalled in Figure 5; hence, the relaxation of the structure, i.e. the increase of the
maximum sag, is not noteworthy. On the contrary, it is the third relaxation, corresponding
to a further decrease of the shear modulus of 90%, that strongly determines the decay in
the response of the laminated glass beam. An analogous phenomenon may be observed,
as it will be shown in the following Section, for commercial polymers commonly used for
laminated glass.

4.3 Response of laminated glass with PVB or IP interlayers

Among the most used commercial polymeric films, PolyVinyl Butyral (PVB) and Ionoplastic
Polimers (IP) are the most commonly used. Ethylene Vinyl Acetate (EVA) is also commonly
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Figure 7: Material B : comparison of the maximum sag obtained with: the Full Viscoelastic
Solution (FVS), the Secant Stiffness Solution (SSS), numerical experiments.

employed, but its viscoelastic properties are similar to those of PVB and therefore it will
not be considered here.

There are many types of PVBs and IPs, and they both can be modeled by a Prony’s
series. Here we will consider the parameters reported in Tables 1 and 2 for PVB and IP,
respectively, that have been furnished by a leader producer [7]. Such data are specific of
a particular type of polymer, and may vary from material to material within the same
category (PVB or IP). Therefore, the reader is strongly warned not to consider these data
as universal values for design, but rather to ask for them to the producer when needed.

Figure 8 represents the comparison of the evolution in time of the maximum sag of the
laminated glass beam with ionoplastic interlayer, obtained through the Full Viscoelastic
Solution (FVS) and the Secant Stiffness Solution (SSS). For the considered parameters,
the greatest discrepancies are approximately obtained one hour and one year after that the
load has been applied. It is evident that, for times lower than, approximatively, 50 years,
the shear modulus of the interlayer is high enough to attain the monolithic limit in the
sandwich structure behavior (see Figure 5); hence, the relaxation of the structure, i.e. the
increase of the maximum sag, is not noteworthy. However, as it is shown in Figures 9, the
increasing of the sag evaluated through FVS and SSS is noticeable also for lower times.
Figures 9 represent a magnification of the aforementioned graph after for times comprised
between: one hour and one week; one year and 50 years. After one day, the increasing of
the maximum sag predicted with the SSS may be about 13% higher than that obtained
with the FVS; after one year the difference can be up to 5%. Much greater differences are
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Table 1: Assumed terms of the Prony’s series for a particular type of PVB.

G0 = 375 MPa

term index Gi/G0 ti

1 0.1271000 5.991E-12

2 0.1081000 6.240E-10

3 0.0889700 7.136E-08

4 0.0943170 2.200E-05

5 0.1150000 2.935E-03

6 0.1344000 4.620E-01

7 0.1321000 3.444E+01

8 0.0953880 8.336E+02

9 0.0570700 2.468E+04

10 0.0276820 8.071E+05

11 0.0120420 5.897E+07

12 0.0077434 9.944E+10

Table 2: Assumed terms of Prony’s series for a particular type of ionoplastic polymer.
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evident after 50 years of load application, as it is clear from Figure 8; however, time-scales
of this order are usually higher than the usual design-life of laminated glass structures.
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Figure 8: Ionoplastic interlayer. Comparison of evolution of maximum sag with time ob-
tained with: the Full Viscoelastic Solution (FVS), the Secant Stiffness Solution (SSS).

Of course the times at which these differences are the most evident depends upon the
parameters of the Prony’s series used to model the material. Notice that, in general, such
times do not coincide with the relaxation times τi associated with the greatest Gi, i.e., the
greatest drop of the shear stiffness. In fact, one should always recall from Figure 5 that in
the laminated beam the gross decay in stiffness occurs only at particular values of the shear
modulus G. If the viscoelastic phenomenon does not reduces G of a sufficient amount, the
laminated beam remains anchored to the monolithic limit.

Figure 10 represents the counterpart of Figure 8 for the case of PVB; from a comparison
between these two pictures, one could notice that the differences between the FVS and the
SSS are similar at the qualitative level. It is evident that, due to the higher decay of G(t) of
the PVB, the laminated glass beam attains the monolithic behavior just for times less than,
approximatively, 1 s. As it is shown in Figures 11a and Figures 11b for time scale of the
order of 1 day and 1 year, respectively, the difference between the maximum sag evaluated
through FVS and SSS is relevant (about 5% for one year load-duration).

The greatest differences between the FVS and the SSS are again noticed at time-scales
of the order of 50 years (Figure 10), but certainly within the lifetime of the structure.
Differences may be up to 25%.
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Figure 9: Ionoplastic interlayer. Magnification of the maximum sag calculated with FVS
and SSS for a load duration comprised between a) one hour and one week and b) one year
and 50 years.
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with: the Full Viscoelastic Solution (FVS), the Secant Stiffness Solution (SSS).
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Figure 11: PVB interlayer. Magnification of the maximum sag calculated with FVS and
SSS for a load duration comprised between a) one hour and one week and b) one year and
50 years.

In conclusion, IP interlayers are much stiffer than PBV interlayers, hence, they are less
sensitive to viscoelastic phenomena. For PVB-laminated beams the usual practice of calcu-
lating the response through the secant stiffness approach may lead to rather conservative
results.

5 Discussion and conclusions

The common practical way to calculate the response of laminated glass is to consider both
glass and polymeric interlayer as linear elastic materials; the viscoelastic behavior of the
polymer is considered a priori, by taking its equivalent elastic modulus to be the relaxed
modulus under constant strain after a time equal to the whole duration of the design action.
Here, we have analytically solved the time-dependent problem of a laminated-glass simply-
supported beam under constant loading, modeling the viscoelastic response of the polymer
by a Prony’s series of Maxwell elements (Maxwell-Wiechert model).

In the case in which the shear strain imposed to the polymer is constant in time, the
corresponding shear stress is decreasing in time and implies a relaxation of the material.
But the value of the shear modulus so calculated according to the characteristic duration
of the applied loads cannot be used in an equivalent static analysis, to evaluate stress and
strain of the composite beam under constant applied loads. In fact, it takes time for the
polymer to relax and, as this process progresses, also the strain of the polymeric interlayer
increases in time: the corresponding stress thus depends on both the current strain and
the strain history up to the current time. In particular, when the strain in the polymer is
increasing with time, the relaxation of the stress is delayed with respect to the relaxation
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that would result if the polymer was constantly strained at the actual value throughout its
whole history. Hence, the gross response of the laminated beam is in general stiffer than
it would results if calculated according to the common design practice, i.e., modeling the
polymer with its relaxed modulus associated with the duration of the design action.

In general, the aforementioned delay provides a decrease of the vertical displacement of
the beam itself, thus increasing the apparent stiffness of the composite structure. Hence, an
increase of the shear stress, due to the effect of the viscoelastic “memory” of the polymer,
leads to an increase of the overall stiffness of laminated glass.

The effect of the relaxation of the shear modulus on the overall response of the sandwich
beams depends upon the order of magnitude of the shear modulus itself. A range of values
of G can be defined, outside which the beams is not sensitive to the variation of the polymer
stiffness. Under a threshold value, the beams behaves as a layered structure, while for high
values of the shear modulus of the interlayer, the beam presents a monolithic response.

In conclusion, a full viscoelastic analysis is recommended when one is interested in a
precise, non-conservative, design of a laminated glass structures. The differences between
the full viscoelastic calculations and the simiplified approach that makes use of the secant
stiffness of the polymeric interlayers strongly depend upon the viscoelastic properties of the
material, reaching differences up to 20÷ 25% for PVB interlayers, for load durations of the
order of one year. Therefore, take your time in the calculations... and let the polymer relax.
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