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ABSTRACT 

 

Cheese is a biologically and biochemically dynamic food containing microorganisms both 

deliberately added as starters and non-starter adventitious contaminants.  

The composition of microbial population changes under the influence of continuous shifts 

in environmental conditions and interactions occurring among microorganisms during 

manufacturing and ripening. In cheese manufacturing, the selection of technological 

parameters can influence and even induce several biochemical processes needed for this 

product. The microbiota present in cheese is complex and its growth and activity represent the 

most important, but the least controllable steps. 

The aim of the present thesis is the study of microbial diversity and dynamics of starter, 

non-starter and adventitious microorganisms involved in the cheese manufacturing and 

ripening processes. Thus, different ecosystems from raw milk to cheese and rind were 

investigated in order to comprehend the specific role played by microorganisms in each cheese 

making phase and to correlate the occurrence of certain microbial species with desired flavors 

and textures.  

In particular, the microbial ecosystems in natural whey starters, hard Italian cheeses (i.e. 

Grana Padano and Parmigiano Reggiano), and natural rind of mold-ripened cheese (i.e. blue 

cheese) were investigated throughout cheese manufacturing and ripening by culture-dependent 

and culture-independent techniques.  

By studying the microbiota in natural whey starters and cheese starting from the first days 

of manufacture, it was possible to describe the fermentative activity of starter lactic acid 

bacteria (SLAB) determining the ripening progress of the cheese. Whey starter titratable 

acidity did not seem to be related to the cell amount (total and cultivable cells) nor to the 

different species contribution. High concentrations of lactic acid and free aminoacids were 

found in cheeses with higher levels of Lactobacillus helveticus species and cultivable 

thermophilic bacterial densities. The presence of residual galactose was associated with higher 

contents of Streptococcus thermophilus species. In addition, the biotype composition of whey 

starters seemed to be far more important than the species composition in ensuring their good 

performances. A direct correlation between the composition of SLAB species and the 

acidifying efficacy in whey starters was not found. Contrarily, in the cheese matrix, the SLAB 

fermentative activity seemed to be species-dependent.  

In hard cheese ecosystems, both SLAB and non-starter LAB (NSLAB) seemed to 

contribute to acidification and ripening. However, SLAB, and in particular L. helveticus, 



 

resulted to be the species mainly subjected to the lysis occurring at 2 months of ripening. 

NSLAB were able to grow after brining, and became more relevant during ripening. NSLAB 

could arise both from the raw milk and the natural whey starter but their contribution to the 

development of cheese characteristics is still unknown. Furthermore, the presence of L. 

helveticus and Lactobacillus delbrueckii subsp. lactis in a non-cultivable state, up to 13 

months of ripening, suggests that these species could play a different but still unknown role in 

cheese ripening. 

The microbiota on the surface of a blue cheese during the natural rind development 

showed microbial diversity comprising fourteen genera of bacteria (Enterococcus; 

Lactococcus; Leuconostoc; Macrococcus; Staphylococcus; Klebsiella; Brevibacterium; 

Corynebacterium; Brachybacterium;, Nocardiopsis;, Cobetia; Psychrobacter; Halomonas; 

Haererehalobacter), two yeasts genera (Candida; Debaryomyces) and one filamentous fungal 

genus (Penicillium). High and comparable densities of viable bacteria and yeasts were 

observed. Bacterial succession was observed during rind formation and no genus remained 

constant throughout ripening. The Staphylococcus genus dominated the early stages and then 

Brevibacterium the later stages. By using interaction experiments, inhibition and stimulation 

were observed among several species; these interactions could explain how some 

microorganisms contribute to community formation. Candida catenulata and Debaryomyces 

hansenii enhanced the growth of Staphylococcus equorum while C. catenulata inhibited D. 

hansenii growth. However, thorough studies need to be performed in order to evaluate whether 

the above mentioned bacteria, yeasts and molds can be beneficial and play a role in flavor and 

texture development of other cheese varieties with similar natural rinds. 

Overall, thanks to culture-dependent and culture-independent complementary approaches 

it was possible to identify which microorganisms were mainly involved in each dairy matrix 

and to address the importance of their presence that, if balanced, can help obtaining the 

distinctive features of each product.  

 

 



 

RIASSUNTO 

 

Il formaggio è un cibo biologicamente e biochimicamente dinamico contenente 

microorganismi sia intenzionalmente aggiunti come colture starter sia presenti come 

contaminanti avventizi di natura non-starter.  

La composizione della popolazione microbica si modifica sotto l‟influenza di continui 

cambiamenti delle condizioni ambientali e delle interazioni tra i microorganismi durante la 

produzione e la stagionatura. Nel processo produttivo del formaggio, la selezione di parametri 

tecnologici può influenzare o anche indurre vari processi biochimici necessari per 

l‟ottenimento di questo alimento. Le popolazioni microbiche presenti nel formaggio sono 

complesse e la loro crescita e attività rappresentano le fasi più importanti ma meno 

controllabili del processo di caseificazione. 

Lo scopo della presente tesi di dottorato è lo studio della diversità microbica e delle 

dinamiche delle colture starter, non-starter e dei microrganismi contaminanti coinvolti nei 

processi di produzione e stagionatura del formaggio. A tale scopo, diversi ecosistemi, dal latte 

crudo al formaggio, e la crosta sono stati studiati al fine di comprendere il ruolo specifico 

svolto dai vari microorganismi in ciascuna fase del processo di produzione e correlare la 

presenza di alcune specie microbiche con lo sviluppo di aromi e strutture desiderate del 

prodotto.  

Nello specifico, gli ecosistemi microbici di sieroinnesti naturali, formaggi duri italiani (Grana 

Padano e Parmigiano Reggiano), e della crosta naturale di un formaggio erborinato stagionato, 

sono stati studiati per tutto il processo di produzione e stagionatura mediante tecniche culture-

dependent e culture-independent. 

Attraverso lo studio della microflora di sieroinnesti naturali e formaggi a partire dai primi 

giorni di produzione, è stato possibile descrivere l‟attività fermentativa dei batteri lattici starter 

(SLAB) che determinano il processo di stagionatura del formaggio. L‟acidità titolabile del 

sieroinnesto non è risultata essere in relazione né con la quantità di cellule (totali e coltivabili) 

né con il contributo specifico delle differenti specie. Elevate concentrazioni di acido lattico e 

aminoacidi liberi sono state trovate in formaggi con maggiori quantità della specie 

Lactobacillus helveticus e con alte densità di batteri termofili coltivabili. La presenza di 

galattosio residuo è risultata associata ad alti contenuti della specie Streptococcus 

thermophilus. Inoltre, la composizione in termini di biotipi dei sieroinnesti è apparsa molto più 

importante che la composizione in termini di specie nell‟assicurare le buone performance dei 

sieroinnesti stessi. Una correlazione diretta tra la composizione delle specie SLAB e l‟efficacia 



 

di acidificazione nei sieroinnesti non è stata trovata. Al contrario, nella matrice formaggio, 

l‟attività fermentativa degli SLAB è sembrata essere specie-dipendente. 

Negli ecosistemi dei formaggi duri, sia gli SLAB che i LAB non-starter (NSLAB) sono 

apparsi contribuire all‟acidificazione e alla maturazione. Tuttavia, gli SLAB, ed in particolare 

L. helveticus, sono risultati essere principalmente soggetti alla lisi che si verifica a 2 mesi di 

stagionatura. I NSLAB sono stati in grado di crescere dopo la salatura, diventando la 

maggioranza dei microorganismi durante la stagionatura. I NSLAB potrebbero provenire sia 

dal latte crudo che dal sieroinnesto naturale ed il loro contributo allo sviluppo delle 

caratteristiche del formaggio è ancora sconosciuto. Inoltre, la presenza di L. helveticus e 

Lactobacillus delbrueckii subsp. lactis in stato non coltivabile, fino a 13 mesi di stagionatura, 

suggerisce che queste specie potrebbero svolgere un ruolo diverso ma ancora sconosciuto nella 

stagionatura del formaggio. 

La microflora della superficie di un formaggio erborinato durante lo sviluppo naturale 

della crosta ha mostrato una diversità microbica composta da 14 generi di batteri 

(Enterococcus; Lactococcus; Leuconostoc; Macrococcus; Staphylococcus; Klebsiella; 

Brevibacterium; Corynebacterium; Brachybacterium;, Nocardiopsis;, Cobetia; 

Psychrobacter; Halomonas; Haererehalobacter), due generi di lieviti (Candida; 

Debaryomyces) e un genere di fungo filamentoso (Penicillium). Sono state osservate elevate e 

comparabili densità di batteri e lieviti vitali. E‟ stata osservata inoltre, un‟evoluzione batterica 

durante la formazione della crosta e nessun genere è rimasto costantemente presente per tutta 

la durata della stagionatura. Staphylococcus si è dimostrato il genere dominante durante le fasi 

precoci e successivamente è stato sostituito da Brevibacterium alla fine della stagionatura. 

Sfruttando esperimenti di interazione, sono stati osservati effetti di inibizione e 

stimolazione tra le specie; queste interazioni potrebbero spiegare come alcuni microorganismi 

contribuiscano alla formazione della comunità microbica. Candida catenulata e 

Debaryomyces hansenii hanno incrementato la crescita di Staphylococcus equorum mentre C. 

catenulata ha inibito la crescita di D. hansenii. Tuttavia, studi approfonditi dovranno essere 

svolti per valutare se le specie batteriche, di lievito e muffe sopracitate possano essere utili e 

svolgere un ruolo nello sviluppo dell‟aroma e della struttura di altre varietà di formaggi che 

presentino simile crosta naturale. 

In conclusione, grazie ad approcci complementari culture-dependent e culture-

independent, è stato possibile identificare quali microrganismi fossero principalmente 

coinvolti in ciascuna delle matrici casearie studiate, e definire l‟importanza della loro presenza 



 

che, se in giusto equilibrio, può favorire l‟ottenimento delle diverse caratteristiche peculiari di 

ciascun prodotto. 

 



 

 

 

 

 

 

 

 

 

 

 

A Luca 

A mi Familia 

 



 

TABLE OF CONTENTS 

 

1. INTRODUCTION ................................................................................................................. 1 

1.1 Cheese ............................................................................................................................... 1 

1.1.1 General aspects .......................................................................................................... 1 

1.1.2 Milk: the main ingredient ........................................................................................... 1 

1.1.3 Classification of cheeses ............................................................................................ 4 

1.2 Cheese microbiology......................................................................................................... 5 

1.2.1 General aspects .......................................................................................................... 5 

1.2.2 Starter cultures ........................................................................................................... 5 

1.2.3 Secondary and adjuncts cultures ................................................................................ 6 

1.2.4 Non-starter LAB and adventitious organisms ............................................................ 7 

1.2.5 Cheese surface............................................................................................................ 8 

1.2.6 Cheese ripening and flavor development ................................................................. 10 

1.2.7 Study of microbial ecology in dairy producs ........................................................... 12 

1.3 References ....................................................................................................................... 17 

2. AIMS OF THE THESIS ..................................................................................................... 24 

3. RESULTS ............................................................................................................................ 25 

3.1 Natural whey starter for Parmigiano Reggiano: culture-independent approach ............. 26 

3.1.1 Abstract .................................................................................................................... 26 

3.1.2 Introduction .............................................................................................................. 26 

3.1.3 Materials and methods ............................................................................................. 27 

3.1.4 Results ...................................................................................................................... 30 

3.1.5 Discussion ................................................................................................................ 34 

3.1.6 Conclusions .............................................................................................................. 38 

3.1.7 Acknowledgements .................................................................................................. 38 

3.1.8 References ................................................................................................................ 39 

3.2 Comparison of natural whey starters for Grana Padano cheese using sunray plots ....... 43 

3.2.1 Abstract .................................................................................................................... 43 

3.2.2 Introduction .............................................................................................................. 43 

3.2.3 Materials and Methods ............................................................................................. 45 

3.2.4 Results and Discussion............................................................................................. 47 

3.2.5 Conclusions .............................................................................................................. 52 

3.2.6 Acknowledgements .................................................................................................. 52 



 

3.2.7 References ................................................................................................................ 52 

3.3 Variability of lactic acid production, chemical and microbiological characteristics in 24-

hour Parmigiano Reggiano cheese ........................................................................................ 55 

3.3.1 Abstract .................................................................................................................... 55 

3.3.2 Introduction .............................................................................................................. 55 

3.3.3 Materials and Methods ............................................................................................. 57 

3.3.4 Results ...................................................................................................................... 60 

3.3.5 Discussion ................................................................................................................ 66 

3.3.6 Conclusions .............................................................................................................. 70 

3.3.7 Acknowledgements .................................................................................................. 71 

3.3.8 References ................................................................................................................ 71 

3.4 Survey on community and dynamics of lactic acid bacteria in Grana Padano cheese ... 76 

3.4.1 Abstract .................................................................................................................... 76 

3.4.2 Introduction .............................................................................................................. 77 

3.4.3 Materials and Methods ............................................................................................. 78 

3.4.4 Results ...................................................................................................................... 82 

3.4.5 Discussion ................................................................................................................ 90 

3.4.6 Conclusions .............................................................................................................. 95 

3.4.7 Acknowledgements .................................................................................................. 96 

3.4.8 References ................................................................................................................ 96 

3.5 Characterization and dynamics of surface microbiota during natural rind development

 ............................................................................................................................................. 101 

3.5.1 Abstract .................................................................................................................. 101 

3.5.2 Introduction ............................................................................................................ 102 

3.5.3 Materials and Methods ........................................................................................... 105 

3.5.4 Results .................................................................................................................... 109 

3.5.5 Discussion .............................................................................................................. 118 

3.5.6 Conclusions ............................................................................................................ 122 

3.5.7 Acknowledgements ................................................................................................ 123 

3.5.8 References .............................................................................................................. 123 

4. GENERAL CONCLUSIONS........................................................................................... 128 

5. CURRICULUM VITAE ................................................................................................... 131 

 

 



  



 1 

1. INTRODUCTION 
 

1.1 Cheese 

1.1.1 General aspects 

 

The primary objective of cheesemaking originally was to convert milk to a less perishable 

product. The manufacture of most cheese varieties involves four basic ingredients: milk, 

rennet, microorganisms and salt. Cheese is the product of the coagulation of caseins in the 

milk forming a gel which occludes the fat and aqueous phase of milk. When sufficient acid is 

produced by lactic acid bacteria catabolizing lactose to lactic acid, the coagulation of caseins 

can be addressed (Fox, 2011b) by addition of proteinases from bacteria, molds, plants or 

animal tissues (referred as rennets) (Fox, 2011b). Successively, by cutting or breaking, the gel 

separates into curds and whey (Mucchetti and Neviani, 2006; Fox, 2011b). 

During the storage of curds, complex processes involving a range of microbiological and 

biochemical reactions occur, that is ripening, resulting in changes in flavor, aroma and texture 

which will define the unique characteristic of the cheese (Cogan, 2002). Figure 1 summarizes 

the steps of cheese manufacture. From 400 to 1000 varieties of cheese are produced 

throughout the world (Fox et al., 2004). Differences between varieties are the result of 

modifications made in one or more basic steps of cheesemaking. That is, the quality of the 

milk, starter culture, technology, and ripening will combine to bring about biodiversity in any 

cheese.  

1.1.2 Milk: the main ingredient 

 

Milk is an excellent substrate for the growth of many microorganisms, including lactic 

acid bacteria, pathogens and spoilage organisms, because of its complex biochemical 

composition, near-neutral pH and high water content (Mucchetti and Neviani, 2006; Hassan 

and Frank, 2011). On average, cow milk is composed of approximately 87.4% water, 3.7% fat, 

4.8% lactose, 3.4% protein and 0.7% mineral substances (Fox, 2011a). Differences in the 

principal constituents are found among milk from different animals (sheep, goat, etc.).  
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Figure 1. Outline of cheese manufacture (Fox, 2011b). 

 

In healthy animals the secretory tissue of the udder is free of microorganisms. However, 

the mucosal membrane of the streak canal has a microflora that includes streptococci, 

staphylococci, micrococci (normally >50%), Corynebacterium spp., coliforms, lactic acid 

bacteria, and other bacteria. The level of milk contamination through the streak canal may 

vary between 10
2
 and 10

4
 cfu/ml (Roberts et al., 2005). Moreover, milk becomes 

“contamined” by microorganisms from the farm or milking barn environment and from 

persons and equipment in contact with the milk (Hassan and Frank, 2011). Figure 2 shows the 

sources of contamination at a dairy farm. Microorganisms commonly found in air include 

micrococci, yeasts, molds and spores of Bacillus, all of which may survive heat processes and 

cause flavor or physical defects in processed products (Roberts et al., 2005). Water supplies in 

farms often contain coliforms and psychrotrophic organisms (i.e. Pseudomonas spp.) and 

when used to rinse dairy equipment may be a source of contamination. It is well-recognized 

that the milking machines may contribute substantially to the raw-milk microflora, 

microorganisms such as micrococci, enterococci, aerobic spore-forming bacteria, and certain 
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Figure 2. Diagram of the sources of contamination at dairy farm (Hassan and Frank, 2011). 

 

lactobacilli may form biofilms. Spore-forming bacteria such as Bacillus spp., and Clostridium 

from the soil and feed, readily find their way into milk (Roberts et al., 2005). Some spoilage 

microorganisms are particularly important to further processing of milk. These include 

thermoduric bacteria such as Enterococcus spp., which are important for products made from 

pasteurized milk, Clostridium tyrobutyricum, and Cl. butyricum from silage for hard-cheese 

production (Roberts et al., 2005). 

Thus, the indigenous bacterial microbiota of raw milk include several species of different 

affiliation including Firmicutes: Aerococcus spp., Bacillus spp., Enterococcus spp., 

Lactococcus spp., Lactobacillus spp., Staphylococcus spp., Streptococcus spp., Leuconostoc 

spp., Actinobacteria: Micrococcus spp., Corynebacterium spp., Brachybacterium spp., 

Dermacoccus spp., Kocuria spp., Leucobacter spp., Microbacterium spp., Arthrobacter spp., 

Brevibacterium spp., Propionibacterium spp., Proteobacteria: Acinetobacter spp, Enterobacter 

spp., Escherichia spp., Ochrobactrum spp., Pantoea spp., Paracoccus spp., Pseudomonas 

spp., Psychrobacter spp., (Delbès et al., 2007; Ercolini et al., 2009, Giannino et al., 2009, 

Rasolofo et al., 2010; Vacheyrou et al., 2011). 



 4 

1.1.3 Classification of cheeses 

 

Historically the names of cheeses were according to their characteristic such as structure 

(i.e. Grana, because of the grainy texture of the ripened cheese); the color of the mold that 

grow on it (i.e. Bleu d‟Auvergne); the external aspect of the rind, i.e. Canestrato, derives from 

“canestri” (reed baskets) that were used to shape the cheeses; the milk source (i.e. Pecorino 

from sheep‟s milk); a particular production process, i.e. Mozzarella, derives from the verb 

“mozzare” (to cut off); the particular place where it ripens (i.e. Fossa, that means pit) and the 

place of production (i.e. Parmigiano Reggiano, Emmental, Gloucester) (Mucchetti and 

Neviani, 2006). 

Actually, classification of cheeses can be based on different criteria such as moisture 

content, concentration of calcium, rheological properties, cooking temperature, secondary 

microflora or type of ripening (Fox et al., 2004). Traditional classification schemes have been 

based principally on moisture content, that is, extra-hard, hard, semihard/semisoft, or soft 

(Fox, 2011b). This classification is utilized by Codex Alimentarius (General Standard A6-

1993). Although used widely, this scheme suffers from serious limitations since it groups 

cheeses with widely different characteristics. Figure 3 shows a summary of the classification 

of cheese (Fox, 2011b). 

 

 
Figure 3. A scheme for the classification of cheese (Fox , 2011b). 
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1.2 Cheese microbiology 

 

1.2.1 General aspects 

 

Cheese microbiota is composed of a) starter lactic acid bacteria (SLAB), b) secondary 

microorganisms and c) adventitious organisms (Powell et al., 2011). None of the 

classifications or categories of cheeses have considered the microbial diversity characterizing 

different types of cheese. It is notoriously shown that cheese is a microbiologically dynamic 

food, hosting diverse metabolically active bacteria, yeasts and molds (Ndoye et al., 2011). In 

many cases, despite being made under standard manufacturing conditions, cheese from 

different days at the same dairy or in different dairies exhibit variations in the final 

characteristics. The composition and activity of the microbiota is the least controllable of all 

the parameters involved in cheese production (Fox et al., 2000).  

 

1.2.2 Starter cultures 

 

Modern cheese manufacture usually involves deliberate addition of one or more lactic acid 

bacteria (LAB) species to ensure a proper fermentation. These deliberately added species 

include the so-called „starter lactic acid bacteria‟ (SLAB), with the primary role of acidifying 

milk via the conversion of lactose into lactic acid at a predictable and controlled rate. Because 

they are present at very high cell densities in the matrix of young cheese, LAB starter cultures 

are generally thought to make the strongest contributions to cheese flavor development. SLAB 

possess an array of predominantly intracellular peptidases that degrade peptides formed by 

proteolytic agents to amino acids, which then act as precursors for a range of volatile flavor 

compounds. When starter culture cells lyse in cheese, the intracellular peptidases are also 

available to act upon peptides in the cheese matrix itself. LAB starter culture metabolism can 

also directly affect cheese flavor development by forming various compounds from lactose 

and citrate (Powell et al., 2011). 

Starter bacteria are either added deliberately at the beginning of manufacture or may be 

natural contaminants of the milk, as is the case of many artisanal cheese varieties made from 

raw milk (Beresford et al., 2001). Either mesophilic or thermophilic starter cultures are used, 

depending on the cheese being manufactured. Starter bacteria encountered most often are 

members of the genera Lactococcus, Lactobacillus, Streptococcus, Leuconostoc and 

Enterococcus (Beresford et al., 2001).  
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Both mesophilic and thermophilic cultures can be subdivided into natural cultures also 

referred as mixed (undefined) cultures, which are produced every day at the dairy and which 

the number of strains is unknown, and defined cultures, which are composed of a known 

number of strains (Beresford et al., 2001; Mucchetti and Neviani, 2006).  

Natural mesophilic cultures are mainly composed of L. lactis subsp. cremoris and L. lactis 

subsp. lactis. Thermophilic natural whey starters are composed of undefined strains of 

lactobacilli such as L. delbrueckii subsp. lactis or L. delbrueckii subsp. bulgaricus, L. 

helveticus, L. fermentum and S. thermophilus (Gatti et al., 2003; Lazzi et al., 2004; Fornasari 

et al., 2006; Rossetti et al., 2008; Santarelli et al., 2008). These thermophilic starter cultures 

are those used in some traditional Italian hard cheese productions such as Grana Padano and 

Parmigiano Reggiano. They are produced by incubating cheese whey under conditions that 

favor the growth of thermophilic lactic acid bacteria (Mucchetti and Neviani, 2006).  

The natural starter cultures are subjected to a great variability in terms of either microbial 

composition and performance. Industrial scale cheese production requires starters that give 

reproducible performance and are free of undesirable organisms. These goals are difficult to 

achieve using traditional methods. This has lead to the preparation of defined starters for 

industrial cheese production (Powell et al., 2011). 

 

1.2.3 Secondary and adjuncts cultures 

 

The secondary and adjunct cultures are added mainly for their effect on flavor, color, 

texture and eye formation in cheese. They are called secondary cultures to distinguish them 

from the primary acid-producing starters. Their contribution to acid production is limited or 

absent, moreover they are usually unique to the specific cheese variety. The principal 

secondary cultures used for the ripening include: Propionibacterium freudenreichii that are 

involved in flavor and eye formation in Swiss-type cheese, Penicillium camemberti, that are 

mainly involved in proteolysis in mold surface-ripened cheese as Camembert and Brie 

cheeses, Penicillium roqueforti involved in flavor, color, lipolysis and some proteolysis in 

blue-veined cheese (e.g. Stilton, Roquefort, Gorgonzola), and Brevibacterium linens that are 

involved in flavor and color in bacterial surface-ripened cheeses (e.g. Müster, Limburger, 

Tilster) (Ndoye et al., 2011; Rattray and Eppert, 2011).  
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1.2.4 Non-starter LAB and adventitious organisms 

 

Adventitious („contaminant‟) organisms are likely originated from the milk or processing 

plant environment (brine, wooden shelves, the cheese maker‟s hands) (Beresford et al., 2001). 

As adventitious organisms, they gain access to cheese and can contribute to flavor attributes or 

defects or have no impact on cheese ripening depending on the strain, the cell densities, and 

the cheese conditions (Beresford et al., 2001). 

They consist of either non-starter lactic acid bacteria (NSLAB), other bacteria, yeasts and 

molds, which grow internally or externally on cheese (Robinson, 2002).  

NSLAB are usually facultatively heterofermentative lactobacilli and pediococci which 

form a significant portion of the microbiota of most cheese varieties during ripening. Many 

species of mesophilic lactobacilli have been isolated from cheese, but those most frequently 

encountered belongs to the “L. casei group” (L. casei/L. paracasei, L. rhamnosus), L. 

plantarum, and L. curvatus. Pediococcus acidilactici and P. pentosaceus are the most 

frequently encountered pediococci in cheese (Beresford et al., 2001). In hard cheese varieties, 

NSLAB are the main population encountered in advanced stages of ripening (Crow et al., 

2001; Sheenan et al., 2007; Neviani et al., 2009), and they are considered to be involved in 

flavor formation during ripening. To date, it is still unknown which specific substrates they 

use for growth. At the time of ripening when they have been found, lactose has usually been 

exhausted. Thus, NSLAB may derive energy from a wide variety of compounds present in 

cheese, including lactic acid, citric acid, fatty acids, glycoproteins, glycolipids, amino acids, 

and even nucleotides that are released into the cheese matrix by dying starter bacteria. 

(Adamberg et al., 2005; Broadbent et al., 2011). Culture media prepared from ripened cheese 

(i.e. Parmigiano Reggiano) are useful to recover this population, since they reproduce the 

natural composition in terms of nutrient availability found in the ripened cheese (Neviani et 

al., 2009). Recently, the growth of a L. paracasei strain was revealed in a medium made with 

a hard cheese (i.e. Cheddar), until 8 months of ripening. The growth substrates utilized by this 

strain was neither lactose, galactose nor citrate, because after 2 months they are completely 

exhausted. Authors supposed that NSLAB use for growth milk-derived complex carbohydrates 

and starter-derived components, however they are still unknown (Budinich et al., 2011). 

The presence of adventitious NSLAB introduces variability into the ripening process that 

cannot be easily controlled by the cheesemakers. As presented above, they may intensify or 

accelerate typical flavor development; they may impart atypical but nonetheless desirable 

flavor notes; or they may promote the development of undesirable off-flavors. Thus, several 

cheese productions may be subjected to fluctuations in the final characteristics (Franciosi et 
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al., 2008) between factories and among cheeses from the same factory (Williams et al., 2002; 

Antonsson et al., 2003). For all these reasons, the dominance of desired NSLAB strains, is 

crucial to minimize microbial variability during the ripening process (Settanni and Moschetti, 

2010). Of course, strains that consistently impart desirable flavor changes have value as 

adjunct cultures. At this regard, in some hard cheese manufactures (i.e. Cheddar), NSLAB are 

deliberately added to control and direct the ripening process, and they are referred as „adjunct 

NSLAB‟ (Crow et al., 2001; Broadbent et al., 2003).  

 

1.2.5 Cheese surface 

 

One of the most noticeable events during cheese ripening is the gradual differentiation 

between the cortical layer and the inner mass. The outer layer tends to change developing a 

protective covering which gives the name of rind through which moisture evaporated. This is 

an essential component of all types of cheese, although it is more evident for some products. 

In some cases (fresh cheese, melted, etc.) an external protection are used to prevent the 

formation of the rind. In these cases, the protective function is exerted by a wrap, which 

assumes the function of artificial rind. Therefore, it can be distinguished two basic types of 

rind, which correspond to two different processes of maturation: the active and passive rinds 

(Salavadori del Prato, 1998). 

The active rinds are formed after a rich and dense active microbial consortia develops on 

the cheese surface. These microorganisms coexist, interact and are essential for the ripening 

process and the final characteristic of the product. These type of cheese are characterized by a 

maturation process that proceeds from the surface to the core of the cheese. This is the case of 

the surface mold-surface ripened cheese, and bacterial surface-ripened cheese.  

Active rinds are formed by natural or artificial inoculation, during and after salting and 

during ripening. The natural colonization is usually performed by contact with the 

environment, e.g., wooden shelves, that are naturally rich in the microflora involved (i.e. 

source of adventitious microflora) (Mounier et al., 2006) or by technological practices, e.g., 

wiping down periodically with salt and water, or brines to keep the rind moist causing the 

spread of microorganisms naturally present in brines throughout the rind. Some cheese 

varieties that present natural rinds are the Stilton and Cabrales blue cheeses, in UK and Spain, 

respectively, that belong to the class of internally mold-ripened cheese and St. Nectaire cheese 

in France, that belongs to the class of surface mold-ripened.  
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However, the artificial inoculation can be done by spraying the surface with secondary 

cultures composed by suspensions of spores or other desired microorganisms (i.e. Penicillium 

camemberti) in Camembert cheese (Addis et al., 2001), or by immersion in water and salt 

solutions containing desired microorganisms (i.e. secondary cultures of Brevibacterium linens 

in Gubbeen cheese) (Brennan et al. 2002). These latter cheeses that are periodically wipe 

down are therefore often identified with the name of washed-rind cheeses and are also called 

smear or red smear cheeses because of the development of viscous, red-orange smears on their 

surfaces during ripening composed of bacteria and yeast (Mounier et al., 2005).  

On the other hand, passive rinds do not take an active role in maturation of cheese, but still 

participate with their protective action and regulation of gas exchange and water with the 

inside. Furthermore, the cheeses with passive rinds are subject to a widespread ripening as is 

the case of Italian hard cheese (Parmigiano Reggiano and Grana Padano) (Salavadori del 

Prato, 1998). 

The technological conditions during ripening process, humidity, temperature and the 

ecology of the microbiota in the brines and in the dairy room are factors that influence the 

microbiota on the surface (Mucchetti and Neviani, 2006). However, the identity and origin of 

the microbes present on the cheese surface has not been well-defined. Yet, the knowledge of 

the microbial composition on the cheese surface is a prerequisite for the development of 

secondary adjunct cultures and for the control of surface ripening with good hygienic practices 

avoiding the development of undesirable flora.  

While the microbiota of the paste of the cheese is mainly composed by strictly or 

facultative anaerobic microorganisms, the cheese surface microbiota is related to aerobic 

metabolism. The most frequent species found in active rinds belong to different genera and 

families: among filamentous fungi Penicillium spp., Geotrichum spp. and Mucor spp., among 

yeasts: Oospora spp., Candida spp., Mycoderma spp., Rhodotorula spp., Debaryomyces spp., 

Torulopsis spp. and Saccharomyces spp., among bacteria: Micrococcus spp., Staphylococcus 

spp. and Brevibacterium spp.. (Marcellino and Benson, 1992; Roostita and Fleet, 1996; 

Salavadori del Prato, 1998; Rea et al., 2007; Dolci et al., 2009). 

The cheese rinds vary in thickness according to the cheese and age of the cheese. An 

example of sequential appearance of microorganisms naturally on the cheese rind of semisoft 

French cheese (St. Nectaire, belonging to the class of surface mold-ripened cheese) during 

ripening, is shown in Figure 4. A succession of microorganisms can be seen, yeast and lactic 

acid bacteria dominated at earliest stages of ripening, and no microbial growth can be seen in 

the cheese curd. Then the molds begin to grow and their hyphae form channels where yeast 
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and bacteria can grow. At the end of ripening the rind is formed by molds, yeast and bacteria 

(coryneform bacteria) differently localized (Marcellino and Benson, 1992). 

 

 

 

Figure 4. Light microscopy micrographs of a stained paraffin sections of semisoft cheese (St. 

Nectaire), belonging to the category mold-ripened (along with brie, camembert), showing nascent 

cheese rind during ripening. A) and B) after 1 to 2 days of ripening, Bar, 50 µm. C) at day 7 Aerial 

mycelia of (arrowhead) molds can be seen. The rind thickness measures 400 to 500 µm. Bar, 50 µm. 

D) at 37-day-old ripened cheese. (a) Fungal spores and collapsed hyphae, (b) layer of yeast and 

bacterial colonies, (c) dense fungal mycelia. (d) A clear demarcation between the rind and the curd can 

be distinguished. The rind measures 1.5 mm thick. Bar, 100 µm (Marcellino and Benson, 1992). 

 

1.2.6 Cheese ripening and flavor development 

 

The cheese ripening (maturation) is a complex process involving a range of 

microbiological and biochemical reactions. Microorganisms are present in cheese throughout 

ripening and contribute to the maturation process either directly through their metabolic 

activity or indirectly through the release of enzymes into the cheese matrix through autolysis 

(Fox et al., 2004). During the ripening of cheese, three major biochemical events - glycolysis, 
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lipolysis, and proteolysis - occur, each of which is involved in flavor formation. The latter is 

probably the most important and also the most complex (Robinson, 2002). Metabolism of 

lactose, lactate, and citrate and related events are caused by living microorganisms (starter 

and/or non-starter), while lipolysis and proteolysis are catalyzed mainly by enzymes from the 

coagulant, milk, starter bacteria, adventitious non-starter bacteria, and, usually, secondary 

(adjunct) cultures (Mc Sweeney, 2011). 

Lipolysis results in hydrolysis of the milk fat and the production of glycerol and free fatty 

acids, many of which, particularly the short-chain ones, have strong characteristic flavors 

(Robinson, 2002). Lactic acid bacteria (LAB) are weakly lipolytic. Levels of lipolysis may 

also be high in surface bacterial (smear) and mold-ripened cheeses. Very extensive lipolysis 

occurs in blue-mold cheeses, in which Penicillium roqueforti secretes potent lipases (Mc 

Sweeney, 2011). 

Glycolysis is the conversion of lactose to lactic acid and is almost exclusively due to the 

growth of the starter bacteria and the lactate produced gives the freshly made cheese its overall 

acidic taste. They can also produce other compounds, e.g., diacetyl, acetate and acetaldehyde, 

which are important compounds in flavor formation in fresh cheeses; diacetyl is also an 

important flavor compound in hard cheeses (Weimer, 2007).  

Cheese contains a broad range of proteinases and peptidases, which originate from the 

coagulant, milk, starter LAB, adventitious NSLAB, and secondary cultures (e.g., 

Propionibacterium, Brevibacterium, Arthrobacter, Penicillium) (Mc Sweeney, 2011). Native 

milk proteinase is called plasmin and is only significant in cheeses which are cooked to high 

temperatures because the cooking process inactivates chymosin. Chymosin is responsible for 

the initial hydrolysis of the casein, which the proteinases and peptidases released from the 

starter by autolysis, act on to produce smaller peptides and free amino acids. Many of the 

small peptides and amino acids contribute directly to flavor, but the starter bacteria also have 

enzymes that degrade the amino acids to amines, acids, alcohols, carbonyls, sulfur-containing 

compounds, which are also involved in flavor formation (Robinson, 2002). 

During cheese ripening, texture will be modified by the combined actions of the LAB, 

secondary flora, the enzymes released, particularly proteolytic enzymes, and the cheese 

storage conditions (Wood, 1998; Gatti et al., 2008). Processing and ripening parameters such 

as pH, salt levels, water activity, and temperature influence the growth, metabolic state, 

viability, and rate of lysis of the LAB, and the activity and half-life of enzymes released upon 

lysis (Coolbear et al., 2011).  
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1.2.7 Study of microbial ecology in dairy producs 

 

Microorganism are not living as individuals instead they are part of a complex system 

where interact. Over the last decades, microbial studies in cheese and other matrices were 

based on cultivation of microorganism then identification by fenotypic studies. The methods 

that use a primarily cultivation step in vitro are known as culture-dependent techniques. These 

methods allow to partially identify the microbiota since not all microorganisms are able to 

cultivate in synthetic media (Jany and Barbier, 2008). Microbial ecology studies have gained 

more information with the development of molecular methods based on direct analysis of 

microbial DNA or RNA without any traditional cultivation step, the „culture-independent 

techniques‟.  

Both approaches have advantages and disadvantages. Therefore, the combination of both 

approaches should be used to describe the contribution of individual micoorganisms and 

control microbiota (culture-based methods) and to determine the diversity, abundance and 

microbial activity (culture-independent) (Ndoye et al., 2011). Culture-dependent methods are 

time-consuming and do not necessarily provide a comprehensive information on the 

composition of microbial communities. Minority microbial populations are often out-

competed by more abundant species, and some species may be unable to cultivate (Jany and 

Barbier, 2008). Despite its disadvantages, culture-based approaches are extremely useful for 

understanding the physiological potential of isolated organisms. On the other hand, culture-

independent techniques are fast and potentially more exhaustive.  

Culture-independent techniques have been used to characterize microbial communities, to 

evaluate the in situ gene expression as well as to determinate the metabolic activities of cheese 

microbiota (Ndoye et al., 2011). Among the molecular approaches that enable characterization 

of microorganisms, fluorescence in situ hybridization (FISH) with rRNA-targeted 

oligonucleotide probes (DeLong et al., 1989; Amann et al., 1990) has been one of the most 

powerful and widely used techniques (Amann et al., 2001) in microbial ecology. FISH 

provides microbial identification, physical detection of uncultivable microorganisms, and 

distribution of microbial populations in several environments, including food products. FISH 

has been used to evaluate bacterial community structure and location in Stilton cheese 

(Ercolini et al., 2003a,b) and to detect Brevibacteria on the surface of Gruyère cheese 

(Kolloffel et al., 1999), to detect Lactobacillus plantarum on natural fermented olives 

(Ercolini et al., 2006), and to quantify Leuconostoc populations in mixed dairy starter cultures 

(Olsen et al., 2007). 
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Culture-independent methods are also suitable for determining the diversity of different 

food-associated microorganisms and to monitor dynamics over time. Most of them are based 

on polymerase chain reaction (PCR) amplification of total microbial DNA. The PCR 

amplicons from different species are discriminated by using gel or capillary separation and 

identified by comparison with databases or by sequencing. These techniques are known as 

fingerptinting methods, some of the most commonly used are polymerase chain reaction-

denaturing gradient gel electrophoresis (PCR-DGGE) and temporal temperature gel 

electrophoresis (TTGE). Length heterogeneity-PCR (LH-PCR) is another PCR-based 

fingerprinting technique. It can differentiate organisms based on species-specific variations in 

the length of 16S rRNA gene sequences. A fluorescently labelled oligonucleotide is used as a 

forward primer coupled to a reverse primer to amplify variable regions of the 16S rRNA gene, 

and labelled fragments are separated by capillary electrophoresis and detected by laser induced 

fluorescence with an automated gene sequencer (Randazzo et al., 2002; Ogier et al., 2002; 

Rademaker et al., 2005; Ercolini and Coppola, 2011). 

Recently, high-throughput sequencing technologies have been developed that do not rely 

on the traditional Sanger chain termination method (Margulies et al., 2005). These powerful 

sequencing platforms and processes can produce massive amounts of data in less time and at a 

lower cost. The sequence reads are shorter than conventional automated Sanger sequencing, 

each base position is sequenced many times on average to achieve deeper coverage (Haridas et 

al., 2011). More than 300,000 sequences per run can be determined simultaneously, and 

eliminates the need for cloning and cultivation. A highly variable region of 16S rRNA gene is 

amplified using primers that target adjacent conserved regions, followed by direct sequencing 

of individual PCR products (Lopez-Velasco et al., 2011). Because of this enormous 

information new potent softwares tools has been developed for data acquisition and analysis.  

These sequencing platforms include the Illumina technology which sequence by chemical 

(www.illumina.com/technology/sequencing_technology.ilmn) synthesis by using a “reversible 

terminator-based method”, 454 sequencing which involves DNA capture beads 

(http://my454.com/products/technology.asp) and is based on the detection of pyrophosphate 

released during nucleotide incorporation, and SOLiD™ System 

(www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-

generation-sequencing.html) which uses “microfluidic FlowChips” (Haridas et al., 2011).  

Figure 5 summarizes the culture-dependent and culture-independent methods used to study 

the community structure and activity in cheese microbiota. 
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Figure 5. Flow diagram of culture-dependent and culture-independent methods to study the 

community structure and activity in cheese microbiota (Ndoye et al., 2011). 

 

 

Briefly, Illumina sequencing requires that a DNA sample is converted into special 

sequencing libraries. This can be achieve by shearing DNA to a designated size and adding 

specific adapter sequences on both ends of the DNA molecules. This adapters allow molecules 

to be immobilized in one or more channels of a flow cell and amplified to form local clonal 

colonies. Sequencing primers, and four differently labelled nucleotides (also 3‟-blocked) are 

provided and used for extension by DNA polymerases and non-incorporated nucleotides are 

washed away. The DNA is extended one nucleotide at a time and a camera takes images of the 

fluorescently labelled nucleotides. The dye along with the terminal 3′ blocker is chemically 

removed from the DNA, allowing a next cycle (Haridas et al., 2011; Kirchner et al., 2011). 

Figure 6 shows esquematically the Illumina sample preparation and sequencing. 

A reliable estimation of the relative abundance of microbial species can be obtained. To 

date, they have been used for culture-independent analysis in order to monitor microbial 

communities in various ecosystems such as soil (Acosta-Martinez et al., 2008), gut 

(Andersson et al., 2008), food (Lopez-Velasco et al., 2011), fermented food (Humblot and 

Guyot 2009; Roh et al., 2010; Park et al., 2011) and cheese (Masoud et al., 2011). The high 

throughput sequencing technologies offers a more global view of the community structure. 
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Figure 6. Illumina sample preparation and sequencing. 

(http://seqanswers.com/forums/showthread.php?t=21) 
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Figure 6 cont. Illumina sample preparation and sequencing 

(http://seqanswers.com/forums/showthread.php?t=21) 
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2. AIMS OF THE THESIS 
 

Cheese is a biologically and biochemically dynamic food. Microorganisms arising from 

starter, milk and the dairy environment contribute to all the steps throughout the 

manufacturing and ripening processes. Together with technological parameters are responsible 

to the great diversity of cheese varieties. Since it is as dynamic matrix, biochemical events 

must proceed under conditions controlled by technology to lead to products with desired 

peculiar aromas and textures. Microorganisms either deliberately added or adventitious, do not 

live as individuals, instead, they are part of an ecosystem in which they interact. These 

interactions lead to define the population that successively will determine the organoleptic 

characteristic of each cheese variety. 

The general aim of this thesis was to study microbial diversity and dynamics of both starter 

and non-starter microorganisms involved in the cheese manufacturing and ripening processes. 

Thus, different ecosystems from raw milk to cheese and rind have been investigated in order 

to comprehend the specific role played by microorganisms in each cheesemaking phase and to 

correlate the occurrence of certain microbial species with desired flavor and texture. 

For this reason, natural whey starters, hard Italian cheeses (i.e., Grana Padano and 

Parmigiano Reggiano), and natural rind of mold-ripened cheese (i.e., blue cheese) have been 

studied. 

Through culture-based and culture-independent approaches, the microbiota of these 

different dairy matrices have been described with the purpose of trying to understand how 

starter, non-starter and adventitious microorganisms contribute or simply take part in the 

development of the distinctive features of each considered product.  
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3.1 Natural whey starter for Parmigiano Reggiano: culture-independent 

approach  

Benedetta Bottari, Marcela Santarelli, Erasmo Neviani and Monica Gatti 

Department of Genetic, Biology of Microorganisms, Anthropology, Evolution, University of Parma, 

43124 Parma, Italy.  

 

Bottari et al., 2010 Journal of Applied Microbiology, 108 (5) 1676-1684. 

 

3.1.1 Abstract 

 

The aim of this work was to obtain a deeper insight into the knowledge of microbial 

composition of Parmigiano Reggiano natural whey starters through different culture-

independent methods. Eighteen different Parmigiano Reggiano natural whey starters sampled 

from three different provinces of this cheese production area and the non-acidified wheys from 

which they arose, have been studied by length heterogeneity PCR (LH-PCR) and fluorescent 

in situ hybridization (FISH). A high microbial composition variability between different 

samples has been observed. Revealing different images of the same community, LH-PCR and 

FISH have given a more accurate view of the not well-known Parmigiano Reggiano whey 

starter ecosystem. New lights have been shed on Parmigiano Reggiano natural whey starters 

microbial composition, highlighting how culture-independent approach could be used and 

improved to study this and other food ecosystems.  

 

3.1.2 Introduction 

 

Parmigiano Reggiano is an Italian protected designation of origin (PDO) cheese. It is a 

hard, cooked cheese made from raw partly skimmed cow's milk supplemented with natural 

whey starter (Neviani et al., 1998; Coppola et al., 2000). Natural whey starter is obtained from 

the previous day residual whey which is then incubated at a gradually decreasing temperature 

(Neviani and Carini 1994, Coppola et al., 1997). During cheese production, the composition of 

LAB (lactic acid bacteria) microbiota undergoes several changes, because of modifications of 

environmental conditions. This may lead to cellular stress, such as heat shock, adverse pH, 

reduction of redox potential, water activity, and nutrient content (Di Cagno et al., 2006). 

Thermophilic acidifying starters grow during the first few hours of hard cooked cheese 
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making, determing the key acidification step, drawing enzymatic potential and the 

environment that will prevail for microbial growth and activity throughout the ripening period 

(Charlet et al., 2008). These complex consortia of microorganisms have an important 

technological role in defining the quality of such an appreciated cheese as Parmigiano 

Reggiano. The study of the dynamics within the microbial populations has often been 

hampered by culturing techniques limitations, such as failure in detecting viable non-

cultivable bacterial species and selection given by chosen growing parameters (Fleet 1999; 

Giraffa and Neviani, 2001). To overcome these drawbacks, different non-cultivable methods, 

including length heterogeneity polymerase chain reaction (LH-PCR) (Lazzi et al., 2004, Gatti 

et al., 2008; Santarelli et al., 2008) and fluorescent in situ hybridization (FISH) (Ercolini et al., 

2003 a,b; Fornasari et al., 2008) have been developed and applied to whey starter or other 

dairy food matrices. So far, few studies have been performed on natural whey starters for 

Parmigiano Reggiano (Cocconcelli et al., 1997; Coppola et al., 2000; Gatti et al., 2003; Gatti 

et al., 2008). Through both culture-dependent and culture-independent techniques, these 

authors have found Lactobacillus helveticus to be the dominant species within the natural 

whey starters for Parmigiano Reggiano cheese. With the awareness of culture-based methods 

limits in detecting microorganisms in complex ecosystems such as fermented foods (Jany and 

Barbier, 2008), a deeper insight into the microbial composition of natural whey starters for 

Parmigiano Reggiano was aimed in this study. Using a polyphasic approach, eighteen different 

Parmigiano Reggiano natural whey starters, sampled from three different provinces of this 

cheese production area, were investigated, combining the culture-independent methods FISH 

and LH-PCR. Further, the microbial composition of the non-acidified wheys from which the 

whey starters arose, was considered.   

 

3.1.3 Materials and methods 

 

Whey starter samples  

Eighteen whey starters for Parmigiano Reggiano were sampled from nine different dairies 

located in the provinces of Parma (A, B, C), Modena (D, E, F) and Reggio Emilia (G, H, I), 

belonging to the Parmigiano Reggiano PDO cheese area of production. Whey cultures (named 

“a” as “acidified”) were collected right before addition to the vat milk. The 18 non-acidified 

wheys (named “na” as “non-acidified”) from which whey starters arose, were collected from 

the vat 10 min after the end of the cooking process. From each dairy, samples were collected 

during two consecutive days of cheesemaking (e.g.: Ana1, Aa1, Ana2, Aa2). Samples were cooled 



 28 

at 4-6°C at the dairy plant, shipped to the laboratory under refrigerated conditions and 

immediately analysed.  

 

Acidity determination 

Titratable acidity was obtained by titrating 50 ml of sample with NaOH 0.25 M, using 

phenolphthalein as indicator and the results have been expressed with Soxhlet Henkel degrees 

(°SH). The analysis was carried out in duplicate and the average values calculated to give an 

estimated error lower than 1%. 

 

Microbial count 

A ten-fold serial dilutions of natural whey starters and non-acidified whey samples were 

done in 0.05 mM sodium citrate (Sigma, Italy) buffer pH 7.5. To recover the cultivable 

bacterial population arising from natural whey starter, the non-selective Whey agar medium 

(WAM) was used with an incubation period of 48h at 42°C under anaerobic conditions. This 

rich medium is known to be the better substrate of growth for recovering whey starter LAB 

thank to its composition similar to the matrix of origin (Gatti et al., 2003). Plate counts were 

carried out in duplicate. The enumeration of the total bacterial cell numbers was performed 

according to the protocol by Mesa et al. (2003) using the DNA intercalating agents 4‟,6-

diamidine-2-phenylindole, dihydrochloride (DAPI) (Sigma-Aldrich, Italy). A stock solution 

was prepared by dissolving 1 mg of DAPI in 10 mL of ultrapure water. The stain at a final 

concentration of 10 µg/ml was added to 1 ml of second-diluted natural whey starter, 

previously washed twice with sterilized distilled water and then incubated for 30 min at room 

temperature in the dark. After incubation, the samples were filtered on a black polycarbonate 

membrane (Millipore corp., MA, USA); the membrane was air-dried and mounted on a glass 

slide in Citifluor solution (Citifluor Ltd, London, UK). The bacteria on DAPI-stained 

membranes were enumerated by counting the total number of blue fluorescing bacteria. The 

number of bacteria was estimated from counts of 20 microscopic fields (at × 1000) and 

calculated as follows:  

C x A 

a x V
N = x DN =

C x A 

a x V
N = x DN =

 

where N is the number of cells per mL; C is the number of cells per observation field; A is the 

filtration area (mm
2
); a is the observation field area (mm

2
); V is the volume of filtered sample 

(ml); and D is the dilution factor. 
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Fluorescent in situ hybridization 

Whey samples were washed twice in PBS and pellets were resuspended in 300 µl of PBS. 

Cells were fixed adding freshly prepared cold paraformaldehyde 4% (Sigma-Aldrich, Milano, 

Italy), 1:3 (v:v), and stored for 1h at 4°C according to Amann et al. (1990). After washing, 

pellets were resuspended in 50% (v/v) ethanol/PBS and stored at -20°C until further FISH 

analysis. About 20 µl of the fixed cell suspension were spotted on poly-L-lysine coated slides 

and let to dry at 46°C for 10 min in a oven. Spots were dehydrated in ethanol series by 

covering them with about 50 µl of 50%, 80% and 100% ethanol solutions for 3 min each and 

air dried. Specimens were treated by covering the spots with 10 µl of proteinase K (10 mg/ml) 

at 37°C for 10 min, to allow permeabilization of Gram-positive cells. Lbh1-fluorescein iso-

thiocyanate (FITC) labelled probe (Bidnenko et al., 1998), specific for L. helveticus and St4-

Cy3 labelled probe specific for S. thermophilus (Mercier et al., 2000), have been used. Both 

probes were synthesized and labelled by MWG (Ebersberg, Germany). After addition of 10 µl 

of the hybridization buffer (0.9 M NaCl, 0.01% SDS,  20 mM Tris-HCl pH 7.2, 45% 

formamide) containing 10 ng of each probe, slides were incubated in a dark humid chamber at 

45°C for 4 hours. Unbound oligonucleotides were then removed by incubating slides in pre-

warmed washing buffer (20 mM Tris-HCl pH 7.2, 0.01% SDS, 40 mM NaCl, 5 mM EDTA) at 

46°C for 15 min and by rinsing with water. 

Slides embedded in mounting oil were evaluated with a Nikon Eclipse 80i epifluorescence 

microscope (Nikon, Tokyo, Japan) equipped with a C-SHG1 100 W mercury lamp. Nikon 

filter set B2A FITC was used for Lbh1 FITC-labelled probe (excitation wavelength, 450-490 

nm; emission wavelength, 500–520 nm). Nikon filter set G-2E/C was used for St4 Cy3 

labelled probe (excitation wavelength, 540/25 nm; emission wavelength, 605/55 nm). Pictures 

of each field were taken and then superimposed through the Nis Elements software (version 

2.10 Nikon). 

 

DNA extraction 

Genomic DNA was extracted from each sample using an InCura DNA extraction kit 

(InCura srl, Cremona, Italy) according to the manufacturer‟s instruction. DNA was 

spectrophotometrically (Jasco V-530, Japan) quantified by measuring absorbance at 260 nm, 

diluted up to 20 ng/μl and stored at -20°C until use. 
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Length heterogeneity PCR 

LH-PCR to analyse the V1 and V2 variable regions of the 16S rRNA gene was performed 

as previously described by Lazzi et al. (2004). The primer pair 63F (5‟-

AGGCCTAACACATGCAAGTC-3‟) 5‟-end labelled with 6-carboxy-fluorescein dye (6-

FAM) and 355R (5‟-GCTGCCTCCCGTAGGAGT-3‟) was used for the analysis. Reaction 

and amplification conditions proposed by Lazzi et al. (2004) were slightly modified according 

to Gatti et al. (2008). 0.5 U of Platinum Taq DNA polymerase (Applied Biosystems, Foster 

City, CA, USA) were used in 20 μL of reaction mixture. Initial denaturation at 94°C for 2 min 

was followed by 25 cycles consisting of denaturation at 95°C for 45 s, annealing at 49°C for 

45 s, and extension at 72°C for 2 min. A final extension step of 72 °C for 7 min was carried 

out. LH-PCR products were stored at -20°C in the dark until use (usually < 1 week). For 

fragment analysis, 1 μl volumes of LH-PCR amplicons were mixed with 12 μl of deionized 

formamide (Applied Biosystems) plus 1 μl of internal size standard (GS500 LIZ®, Applied 

Biosystems, Foster City, CA, USA) and then denatured at 90°C for 2 min, followed by 

immediate chilling on ice. Capillary electrophoresis was performed on the ABI Prism 310 

Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) under the following 

conditions: 47 cm capillary, polymer 4 (POP-4™), 15 s injection time, 15 kV injection 

voltage, 35 min electrophoresis at 15 kV and 60°C capillary temperature. The peaks of the 

electropherogram profiles, corresponding to amplicons of different length, were attributed to 

bacterial species according to an LH-PCR database obtained in a previous study (Gatti et al., 

2008). Amplicons sizes were determed with GeneMapper v4.0 software (Applied Biosystems, 

Foster City, CA, USA). LH-PCR profiles were analysed by reference to the internal size 

standard using the local Southern size calling method, no-smoothing option and a threshold of 

50 fluorescent units.  

 

3.1.4 Results  

 

Eighteen natural whey starters for Parmigiano Reggiano cheese and the eighteen non-

acidified wheys from which they arose were investigated. Samples were collected from nine 

different dairies located in three different zones of Parmigiano Reggiano production, during 

two consecutive days of cheesemaking. Plate counts on WAM showed a very similar trend of 

cultivability among all whey starter samples. Lactic acid bacteria (LAB) able to grow in WAM 

ranged between 8.03 and 8.79 log cfu/ml, with a variability lower than 3% (Table 1). 
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Titratable acidity of each sample was also measured and results ranged between 26.73 and 

33.8 °SH.  

 

  Microbial log counts and standard deviation (SD) 

  Total   cultivable in WAM 

  expressed as cells number/ml
 

 expressed as mean cfu/ml
 

Samples  Mean SD  Mean SD 

Aa1  9.15 0.12  8.03 0.51 

Aa2  9.20 0.15  8.09 0.71 

Ba1  9.26 0.18  8.36 0.78 

Ba2  9.58 0.32  8.40 0.55 

Ca1  9.89 0.16  8.64 0.88 

Ca2  9.65 0.28  8.56 0.81 

Da1  9.51 0.43  8.34 0.66 

Da2  9.16 0.11  8.26 0.45 

Ea1  9.46 0.15  8.43 0.78 

Ea2  9.63 0.33  8.48 0.74 

Fa1  9.94 0.14  8.79 0.89 

Fa2  9.80 0.10  8.77 0.81 

Ga1  9.52 0.28  8.11 0.63 

Ga2  9.48 0.22  8.39 0.52 

Ha1  9.47 0.17  8.73 0.59 

Ha2  9.64 0.18  8.42 0.63 

Ia1  9.61 0.25  8.29 0.75 

Ia2  9.65 0.25  8.31 0.46 

 

Table 1. Mean log count of total microbial population and cultivable in WAM microbial population of 

18 natural whey starters 

 

Moreover, in order to find confirmatory, complementary or alternative results, a culture-

independent approach was used. Total cell count in natural whey starter samples ranged 

between 9.15 and 9.94 log cells/ml with a variability lower than 3% (Table 1). The species 

composition of whey starters and non-acidified wheys was investigated by LH-PCR. Three 

representative LH-PCR profiles referred to the whey starters are shown in Figure 1. The 

different fragment sizes in the LH-PCR profiles were attributed to bacterial species on the 

basis of a published LH-PCR database (Lazzi et al., 2004, Fornasari et al., 2006, Gatti et al., 

2008). Because the areas under the peaks shown in the electropherograms are rough measure 

of the proportions among the species, their relative estimation was also possible (Suzuki et al.,  
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Figure 1. Length heterogeneity LH-PCR electropherograms of three whey starter samples 

representative (Aa1; Da1; Ha2) of different cases occurring: L. helveticus as dominant species (a), 

comparable percentages of L. helveticus and L. delbrueckii (b), L. helveticus and L. delbrueckii 

percentages comparable also to the percentage of other species (c). The x axis shows peaks size in base 

pairs, and the y axis shows peak intensity in relative fluorescence units. The peak sizes were attributed 

to bacterial species according to LH-PCR published database as follows: 1 L. delbrueckii subsp. lactis 

or subsp. bulgaricus; (1) Secondary peak of 1; 2, L. helveticus. Unattributed peaks are shown by the 

fragment lengths as base pairs. 

 

a. 

b. 

c. 
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1998). For the majority of the samples, the same peaks were frequently detected: 330 ± 1 bp 

(attributed to Lactobacillus delbrueckii subsp. lactis or subsp. bulgaricus), 334 ± 1 bp (L. 

helveticus), 319 ± 1 bp (S. thermophilus), 342 ± 1 bp and 345 ± 1 bp (attributed to 

Lactobacillus fermentum) and 305 ± 1 bp (non-attributed).  

However no peak at 330 ± 1 bp (attributed to L. delbrueckii subsp. lactis or subsp. 

bulgaricus) was detected in the samples Ana1, Aa1, Ana2 and Aa2. A peak attributable to S. 

thermophilus was revealed in the whey starters Ba1, Ca1, Ga1, Da2, Ea2, electropherograms. Two 

fragments of 342 ± 1 bp and 345 ± 1 bp revealed the presence of L. fermentum in the whey 

starters samples Ba1 and Ba2, Fa1, Fna2, Fa2 , Ga1 Ga2, and Ia2. We noticed that for the samples 

Gna1, Gna2, Hna1, Ina1 and Ina2 the 330 ± 1 bp peak (attributed to L. delbrueckii subsp. lactis or 

subsp. bulgaricus) fluorescence intensity was lower than in the deriving whey starters. Ha1 and 

Ha2 whey starters and Hna1 and Hna2 non-acidified wheys‟ profiles were characterized 

respectively by the presence of  two non-attributed peaks at 312 and 313 ± 1 bp and at 305 ± 1 

bp (data not shown). The composition of natural whey starters and non-acidified wheys 

sampled in this study, was investigated also by FISH. 23S rRNA Lbh1 probe specific for L. 

helveticus and 16S rRNA St4 probe specific for S. thermophilus have been used. Being 

respectively labelled with FITC (green) and Cy3 (red), the simultaneous visualization of both 

groups of hybridized cells was possible. For each sample, green hybridized rod-shaped cells 

(L. helveticus), red hybridized round-shaped cells (S. thermophilus) and non-hybridized rod-

shaped cells have been observed (Figure 2). Non-hybridized cells could be either lactobacilli 

non-L. helveticus or non-viable (low RNA content) L. helveticus. The signal intensity of cells 

hybridized with oligonucleotide probes is in fact directly related to the cellular rRNA content 

(Bottari et al., 2006) which is a useful indicator of viability (Bentsink et al., 2002). Positivity 

to one or more of these conditions was indicated with “+” or “++” if representing the majority. 

A majority of L. helveticus hybridized cells has been observed for Ana1, Aa1, Aa2, H a2 and  Ia1. 

Non-hybridized rod-shaped cells were found to be the major component for Bna1, Ba1, Cna1, 

Cna2, E a2, Ga1, Gna2, Ga2, Hna1, Hna2, Ina2 and Ia2. Hybridized cells of S. thermophilus have been 

observed for all the natural whey starter samples, and for almost all the non-acidified whey 

samples, except for Ana1, Bna2, Gna2 and Ina1 (Figure 3). 
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Figure 2. FISH on a sample of Parmigiano Reggiano natural whey starter. Simultaneous use of probes 

St4 (red label) and Lbh1 (green label). Hybridized L. helveticus cells appear green, Hybridized S. 

thermophilus cells appear red. Non-hybridized cells on the background could be either non-L. 

helveticus Lactobacillaceae or non-viable L. helveticus 

 

3.1.5 Discussion 

 

A polyphasic approach, combining different culture-independent methods such as FISH 

and LH-PCR, was used to investigate the microbial population in 18 Parmigiano Reggiano 

natural whey starters sampled from three different provinces of this cheese production area. In 

previous works, plate isolation revealed a simple composition of Parmigiano Reggiano whey 

starters microbiota, highlighting the prevalence of L. helveticus species and the presence of L. 

delbrueckii (Cocconcelli et al., 1997; Coppola et al., 2000). 

The always more used culture-independent methods for the analysis of microorganisms in 

food have already shed light on the structure of microbial population of dairy environments 

(Andrighetto et al., 1998; Fitzsimmons et al., 1999; Mannu et al., 2000; Berthier et al., 2001; 

Dasen et al., 2003). Together with traditional counting methods, LH-PCR and FISH have been 

therefore used for a better investigate the complex ecosystem of Parmigiano Reggiano whey 

starter. 
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Figure 3. LH-PCR (bars) and FISH (grid) results for whey starter samples (samplesa) and non-acidified 

whey samples (samplesna). Bars- Percentage of L. helveticus species (red), L. delbrueckii species (grey) 

and other species (yellow),calculated on peaks relative abundances in LH-PCR profiles. Grid- Presence 

(+) or absence (-) of hybridized L. helveticus cells (Lh), hybridized S. thermophilus cells (St) and non-

hybridized cells (no Lh) revealed by FISH. (++) indicates majority. 
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Plate counting was performed on WAM which gives better results in counting natural 

whey starter LAB, thank to its capability of reproducing the natural system of the whey, as 

proven by Gatti et al. (2003). Despite the use of WAM, the number of cfu/ml was up to 1 unit 

log lower than direct total count measured with DAPI (Table 1). Although the highest amount 

of cells measured with DAPI could be because of the presence of both nonviable cells and 

viable but non-cultivable cells, this result can support previous observations made by Gatti et 

al. (2006), who reported lower cultivability with respect to the total number of cells in a whey 

starter sample. This difference could be related to the presence of viable cells unable to 

duplicate in the agar medium. Data obtained for both natural whey starters for Grana Padano 

and Parmigiano Reggiano, are in agreement with Fleet et al. (1999) that calculated that plate 

culturing techniques reveal only 1-10% of the real microbial population present in natural 

environment. 

The microbial loads of all the whey starter samples considered were very similar when 

analyzed with culture-dependent analysis. However, no information on microbial composition 

can be given by plate counting and possible biases can be introduced such as failure in 

culturing species that cannot grow under selected experimental conditions. LH-PCR and FISH 

have been therefore applyied to gain deeper knowledge of whey starter microbial composition. 

LH-PCR electropherograms of almost all samples revealed the presence of most frequently 

detected peaks, attributable to L. helveticus, L. delbrueckii subsp. lactis or subsp. delbrueckii, 

S. thermophilus and L. fermentum. According to a published database (Lazzi et al., 2004, 

Fornasari et al., 2006, Gatti et al., 2008), 330 ± 1 bp peak could be attributable to L. 

delbrueckii species as well as to Enterococcus faecium and Enterococcus faecalis. However, 

in whey samples microscopically observed after FISH analysis, all present round-shaped cells 

were hybridized by S. thermophilus-specific probe St4 excluding the presence of Enterococci. 

Our results are in agreement with Lazzi et al. (2004), Fornasari et al. (2006), Rossetti et al. 

(2008) and Santarelli et al. (2008), that found that the microbial composition of the natural 

whey starters for another Italian hard cooked cheese, such as Grana Padano, shows a constant 

presence of dominant species corresponding to L. helveticus and L. delbrueckii subsp. lactis 

and minor species corresponding to S. thermophilus and L. fermentum. Nevertheless, our 

results revealed a higher variability in the composition of different whey starters for 

Parmigiano Reggiano in comparison with the only natural whey starter for Parmigiano 

Reggiano so far analysed by LH-PCR (Gatti et al., 2008). Through culture-dependent 

approach, previous works on Parmigiano Reggiano natural whey cultures ascribed 

predominant whey microflora to L. helveticus (Cocconcelli et al., 1997; Coppola et al., 2000 
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Gatti et al., 2003). Differently from these authors, through LH-PCR results, we observed a 

variable microbial composition among whey starters. In fact, only two samples (Aa1, Aa2) were 

characterized by L. helveticus as dominant species (Figure 3), while the majority of whey 

starter samples have been found to have comparable percentages of L. helveticus and L. 

delbrueckii (Ba1, Ba2, Ca1, Ca2, Da1, Da2, Ea2, Fa1, Fa2, Ga1, Ia1, Ia2). In few whey starters (Ea1, 

Ga2, Ha1, Ha2), L. helveticus and L. delbrueckii percentages were also comparable to other 

species represented by non-attributed and attributed (i.e., S. thermophilus) peaks (Figure 3). 

We noticed that the whey starter samples with L. helveticus as dominant species (Aa1, Aa2), 

arose from non-acidified wheys where L. helveticus was the dominant species (Ana1, Ana2). 

Otherwise, other non-acidified wheys with a higher percentage of L. helveticus (Bna2, Dna2, 

Gna1, Gna2) gave rise to whey starters where L. helveticus was not the dominant species (Ba2, 

Da2, Ga1, Ga2) (Figure 3). This variability could be related to different incubation conditions 

used by each dairy for the production of natural whey culture. The microbial composition and 

diversity of whey starters are, in fact, modulated by several factors, among which high 

thermophilic condition and deep acidification rate, responsible for a technological selection of 

microorganisms (Neviani et al., 1995; Fortina et al., 1998; Giraffa et al., 1998; Giraffa et al 

2004). However, both whey starter samples with L. helveticus as dominant species (Aa1, Aa2) 

and the ones with comparable percentages of L. helveticus and L. delbrueckii (Ba2, Da2) 

showed a high titratable acidity. On the other hand, both samples with comparable percentages 

of L. helveticus and L. delbrueckii (Ga1, Ia1,  Ia2) and samples with comparable percentages of 

L. helveticus, L. delbrueckii and of other species (Ga2), were characterized by a low titratable 

acidity. Therefore, whey starter titratable acidity, that plays a key role at the beginning of 

cheesemaking, did not seem to be related neither to cell amount (total and cultivable) nor to 

different species contribution. Even if no correlation between wheys acidity and species 

variability has been found, a correlation between wheys acidity and biotypes composition 

cannot be excluded. Whey starters and non-acidified wheys have been then analysed by FISH. 

Being respectively the dominant species and one of the most frequently detected minority 

species in whey starters for hard cooked cheeses (Cocconcelli et al., 1997; Coppola et al., 

2000; Gatti et al., 2003; Rossetti et al., 2008), L. helveticus and S. thermophilus have been 

chosen as targets for FISH experiments. Considering natural whey starter samples, FISH 

results were in good agreement with the LH-PCR. However, a higher number of samples 

containing S. thermophilus was revealed by FISH. Both techniques have a limit of detection 

around 10
4 

- 10
5
 cells/ml (Lazzi et al., 2004, Fornasari et al., 2008), but with a very high 

percentage of L. helveticus or other species in the samples, S. thermophilus could have gone 
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undetected by LH-PCR. This could explain the better effectiveness of FISH in detecting S. 

thermophilus. Discordance between FISH and LH-PCR results was observed for some non-

acidified whey samples (Ana1, Ana2, Dna2). Targeting respectively RNA and DNA, FISH is able 

to detect cells in a good physiological state, while LH-PCR to detect both living and dead 

cells. Cooking of the curd could affect integrity and thus lower RNA content of non-acidified 

whey microbial cells, making some of them undetectable by FISH. Otherwise, DNA of both 

live and dead or damaged cells can be estimated by LH-PCR (Gatti et al., 2008); slight 

differences observed with these two methods in non-acidified whey samples could be 

therefore explained.  

 

3.1.6 Conclusions 

 

An overall picture of the microflora of 18 Parmigiano Reggiano cheese whey starters was 

determined by LH-PCR analysis. This culture-independent approach highlighted on a great 

variability among the whey starter samples considered and deepened the information given by 

traditional culture-based techniques. A further knowledge on microbial composition of whey 

starter samples was provided by FISH analysis. These methods revealed different images of 

the same community, therefore a polyphasic approach, combining LH-PCR and FISH was 

worthwhile to obtain a more accurate view of the structure of Parmigiano Reggiano whey 

starters microbial community. Nevertheless, the frequent presence of several non-attributed 

peaks shown by LH-PCR in whey starter and non-acidified whey electropherograms draws 

attention on the fact that culture-independent methods need to be improved to reveal as 

accurately as possible the actual microbial composition of wheys and other food ecosystems. 

Further efforts might be therefore devoted in the future to address LH-PCR, as well as other 

culture-independent techniques, to a deeper knowledge of what these methods still do not 

exhaustively describe.  
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3.2.1 Abstract 

 

Twenty one natural whey starters, collected from dairy factories located in six provinces of 

the Grana Padano production area, were characterized. Basic techniques such as acidity 

evaluation and microbial plate count together with more complex methods such as the 

Live/Dead® BacLight™ bacterial viability kit, have been used. Seven parameters including 

pH, Soxhlet Henkel degrees, microbial plate count in Man Rogosa Sharpe medium and Whey 

Agar medium together with count of total, viable and non-viable cells, were chosen to produce 

sunray plots. One plot for each natural whey starter sample was obtained by characterizing the 

status of the microbial culture and compared with three natural whey starter prepared in 

laboratory. In this way, a sunray trace was suggested to define the traits of a good natural 

whey starter. Another multivariate technique, principal component analysis (PCA), was 

applied and it was concluded that, for this particular data set composed by 24 object and 7 

variables, PCA allowed to highlight the good and the bad samples, while sunrays plots, even if 

remaining only a descriptive and explorative analysis, allowed to better visualize the 

differences among all the samples.  

 

3.2.2 Introduction 

 

The Grana Padano Production disciplinary states that this Protected Designation of Origin 

(PDO) cheese must be produced with raw milk and natural whey starter. The starter is a 

natural culture of thermophilic lactic acid bacteria that grow in the whey produced at the 

beginning of dairy process (http://www.granapadano.com). The whey starter is produced by 

culturing the non-acidified whey resulting from daily cheesemaking, called sweet whey. Whey 

is fermented at a naturally decreasing temperature, that in approximately 20 hours decrease 

from about 54°C to about 35°C, performing a thermophilic selection. Whey starter is added in 
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the milk vat and sweet whey is recovered after curd cooking from each cheese production 

(Rossetti et al., 2008; Santarelli et al., 2008). The modality of preparation of the whey starter 

cultures warrants the survival of different biotypes useful to the development of the ecosystem 

itself, and a mixture of strains of the same species is necessary to the natural starter evolution 

(Gatti et al., 2004). The primary function of starter bacteria is to produce acid during the 

fermentation process; however, they also contribute to cheese ripening thanks to their enzymes 

involved in proteolysis and conversion of amino acids into flavor compounds (Fox and 

Wallace, 1997). Moreover, one important role of starter bacteria is to provide a suitable 

environment, with respect to redox potential, pH and moisture content in the cheese, allowing 

enzyme activity of rennet and starter, and making the growth of secondary flora to proceed 

favourably (Beredsford et al., 2001). For traditional Grana Padano production, it is the 

experience of the cheese maker‟s that defines the correct characteristics of a good natural 

whey starter. To date, the analytical techniques traditionally used for its characterization are 

very basic (pH, titratable acidity, plate count agar) and do not provide exhaustive information 

on the performance of the starter. These data are usually regularly recorded. The aim of this 

study was to apply a different approach to record these data set, together with the number of 

live/dead microbes, using a figurative method which could be useful when comparing different 

samples. 

Sunray plots are basically a radial plot showing the importance of each variable in a 

sample, and that are used to compare more than two endpoints, or data sets, simultaneously. 

Sunray plots, or star plots, traditionally used for sensory analyses, have not been frequently 

reported in the literature for visualization of other data. As well as for sensory evaluation, this 

method has been used, for example, to show the relative importance of different descriptors 

chosen to predict the protein retention time in anion-exchange chromatography (Song et al., 

2002; Tugcu et al., 2003) and to visualize plasma fatty acids chosen to screen and monitor the 

effects of infection following the use of adenoviral vectors in gene therapy (Paik et al., 2007). 

Sunray plots have also been useful for showing the differences between wine samples and 

coffee samples (Haswell and Walmsley 1998), in sensor responses of five typical malodours in 

fields (Romain et al., 2000) and in different types of propagation materials of banana 

„Nanicão‟ (Scarpare Filho et al., 1998). However the use of sunray plots for microbial 

parameters has rarely been reported. In particular Hofman and collaborators characterized soil 

biological quality by means of microbial biomass determination and others seven chemicals 

parameters, describing an comparing their status by the sunray plots (Hofman et al., 2003). 
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Recent studies have been carried out to evaluate the microbial diversity of natural whey 

starter for Grana Padano cheese. Applying advanced microbiological techniques, such as 

random amplified polimorphic DNA PCR, temporal gradient gel electrophoresis (Andrighetto 

et al., 2004) and length heterogeneity PCR (Rossetti et al., 2008), the thermophilic dominant 

microflora characteristic of Grana Padano whey culture have been described. This study 

suggested a new approach for easily comparison and evaluation the quality of natural whey 

starter for Grana Padano cheese. To reach these goals, an alternative and easy way to visualize 

each sample in order to recognize the best or the worst characteristics, were considered. To 

implement this experimental study, 21 natural whey starters were characterized by three 

traditional parameters, such as count on Man Rogosa Sharpe (MRS), titratable acidity and pH, 

as well as four new parameters including Whey Agar (WAM) plate count agar and direct 

assessment of the total microbial population discriminating viable and non-viable cells.  

 

3.2.3 Materials and Methods 

 

Determination of the parameters 

Twenty-one natural whey starter collected from 21 dairy factories involved in Grana 

Padano cheese production and located in the six main provinces of the Grana Padano 

production area (Brescia, Mantova, Piacenza, Padova, Vicenza and Verona) were obtained. 

Just before being added in the vat milk, samples were collected, cooled to 4°C, quickly 

transported to the laboratory and analyzed. Measurements of pH were performed in duplicate 

by using the pH212 pH meter (Hanna Instruments, Padova, Italy). Titratable acidity was 

obtained by titrating 100 ml of sample with NaOH 0.25 M, using phenolphtalein as indicator 

and the results were expressed as Soxhlet Henkel degrees (°SH). The analysis was carried out 

in duplicate.  

Agar plate counts were performed using MRS agar pH 5.4 (Biolife, Milano, Italy) and 

whey agar medium (WAM; Gatti et al., 2003). Plates of MRS and WAM were incubated 

under anaerobic conditions (Anaerogen TM, Oxoid, Basingstoke, UK) at 42°C for 48 h. The 

counts were carried out in duplicate. 

Fluorescence microscopy counts to assess the total (T), viable (V), and non-viable (NV) 

bacterial population were carried out using a Leica DMSL (Leica Microsystems, Wetzlar 

Germany) and LIVE/DEAD® BacLight™ bacterial viability kit, based upon SYTO®9 and 

Propidium iodide as previously described (Gatti et al., 2006). Each sample was prepared in 

duplicate and average values were calculated.  
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A variable usually employed in dairy factories is °SH which is used to calculate the 

amount of natural whey starter to add to the milk in the vat. Depending on milk acidity, the 

higher the acidity of the natural culture, the lower the amount to add. Moreover, positive traits 

of natural whey starters are a high number of T together with a high number of V.  

With the aim to obtain samples to be considered positive and negative, three whey starters 

were prepared in the laboratory (samples G, B1 and B2) and were referred as control samples. 

The production started from the incubation at 45°C of one sweet whey obtained from the 

nearest dairy factory at less than 30 km. Values of pH and titratable acidity were monitored 

and microbial growth was evaluated by optical density at 650 nm (OD650). Sample G was 

collected, and refrigerated (4°C), at the end of the exponential phase, after 20 h of incubation 

(high acidity and high OD650), sample B1 was collected after 15 h (low acidity and low OD650) 

and sample B2 after 25 h (high acidity and high OD650 in stationary phase) (data not shown). 

 

 

Sunray plots 

All the seven parameters obtained, count on MRS (MRS), on WAM (WAM), number of 

total cells (T), number of viable cells (V), number of non-viable cells (NV), tritrable acidity 

(°SH) and pH, (pH) were centered by average subtraction and normalized by dividing by 

standard deviation in the framework of the natural whey starters set evaluated. The 

standardized values were plotted into sunray plots with seven axes using Statistica 6.1 

(StatSoft Italia Srl, Padova, Italy). Sunray plots are a subclass of circular icon plots in which 

the rays tend to form a circle. Each variable is represented by one ray or direction and all rays 

start in the center. The value of each variable is reflected by the distance from the center. 

These plots are basically a radial plot showing the importance of each variable in the sample. 

In this way, a unique plot for each whey starter sample was obtained, characterizing the status 

of the microbial culture. Samples G, B1 and B2 were used to represent one good and two bad 

natural whey starters, respectively. 

 

 

Principal Component Analysis 

The PCA analysis was performed using Statistica 6.1 (StatSoft Italia Srl, Padova, Italy).  
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3.2.4 Results and Discussion 

 

Determination of the parameters 

As expected, total cell counts (T) of the 21 natural whey starters for Grana Padano cheese 

were high and very similar to each other (CV 18%) (Table 1). As for the total count, the viable 

populations (V) were high and similar to each other, representing from 98% to 73% of the T 

population. The G sample, as expected, was characterized by a rather high percentage of 

viable cells (98%), showing that 20 h of incubation at 45°C were an optimal condition for 

producing the whey starter beginning from the selected sweet whey. Sample B1 showed the 

highest percentage of viable cells (99%) but a lower number of total cells because the culture 

was in stationary phase. The B2 sample exhibited the lowest percentage of viable cells (58%) 

as well as a low level of total cells, suggesting that the longer incubation, i.e., 10 h more than 

the B1 sample, had affected the microbial cells. The non-viable population (NV) gave a more 

variable result (CV 56%), representing on PC2 almost one-third of T population (Table 1). 

Plate counts in MRS at pH 5.4 were more variable (CV of 68%) than those in WAM, 

ranging from 4% in PC2 to 46% in MN4. With respect to T, cultivable population in WAM 

ranged from 21% in PC2 to 100% in MN6, VI1 and VR1 and in MRS at pH 5.4 from 1% in 

PC2 to 44% in MN4. Cultivability of samples G and B1 in MRS at pH 5.4 and in WAM were 

similar, showing that this parameter depends upon the microbial biodiversity of the sample. In 

sample B2, cultivability was lower than for samples B1 and G, suggesting that acid stress can 

modify the capability of cells to duplicate in the agar medium. 

The measurements of pH and titratable acidity are two different methods for evaluating the 

whey starter acidity. As expected the two parameters were not strongly correlated (correlation 

coefficient, -0.60). pH varied between 3.15 for BS4 to 3.49 for VI2. The highest value of pH 

in sample B1 was linked with low numbers of T and V values and high value of °SH. 

Differently form this control sample, for the experimental samples the same correlation was 

not found. It was observed that in samples characterized by a low percentage of viable bacteria 

(BS3, VI1, MN5 and MN2), the °SH were higher than 31.0, but in other samples in which the 

viable population was less than 86% (PC1, VI2 and PD1) the °SH was 29.0. In contrast, MN4 

had 96% of viable cells and 32°SH. In the control samples similar percentage of viable cells 

were observed when acidity was 26.0 and 31.5 °SH (in B1 and G samples, respectively 99% 

and 98%), whereas the percentage of viable cells decreased in sample B2, when the acidity 

was 34.0 °SH. The relationship between acidity and cell viability could depend on the acid 

resistance of the dominant microbial population.  
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 Plate count on  Direct count  Acidity 

 WAM MRS pH5.4  Total  Viable Non viable  Titratable  

Sample 
(cfu/ml) 

SD 

(cfu/ml) 

SD 

 (cells/ml) 

SD 

(cells/ml) 

SD 

(cells/ml) 

SD 

 °SH 

SD 

pH 

SD 

BS
a 
1 

9.50 x 10
8
 2.60 x 10

8
  1.58 x 10

9
 1.45 x 10

9
 1.25 x 10

8
  28.0 3.31 

9.90 x 10
7
 2.26 x 10

7
  3.54 x 10

7
 1.41 x 10

7
 2.83 x 10

6
  0.14 0.01 

BS 2 
1.40 x 10

9
 2.21 x 10

8
  1.55 x 10

9
 1.47 x 10

9
 7.50 x 10

7
  31.0 3.48 

1.06 x 10
8
 8.49 x 10

6
  3.89 x 10

7
 2.83 x 10

7
 1.06 x 10

6
  0.35 0.02 

BS 3 
7.80 x 10

8
 1.18 x 10

8
  1.59 x 10

9
 1.37 x 10

9
 2.20 x 10

8
  31.5 3.35 

5.66 x 10
7
 5.66 x 10

6
  6.36 x 10

7
 2.12 x 10

7
 7.07 x 10

6
  0.35 0.02 

BS 4 
9.40 x 10

8
 2.14 x 10

8
  1.35 x 10

9
 1.25 x 10

9
 1.00 x 10

8
  33.0 3.51 

3.54 x 10
7
 1.20 x 10

7
  3.54 x 10

7
 4.24 x 10

7
 1.41 x 10

6
  0.14 0.02 

MN
b
 1 

6.40 x 10
8
 7.20 x 10

7
  1.50 x 10

9
 1.35 x 10

9
 1.50 x 10

8
  30.0 3.42 

6.36 x 10
7
 5.66 x 10

6
  1.41 x 10

7
 4.24 x 10

7
 7.07 x 10

5
  0.14 0.02 

MN 2 
9.80 x 10

8
 8.30 x 10

7
  1.90 x 10

9
 1.70 x 10

9
 2.00 x 10

8
  31.5 3.38 

4.95 x 10
7
 5.66 x 10

6
  4.24 x 10

7
 2.83 x 10

7
 5.66 x 10

6
  0.07 0.01 

MN 3 
4.82 x 10

8
 1.60 x 10

8
  1.40 x 10

9
 1.35 x 10

9
 5.00 x 10

7
  32.0 3.48 

2.90 x 10
7
 1.27 x 10

7
  2.12 x 10

7
 3.54 x 10

7
 1.34 x 10

6
  0.35 0.01 

MN 4 
1.32 x 10

9
 6.04 x 10

8
  1.

 
37 x 10

9
 1.27 x 10

9
 1.00 x 10

8
  27.0 3.49 

8.49 x 10
7
 4.67 x 10

7
  1.77 x 10

7
 2.12 x 10

7
 1.41 x 1 0

6
  0.28 0.01 

MN 5 
4.05 x 10

8
 9.86 x 10

7
  1.00 x 10

9
 8.75 x 10

8
 1.25 x 10

8
  33.0 3.38 

1.77 x 10
7
 7.35 x 10

6
  3.54 x 10

7
 1.27 x 10

7
 3.54 x 10

6
  0.35 0.01 

MN 6 
1.61 x 10

9
 2.11 x 10

8
  1.61 x 10

9
 1.53 x 10

9
 7.50 x 10

7
  33.0 3.39 

1.84 x 10
8
 1.56 x 10

7
  3.18 x 10

7
 4.24 x 10

7
 1.06 x 10

6
  0.35 0.01 

PC
c
 1 

9.28 x 10
8
 1.27 x 10

8
  1.00 x 10

9
 8.25 x 10

8
 1.75 x 10

8
  29.0 3.49 

4.45 x 10
7
 5.66 x 10

6
  7.07 x 10

6
 6.36 x 10

7
 1.70 x 10

7
  0.28 0.02 

PC 2 
2.45 x 10

8
 1.00 x 10

7
  1.16 x 10

9
 1.13 x 10

9
 2.50 x 10

7
  30.0 3.53 

2.40 x 10
7
 7.78 x 10

5
  3.18 x 10

7
 3.54 x 10

7
 8.49 x 10

5
  0.35 0.01 

PC 3 
1.64 x 10

9
 4.32 x 10

8
  1.65 x 10

9
 1.52 x 10

9
 1.25 x 10

8
  30.0 3.47 

9.19 x 10
7
 2.33 x 10

7
  4.60 x 10

7
 2.83 x 10

7
 5.66 x 10

6
  0.14 0.01 

PC 4 
9.19 x 10

8
 1.69 x 10

8
  1.16 x 10

9
 1.08 x 10

9
 7.50 x 10

7
  32.0 3.39 

6.43 x 10
7
 1.34 x 10

7
  2.62 x 10

7
 3.25 x 10

7
 7.78 x 10

5
  0.07 0.02 

PC 5 
9.55 x 10

8
 2.65 x 10

8
  1.18 x 10

9
 9.50 x 10

8
 2.25 x 10

8
  30.5 3.50 

6.72 x 10
7
 2.05 x 10

7
  2.47 x 10

7
 2.12 x 10

7
 4.24 x 10

6
  0.07 0.04 

PD
d
 1 

9.46 x 10
8
 2.16 x 10

8
  1.40 x 10

9
 1.20 x 10

9
 2.00 x 10

8
  29.0 3.45 

6.65 x 10
7
 1.27 x 10

7
  1.20 x 10

8
 1.41 x 10

7
 2.26 x 10

7
  0.28 0.03 

PD 2 
1.30 x 10

9
 1.59 x 10

8
  1.48 x 10

9
 1.08 x 10

9
 4.00 x 10

8
  30.0 3.57 

1.27 x 10
8
 5.66 x 10

6
  4.24 x 10

7
 2.12 x 10

7
 1.13 x 10

7
  0.35 0.02 

VI
e 
1 

1.93 x 10
9
 9.80 x 10

7
  1.93 x 10

9
 1.68 x 10

9
 2.50 x 10

8
  31.0 3.49 

1.20 x 10
8
 3.89 x 10

6
  3.54 x 10

7
 1.06 x 10

8
 7.78 x 10

6
  0.14 0.03 

VI 2 
1.11 x 10

9
 1.20 x 10

8
  1.73 x 10

9
 1.48 x 10

9
 2.50 x 10

8
  29.0 3.58 

8.49 x 10
7
 9.90 x 10

6
  4.95 x 10

7
 3.54 x 10

7
 8.49 x 10

6
  0.11 0.01 

VR
f
 1 

1.62 x 10
9
 1.89 x 10

8
  1.62 x 10

9
 1.47 x 10

9
 1.50 x 10

8
  30.0 3.50 

1.27 x 10
8
 1.91 x 10

7
  1.13 x 10

8
 3.54 x 10

7
 1.41 x 10

6
  0.18 0.01 

VR 2 
1.43 x 10

9
 1.74 x 10

8
  1.45 x 10

9
 1.30 x 10

9
 1.50 x 10

8
  30.0 3.36 

1.20 x 10
8
 9.90 x 10

6
  1.70 x 10

8
 1.27 x 10

8
 2.83 x 10

6
  0.11 0.02 

Sample G 
1.45 x 10

9
 9.80 x 10

8
  1.90 x 10

9
 1.87 x 10

9
 5.00 x 10

7
  31.5 3.30 

7.78 x 10
7
 8.77 x 10

7
  5.66 x 10

7
 2.83 x 10

7
 1.70 x 10

6
  0.04 0.01 

Sample B1 
6.20 x 10

8
 3.78 x 10

8
  8.00 x 10

8
 7.95 x 10

8
 5.00 x 10

6
  26.0 3.82 

3.54 x 10
7
 2.97 x 10

7
  1.56 x 10

7
 5.66 x 10

6
 9.19 x 10

4
  0.14 0.01 

Sample B2 5.14 x 10
8
 3.13 x 10

8
  9.12 x 10

8
 5.24 x 10

8
 3.88 x 10

8
  34.0 3.15 

 1.72 x 10
7
 1.92 x 10

7
  2.05 x 10

7
 9.90 x 10

6
 5.66 x 10

6
  0.35 0.01 

 

Table 1. Microbiological and chemical determinations of 21 natural whey starters for Grana Padano 

cheese collected in six different provinces and three control samples (positive control G, negative 

controls B1 and B2). SD standard deviation.  

a
BS.

 
Brescia province, 

b
MN. Mantova province, 

c
PC. Piacenza province, 

d
PD. Padova province, 

e
VI. Vicenza 

province, 
f
VR. Verona province  
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Sunray plots 

Each sample plots was constructed by averaging the sample replicates first and 

normalizing the data to scale the plots correctly later. In this way it is possible to ensure that 

no distortion in the plots results due to relative magnitude. The sunray plots demonstrated the 

differences between samples fairly well.  

To evaluate the quality of a natural whey starter, it is necessary to consider that its role 

during cheese manufacture is to produce the lactic acid that influences important quality 

characteristics such as texture, moisture content, absence of pathogenic microorganisms, and 

taste (Fox et al., 1997).  

The rate of acid production, generally measured as °SH and/or pH, is critical for the 

production of cheese. Starters may also be required to produce acid at a consistently fast rate 

every day through the manufacturing period (Hugenholtz, 2008). To reach this goal the cells 

should be numerous, viable, and able to replicate in the milk in the vat and curd. These are the 

reasons why high values of T and V are considered positive traits. Correspondingly, a high 

value of NV is a negative trait. High °SH and low pH values can be considered as positive 

features only if they are related with a high percentage of V. In a sunray plot, this positive 

aspect is easily visualized in the two triangles: T-centre-V and V-centre-SH: the bigger they 

are, the better is the starter quality, as exemplified by sample G (Figure1). At the same time, 

the triangle pH-centre-VN must be smaller. According to the present approach, MN2, MN6, 

PC3 and VI1 can be considered good-quality samples, MN5, PC1 and PC2 can be considered 

low-quality samples, with the latter one appearing to be particularly poor. 

The capacity of the cells to grow in the synthetic commercial medium MRS, even when it 

is acidified, is generally lower than their capacity to grow in WAM. As previously discussed 

(Lazzi et al., 2004), the reason for this difference is related to the cells‟ nutritional requirement 

and to the greater complexity of the WAM which attempts to reproduce the natural system of 

the whey. The capability of the cells to grow in MRS and WAM could be interpreted as a 

different possibility of adaptation to the curd and cheese environment. Even high count values 

in WAM and in MRS at pH 5.4 can be considered as positive traits, while low levels of these 

parameters may be considered as biodiversity, rather than as a negative factor. 

 

PCA analysis 

To confirm the efficiency of this unusual approach, the same pool of data was analyzed by 

means of a more common statistical method such as principal components analysis (Figure 2). 

It was possible to evaluate the difference of the sample G from samples B1 and B2 along 
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factor 1, mainly composed by T, V and WAM variables. On the other hand, samples B1 and 

B2 laid differently on the biblot along Factor 2 composed by variable °SH, NV (towards 

sample B2) and pH (towards sample B1). Sample G and samples B1 and B2 were at the 

extremities of the biblot and, as expected, variables T, V and WAM discriminated between the 

good and the bad samples. Bad samples differed from each other for their different acidity. 

According to the sunray plot, samples VI1, MN2, MN6 and PC3 were closest to G whereas 

samples MN5, PC1 and PC2 laid in the bad sample zone. Samples PD2, MN1 and BS4 

overlapped in the middle of the biblot but their sunray plots were different. Similarly, in the 

“bad zone”, PC1 and PC2 were very close and, in the “good zone”, MN2 was very close to 

MN6, but their sunray plots were different. The not very high value of variance of the PCA 

analysis (62.56%) could be the reason of this discrepancy (Massart et al., 1988). During PCA  
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Figure 1. Sunray plots of the standardized chemical and microbial parameters for 21 natural whey 

starters for Grana Padano cheese and three control samples (G, B1 and B2). Each axis represent one 

parameter: cfu/ml
 
in WAM (WAM), cfu/ml

 
in MRS at pH 5.4 (MRS), total cells/ml (T), viable 

cells/ml (V), titrable acidity expressed as °SH (SH), pH and non-viable cells/ml (NV). 
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Figure 2. Scores (a) and loadings (b) plots for the first and second factors of principal component 

analysis carried out on 21 natural whey starters for Grana Padano cheese and three control samples (G, 

B1 and B2) and 7 variables: cfu/ml
 
in WAM (WAM), cfu/ml

 
in MRS at pH 5.4 (MRS), total cells/ ml 

(T), viable cells/ml (V), titrable acidity expressed as °SH (SH), pH and non-viable cells/ml (NV)  



 52 

transformation from 7 original variables to 2 new ones, some information can be lost, 

information fully considered by sunray plots. Comparing the two explorative techniques, it 

could be concluded that, for this particular data set composed by 24 objects and seven 

variables, PCA allowed to highlight the good and the bad samples, while sunrays plots, even if 

remaining only a descriptive and explorative analysis, allowed to better visualize the 

differences among all the samples. 

 

 

3.2.5 Conclusions 

 

The interpretation of the chemical and microbiological data in natural whey starter for 

Grana Padano cheese, has been simplified. Considering their significance for natural whey 

starter quality, a new way for evaluating these parameters was proposed. This approach could 

be useful to summarize and outline the microbiological and chemical data and to readily 

compare different samples, as well as compiling and monitoring a data archive, for example to 

control their time stability. 
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3.3.1 Abstract 

 

A proper level of acidification at early stages of manufacture is essential for a good quality 

hard cheese. In this work, chemical parameters and microbial characteristics of 18 Parmigiano 

Reggiano cheese during molding were analyzed in order to comprehend how the microbial 

growth takes place conditioning acidification performances. Based on lactic acid content, two 

groups of cheeses were observed. High numbers of Lactobacillus helveticus able to metabolize 

galactose but also growing faster in the cheese, appeared to be essential conditions to get 

adecuate lactic acid content. Low acidification and residual galactose were associated to 

higher levels of Streptococcus thermophilus in the cheese. While culturable thermophilic 

bacteria were fundamental for higher lactic acid production, non-culturable cells did not seem 

to contribute to acidification. This new findings could be extended to all hard-cooked cheeses 

produced with thermophilic natural cultures. 

 

3.3.2 Introduction 

 

Parmigiano Reggiano (PR), that was granted the protected designation of origin (PDO) by 

European laws, is an Italian hard-cooked cheese, ripened for a period of at least 1 year, during 

which major microbiological and biochemical changes occur. Raw and partially skimmed 

cow‟s milk supplemented with natural thermophilic starter culture are the main sources of 

lactic acid bacteria (LAB) in this cheese. The latter, consisting of a naturally acidified cheese 
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whey, is composed mainly by different strains of Lactobacillus helveticus, Lactobacillus 

delbrueckii subsp. lactis (Neviani and Carini, 1994; Cocconcelli et al., 1997; Mucchetti and 

Neviani, 2006) and by a minority presence of Streptococcus thermophilus and Lactobacillus 

fermentum (Bottari et al., 2010). During the traditional cheese manufacture, the high cooking 

temperature selects a thermophilic flora that is crucial for the cheese ripening, directly through 

their enzymes and indirectly through acidification (Bottazzi et al., 1993a; Weimer, 2007; De 

Dea Lindner et al., 2008; Gatti et al., 2008). This thermophilic microflora that also remains in 

the whey, will originate the natural whey starter culture that will be used in the next day‟s 

cheesemaking, maintaining a microbiological linkage among productions. After vat extraction 

of the curd its transformation into cheese proceeds during a period in molds that can last 2 

days (http://www.parmigiano-reggiano.it). It is during this phase, and particularly, during the 

first 24 hours that the acidification occurs and the main biochemical processes take place in 

the cheese together with the highest starter thermophilic bacterial growth (Fox et al., 1993; 

Pecorari et al., 2003). Highly acidifying thermophilic LAB added within the natural whey 

starter are the main responsible for this process, in which suitable fermentation of lactose leads 

to lactic acid production. In PR, such as in other Grana types, LAB from natural whey starters 

need from about 5-20 hours, depending on the zones of the cheese, in order to acidify the curd 

(Mucchetti and Neviani, 2006). Thus, lactic acid production, and correspondingly drop in pH, 

at the appropriate rate and time are key steps in the manufacture of a good quality cheese. 

Acidification inhibits the growth of pathogens and food-spoilage bacteria and enhances also 

the expulsion of whey from the curd during the cheesemaking process so producing curd with 

lower moisture levels (Mucchetti and Neviani, 2006; Powell et al., 2011).  

In the first hours of PR cheese manufacture, slow acidification and the presence of residual 

fermentable sugar, as galactose, may occur. Moreover, large cheese wheel size (i.e. 50 kg) 

leads to a slow cooling, creating a gradient between internal and external zones during overall 

molding phase (Zapparoli and Neviani, 2005). In particular, at 24 hours after vat extraction, 

temperatures can reach 35°C and 27°C at internal and external zones, respectively (Giraffa et 

al., 1998; Pecorari et al., 2003). In the absence of antagonist microflora, those are favorable 

conditions to the growth of undesirable bacteria, if present in the raw milk, that can lead to 

fermentations with gas formation with structural defects consequences on the cheese 

(Pellegrino et al., 1996; Pecorari et al., 2003). Spoilage bacteria such as Clostridium 

butyricum, Clostridium sporogenes, Coliforms and yeasts can find the optimal condition to 

grow causing early and late blowing in PR cheese (Tosi et al., 2006). Bottazzi et al. (1993b) 

stated that germination of Cl. tyrobutyricum spores takes place in the first 20-30 hours after 
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renneting in Grana cheese, a similar hard cheese. Moreover, early gas, mainly as CO2, can be 

also due to the growth of heterofermentative non-starter LAB (NSLAB) able to metabolize 

residual galactose (Mucchetti and Neviani, 2006). 

As stated above, acidification rate by starters in a proper level and time, is essential for a 

good quality PR cheese. Thus, the aim of this work was to evaluate the rate of acidification of 

PR cheese at 24 hours after vat extraction, during molding phase in order to investigate 

acidification performances together with microbial development. Thus, PR cheese were 

subjected to chemical and microbiological analyses. For microbial growth evaluation, different 

methodological approaches were used.  

 

3.3.3 Materials and Methods 

 

Cheese manufacture 

Eighteen PR cheeses were sampled from 7 different dairies belonging to the PDO cheese 

production area. Five dairies supplied two cheeses, and 2 dairies 4 cheeses. PR cheeses (33-35 

kg) were made according to the method approved by the Consortium (Council Regulation, 

1992; http://www.parmigiano-reggiano.it). The vats (copper tanks) of 1,200 L of capacity 

were filled with a mixture of raw cow‟s milk from two consecutive milking. In which the milk 

from the evening milking was partially skimmed after overnight creaming (8-10 h at 12-18°C). 

The natural whey cultures were used as starters (2.5 - 3.2% v/v), in which were obtained by 

incubating under a gradient of temperature from about 50°C to 35–20°C for 18-24 h, the whey 

of the previous day‟s cheesemaking. Calf rennet powder were added and coagulation were 

obtained at 32-35°C. After the coagulation, the curd was cut then stirred and cooked for 5-15 

min at 54-56°C. After 40-80 min to let deposit the curd, it was extracted from the vat and cut 

in two portions and then the two curd were molded for 48 h before being salted in saturated 

brine for 20-23 days. Cheese is ripened for 18-24 months at 18-22°C and 80-85% relative 

humidity. 

Samples of cheese were collected aseptically at 24 hours after vat extraction during the 

molding phase and were kept at 4°C until arrival at the laboratory. As soon as they arrived 

they were subjected to microbiological analysis, moisture and pH determinations and stored at 

-20°C for further analysis within 2 days. 
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Microbial counts 

Ten grams of grated cheese samples were suspended in 90 ml of 20 g/L of trisodium 

citrate solution (pH 7.5) (Sigma-Aldrich, St. Louis, USA) and homogenized for 2 min in a 

Blender (Seward, London, United Kingdom) at 230 rpm. Serial decimal dilutions in sterile 

quarter-strength Ringer solution (Oxoid, Basingstoke, United Kingdom) were made and 

spread plated on the following media and incubation conditions: MRS agar pH 5.4 (Oxoid, 

Basingstoke, UK) at 42°C and 25°C for 72 h (for the recovery of thermophilic and mesophilic 

lactobacilli, respectively), under anaerobic conditions (AnaerogenTM, Oxoid, Basingstoke, 

UK); M17 agar (for the recovery of streptococci) (Oxoid, Basingstoke, UK) at 42°C for 72 h 

under aerobic conditions and whey agar medium (WAM) (Gatti et al., 2003) at 42°C for 72 h, 

under anaerobic conditions (AnaerogenTM, Oxoid, Basingstoke, UK), (for enumeration of 

lactic acid bacteria arising from natural whey starter). Plates were made in triplicate and 

results were expressed as cfu/g of cheese. 

Additionally, an aliquot (15 ml) of the cheese homogenates in trisodium citrate solution 

was used for viability counts. LIVE/DEAD Baclight Bacterial Viability kit (Molecular Probes, 

Oregon, USA) was used according to manufacturer‟s instructions. Cheese homogenates (15 

ml) were centrifuged (10,000 rpm, 10 min, 4°C). The resulting pellet was washed twice in 15 

ml of 20 g/L sodium citrate solution (pH 7.5) (Sigma-Aldrich, St. Louis, USA), then 

resuspended in 15 ml of sterile water and ten-fold diluted. Hence, 1 ml was used for viability 

counts as directed by the supplier. Samples stained with LIVE/DEAD were then filtered on 

black polycarbonate filters (0.2 µm pore size) (Millipore Corp., Billerica, MA, USA), 

visualized by an epifluorescence microscope (Nikon 80i, Tokyo, Japan) and counted as 

described by Bottari et al. (2010). Three separate experiments were made for each sample. 

 

Fluorescence in situ hybridization (FISH)  

FISH was performed on the ten-fold dilution of cheese samples as previously described by 

Bottari et al. (2010). Lbh1-FITC labelled probe (Bidnenko et al., 1998), specific for L. 

helveticus and St4-Cy3 labelled probe specific for S. thermophilus (Mercier et al., 2000), were 

used. Both probes were synthesized and labelled by eurofins MWG (Ebersberg, Germany). 

After addition of 10 µl of the hybridization buffer (0.9 M NaCl, 0.01% SDS, 20 mM Tris-HCl 

pH 7.2, 45% formamide) containing 10 ng of each probe, slides were incubated in a dark 

humid chamber at 45°C for 4 h. Slides embedded in mounting oil were evaluated with a Nikon 

Eclipse 80i epifluorescence microscope (Nikon, Tokyo, Japan) equipped with a C-SHG1 100 

W mercury lamp.  
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DNA extraction and LH-PCR 

In order to obtain information about the community members in the cheese samples, 

genomic DNA was extracted directly from cheese samples and was subjected to LH-PCR 

fingerprinting analysis. Five grams of grated cheese samples were mortared and 450 mg were 

used for DNA extraction by using the General Rapid Easy Extraction System (GREES) DNA 

kit (InCura S.r.l., Cremona, Italy) according to the manufacturer‟s instructions. 

V1 and V2 16S rDNA gene regions were amplified with primers 63F and 355R (Lazzi et 

al., 2004). The forward primer was 5′-end labelled with a 6-carboxyfluorescein (6-FAM) dye. 

Amplicons were then separated by capillary electrophoresis in an automated sequencer 

(Applied Biosystems, Foster City, USA). PCR and capillary electrophoresis conditions were 

performed as described by Bottari et al. (2010). The fragment sizes (base pairs) were 

determined with GeneMapper software version 4.0 (Applied Biosystems, Foster City, USA), 

local Southern method to generate a sizing curve from the fragment migration of the internal 

size standard (GS500 LIZ®; Applied Biosystems Foster City, USA) and a threshold of 150 

fluorescence units. Amplicon lengths were attributed to bacterial species according to LH-

PCR published databases (Lazzi et al., 2004; Gatti et al., 2008). 

 

Compositional analyses 

pH measurements were performed by using a potentiometer (Crison Instruments, 

Barcelona, Spain) and measuring directly in the cheese paste. The moisture content was 

determined by drying the sample at 102°C (IDF, 1982) and fat was measured by the Gerber‟s 

method as modified by Siegfeld (Savini, 1946). Ash content was determined on cheese and on 

water soluble extract of cheese by the gravimetric method according to Savini (1946) after 

calcination of the cheese samples in a muffle at 530°C. The water soluble extract of cheese 

was obtained as reported by Metzger et al. (2001). Lactose, lactic acid and galactose contents 

were determined using an enzymatic test kit according to Giudici et al. (1996). 

Total nitrogen, pH 4.6-soluble nitrogen (SN), 12% trichloroacetic acid-soluble nitrogen 

(TCASN) and 5 % phosphotungstic acid-soluble nitrogen (PTASN) were separated using the 

procedure proposed by Gripon et al. (1975) and their values were assessed by the Kjeldahl 

method. Ammonia nitrogen (N-NH3) was determined according to Savini (1946). From 

nitrogen fractions, the values relative to the components of high molecular weight (Peptones N 

= NS - TCASN), peptides of low molecular weight (Peptides N = TCASN - PTASN - NNH3) 

and free amino acids (amino acids N = PTASN) were obtained. 
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Amino acids determination 

A sample of grated cheese (10 g) was suspended in 45 ml of 0.1N HCl. D,L-Nor-Leu (0.5 

ml of a 5 mM solution) was added as internal standard. The mixture was homogenized for 2 

min with an Ultraturrax T 50 basic (IKA, Staufen, Germany) and centrifuged for 60 min at 

4°C and 3,220 xg. The solution was filtered on a 45 µm filter and 3 ml of the filtrate were 

dried. The residue was dissolved in 2 ml of a 0.1% solution of formic acid and ultrafiltered for 

30 min a 7,370 xg (molecular cut off of 10 kDa). The filtrate was dried and suspended in 300 

µl of bidistilled water. The derivatization reaction was carried out on 10 µl of the solution 

using the AccQ*FluorTM reagent kit (Waters, Milford, MA, USA) following the 

manufacturer‟s instructions. The mixture was analyzed by HPLC on an Alliance 2695 

separation module, at flow of 1 ml/min, by using an AccQ-Tag C18 column (3.9 x 150 mm) 

thermostated at 37°C. Eluent A: phosphate buffer AccQ*TagTM added of 1 L of bidistilled 

water; eluent B: CH3CN:H2O 60:40; gradient: 0-1 min linear gradient from 100% to 97% A, 

1-13 min linear gradient from 97% to 93% A, 13-18 min linear gradient from 93% to 90% A, 

18-38 min linear gradient from 90% to 67% A, 38-51 min isocratic 67% A, 51-52 min linear 

gradient from 67% to 0% A, 52-61 min isocratic 0% A, plus reconditioning (25 min). 

Detection was performed by a Waters 2475 fluorimetric detector, λabs = 250 nm, λem = 395 nm. 

Quantification was performed against a calibration curve obtained by the internal standard 

method 

 

Statistical analysis 

Data were analyzed by ANOVA multivariate (PASW statistics 18.0.0, Armonk, New 

York, USA) according to the following general linear model: yij = μ + αi + εij. Where: yij = 

dependent variable; μ = common mean; αi = effect of lactic acid content i = 1, 2; εij = residual 

error. According to lactic acid content, cheese samples were divided in two groups: ≤ 1.8 and 

>1.8 g lactic acid/100 g cheese dry matter (DM). Significance of differences were tested by the 

Fisher‟s LSD (least significant difference) method. 

 

3.3.4 Results  

 

Among the 18 cheese samples analyzed 24 h after vat extraction, two distinctive groups 

based on lactic acid content were observed, named as “low lactic acid” (LLA) (< 1.8) , and ii) 

“high lactic acid” (HLA) (> 1.8), expressed as g on 100 g of cheese dry matter (DM). Among 

the cheese samples examined, seven (39%) belonged to the LLA group and eleven (61%) to 
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the HLA group. In particular, two dairies made cheeses that were included in LLA group, 

three dairies in HLA group and two dairies produced cheeses that belonged to both cheese 

groups. 

 

Cheese composition 

The basic composition of cheese samples is reported in Table 1. No differences between 

LLA and HLA cheese were observed for moisture, protein and fat content (g/100g cheese 

DM). Differently, LLA group was characterized by contents of ash lower (P < 0.05) than those 

of HLA group: 4.77 and 4.94 (g/100g cheese DM), respectively. Even the quota of water 

soluble ash of cheese (expressed as % of cheese ash) was lower (P < 0.05) in LLA group than 

in HLA group, being 30.79 % and 44.79 %, respectively. Lactose, galactose, and lactic acid 

 

Composition  

LLA HLA 

Pb Mean SDa Mean SDa 

            

Moisture (g/100g) 38.70 0.98 38.55 0.83 NSc 
Protein (g/100g DM*) 48.75 1.06 48.18 2.79 NS 
Fat (g/100g DM) 44.73 1.12 44.61 5.07 NS 
Ash (g/100g DM) 4.77 0.15 4.94 0.16 ≤0.05 
Lactose (g/100g DM) 0.030 0.050 0.014 0.021 NS 
Galactose (g/100g DM) 0.854 0.190 0.312 0.201 ≤0.05 
Lactic acid (g/100g DM) 1.400 0.478 2.154 0.162 ≤0.05 
Ripening index d 3.90 1.09 4.88 0.89 ≤0.05 
Water soluble Ash/Ash (%) 30.79 2.22 44.79 1.77 ≤0.05 
pH 5.401 0.154 5.220 0.196 ≤0.05 

 

Table 1. Composition and pH values of Parmigiano Reggiano cheeses 24 h after vat extraction, 

according to lactic acid content (LLA: ≤1.8; HLA: >1.8 g/100g cheese DM) 

 

*
DM: cheese dry matter

 

a
Standard deviation

 

b
p value

 

c
not significant, p>0.05 

d
soluble nitrogen at pH 4.6/Total nitrogen (%) 

 

contents (g/100 g cheese DM) and pH values of 24-h cheeses are shown in Table 1. 

Comparing to HLA cheeses, LLA cheeses were characterized by higher (P < 0.05) values of 

galactose (0.85 vs 0.31 g/100g cheese DM for HLA) and, as expected, lower (P < 0.05) values 

of lactic acid (1.40 vs 2.15 for HLA). Accordingly, pH values resulted lower (P < 0.05) in 

HLA than LLA in which the difference was on average 0.18 units. Nitrogen fractions of 24-h 
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cheeses reported no differences between LLA and HLA cheeses (data not shown), except for 

the ripening index (soluble nitrogen at pH 4.6, expressed as a percentage of total nitrogen) 

which its value resulted to be higher in HLA than in LLA cheese (4.88 vs 3.90 %, P < 0.05). 

 

Amino acid composition 

The contents of individual amino acids and their sum (expressed as mg/100 g of cheese 

protein) are reported in Table 2. Total free amino acids concentrations were significantly 

higher in 24-h cheese samples of HLA group than those in LLA. Moreover, significant 

differences could be detected in some amino acid concentrations such as Gly, His, Arg, Ala, 

Pro and Lys, that were higher in HLA cheese samples.  

 

Free amino 
acids 

LLA HLA 
pb 

Mean SDa Mean SDa 

      

Asparagine 15.88 7.98 21.37 7.04 NSc 
Serine 32.04 8.02 33.57 8.60 NS 
Glutamine 96.43 20.19 102.25 19.04 NS 
Glycine 13.32 1.80 18.37 2.98 ≤0.05 
Histidine 36.65 12.08 54.69 10.08 ≤0.05 
Arginine 49.83 9.43 64.43 11.09 ≤0.05 
Threonine 24.49 8.40 24.82 7.70 NS 
Alanine 45.47 14.29 63.78 15.20 ≤0.05 
Proline 60.75 14.48 81.17 16.09 ≤0.05 
Tyrosine 34.09 5.68 35.49 10.70 NS 
Valine 40.17 6.87 46.95 7.62 NS 
Metionine 13.09 4.13 15.63 4.35 NS 
Lysine 103.66 20.25 131.21 12.65 ≤0.05 
Isoleucine 25.12 5.56 26.56 5.43 NS 
Leucine 56.99 9.65 59.58 16.43 NS 
Phenylalanine 26.97 4.32 25.35 8.97 NS 

 

Table 2. Free amino acids (mg/100g of cheese protein) of Parmigiano Reggiano cheeses after 24 h of 

vat extraction according to lactic acid content (LLA: ≤1.8. HLA: >1.8 g/100g cheese DM) 

 

a
Standard Deviation

 

b
p value

 

c
not significant, p>0.05 
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Microbial counts 

Direct microscopic counts showed high total cell numbers (more than 8 log cells/g) and no 

significant differences between the two groups were observed (Table 3). Cultivable mesophilic 

lactobacilli counts (evaluated in MRS agar pH 5.4 at 25°C) were similar for both LLA and 

HLA samples, however thermophilic lactobacilli counts (MRS at 42°C) showed significant 

differences between LLA and HLA groups, being 6.95 cfu/g and 8.21 cfu/g, respectively 

(Table 3). Moreover, streptococci population also showed differences (P < 0.05) among the 

two groups, (4.46 and 5.47 cfu/g, respectively). 

 

Composition 
Units of 
measurement 

LLA HLA 
pb 

Mean SDa Mean SDa 

       

Total Log cells/g 8.48 0.40 8.66 0.34 NSc 
Mesophilic 
lactobacilli 

Log cfu/g 1.44 1.02 1.52 0.77 NS 

Thermophilic 
lactobacilli 

Log cfu/g 6.95 0.50 8.21 0.38 <0.05 

Streptococci Log cfu/g 4.46 0.71 5.47 1.06 <0.05 
Cultivable in WAM Log cells/g 6.63 0.80 7.89 0.28 <0.05 
Viable Log cells/g 8.14 0.41 8.44 0.30 NS 
Non-viable Log cells/g 8.18 0.42 8.19 0.45 NS 

 

Table 3. Microbial counts of 24-hour-cheese samples according to lactic acid content (LLA: ≤1.8, 

HLA: >1.8 g/100 g cheese DM). 

 

Mesophilic lactobacilli: MRS (Man Rogosa Sharpe) at 25°C, in anaerobiosis; Thermophilic lactobacilli: MRS at 

42°C in anaerobiosis, Streptococci population: M17 at 25°C, aerobiosis. WAM (whey agar medium) at 42°C 

under anaerobic conditions for enumeration of lactic acid bacteria arising from natural whey starter. Total, viable 

and non-viable were performed by direct microscopic counts.  

a
Standard Deviation

 

b
p value

 

c
not significant, p>0.05 

 

Cultivable bacterial population in WAM, for enumeration of LAB arising from natural 

whey starter, showed differences (P < 0.05) between the two groups of cheese. That is, LLA 

cheeses highlighted density mean values of 6.63 log cfu/g, and HLA cheeses showed higher 

values of 7.89 cfu/g. Only microbial thermophilic counts in the three growth media (MRS, 

M17, WAM) evidenced higher cell densities in HLA cheese group. Viability counts were 

performed by using fluorescence microscopy. Differently from cultivable counts, no 

significant differences were observed between LLA and HLA groups of samples.  
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Determination of cheese community structure 

Bacterial community structure of cheeses at 24 h after vat extraction was determined by 

LH-PCR and FISH. 16S rRNA gene of bacterial DNA extracted directly from cheese samples 

were amplified by PCR, then amplicons were separated in an automated gene sequencer and 

fragment lengths were assigned to different species according to published databases (Lazzi et 

al., 2004; Gatti et al., 2008). Among the 18 cheese samples, three different profiles based on 

the presence of peaks were observed (Figure 1). Profile A was characterized by peaks at 330 

±1 bp (attributed to L. delbrueckii subsp. lactis or subsp. bulgaricus); 334 ± 1 bp (L. 

helveticus), and double peaks at 342 ± 1 bp and 345 ± 1 bp (attributed to L. fermentum). A 

peak at 305 ± 1 bp was also detected (non-attributed). 

 

 

Figure 1. Three representative electropherogram profiles of DNA fragments amplified by PCR 

belonging to 24-h cheese samples. The x axis shows the peak size in base pairs, and the y axis shows 

the peak intensity in relative fluorescence units. Numbers represent the species, according to a 

published LH-PCR database (Lazzi et al., 2004), as follows: 1, L. delbrueckii subsp. lactis; (1), 

secondary peak of 1; 2, L. helveticus; 3, L. fermentum; 4, S. thermophilus; 305 and 323 are non-

attributed peaks. 
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Profile B was characterized by the presence of only two peaks at 330 ±1 bp and 334 ± 1 

bp, according to the database belonged to L. delbrueckii subsp. lactis and L. helveticus species, 

respectively. No other peaks were detected. Finally, profile C presented peaks at 330 ±1 bp 

and 334 ± 1 bp, attributed to L. delbrueckii subsp. lactis and L. helveticus, respectively, and a 

peak at 320 ± 1 bp attributed to S. thermophilus. Other peaks at 305 bp and 323 bp were also 

detected and non-attributed to any species in the database. 

Most cheese samples (45%) were characteristic of profile A, 33% displayed profile B, 

whereas profile C was revealed in 22% of cheese samples 24 h after vat extraction. However, 

no correlation between profile types and groups according to lactic acid content was observed. 

Bacterial identification by FISH analysis was performed by specific probes for L. 

helveticus and S. thermophilus species. The signal intensity of cells hybridized with 

oligonucleotide probes is directly related to the cellular rRNA content which is a useful 

indicator of viability (Bottari et al., 2006). An evaluation of relative abundance of the two 

targeted viable species was done, for each sample, according to Bottari et al., (2010). Figure 2 

shows two representatives results. It was observed that LLA cheese group was characterized 

by a majority of S. thermophilus hybridized cells respect to L. helveticus hybridized cells. On 

the contrary, HLA cheese samples showed a majority of L. helveticus hybridized cells.  

 

(a) FISH LLA                                               (b) FISH HLA 

 

 

Figure 2. FISH of 24-h cheese samples classified as LLA (a) and HLA (b). The simultaneous use of 

probes St4 (red label) and Lbh1 (green label), revealed the presence of a majority of hybridized S. 

thermophilus cells (a). A lower amount of hybridized L. helveticus cells was also present. While 

majority of hybridized L. helveticus cells (b) was revealed in HLA. A lower amount of hybridized S. 

thermophilus cells was also present. Non-hybridized cells on the background could be either non-L. 

helveticus Lactobacillaceae or non-viable L. helveticus. 
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3.3.5 Discussion 

 

During the first 24 hours of molding phase, acidification is the main biochemical process 

that takes place in the cheese. It is obtained by conversion of lactose into lactic acid by starter 

LAB. Acid production at the appropriate rate and time is a key step in the manufacture of a 

good quality cheese (Fox et al., 1993; Powell et al., 2011). Moreover, during cheese 

manufacture, milk acidification cause a decrease in pH which in combination with cooking 

and stirring, promotes the syneresis of the curd and the expulsion of the whey (Walstra, 1993). 

To achieve this effect, fast acidification by starter LAB activity should occur. In Italian hard 

cheese (i.e. PR) acidification of the curds was reported during the first 48 h during molding 

phase (Pecorari et al., 2003). 

In this research, 18 different cheeses were sampled from 7 dairies at 24 hours after vat 

extraction during molding in order to gain knowledge and comprehend how the microbial 

growth takes place in different cheeses and to evaluate not only fermentative activity but also 

acidification rate performances by natural whey starter LAB. Chemical parameters and 

microbial characteristic of 18 cheeses were analyzed. It was found that cheeses could be 

divided into two groups according to the lactic acid content produced after 24 hours of vat 

extraction during molding, that is cheese with low and high lactic acid content, (referred as 

LLA and HLA, respectively).  

Even though 5 of 7 dairies produced cheeses which belonged to one group, two dairies 

produced cheeses which belonged to either LLA and HLA groups. This result underline the 

variability of production among dairies but also within the same dairy.  

Regarding basic cheese composition, all values were consistent with those reported by 

Panari et al. (2003) for Parmigiano Reggiano cheese at 24-48 hours after vat extraction. 

Besides higher lactic acid content, HLA cheese group was characterized by lower values of 

galactose, pH and higher contents of both ash and water soluble ash (as % of cheese ash) than 

LLA group. The lower pH values reported in HLA may be responsible for a greater 

solubilization of the calcium phosphate bound to the casein matrix (Lucey and Fox, 1993) 

leading to a higher proportion of water soluble ash in those cheeses. 

The modification of calcium and phosphorus equilibrium that are encountered in cheese in 

the early stages of ripening are strongly correlated with changes in its rheological properties 

and influence the development of biochemical, chemical and physical processes during 

ripening (Lucey et al., 2005). As a consequence, the different extent of mineral solubilization 

observed in this work may lead to a different development of cheese ripening between LLA 

and HLA cheeses. 
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In a previous study, carried out on six PR cheeses at 23 hours after vat extraction, Pecorari 

et al. (2003) reported lactic acid content and pH values comparable with those observed for 

HLA cheeses but clearly different when compared to LLA cheese ones. Therefore, increasing 

the number of samples coming from different dairies, 24 h-cheeses with less acidification rates 

was observed. Furthermore, differently from what observed here, galactose was detectable in 

lower amounts (0.009 g/100 g 23-h cheese) compared to amounts in HLA group and, in 

particular, in LLA cheeses. The remaining of galactose and lactose in early cheese can be 

consequences of inefficient fermentative activities from the starter (Mucchetti and Neviani, 

2006). The natural whey starters utilized for each cheese production were considered of good 

quality regarding its microbiological and chemical parameters (data not shown).  

In this study, both cheese groups (LLA and HLA) showed similar lactose consumption, but 

differed in the galactose content, particularly higher in LLA group. This let hypothesize that 

starter bacteria, particularly in LLA group, were characterized by LAB species or strains that 

consume galactose with at slow rate or might not be able to consume it. The dominant species 

found in all 24 h cheeses by LH-PCR belonged to L. helveticus and L. delbrueckii subsp. lactis 

and S. thermophilus, these species can utilize galactose as a carbon source, however, it is 

known that S. thermophilus metabolize galactose strain dependent (Robinson, 2002). At this 

regard, although lactose is efficiently transported into the cell and subsequently hydrolyzed by 

an intracellular β-galactosidase, many strains of S. thermophilus, used in the dairy industry, 

ferment only the glucose moiety of lactose, while the galactose moiety is excreted into the 

medium in equimolar amounts with the lactose uptake (de Vin et al., 2005). De Vin et al. 

(2005) found that some S. thermophilus strains start to consume the galactose excreted into the 

medium only after lactose depletion whereas others were not able to consume it or they did it 

at different rates and to various extent, but never to completion. In this work, higher amounts 

of viable S. thermophilus hybridized cells revealed by FISH in LLA cheeses may confirm this 

hypothesis.  

Similarly to our observations, Mucchetti et al. (2002) found that higher amounts of non-

metabolized galactose remained after 24 h of vat extraction in experimental mini-cheese made 

with a defined S. thermophilus strain as starter than by using undefined natural cultures or L. 

helveticus or L. delbrueckii subsp. lactis strains alone. Furthermore, as expected, HLA cheeses 

characterized by higher proportions of starter bacteria able to consume galactose (i.e. L. 

helveticus revealed by FISH), showed higher lactic acid content than LLA. Thus, besides the 

evidenced differences in metabolizing galactose at species level, the accumulation of residual 



 68 

galactose at 24 h could be also demonstrated by lower thermophilic cultivable bacterial 

densities (~1 log unit) found in LLA group.  

In PR cheese, as other cheeses, special attention must be given to the availability of 

residual galactose that may lead to undesirable fermentation to CO2 by increasing growth of 

Clostridium sp. and/or heterofermentative LAB, Coliforms and yeasts. This results in late and 

early blowing causing textural defects such as slits and fractures in cheese (Bottazzi et al., 

1993b; Pellegrino et al., 1996). 

By FISH it was found that HLA cheese group presented higher amounts of viable L. 

helveticus hybridized cells. As highly acidifying species (Tunuer and Martley, 1983; Kandler 

and Weiss, 1986), this result agrees with higher average of lactic acid content and lower pH 

values found in those cheeses. On the other hand, the same cheeses at vat extraction (0 h) were 

also analyzed in this work, and the lactic acid content was significantly higher in LLA cheeses 

than HLA cheese samples (data not shown). This reversal of lactic acid level was in good 

agreement with the presence of a majority of S. thermophilus cells in LLA cheese group. In 

fact, S. thermophilus is reported to acidify more rapidly than lactobacilli (Béal and Corrieu, 

1994; Mucchetti and Neviani, 2006), but fast acidification does not mean high acidification, as 

demonstrated by Spinnler and Corrieu, (1989), that concluded that maximum acidification rate 

of L. helveticus was generally higher than that of S. thermophilus. Therefore, despite their 

presence is not necessarily related with their development in curd, the significance of S. 

thermophilus in the whey starter hast to be reconsidered. In particular, being whey starter a 

natural mix of LAB strains, the occurrence of S. thermophilus strains lacking in β-

galactosidase is likely undesired.  

Interestingly, differently from higher cultivable counts in HLA cheese group, no 

differences were found in the total, viable and non-viable cells between the two groups of 

samples. This could be ascribed to the presence of viable (detected microscopically) but not 

culturable, in agar media, bacteria. This fraction represents microorganisms that even viable 

on the cheese are not able to proliferate on agar media but could be capable to grow in cheese. 

However, the relevance of this population during ripening needs further studies, and being 

non-culturable, they still remain unknown. 

Differently from FISH, thermophilic lactobacilli cultivable counts on MRS were higher 

than streptococci in M17 in both cheese groups. This could be explained by the presence of L. 

delbrueckii species, lactobacilli population cultivated on MRS could belong also to L. 

delbrueckii species that are not targeted by FISH.  
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Species composition determined by LH-PCR showed that profile B, characterized by 

dominant presence of L. helveticus and L. delbrueckii, was in agreement with those previously 

observed in Parmigiano Reggiano cheese at 48 h after vat extraction (Gatti et al., 2008). 

Differently from these authors, that studied only one cheese throughout ripening, in this study 

18 cheeses at 24 hours after vat extraction were analyzed. The variability in terms of species 

composition observed in the cheese samples could be explained by different operational 

conditions in each dairy, although the cheeses are produced under strict production rules.  

In agreement with Beresford and Williams (2004), mesophilic lactobacilli cellular 

densities, (evaluated by cultivable method MRS at 25°C), were lower than 2 log unit, with no 

differences observed between the LLA and HLA cheese groups. This microbial population, 

mainly represented by non-starter lactic acid bacteria (NSLAB), do not contribute to acid 

production during the first hours of cheesemaking and proliferate after brining (2 months) 

reaching densities of 10
7
 cfu/g cheese (De Dea Lindner et al., 2008, Gatti et al., 2008). 

NSLAB are considered to have potential impact on flavor formation during cheese ripening 

(Broadbent et al., 2011). 

The contents of nitrogen fractions and individual free amino acids allowed to highlight 

some issues on cheese proteolysis from a quantitative and qualitative point of view, 

respectively. The ripening index was the only parameter which resulted to be different 

between the two groups, being higher in HLA than in LLA cheese. However, even in 

correspondence of the extraction from the vat, the ripening index was higher in HLA cheese 

(data not shown). Hence, the different degree of casein solubilization reported here, should not 

be related to biochemical process that take place in cheese during the first 24 hours. From a 

microbiological point of view, it could only be speculated that a different microbial 

development occurred already in the vat milk. This could sustain the hypothesis of a better 

development of L. helveticus at the early phase being the most proteolytic species of the 

natural whey starters. 

Independently of the classification of cheese, the most abundant amino acids were lysine 

and glutamic acid while the lowest values were observed for methionine and asparagine. 

Cavatorta et al. (2007) observed a similar pattern of free amino acids in PR cheese sampled 12 

hour after vat extraction.  

Regarding single amino acids concentrations, glycine, histidine, arginine, alanine, proline 

and lysine were significantly higher in HLA than in LLA cheese. Their values ranged from 27 

% (Lys) to 49 % (His). The content of free amino acids was also assessed on the same cheese 

samples just after the vat extraction (0 h). At that point of the cheesemaking process no 
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differences in the contents of singles amino acids and their sum were observed between LLA 

and HLA cheeses (data not shown). According to these results, it seems that the acidification 

of the cheese by SLAB occurred in association with an increase of some specific pepdidase 

activities. This could be related to the metabolism of growing cells but also to an early SLAB 

autolysis which has already been observed in PR (De Dea Lindner et al., 2008; Gatti et al., 

2008), Grana Padano (Zago et al., 2007) and Swiss cheese (Valence et al., 1998; Valence et 

al., 2000). Particularly, L. helveticus strains, characterized by rapid autolysis, are used as a 

flavor adjunct to accelerate ripening in other hard cheese varieties (Valence et al., 1998; 

Kiernan et al., 2000). However, the enzymes released after lysis were not determined in this 

study.  

The higher peptidase activity observed in HLA cheese samples compared to LLA group 

were associated with majority of viable L. helveticus cells together with higher cell counts in 

this cheese group. In fact, L. helveticus has been reported to have a higher proteolytic activity 

compared to S. thermophilus and also to L. delbrueckii subsp. lactis (Sasaki et al., 1995; 

Deutsch et al., 2000; Gatti et al., 2003). Since different L. helveticus strains manifest different 

proteolysis rates (Gatti et al., 1999), the great variability among L. helveticus strains found not 

only in natural whey starters but also in cheese during molding (Giraffa and Neviani, 1999; 

Gatti et al., 2003) has to be also considered.  

 

3.3.6 Conclusions 

 

Lactic acid production, and correspondingly drop in pH, at the appropriate rate and time 

are key steps in the manufacture of a good quality cheese. In this research, chemical 

parameters and microbial characteristics of 18 different cheeses, sampled from 7 dairies 

producing Parmigiano Reggiano, at 24 hours after vat extraction during molding, were 

analyzed in order to comprehend how the microbial growth takes place conditioning 

acidification performances of natural whey starter.  

While the most part of samples showed high lactic acid amount, about 40% of cheeses 

showed a low lactic acid content. Moreover, a variability among different dairies productions 

but also within the same dairy was observed. The different content of lactic acid was 

associated with a different degree of solubilization minerals with possible repercussion on 

cheese rheology and, consequently, on the development of chemical, biochemical and 

microbial processes that take place throughout ripening.  
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The presence of a high number of L. helveticus cells and in particular, of those strains that 

were able to metabolize galactose but also growing faster in the cheese, appear to be essential 

conditions to get adequate lactic acid content and thus the correct curd acidification. In the 

case of a scarce growth of these L. helveticus, galactose would remain non-metabolized. The 

presence of residual galactose was associated to higher contents of S. thermophilus species. In 

this sense, despite their presence is not necessarily related with their development in the curd, 

the significance of S. thermophilus in the whey starter has to be reconsidered. In particular, 

being whey starter a natural mix of LAB strains, the occurrence of S. thermophilus strains 

lacking in β-galactosidase is likely undesired 

Total cell densities, which include the cultivable and non-culturable microbiota, did not 

appear to be fundamental for a correct curd acidification and, while cultivable thermophilic 

bacteria were essential for higher lactic acid production, non-culturable cells did not seem to 

contribute to acidification, or they are not metabolically active. Finally, the biotypes 

composition of whey starter LAB seemed to be far more important than the species 

composition in insuring their good performances.  

The approach used in this study brought technologically very useful answers for the 

correct production of Parmigiano Reggiano cheese but could be extended to all hard-cooked 

cheeses produced with thermophilic natural cultures. 
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3.4.1 Abstract 

 

This study analyze diversity and dynamics of the microbial community in Grana Padano 

(GP) cheese during fermentation and ripening. Differently from other works, this research 

evaluated six GP cheesemaking processes of different dairies. Therefore, it was possible to 

evaluate not only the trend of microbial dynamics but also differences among productions. By 

means of length heterogeneity (LH)-PCR, profiles of the bacterial community were obtained 

and comparisons were carried out. Starter lactobacilli were the main species during the 

acidification steps of GP production and non-starter lactic acid bacteria (NSLAB) were able to 

grow after brining, becoming dominant during ripening. By pre-incubation of skimmed raw 

milk, it was possible to isolate lactobacilli strains: Lactobacillus helveticus, Lactobacillus 

rhamnosus, Lactobacillus delbrueckii subsp. lactis/bulgaricus and Lactobacillus fermentum, 

some of which of dairy interest in GP cheesemaking. It was demonstrated that the 

microorganisms able to grow under the specific cheese environmental conditions during 

ripening, could arise both from raw milk and natural whey starters. The presence of starter 

lactic acid bacteria (SLAB) such as L. helveticus and L. delbrueckii subsp. lactis in the first 

hours of production highlighted the well-known role of natural cultures in curd acidification 

while their presence, as a non-cultivable state, up to 13 months of ripening suggested a 

different unknown role in cheese ripening. Ecological indices throughout manufacturing and 

ripening were used. The vat skimmed raw milk ecosystem showed higher diversity, evenness 

and richness of bacterial community compared to the natural whey starter ecosystem. Among 

cheese ecosystems, diversity, evenness and richness showed changing trends. Differences in 

the qualitative and quantitative rate of cell lysis of SLAB and NSLAB population were found 

among 2-month cheeses with potential effects on ripening process and flavor development.  
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3.4.2 Introduction 

 

Grana Padano (GP) is a Protected Designation of Origin (PDO) cheese produced from 

partially skimmed cow‟s raw milk and by the addition of natural cultures of lactic acid bacteria 

as starter (SLAB). Since spore-forming bacteria are usually found in silage and fermented 

feed, raw milk provide a ready medium for transmission of Clostridia spores. For this reason, 

and to inhibit late blowing caused by butyric fermentations in the cheese, the addition of 

lysozyme to the vat skimmed milk (20 ppm) is allowed (Carini et al., 1985).  

GP microbial ecosystem is due to a complex dynamic equilibrium between SLAB and 

secondary flora that develops during ripening, including non-starter lactic acid bacteria 

(NSLAB). The sources of NSLAB are likely milk and dairy environment (Cogan et al., 2002). 

All these populations are responsible for the development of the characteristic Grana cheese 

flavor.  

The natural whey starter is a complex microbial association of lactic acid bacteria (LAB), 

not only because of the presence of various species, but also because of the large number of 

biotypes (Giraffa et al., 1998). This whey culture consists mainly of thermophilic undefined 

strains of L. helveticus and L. delbrueckii subsp. lactis and secondarily of S. thermophilus and 

L. fermentum (Fornasari et al., 2006; Rossetti et al., 2008; Santarelli et al., 2008; Gatti et al., 

2011). 

The skimmed raw milk used in GP cheesemaking, is obtained by a natural creaming 

process of whole raw milk for 8 to 12 hours at a temperature between 10°C and 20°C 

(http://www.granapadano.it). During this process two opposite phenomena occur: the removal 

of the bacteria ascending with the fat globules and their growth that depends on environmental 

conditions (Panari et al., 2007).  

Most raw milk microorganisms associated with hard cheese varieties are NSLAB mainly 

belonging to the Lactobacillus casei-plantarum group (Coppola et al., 1997; Coppola et al., 

2000; Cogan et al., 2002). By using culture-independent methods, different authors found that 

raw milk microbial composition was composed of lactobacilli and streptococci some of which 

of technological interest (Neviani et al., 2009; Franciosi et al., 2010, 2011).  

The cheese ripening is a complex process involving a range of microbiological and 

biochemical reactions (Cogan et al., 2002). In hard raw milk Italian cheeses such as 

Parmigiano Reggiano (PR) and GP cheeses, in which natural whey starter is used, high 

densities of viable microorganisms are present in cheese throughout ripening (Coppola et al., 

1997; 2000; Zago et al., 2007; De Dea Lindner et al., 2008; Gala et al., 2008). NSLAB are the 

dominant species at advanced stages, and are considered important microflora for the 
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development of cheese flavor because of their proteolytic and peptidolytic activities (Bottazzi, 

1993; Gobbetti, 2004). Moreover, the rapid release of intracellular enzymes due to autolysis of 

LAB in the cheese matrix accelerates the ripening process, and in some cases improves the 

flavor (Kiernan et al., 2000). In other cheese varieties, most studies were focused on autolysis 

of mesophilic starters (Crow et al., 1995; Lortal et al., 2005; Hannon et al., 2007). Autolysis 

of thermophilic cultures also occurs, but it has not been studied to the same extent. 

Investigations reported autolysis of L. helveticus in Swiss-type cheeses (Valence et al., 1998) 

and Cheddar (Kiernan et al., 2000). Thermophilic SLAB autolysis has been observed in GP 

cheese (Zago et al., 2007) and PR (De Dea Lindner et al., 2008; Gatti et al., 2008). 

Microbial composition in PR cheese has been studied at a late stage of ripening (Gala et 

al., 2008), and throughout manufacturing and ripening (De Dea Lindner et al., 2008; Gatti et 

al., 2008; Neviani et al., 2009), whereas, to our knowledge, only one study was focused on 

population dynamics in GP cheese (Zago et al., 2007). These authors studied cheese 

microbiota of an experimental GP by culture-based techniques until 8 months of ripening. 

Authors reported that during ripening a decrease of total thermophilic lactobacilli and an 

increase of mesophilic lactobacilli (mostly belonging to L. casei or L. paracasei and 

Lactobacillus rhamnosus) occurred and a high heterogeneity in terms of strains was observed. 

Moreover, even if a decrease in L. helveticus densities was shown, a global estimation of 

autolysis was not considered.  

The aim of this work was to describe cheese microbiota diversity and dynamics (SLAB 

and NSLAB) during fermentation and ripening of GP from six different dairies. Contrarily 

from Zago et al. (2007), who considered only one cheesemaking by using a culture-based 

approach, this work considered six cheesemaking processes of different dairies. Therefore, it 

was possible to evaluate not only the general trend of microbial dynamics, but also differences 

among productions. Culture-independent approaches were chosen in order to understand the 

contribute of viable, non-viable and lysed cells in ripening of the six different GP cheeses. A 

better knowledge of microbiota dynamics could be in fact useful to address technology 

favoring a suitable microbial evolution to be sought by each dairy.  

 

3.4.3 Materials and Methods 

 

Cheese manufacture and sampling 

Six dairies of six provinces of the GP production area were considered for this study. In 

order to evaluate the cheese microbiota over time during each dairy cheesemaking, twin 
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wheels were produced from the same milk and whey starter in each dairy. Raw milk was 

treated according to the GP production protocol (http://www.granapadano.it; Gobbetti, 2004). 

A single milking was used for Grana Padano manufacture, and the milk was skimmed by 

creaming for about 8 h at 8-20°C. Partially skimmed milk was transferred to the vats (copper 

tanks) of 1,200 L of capacity. The vat skimmed raw milk was added with lysozyme (20 ppm) 

as anticlostridial agent. The natural whey cultures were used as starters (2.5 - 3.2% v/v), in 

which were obtained by incubating under a gradient of temperature from about 50°C to 35–

20°C for 18-24 h, the whey of the previous day‟s cheesemaking. Calf rennet powder were 

added and coagulation were obtained at 31-33°C. After the coagulation, the curd was cut then 

stirred and cooked for 5-15 min at 53-54°C. After 40-80 min to let deposit the curd, it was 

extracted from the vat and cut in two portions and then the two curds were molded for 48 h. 

Then cheese were salted in saturated brine for 20-23 days and  ripened for 12-16 months at 18-

22°C and 80-85% relative humidity. 

Samples were collected from vat skimmed raw milk up to cheese ripened for 13 months. 

Samples consisted of aliquots of the bulk skimmed raw milk (prior to the addition of lysozyme 

and natural whey starter culture), natural whey starter culture, cheese at 48 h after vat 

extraction and at different stages of ripening (2, 6, 9 and 13 months). According to the stage of 

ripening, cheeses were sampled from each twin wheels and were cut in slices. All samples 

were shipped to the laboratory as soon as they were collected and analyzed immediately upon 

arrival.  

 

Microbial counts 

Samples of skimmed raw milk (10 ml), natural whey starter (10 ml), and cheese (10 g) at 

48 h after vat extraction, and at 2, 6, 9 and 13 months were used for the analysis. Ten grams of 

grated cheese samples were suspended in 90 ml of a 20 g/L trisodium citrate solution (pH 7.5) 

(Sigma-Aldrich, St. Louis, USA) and homogenized for 2 min in a Blender (Seward, London, 

United Kingdom). Decimal dilutions of milk and homogenates were made in quarter-strength 

Ringer solution (Oxoid, Basingstoke, United Kingdom) and plated in triplicate in the 

appropriate medium as described as follows. 

Cultivable NSLAB, that can be considered potentially able to survive and grow in the 

ripened cheese were enumerated in cheese agar medium (CAM), constituted of GP grated 

cheese that is characterized by a high amount of digested proteins and NaCl and by the 

absence of milk sugars (Neviani et al., 2009). CAM was incubated at 30°C for 3 days under 

anaerobic conditions. Total bacterial counts of vat skimmed raw milk was performed on Plate 
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Count Agar (Oxoid, Basingstoke, United Kingdom) supplemented with 10 g/L of powdered 

skimmed milk (MPCA) (Difco Skim milk, Sparks, MD, USA). Plates were incubated at 30°C 

for 3 days under anaerobic conditions. Thermophilic LAB were determined in whey starter 

samples by using whey agar medium (WAM) prepared as described by Gatti et al. (2003). 

Plates were incubated at 42°C for 2 days under anaerobic conditions. Total lactobacilli were 

enumerated on Man, Rogosa and Sharpe (MRS) agar (Oxoid, Basingstoke, United Kingdom), 

incubating plates at 30°C for 2 days under anaerobic conditions. 

 

Culture-independent viable counts  

Samples were subjected to viability counts by using the LIVE/DEAD Baclight Bacterial 

Viability kit (Molecular Probes, Oregon, USA) and fluorescence microscopy (Gatti et al., 

2006). One millilitre of 100-fold diluted natural whey starter, and 1 ml of skimmed raw milk 

were used. Grated cheese homogenates in trisodium citrate (15 ml) were centrifuged (10,000 

rpm, 10 min., 4°C).  

The pellet obtained was washed twice in 15 ml of 20 g/L sodium citrate solution (pH 7.5) 

(Sigma-Aldrich, St. Louis, USA) then resuspended in 15 ml of sterile water and 10-fold 

diluted. Hence, 1 ml was used for viability counts according to manufacturer‟s instructions. 

Samples stained with LIVE/DEAD were then filtered on black polycarbonate filters (0.2 µm 

pore size) (Millipore Corp., Billerica, MA, USA), visualized by an epifluorescence 

microscope (Nikon 80i, Tokyo, Japan) and counted as described by Bottari et al. (2010). Three 

separate counts were performed for each sample. Results were expressed as total, viable and 

non-viable cells/ml or cells/g. 

 

DNA extraction from milk, whey and cheese samples 

Bacterial genomic DNA was extracted directly from samples by using the General Rapid 

Easy Extraction System (GREES) DNA kit (InCura S.r.l., Cremona, Italy) according to the 

manufacturer‟s instructions. Before DNA extraction, milk samples were clarified as described 

by Rasolofo et al. (2010), and 1 ml was used for the experiment. Grated 48-h cheeses were 

mortared and 450 mg were used for DNA extraction. Before DNA extraction, cheese samples 

at 2, 6, 9 and 13 months were divided in two fractions and treated differently in order to 

discriminate the DNA from whole and lysed cells as described by Gatti et al. (2008). The free-

cell fraction was obtained by filtration and the whole-cell fraction was treated with DNase in 

order to digest free DNA arising from lysed cells. DNA was extracted from one millilitre of 
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the filtered untreated fraction (lysed cells) and from 1 ml of the treated fraction (whole cells). 

One millilitre of natural whey starter was used for DNA extraction without any treatment. 

 

PCR and length heterogeneity (LH) analysis 

Length heterogeneity-PCR (LH-PCR) (Applied Biosystems, Foster City, USA) was used 

in order to determine the community composition. 

V1 and V2 16S rDNA gene regions were amplified with 63F and 355R primers previously 

described by Lazzi et al. (2004), 63F primer was labelled with 6-carboxyfluorescein (FAM). 

Length heterogeneity of the PCR amplicons was detected by capillary electrophoresis (ABI 

Prism 310, Applied Biosystems, Foster City, USA). PCR and capillary electrophoresis 

conditions were performed as described by Bottari et al. (2010). The fragment sizes (base 

pairs) were determined by using GeneMapper software, version 4.0 (Applied Biosystems, 

Foster City, USA), local Southern method to generate a sizing curve from the fragment 

migration of the internal size standard (GS500 LIZ®; Applied Biosystems Foster City, USA) 

and the minimum noise threshold was set at 150 fluorescence units. Amplicon lengths were 

attributed to bacterial species according to LH-PCR published databases (Lazzi et al., 2004; 

Gatti et al., 2008).  

 

Isolation and identification of species 

Bacterial isolation from skimmed raw milk, natural whey starter, cheese at 48 h after vat 

extraction and at different stages of ripening (2, 6, 9 and 13 months) were performed from 

countable plates. Moreover, in order to better recover microorganisms from skimmed milk 

which could be of dairy interest, aliquots of skimmed vat raw milk were incubated at 30°C or 

42°C under anaerobic conditions for 12 h. Subsequently, pre-treated and control (non-treated) 

skimmed raw milk samples were plated on MPCA and incubated at 30°C or 42°C for 72 h 

under anaerobic conditions.  

Different colony morphologies were selected and purified by restreaking in MRS (Oxoid, 

Basingstoke, United Kingdom) for rod-shaped microorganisms and in M17 (Oxoid, 

Basingstoke, United Kingdom) for cocci, and were incubated at the same temperature of each 

pre-treatment under anaerobic conditions. The isolates were stored in MRS and M17 broth 

containing 20% (v/v) glycerol at −80°C.  

Genomic DNA of isolates was extracted from overnight cultures by using the DNeasy kit 

(Qiagen S.r.l., Milan, Italy) according to the manufacturer‟s instructions. For a rapid screening 

of the isolates based on the LH-PCR database, the LH-PCR fingerprinting method (Lazzi et 
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al., 2004; Gatti et al., 2008) was performed as described above. Moreover, selected isolates 

were identified based on 16S rRNA gene sequencing. DNA amplification and sequencing 

were performed as previously described (Giraffa et al. 2003). Consensus 16S rRNA sequences 

were compared to known sequences in the NCBI ribosomal database using 

(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) the basic local alignment search option.  

 

Statistical analysis 

Data were analyzed by multivariate ANOVA (PASW statistics 18.0.0, Armonk, New 

York, USA) according to the following general linear model: yij = μ + αi + εij, in which yij = 

dependent variable; μ = common mean; αi = type of sample i = 1, ...7; εij = residual error. The 

factor “type of sample” was divided into seven levels: milk, natural whey, cheese at 48 h, 

cheese at 2 months, 6 months, 9 months and 13 months. Significance of differences was tested 

by the Fisher‟s LSD (least significant difference) method. 

 

Diversity indices 

Richness and diversity indices of bacterial population were estimated by using the height 

of each peak (measured as intensity of fluorescence) in the LH-PCR electropherogram 

profiles. Diversity indices (Shannon and Simpson) were calculated as follows (Magurran, 

2004; Buckland et al., 2005): Shannon index, H = -∑ piln(pi), and Simpson index, D = ∑ pi
2
. 

The Simpson‟s index value is given as 1-D since this way of presenting means that a higher 

value reflects higher diversity. Richness (S = the number of species) and Evenness (E = 

H/Hmax; Hmax= lnS) were also calculated. The relative frequencies (pi) were obtained by 

dividing the height of each peak with the total height of all peaks in the electropherogram 

profile for each sample. Standard errors (SE) were calculated for milk, whey and cheese 

samples. 

 

3.4.4 Results 

 

SLAB and NSLAB enumeration  

The culture-based and culture-independent enumeration of the microbial population are 

presented in Table 1. Cultivable NSLAB, evaluated by CAM, in raw milk were higher (P < 

0.05) than those in natural whey starters. A significant increase with respect to cheese at 48 h 

(not significantly different from milk) was observed in all cheeses, except for 13 month-

ripened cheese. No significant differences were observed between 2, 6, and 9 month-cheeses. 
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Total lactobacilli evaluated in MRS medium, showed a similar trend as in CAM. Natural whey 

starters showed significantly higher viable cell densities compared to raw milk. This 

corresponded to a higher cell viability (77%) of total cells (calculated as the number of viable 

cells respect to the number of total cells) compared to raw milk (58%). Total cultivable 

microbiota in natural whey starters was evaluated by WAM. As well as for raw milk samples, 

it was observed that the viable cell number in the whey starters was higher than the cultivable 

counts. Viable cell densities did not show significant differences between cheese at 48 h, 2, 6 

and 9 months in which high cell densities were observed. Despite a significant decrease of 

viable cells was observed at 13 months, the viable cell number was still higher (log 7.11 ± 

0.41) than cultivable lactobacilli in MRS (log 4.53 ± 0.88) and NSLAB in CAM (log 4.82 ± 

0.57). A great number of viable but non-cultivable microorganisms was present in the ripened 

cheese. Non-viable cells were observed during the overall period with no significant 

differences (P > 0.05) among cheeses. Differences between viable and non-viable cells were, 

for almost all samples, lower than 1 log unit. Figure 1 shows the dynamics of cultivable 

NSLAB for the six cheesemaking processes, showing the dispersion of data between dairies. 
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Figure 1. Cultivable NSLAB dynamics during the cheesemaking process.  
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 Bacterial count (mean ± standard deviation) 

 log cfu/ml or g log cells/ml or g log cfu/ml 

  CAM† MRS Viable Non-viable Total MPCA WAM 

Milk 4.13 ± 0.60 b 4.29 ± 0.64 a 6.04 ± 0.45 a 5.09 ± 1.32 a 6.19 ± 0.55 a 4.80 ± 0.66 nd 

Whey culture 2.89 ± 1.15 a nd‡ 9.07 ± 0.12 d 8.49 ± 0.24 c 9.19 ± 0.05 d nd 8.10 ± 0.11 

Cheese 48h 4.22 ± 0.53 b 4.37 ± 0.52 a 7.62 ± 0.42 c 7.01 ± 0.55 b 7.74 ± 0.43 c nd nd 

Cheese 2 mo†† 6.97 ± 0.86 c 6.89 ± 0.87 c 7.53 ± 0.45 c 6.81 ± 0.41 b 7.64 ± 0.39 bc nd nd 

Cheese 6 mo 6.24 ± 0.81 c 6.41 ± 0.84 bc 7.40 ± 0.30 bc 7.00 ± 0.34 b 7.58 ± 0.25 bc nd nd 

Cheese 9 mo 5.94 ± 0.45 c 5.76 ± 0.56 b 7.24 ± 0.15 bc 7.15 ± 0.22 b 7.52 ± 0.14 bc nd nd 

Cheese 13 mo 4.82 ± 0.57 b 4.53 ± 0.88 a 7.11 ± 0.41 b 6.71 ± 0.48 b 7.30 ± 0.36 b nd nd 

SE § 0.30 0.30 0.14 0.25 0.14 nd nd 

 

Table 1. Culture-based and culture-independent approaches for enumeration of the SLAB and NSLAB population. Each value is a mean of six samples for each 

matrix from different dairies throughout ripening. Different letters in the same column indicate that values were significantly different (P < 0.05), as determined 

by ANOVA and least significant difference. 

 

†CAM (Cheese agar medium), MRS (Man Rogosa Sharpe), Milk Plate count agar (MPCA), Whey agar medium (WAM). All media were incubated at 30°C in anaerobiosis, 

except for WAM incubated at 42°C. 

†† mo: months 

§ SE: Standard Error 

‡ nd: not determined 
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Isolation and identification of bacteria  

A total of 334 colonies were isolated from the different counting media for all the samples. 

Bacterial isolation from plate count of skimmed raw milk was also performed after a milk pre-

treatment in order to better recover bacteria, naturally occurring in the milk, that could be of 

dairy interest. Thus, regarding skimmed milk samples, a total of 56 colonies were isolated 

from control (without pre-treatment) and treated samples. Bacterial strains were analyzed by 

LH-PCR, and in order to confirm results, some strains were identified by 16S rRNA gene 

sequencing (Table 2). 

The majority of strains from skimmed milk provided peaks at 319 bp. According to 16S 

rRNA gene sequencing, they corresponded to Streptococcus uberis and Lactococcus genus 

such as Lactococcus lactis subsp. lactis and subsp. cremoris. Some of these strains were found 

only in control milk samples. The second most representative isolate was represented by a 

peak at 330 bp that belonged to Lactobacillus delbrueckii subsp. lactis or subsp. bulgaricus. 

This strain was isolated only from milk pre-treated at 42°C. Peaks at 317 bp were also 

frequently observed on isolates which corresponded to Leuconostoc mesenteroides subsp. 

mesenteroides and L. lactis subsp. cremoris. L. mesenteroides subsp. mesenteroides was only 

recovered in milk pre-treated at 30°C. Microorganisms belonging to the Enterococcus genus 

such as E. faecalis and E. faecium were also identified in milk pre-treated at 30°C and 42°C, 

respectively, giving peaks at 328 bp. L. helveticus (334 bp) and L. hilgardii (344 bp) were 

isolated from milk pre-treated at 30°C whereas L. fermentum (342 and 344 bp) and L. gasseri 

(340 bp) from milk pre-treated at 42°C. L. rhamnosus (336 bp) was isolated from both milk 

pre-treated at 30°C and 42°C.  

Regarding bacteria isolated from natural whey starter and cheese at 48 h after vat 

extraction, all strains were identified as L. helveticus, L. delbrueckii subsp. lactis/bulgaricus 

and L. fermentum. All strains isolated from cheese at 2, 6, 9 and 13 months belonged instead to 

L. rhamnosus, L. casei/paracasei and Pediococcus acidilactici (data not shown). 

 

 

Culture-independent analysis: LH-PCR 

Figure 2 shows the superimposed LH-PCR electropherograms of the six different samples 

representing the microbial composition and dynamics during GP cheese production. Bacterial 

composition of vat skimmed raw milk showed that peaks of 280, 305, 309, 319 and 331 bp 

were mainly detected.  
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  16S rRNA gene sequencing 

LH-PCR 
peak      
(bp)a 

LH-PCR peak 
frequency               

(total of isolates = 56) 
Closest related sequence GenBank 

% 
identity 

n° strains  milk treatmentb 

       

317 8 
Ln. mesenteroides subsp. 

mesenteroides HM058688.1 100 1 ON 30°C 

  L. lactis subsp. cremoris CP002094.1 99 2 control; ON 30°C 

319 21 L. lactis subsp. Lactis HM218818.1 99 8 control; ON 30°C 

  S. uberis  AM946015.1 99 4 control 

329 1 Lactococcus sp. EF204374.1 99 1 control 

328 4 E. faecalis HQ293064.1 100 3 ON 30°C 

  E.faecium JN560911.1 99 1 ON 42°C 

330 10 L. delbrueckii lactis/bulgaricus AB680073.1             
CP002341.1  

100 10 ON 42°C 

334 4 L. helveticus HM218460.1 100 2 ON 30°C 

336 3 L. rhamnosus AF375898.1 99 3 
ON 30°C; ON 

42°C 

340 1 L. gasseri JN813104.1 99 1 ON 42°C 

342, 344 3 L. fermentum JN944698.1 99 3 ON 42°C 

344 1 L. hilgardii HM218530.1 99 1 ON 30°C 

 

Table 2. Identification of species isolated from six milk samples subjected to pre-treatments and without treatment (control) 

 

a
The fragment length is reported with an approximation of  ±1 bp. 

b
Treatment consisted in incubating milk at 30°C or 42°C under anaerobic conditions for 12 h (ON). Control were not subjected to any treatment. 
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According to the published database (Gatti et al., 2008), the 330 bp peak could be 

attributable to L. delbrueckii species, while the peak of 319 bp could be attributable either to S. 

thermophilus or L. lactis subsp. lactis. The peaks of 280, 305 and 309 bp fragment lengths 

were not identified since they did not match with any species in the LH-PCR database.  

In the majority of natural whey starter samples, the same LH-PCR peaks were detected and 

attributed to homofermentative thermophilic lactobacilli: the 330 bp peak was attributable to 

L. delbrueckii subsp. lactis or subsp. bulgaricus and the 334 bp peak to L. helveticus. Both 

SLAB species were dominant, while less abundant peaks at 319 bp were attributable to S. 

thermophilus. At 48 h after vat extraction, electropherograms of cheeses showed new less 

abundant peaks at 342 and 344 bp attributable to the heterofermentative NSLAB L. 

fermentum. These peaks were encountered until 9 months of ripening. Unidentified fragments 

at 323 and 325 bp were present in almost all 48-h cheese samples. The bacterial community 

structure of cheeses from 2 months was represented by the whole cells recovered from each 

stage of ripening. At two months, 336 and 345-bp peaks, belonging to L. rhamnosus or L. 

casei/paracasei and P. acidilactici respectively, were observed and persisted until 13 months 

of ripening. Many cheese samples showed L. rhamnosus or L. casei/paracasei as a dominant 

species. The peak attributable to L. delbrueckii subsp. lactis/bulgaricus was less abundant in 

the majority of 13-month ripened cheeses and none of them showed the presence of peaks 

belonging to L. fermentum.  

 

 

Diversity indices 

By using the LH-PCR technique it was possible to evaluate the diversity of the vat 

skimmed raw milk, natural whey and cheese ecosystems at different stages of ripening for six 

cheese manufacture processes. Table 3 presents the ecological indices during manufacture and 

ripening. The vat skimmed raw milk ecosystem presented higher diversity, evenness and 

richness compared to natural whey starter ecosystem. Among cheese ecosystems, diversity, 

evenness and richness demonstrated changing trends, with an increase during the first 2 

months and then a gradual decrease during ripening. The highest number of species in the 

community (richness) was observed for cheese at 2 months of ripening.  
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Figure 2. Dynamics of SLAB and NSLAB throughout the Grana Padano cheesemaking process by 

LH-PCR. Six separate electropherograms from different dairies of each ecosystem (raw milk, natural 

whey starter, cheese 48h, cheese 2, 6, 9, 13 months) were superimposed (on the top of one another). 

For cheeses at 2, 6, 9 and 13 months, the whole cell fraction is represented. The X-axis shows peak 

sizes as base pairs (bp) and the Y-axis shows the peak intensity as relative fluorescence units. The peak 

sizes were attributed to bacterial species according to LH-PCR database as follows: 1: L. delbrueckii 

subsp. lactis/bulgaricus (330 bp); (1), secondary peak of 1; 2: L. helveticus (334 bp); 3: S. 

thermophilus or L. lactis subsp. lactis (319 bp); 4: L. fermentum (342 and 344 bp); 5: L. rhamnosus or 

L. casei/paracasei (336 bp); 6: P. acidilactici (345 bp). Unattributed peaks are shown by the fragment 

lengths as base pairs. 

 

 

 Diversity indices 

 Simpson
a
 Shannon Evenness Richness 

  D H E S 

Milk 0.63 (0.02) 1.08 (0.05) 0.91 (0.01) 3.67 (0.25) 

Whey culture 0.55 (0.01) 0.85 (0.02) 0.72 (0.02) 3.50 (0.14) 

Cheese 48 h 0.57 (0.01) 0.84 (0.04) 0.75 (0.04) 4.17 (0.19) 

Cheese 2 mo
b
  0.72 (0.01) 1.43 (0.03) 0.93 (0.04) 5.00 (0.21) 

Cheese 6 mo 0.67 (0.01) 1.25 (0.03) 0.85 (0.01) 4.33 (0.08) 

Cheese 9 mo 0.63 (0.02) 1.20 (0.07) 0.80 (0.02) 4.50 (0.17) 

Cheese 13 mo 0.50 (0.03) 0.88 (0.05) 0.75 (0.03) 3.50 (0.20) 

 

Table 3. Ecological indices during the cheesemaking by LH-PCR. Mean of six samples for each matrix 

throughout ripening (standard errors) are shown. 

 

a
Simpson (D = ∑ pi

2
); the Simpson‟s index value is given as 1-D. pi is the relative abundance of a given LH-PCR 

peak; Shannon (H = -∑ piln(pi), where pi). Richness (S) is equal to the number of species. Evenness (E), the 

relative abundance with which each species is represented, (E = H/Hmax; Hmax= lnS).  

b
 mo: months 

 

 

Two-month cheese cell lysis 

The rates of bacterial lysis were monitored by determining the free DNA released from 

dead or damage cells in two-month cheeses. Lysis rates were calculated as the sum of the areas 

of all peaks in the LH-PCR profiles of free DNA fraction of each sample. The relative 

percentage of cell lysis was calculated by measuring the individual and total peak area (Table 
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4). The results showed that cheeses c, d and f had the highest lysis values and in particular, 

two-month cheese f showed the most abundant lysed cell fraction.  

 

              

 Relative percentage of lysed cells
b
 (%) 

 Mean (SD) 

 Peaks lengths (bp)
a 

Cheese a Cheese b Cheese c Cheese d Cheese e Cheese f 

330 43 (4) 38 (3) 36 (1) 9 (7) 8 (5) 54 (1) 

334 25 (5) 51 (2) 64 (1) 45 (1) 92 (5) 46 (1) 

336 13 (1) 11 (1)  43 (8)   

342-344 20 (5)     2 (0)     

Total peak area                       

(lysis rate) 25,803 17,604 90,471 100,427 87,376 170,114 

 

Table 4. Relative percentage of lysed cells in two-month cheese. Three separated LH-PCR 

experiments (n = 3) were performed for mean and standard deviation (SD) calculation. 

 

a
Peak lengths correspond to: L. delbrueckii (330), L. helveticus (334), L. rhamnosus or L. casei/paracasei (336) 

and L. fermentum (342 and 344).  
b
Percentage was calculated based on the ratio of each single peak area, corresponding to different species, and the 

total peaks area (lysis rate). 

 

Furthermore, it was observed that lysed cells belonged to L. helveticus and L. delbrueckii 

subsp. lactis for all the two-month cheeses. The highest percentage of lysed cells corresponded 

to L. helveticus, except for cheese a and f in which L. delbrueckii gave the highest values. This 

result was consistent with the whole cell fraction of these cheeses, that evidenced L. 

delbrueckii as dominant species (data not shown). Lysed NSLAB L. rhamnosus or L. 

casei/paracasei were detected in cheese samples a, b and d as minor percentages. 

Interestingly, cheese d showed a comparable percentage of L. helveticus cell lysis (~ 43% of 

total cells). Lysed cells belonging to L. fermentum were detected in cheese d and in cheese a, 

which in particular, showed high and comparable percentages of L. helveticus (~ 20%). 

 

3.4.5 Discussion  

 

The overall process of GP cheesemaking was studied in six different dairies. Each dairy 

supplied samples of the complete cheese production, from vat skimmed raw milk until 13 

months of ripening. The same cheese wheels were studied over time. Thus, skimmed raw 

milk, whey starter and cheese microbial ecosystems were studied during ripening by culture-
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based and culture-independent approaches. Microbial population dynamics, ecological 

diversity and the lysis rate at two months of ripening were investigated. 

As previously suggested, by using the cheese-based medium (CAM), it was possible to 

study the microbiota that better adapts to the nutritional characteristics of a sugar-free medium 

and that can be considered potentially able to survive and grow in the cheese environment and 

during ripening (Neviani et al., 2009). These authors isolated NSLAB from milk, whey starter, 

and curd only using CAM. This medium is able to recover the secondary microflora, 

attributable to the NSLAB group, which do not contribute to acid formation throughout 

manufacturing but can play a significant role during ripening. Compared to natural whey 

cultures, results showed that the vat skimmed milk appeared to provide higher numbers of 

these microorganisms that could possibly develop later in cheese. Similar observations were 

reported for PR, a hard cheese similar to GP (De Dea Lindner et al., 2008). Natural whey 

starters for GP showed high microbial counts in WAM, high cell viability and similar species 

composition as observed by other authors (Fornasari et al., 2006; Rossetti et al., 2008; 

Santarelli et al., 2008; Gatti et al., 2011). Although as lower numbers, some LAB able to grow 

in CAM were also present in whey starters. Thus, it is possible to state that natural whey 

starter is mainly composed of LAB involved in acid production during manufacture but also 

that a very low percentage (less than 0.01%) of NSLAB is present. 

Independently from their origin, cultivable NSLAB were present at low densities in 

cheeses at 48 h and significantly increased to high densities at 2, 6 and 9 months, then 

decreased at 13 months. In these latter samples, cultivable bacteria enumerated in CAM and 

MRS highlighted a similar trend over time. It is not surprising that bacterial enumeration in 

MRS was similar to that in CAM since low nutritional demanding NSLAB, adapted to grow in 

a low sugar medium as CAM, could better grow in MRS. The growth trend of the NSLAB 

cultivable population agreed with findings by De Dea Lindner et al. (2008) during PR 

cheesemaking.  

Fluorescence microscopy is able to determine the densities of both SLAB and NSLAB 

without differentiating them. The number of viable cells was higher than total cultivable 

microbiota for milk, whey and cheese ecosystems. This suggests the presence, in all samples, 

of a population that is viable but noncultivable, as demonstrated by other authors (Ward et al., 

1990; Head et al., 1998). Furthermore, these data highlight the limit of the plate counting 

technique that was able to reveal no more than 10% of bacteria. Similar observations were 

reported by other authors who compared culture-based and culture-independent approaches in 

dairy ecosystems (Valence et al., 2000; Gatti et al., 2006; Bottari et al., 2010).  
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In agreement with Franciosi et al. (2011), the majority of isolates obtained from vat 

skimmed raw milk belonged to the Streptococcaceae LAB family: L. lactis subsp. lactis, and 

subsp. cremoris, S. uberis, and L. mesenteroides subsp. mesenteroides. These species were 

found only from control milk. L. lactis and L. mesenteroides are commonly used as dairy LAB 

starters in other cheeses and fermented milk (Cogan et al., 2002); however, in ripened GP 

cheese they have never been reported. S. uberis is involved in clinical and subclinical 

intramammary infections in lactating and non-lactating dairy cows (Rambeaud et al., 2003). 

Thus, it is not surprising to isolate this species in raw milk or in fresh cheeses such as artisanal 

mozzarella (Morea et al., 1999).  

Moreover, SLAB and NSLAB belonging to the genus Lactobacillus are of great 

technological interest for acidification and ripening (Cogan et al., 2002); in the present study 

L. helveticus, L. delbrueckii subsp. lactis; subsp. bulgaricus, and L. rhamnosus were identified 

in cultured raw milks. The isolation of these LAB has already been reported in raw milk 

during PR cheesemaking (Neviani et al., 2009). Furthermore, by using a culture-independent 

approach, Franciosi et al. (2010) detected the same species in raw milk for a type of GP, 

“Grana Trentino” cheese, however they also reported S. thermophilus. In the present study, S. 

thermophilus was not isolated either from control or pre-treated milk. However, by culture-

independent LH-PCR analysis, a peak at 319 bp attributable to S. thermophilus according to 

the database (Lazzi et al., 2004; Gatti et al., 2008) could reveal its presence.  

The finding of SLAB such as L. helveticus, L. delbrueckii and also the NSLAB L. 

fermentum in pre-treated raw milk highlight that the whey starter is not the unique source of 

these lactobacilli (Fornasari et al., 2006; Mucchetti and Neviani, 2006). The fact that after 

incubation of milk, a considerable number of these strains was recovered suggests that they 

could grow during the first stages in the vat and successively they could have a role in 

acidification together with the SLAB added from the whey cultures. However, more studies 

have to be performed at strain level to confirm this hypothesis. L. fermentum, that is normally 

present in GP natural whey starters (Fornasari et al., 2006), is involved in gas production 

responsible for the desired tiny holes in Grana cheese. However, this is considered a positive 

feature only if it is present at low amounts (Bottazzi, 1981).  

In particular, the fact that some strains of L. rhamnosus and L. fermentum were isolated 

after a pre-treatment of milk at 42°C, induces to hypothesize that only the strains with a 

thermophilic characteristic will be able to resist to technological conditions and grow later in 

cheese as previously reported (De Dea Lindner et al., 2008). It is not clear what alternative 

energy source NSLAB use to grow in cheese after the simple carbohydrates and citrate are 
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exhausted (Budinich et al., 2011). These authors supposed that NSLAB use for growth milk-

derived complex carbohydrates and starter-derived components, however these are still 

unknown. L. gasseri and L. hilgardii strains have not been identified before in raw milk of GP 

and PR (Coppola et al., 1997; 2000; Neviani et al., 2009; Franciosi et al., 2010; 2011). Both 

species were isolated from soft cheese and they do not have any known role during 

acidification and flavor formation (Baruzzi et al., 2000). 

LH-PCR results in raw milk were in good agreement with bacterial isolation, revealing 

mainly the presence of S. uberis or L. lactis subsp. lactis and subsp. cremoris (319 bp) and L. 

delbrueckii subsp. lactis/bulgaricus (330 bp). Only the peak at 330 bp was detected according 

to Gatti et al. (2008). These authors studied raw milk for PR cheese by LH-PCR and also 

found peaks at 334 bp (L. helveticus), 336 bp (L. rhamnosus, L. casei/paracasei or L. 

plantarum), and 339 bp (not attributed). Since the LH-PCR technique allows to represent the 

dominant species in a community (Ndoye et al., 2011), it is possible to consider these two 

milk as different. The different origins of the milk from specific geographic areas, delimited 

by two different official regulations, could justify this difference (http://www.parmigiano-

reggiano.it; http://www.granapadano.it).  

Peaks attributed to L. helveticus and L. delbrueckii subsp. lactis species were found in all 

natural whey starter samples according to previous works (Fornasari et al., 2006; Rossetti et 

al., 2008; Santarelli et al., 2008; Gatti et al., 2011). Differently from these authors, S. 

thermophilus and the heterofermentative L. fermentum were undetected. From cheese at 48 h 

after vat extraction until 13-month cheeses, DNA from whole cells of SLAB L. helveticus and 

L. delbrueckii subsp. lactis or subsp. bulgaricus were identified in all samples during ripening. 

This data agreed with microbial dynamics of whole SLAB cells in PR cheese (Gatti et al., 

2008), differently from PR, GP cheese showed the presence of the NSLAB L. fermentum 

during ripening and in some cases with high abundance. However, no strains belonging to any 

of these species were isolated after brining (data not shown). It is not clear whether this 

population, composed of whole cells that are unable to be cultured, has a role in ripening and 

needs further studies. Differently from this observation, Zago et al. (2007), by using a culture-

based approach, detected L. helveticus and L. delbrueckii cultivable cells in 2-month cheese 

that progressively decreased during ripening until 8 months. 

According to the present work, L. rhamnosus or L. casei/paracasei and P. acidilactici have 

been previously observed and in some cases isolated from PR (Gala et al., 2008; Gatti et al., 

2008; Neviani et al., 2009). Their presence in ripened cheese underlines their ability to use 

alternative potential energy sources other than lactose for growth (Williams et al., 2000). In 
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GP, viable L. rhamnosus and L. casei were previously found (Zago et al., 2007; Belletti et al., 

2009). However, by LH-PCR it was not possible to distinguish them since both generate the 

same 16S rRNA amplicon length (Lazzi et al., 2004; Gatti et al., 2008). The specific role of 

both Pediococcus spp. (Cogan et al., 2002) and L. rhamnosus (Bove et al., 2011) are not fully 

understood. 

LH-PCR was able to show differences in the diversity, evenness and richness of bacterial 

community among ecosystems and during ripening. Higher diversity indices, species evenness 

and richness were observed for the vat skimmed raw milk ecosystem compared to natural 

whey starter. Diversity, evenness and richness of bacterial community demonstrated an 

increase during the first 2 months and then a gradual decrease during ripening. This seems to 

be correlated to the growth of NSLAB reported during the first months of ripening evaluated 

by culturing and LH-PCR.  

Regarding bacterial enumeration, it was observed that between cheeses at 48 h and 2, 6 

and 9 months, there was a transition period in which viable cell densities remained invariable 

among cheeses while an increase in cultivability has been highlighted. It seems that a balance 

of both the whole and lysed cells was created and unrevealed by fluorescence microscopy. It is 

known that a decrease in cultivability of SLAB occurs in early stages of hard cheese 

manufacture (Valence et al., 2000; Deutsch et al., 2002; Hannon et al., 2007), in PR (Pecorari 

et al., 2003; De Dea Lindner et al., 2008) and GP (Giraffa et al., 1998; Zago et al., 2007). 

Because of this, the lysis rate at 2 months was studied, expecting to find an early SLAB lysis. 

Moreover, since no correlation between the autolysis in vitro and in cheese trials was 

demonstrated (Valence et al., 2000; Kenny et al., 2006), in this work, a culture-independent 

approach was chosen to better discriminate which species undergo lysis. Hence, the study of 

the two-month ripened cheeses allowed to estimate the total lysis rate and how it affected each 

LAB species. Free DNA from lysed L. helveticus and L. delbrueckii subsp. lactis was found in 

all the two-month cheeses, confirming that after acidification, starter lysis occurs. Contrarily to 

Gatti et al. (2008) that did not reveal the presence of whole and lysed cells of L. fermentum 

during PR cheese ripening, L. fermentum lysed cells were observed and for many cheese 

samples high relative percentages were reported. The extent of cell lysis (lysis rate) in cheese 

affects the proteolysis rate and the length of ripening (Cogan et al., 2002). Autolysis of 

different species was shown to induce the release of different enzymes that determine the 

degradation of casein derivatives during ripening (Kunji et al., 1996). The effect of this 

process may highly affect the texture and flavor of cheese in each dairy. 
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3.4.6 Conclusions 

 

By means of LH-PCR fingerprinting technique, only the most abundant members are 

represented, however bacterial communities profiles could be described and compared. 

Differently from other works, this research considered six cheesemakings of different dairies, 

allowing to evaluate both the trend of microbiota dynamics and the differences among 

different productions.  

GP characteristic microbiota can arise from two main sources: milk and natural whey 

starters. By LH-PCR, it was observed that the microbial biodiversity was different among 

these ecosystems. Starter lactobacilli were the main species during the acidification steps of 

GP production while NSLAB were able to grow after brining, and became abundant during 

ripening. Their origins were both the raw milk and the natural whey starter. However thorough 

studies have to be performed on SLAB and NSLAB isolates, also at strain level, to better 

understand whether they have an aptitude to acidification and ripening. 

The presence of L. helveticus and L. delbrueckii subsp. lactis during the first hours of 

production highlighted the well-known role of natural cultures in curd acidification while their 

presence, in a non-culturable state, up to 13 months of ripening may suggest a different 

unknown role in cheese ripening. There was a relevant presence of viable but non-culturable 

cells in cheese throughout ripening and during all the manufacturing process. Moreover, whole 

starter cells were found until advanced stages of ripening but they could not be cultured after 

brining. Because of the unculturable nature of this population, to date, their potential 

technological aptitudes are not clear. However, only metagenomic studies could provide some 

thorough information. 

The pre-treatment of milk resulted to be useful and potentially applicable to other hard 

cooked cheese products in order to reveal the thermophilic population that has major chances 

to resist the cooking of the curd.  

By monitoring SLAB and NSLAB cell autolysis in two-month cheeses, it was observed 

that SLAB represented the major component that underwent lysis at that time of ripening. The 

highest percentages of lysed cells corresponded to L. helveticus but also NSLAB cell lysis was 

observed. Despite being made under standard manufacturing conditions, 2-month cheese 

analyzed from different dairies exhibited variations in microbial cell lysis. Their lysis rate, 

which appeared to be variable among samples, could contribute to differentiate each cheese 

production. Bacteria from natural whey starter and from milk were encountered in all steps of 
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cheesemaking and ripening, and together with technological parameters contribute and are 

responsible for the peculiar organoleptic features of the cheese.  
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3.5.1 Abstract 

 

In some cheese varieties, a complex microbiota develops on the cheese surface during the 

ripening period. For instance, in smear cheese, this microbiota is involved in ripening 

proceeding from the surface to the interior of the cheese. In other cheese varieties in which 

ripening proceeds mainly from the interior, for example due to mold metabolism, little is 

known about the composition or role of the surface microbiota in flavor formation. The aim of 

this work was to describe the microbial diversity of a natural rind, understand how the 

development of a rind proceeds by natural microbial colonization, and examine interactions 

among microorganisms in order to predict possible contributions to community formation. 

Approaches that combine culture-based and next-generation sequencing were used. The 

microbiota on the surface of the blue cheese during natural rind development showed a 

microbial diversity comprising fourteen genera of bacteria (Enterococcus; Lactococcus; 

Leuconostoc; Macrococcus; Staphylococcus; Klebsiella; Brevibacterium; Corynebacterium; 

Brachybacterium;, Nocardiopsis;, Cobetia; Psychrobacter; Halomonas; Haererehalobacter), 

two yeast genera (Candida; Debaryomyces) and one filamentous fungal genus (Penicillium). 

High and comparable densities of viable bacteria and yeasts were observed. Bacterial 

succession was observed during rind formation in which Staphylococcus dominated the early 

stages and then Brevibacterium the later stages. Inhibition and stimulation have been observed 

among several species, which could explain some contributions to community formation. This 

natural rind can be considered an active rind formed by a rich and dense microbial consortium. 

However, thorough studies have to be performed in order to evaluate whether these bacteria, 

yeast and molds play a role in flavor and texture development that could be beneficial in other 

cheese varieties with diverse natural rind microbiota. 
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3.5.2 Introduction 

 

Cheese microbiota is composed of starter lactic acid bacteria (SLAB), secondary 

microorganisms and adventitious organisms (Powell et al., 2011). Starter cultures are 

responsible for fast acidification and flavor formation during ripening, whereas the secondary 

microorganisms are added mainly for their effect on flavor, color and texture. Their 

contribution to acid formation is limited or absent and, moreover they are usually unique to the 

specific cheese variety (Ndoye et al., 2011; Rattray and Eppert, 2011). The adventitious 

organisms likely originate from the milk and/or dairy environment (brine, wooden shelves, the 

cheesemaker‟s hands); these include NSLAB, other bacteria, yeasts and molds that in many 

cases determine the final organoleptic characteristics of the cheese (Mounier et al., 2006; 

Settani and Moschetti, 2010). 

Many aged cheese varieties develop a rich and dense microbial consortium on the surface, 

thus forming a rind. These microorganisms can be deliberately added as secondary cultures 

and/or be adventitious. They coexist, interact and are essential for the ripening process and the 

final characteristics of the product. The technological conditions during the ripening process, 

humidity, temperature and the ecology of the microbiota in the brines and in the dairy room 

are factors that influence the microbiota in the surface (Mucchetti and Neviani, 2006).  

There are rinds that develop after being immersed or wiped down periodically with liquid 

(brines or beer) to keep them moist. During ripening, a viscous, red-orange smear composed of 

bacteria and yeast develops on their surfaces (Mounier et al., 2005, 2006). These cheeses are 

also called bacterial surface-ripened or smear-ripened cheeses since the microbiota and their 

enzymes promote the ripening process from the surface to the interior of the cheese. Other 

rinds develop after inoculation with defined strains of molds which are essential for the 

development of the texture and flavor; in some cases the growth of another molds is an 

undesirable event. In this case, these cheeses are also called mold surface-ripened cheeses. 

Moreover, there are cheeses to which no treatment is given during the overall period of 

ripening and the rind forms naturally, some of which include the blue-veined cheeses (e.g. 

Stilton in UK and Cabrales in Spain) and the surface mold-ripened cheese St. Nectaire in 

France. 

Most studies have focused on the evaluation of microbial composition and dynamics in the 

smear (Brennan et al., 2002; Feurer et al., 2004; Ogier et al. 2004; Mounier et al., 2005, 2006; 

Rademaker et al., 2005; Rea et al., 2007; Cocolin et al., 2009; Dolci et al., 2009; Fontana et 

al. 2010). At the end of ripening, this microbial consortium on the surface of smear cheeses is 
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mainly composed of Gram-positive bacteria, including Micrococcus, Staphylococcus, various 

coryneform species, such as Corynebacterium, Arthobacter and Brevibacterium linens and 

yeasts such as Debaryomyces, Kluyveromyces and Candida (Brennan et al., 2002; Feurer et 

al., 2004; Rademaker et al., 2005; Mounier et al., 2005, 2006, Rea et al., 2007; Cocolin et al., 

2009; Dolci et al., 2009). Furthermore, the ecosystem on the surface results to be more diverse 

than that of the interior (Ogier et al., 2004). 

In terms of progression of microbial populations, yeasts predominate initially and bacteria 

become dominant later. Authors reported that initially yeasts catabolize the lactate produced 

by the starter bacteria to CO2 and H2O which cause an increase of pH that favors the growth of 

salt-tolerant bacteria. Generally, staphylococci dominate the earliest stages (day 4), and 

coryneforms, particularly Corynebacterium variabile and Corynebacterium casei, dominate 

the later stages of ripening (Mounier et al., 2006), showing an important role in rind 

formation. The reason why staphylococci are generally replaced by coryneforms during 

ripening is not clear (Rea et al., 2007). Reports suggest that yeasts produce vitamins and other 

compounds which stimulate the growth of B. linens (Rea et al., 2007).  

Lactic acid bacteria are known to play a role in acidification and ripening in many cheeses 

(Powell et al., 2011), however, it is not clear yet whether they have a role in rind formation 

(Fontana et al., 2010). In a study focused on the dynamics of surface microbiota of an Italian 

smear cheese, the authors found high microbial counts of LAB in the rinds after 90 days of 

ripening (Dolci et al., 2009). 

However, very few studies evaluated microbial composition and changes during ripening 

in natural rinds (Marcellino and Benson, 1992). The knowledge of the microbial composition 

on the cheese surface is a prerequisite for the development of secondary adjunct cultures and 

for the control of surface ripening through good hygienic practices avoiding the development 

of undesirable flora (Cocolin et al., 2009; Monnet et al., 2010). This is not only true for 

surface ripening purposes; in blue-veined cheese in which ripening proceeds from the interior, 

spoilage fungi belonging to Penicillium spp. can colonize and grow on the surface. This causes 

the formation of off-flavors or discoloration of the cheese in the form of brown spots (Ardö, 

2011). Performing a study of the microbial succession in smear cheeses may not provide real 

information on progression since the cheese surface is washed frequently, and thus disturbed, 

during ripening (Brennan et al., 2002).  

In many cases, strains are deliberately inoculated onto the surface of the cheese to promote 

ripening. However, a few studies showed that at the end of ripening the inoculated species 
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were not found, which may be a result of negative interactions among microorganisms 

(Brennan et al., 2002; Feurer et al., 2004).  

Thus, microbial succession studies in natural rind cheeses are needed. The fact that the 

surface of this type of cheese is not disturbed during ripening could allow the study of the 

natural microbial progression over time, with attention to possible interactions that may occur 

among microorganisms. These could be inhibitory through the production of antibiotics or 

competition for nutrients, or stimulatory through the production of growth factors. Moreover, 

the microbiota that is naturally able to grow in the surface of this type of cheeses could also 

have a role in flavor formation or protection of the surface from the growth of undesirable 

microorganisms.  

The studies on cheese rind microbiota are mainly based on culture-based and culture-

independent approaches in which fingerprinting methods are the most common (Feurer et al., 

2004; Mounier et al., 2005; Cocolin et al., 2009). Recently, high-throughput sequencing 

technologies, that do not rely on the traditional Sanger chain termination method, have been 

developed (Margulies et al., 2005). Two of the three sequencing platforms include the 

Illumina technology (www.illumina.com/technology/sequencing_technology.ilmn) and 454 

sequencing (http://my454.com/products/technology.asp). These platforms differ in that the  

Illumina technology uses a “reversible terminator-based method” whereas 454 sequencing 

involves DNA capture beads. These sequencing platforms and processes can produce massive 

amounts of data in less time and at a lower cost (Haridas, 2011). These technologies use 

specific barcodes (sequences) in order to analyze thousands of samples in a single run. To 

date, they have been used for culture-independent analysis in order to monitor the microbial 

community structure and abundance of community members in various ecosystems such as 

soil (Acosta-Martinez et al., 2008), gut (Andersson et al., 2008), food (Lopez-Velasco et al., 

2011), fermented food (Humblot and Guyot 2009; Park et al., 2011; Roh et al., 2010) and 

cheese (Masoud et al., 2011). 

The aim of this work was to describe the microbial diversity of a natural rind, understand 

how the development of a rind proceeds by natural microbial colonization, and examine the 

interactions among microorganisms in order to predict possible contributions to community 

formation. Approaches that combine culture-based and next-generation sequencing were used. 
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3.5.3 Materials and Methods 

 

Cheese manufacture  

Cheese rind samples at different times of ripening were collected from a blue-veined 

cheese manufactured in a farm located in Vermont, USA. The cheeses were made using raw 

cow‟s milk derived from daily milking and a defined mesophilic starter culture composed of 

Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris, Lactococcus lactis subsp. 

lactis biovar diacetylactis, Lactobacillus acidophilus, Bifidobacterium sp. and Leuconostoc 

mesenteroides. Kluyveromyces lactis and conidia of Penicillium roqueforti were used as 

ripening cultures. 

The raw milk was heated at 30°C, inoculated with mesophilic lactic acid starters and         

P. roqueforti conidia, and finally added with rennet. The curd was cut and stirred and then 

placed in molds, and whey was drained off during ~10–48 h without the application of 

external pressure, and the molds were turned frequently. The cheeses were salted manually by 

scrubbing the surface with dry salt. Subsequently, the cheeses were ripened at 9°C and 85% 

relative humidity. Piercing of the cheeses has been performed one or more times during 

ripening for 6 weeks. During the overall period of ripening (~65 days), a natural rind develops 

on the surface.  

 

Rind sample collection for determination of community structure 

Cheeses at different times of ripening were used for the study. Cheese surface samples 

were collected during rind formation at 10, 24, 40, 56, 71 and 86 days of ripening. Rind 

samples were taken scraping the surface with a sterile razor, then transferred into a sterile tube 

and immediately frozen at -20°C. All samples were shipped to the laboratory as soon as they 

were collected and immediately analyzed.  

 

Rind sample collection for determination of chemical parameters 

pH and sodium chloride (NaCl) in cheese surface were measured by using a pHmeter 

equipped with surface electrodes: pH microelectrode (MI-410 Combination pH electrode, 

Microelectrodes, Inc. Bedford, USA) and sodium microelectrode (MI-425 Sodium Electrode, 

Microelectrodes, Inc. Bedford, USA) with tips of 1.5 mm in diameter. Calibration of the 

sodium microelectrode was achieved by measuring millivolt (mv) potentials of pure standard 

sodium chloride solutions (0.001; 0.01; 0.1; 1 and 5 M). Sodium concentration was determined 

by a linear regression equation. Cheese surface samples were obtained as explained above and 
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collected at 7, 14, 21, 28, 35, 42, 49, 56, 63 and 70 days of ripening from three different 

batches. Samples at 0 days (immediately after salting) were also considered for pH 

measurement. Aliquots of rinds were mixed with an equal volume of milliQ water and directly 

measured.  

 

Microbial count and isolation 

Total viable aerobic cell enumeration of bacteria and yeasts was performed using milk 

plate count agar (MPCA) (BD Difco, Sparks, USA) and yeast extract peptone and glucose 

agar (YPD) (BD Difco, Sparks, USA) supplemented with chloramphenicol to inhibit bacterial 

growth, respectively. One-hundred milligrams of rinds at different time of ripening were 10-

fold diluted in 1× PBS, spread plated on MPCA and YPD media and incubated for 5 days at 

20°C under aerobic conditions. Enumeration plates were performed in triplicate and results 

were expressed as cfu/g of cheese rind. 

Different colony morphologies were selected, according to macroscopic and microscopic 

observations during rind formation, purified by restreaking in triptone soya agar medium 

(TSA) (BD Difco, Sparks, USA) for bacteria and in YPD medium for yeast, and then 

incubated for 5 days at 20°C under aerobic conditions. Bacterial and yeast isolates were stored 

in Luria-Bertani (LB) (Oxoid, USA) and in YPD (BD Difco, Sparks, USA) broth, 

respectively, containing 20% glycerol at -80°C. 

 

DNA extraction from isolates and cheese rind 

Genomic DNA of the isolates was extracted from overnight cultures by using Ultraclean 

Microbial DNA isolation kit (MO BIO Laboratories, Inc. Carlsbad, CA, USA) according to 

the manufacturer‟s instructions. One-hundred milligrams of each rind were used for genomic 

DNA extraction directly from samples. PowerSoil DNA isolation kit (MO BIO Laboratories, 

Inc. Carlsbad, CA, USA) was used according to the manufacturer‟s instructions. DNA 

quantification and purity measurements were performed by using a NanoDrop (ND-1000) 

spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). 

 

Identification of bacterial and fungal isolates 

16S rRNA gene and internal transcribed spacer (ITS) regions between the 18S and 28S 

rRNA genes were used for DNA sequencing in order to identify bacteria and fungi, 

respectively.  

A pair of universal primers, 27F (5‟-AGAGTTTGATCCTGGCTCAG-3‟) and 1492R (5‟-

GGTTACCTTGTTACGACTT-3‟) (Lane, 1991), was used for PCR amplification of bacterial 
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16S rRNA gene. ITS1F (5‟-CTTGGTCATTTAGAGGAAGTAA-3‟) (Gardes and Brunes 

1993) and ITS4R (5‟-TCCTCCGCTTATTGATATGC-3‟) (White et al.,1990) were used for 

fungal rRNA gene amplification. 

PCR was performed using a MJ Research Tetrad PTC-225 Thermo Cycler and 96-well 

polypropylene plates in 50 µl of reaction mixture containing 1 ng/µl of template DNA,          

1× Phusion High-Fidelity PCR Master Mix (Biolabs, New England, USA), and 0.5 µM of 

each primer. The PCR conditions were performed as follows: 10 s at 98°C, followed by 30 

cycles at 98°C for 10 s, 30 s at 55°C and 1 min at 72°. A final extension step at 72°C for 5 min 

was carried out. Sequences were analyzed for sequence homology by using the basic local 

alignment search tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

 

Barcoded Illumina sequencing of bacterial community 

High-throughput sequencing with Illumina/Solexa technology was performed 

(www.illumina.com/technology/sequencing_technology.ilmn) in order to describe the 

diversity of rind bacterial community. Total bacterial genomic DNA extracted directly from 

cheese rinds at 10, 24, 40, 56, 71 and 86 days of ripening was subjected to conventional PCR 

amplification of the 16S rRNA gene. Then, PCR amplicons from multiple individuals of the 

rind community were sequenced by Illumina technology. Since Illumina can run of up to 

≈1,500 samples per lane, specific barcodes were used, according to Caporaso et al. (2010a), in 

order to assign the sequence to its appropriate sample. 

The V4 region (300 bp) of the 16S rRNA gene was amplified in each sample using the 

constructed primer pairs (F515/R806) described by Caporaso et al., (2010a). The reverse PCR 

primer was barcoded with a 12-nucleotide sequence. Thus, 6 different barcodes were used for 

the 6 rind samples. Moreover, forward and reverse primers contained a linker sequence and an 

adaptor sequence (Illumina adaptor). These primer constructs yielded a library of 

amplification products that contained the barcode and Illumina adaptors. 

PCR amplification was performed using a MJ Research Tetrad PTC-225 Thermo Cycler 

and 96-well polypropylene plates. Each sample of rind was amplified in triplicate. PCR 

reactions were performed in a final volume of 25 µl, containing 1× Phusion High-Fidelity 

PCR Master Mix (Biolabs, New England, USA), 0.5 µM of each primer constructs, and ~4 

ng/µl of genomic DNA.  

Amplification conditions reported by Carporaso et al., (2010a) were slightly modified. 

PCR amplification cycling conditions consisted of an initial step of 98°C for 3 min, followed 
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by 25 cycles at 98°C for 45 s, 50°C for 30 s, and 72° for 45 s. A final elongation step of 5 min 

at 72°C was added to ensure complete amplification.  

Amplicons were cleaned with Ampure XL (Agencourt, Beckman Coulter, USA). 

Amplicon DNA concentrations were determined using the Quant-iT PicoGreen dsDNA 

reagent and kit (Invitrogen, USA) according to the manufacturer‟s intructions. 

A composite sample for sequencing was created by combining equimolar ratios of 

amplicons from the individual samples, followed by gel purification and ethanol precipitation 

as described by Costello et al. (2009) to remove any remaining contaminants and PCR 

artifacts. The samples, along with aliquots of the three sequencing primers, were subjected to 

sequencing by Illumina Genome Analyzer HiSeq 2000 (Illumina Inc., USA).  

Sequencing runs were 100 nucleotide lengths and paired end reads. The criteria to select 

the reads for subsequent analysis were chosen as reported in the work by Caporaso et al. 

(2010a), in which a quality-filtering strategy was developed. Identification and relative 

abundance of reads were calculated from comparison of the reads to the Greengenes database 

(the greengenes reference collection) filtered at 99% identity using the Quantitative Insights 

Into Microbial Ecology (QIIME) software package (Caporaso et al., 2010b). 

  

Pyrosequencing of fungal community 

PCR amplification of the ITS region of rDNA of genomic DNA extracted from samples 

was performed. The fungal-specific primer pairs ITS1F (Gardes and Bruns, 1993) and ITS4R 

(White et al., 1990) with tag and adaptors sequences were use according to Amend et al. 

(2010). PCR reaction and 454 sequencing were performed according to these authors. 

 

Microbial interaction test 

To evaluate whether the presence of microorganisms is a consequence of interactions, the 

spot-on-lawn assay was employed for screening their ability to produce stimulatory or 

inhibitory substances to other microorganisms. Bacterial and yeast isolates were screened as 

described by Tong et al. (2010). 

Bacteria and yeasts were grown overnight onto the appropriate media and according to 

optimal growth conditions. Once grown, test strains were resuspended in fresh medium and 

checked for optical density at 600 nm (OD600). Each strain was diluted to an OD of 0.5. 

Trypticase soy agar (1.5%) was solidified in petri dishes of 120 mm in diameter, and the 

surface was spotted with 3 µl of each isolate to be tested, spaced approximately 3 cm apart. 
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The spots were allowed to diffuse into the agar and then incubated for 5-7 days at 20°C. Plates 

were prepared in duplicates. 

Lawns of the isolates were prepared by inoculating about 10
7
 cells in 6 ml of Trypticase 

soy broth soft-overlay (0.75% agar) medium at 50°C, and poured over the hard agar (1.5% 

agar) plates with the spots. Plates were incubated for 2 days at 20°C. After incubation, plates 

were checked for inhibition zones or stimulation of growth. 

 

 

3.5.4 Results 

 

Cheese rind chemical composition 

The pH and sodium chloride variations on the cheese surface during rind development are 

shown in Figures 1A and 1B. The surface deacidification occurred between 0 and 14 days. pH 

was about 4.9 at 0 days and at 14 days reached values of about 6.5, which remained almost 

constant throughout ripening. Sodium chloride decreased over time from 0.56-0.87 M at 7 

days to 0.12 M at 63 days.  

 

Bacterial and fungal community composition determined by high throughput sequencing 

(Illumina and 454 platforms) at the end of ripening (56 days). 

16S rRNA gene amplicons for bacteria and ITS rDNA for fungi were evaluated by 

Illumina and 454 sequencing, respectively, in order to describe the bacterial and fungal 

communities on the cheese rind at 56 days of ripening. A total of ~10,000 and 8,246 reads was 

obtained for bacteria and fungi, respectively. The classification of sequences obtained from the 

16S rDNA and ITS libraries are shown in Figure 2A and 2B, respectively. 

The 16S rDNA Illumina library showed that the most abundant bacteria belonged to the 

genus Staphylococcus (57% of total reads) and the second most numerous corresponded to the 

Brevibacterium genus (25% of total reads). Sequences belonging to Corynebacterium, 

Brachybacterium, Nocardiopsis, Cobetia, Psychrobacter, Halomonas and Haererehalobacter 

genera were also observed at lower percentages (1-5% of total reads). 
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Figure 1. pH (A). and NaCl (B). variations on the surface of cheese during ripening in 3 batches. Three 

separated measurements (n = 3) were performed for mean and standard deviation (SD) calculation.  
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Figure 2. Phylogenetic classification of sequences obtained by high-throughput sequencing analysis in 

the cheese rind at 56 days of ripening. (A) Bacterial community evaluated by Illumina technology and 

(B) Fungal community evaluated by 454 sequencing. Each genus is expressed as relative abundance of 

the 16S rRNA gene sequences for bacteria and ITS region of rDNA for fungi.  

 

The fungal library was obtained by 454 pyrosequencing analysis; almost all sequence 

reads (99%) belonged to the Candida genus and minor percentages (1% of total reads) 

corresponded to the Penicillium genus. All sequence reads of the genera Candida and 

Penicillium were found belonging to Candida catenulata and Penicillium polonicum, 

respectively. 

 

 

Bacterial community composition and dynamics over time determined by Illumina 

sequencing 

High-throughput 16S rRNA gene sequencing by Illumina technology was performed to 

describe the community structure during rind formation. Figure 3 shows representative 

pictures of a typical series of changes during rind formation. Pink color may be due to yeast 

colonies. Fuzzy white colonies of molds could be observed at 32 days.  

An average of 10,000 sequences was analyzed per sample (i.e., at 10, 24, 40, 56, 71 and 86 

days) and the average sequence length was 100 bp. Figure 4 and Table 1 show the temporal 

pattern of community development during rind formation. A succession of bacterial species 

was observed during ripening. The Staphylococcus genus was present during the overall 

ripening period comprehending 31.38-85.43% sequence reads of the 16S rDNA amplicons.  
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A. B. 
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Figure 3. Representative pictures of a typical series of changes during rind formation 

 

At the initial stages (10 days) and until 56 days of ripening, cheese rind was mainly 

dominated by the Staphylococcus genus. At the earliest stages of ripening (10 days), the 

occurrence of the Staphylococcus genus coexisted with a minor presence of Lactococcus, 

Erwinia and Leuconostoc genera. Less than 1% of sequence reads was identified as 

Halomonas and some Coryneform bacteria. At 24 days, the Staphylococcus genus showed a 

low decrease but subsequently, at 40 days, increased reaching maximum values of 85% of 

sequence reads. From 40 days until the end of ripening this genus showed a gradual decrease 

in abundance and Brevibacterium became the dominant member. Sequences of Coryneform 

bacteria such as Brevibacterium, Corynebacterium and Brachybacterium increased in 

abundance during ripening. In particular, Brevibacterium resulted the most numerous 

sequence at 86 days (52% of total reads of the 16S rDNA library). Sequences that belonged to 

the Psychrobacter genus were present from 40 days and increased until 71 days.  

 

 

7 days 14 days 21 days 

32 days 45 days 56 days 
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Figure 4. Comparison of the bacterial community structure of cheese rind during ripening determined 

by Illumina analysis. 

 

  Relative abundance (%) 

  Ripening time (days) 

Phylum Genus 10 24 40 56 71 86 

Firmicutes Staphylococus  81.66 79.82 85.43 56.69 38.29 31.38 

Firmicutes Lactococcus 6.01 0.06 0.03 0.01 0.02 0.04 

Firmicutes Leuconostoc  3.01 0.05 0.01 0.01 0.02 0.01 

Actinobacteria Brachybacterium  0.04 1.54 1.02 5.14 10.69 7.78 

Actinobacteria Corynebacterium 0.02 0.30 1.61 2.35 9.07 5.97 

Actinobacteria Brevibacterium  0.23 15.01 11.38 25.36 37.23 52.26 

Actinobacteria Nocardiopsis    0.10 4.55 0.01 0.04 

Proteobacteria Cobetia     1.24   

Proteobacteria Psychrobacter    0.03 1.15 1.99  

Proteobacteria Halomonas  0.03 0.01 0.11 0.73 0.79 1.03 

Proteobacteria Erwinia  7.78 1.58 0.04  0.12 0.03 

Proteobacteria Haererehalobacter    1.79   

                

 

Table 1. Taxonomic affiliation of 16S rRNA gene amplicons during cheese rind formation. 

Percentages were calculated from comparison of the reads to the Greengenes database using the 

QIIME program.  
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Viable cheese rind community 

Plate counting and identification of individual species by gene sequencing were performed 

to gain knowledge of the viable population contributing to cheese rind formation. During 

ripening at 10, 24, 40, 56, and 71 days, cultivable bacteria and yeasts were enumerated and 

recovered in generic media. The total aerobic bacterial counts in milk plate count agar 

(MPCA) at the earliest (10 days) and latest (71 days) stages of ripening were 7.68 and 10.62 

log cfu/g of cheese rind, respectively (Table 2). For fungal population, yeast extract peptone 

and glucose (YPD) agar supplemented with chloramphenicol were used. Yeast counts ranged 

from 7.48 log cfu/g at 10 days to 10.11 log cfu/g of cheese rind at 56 days. 

 

 total aerobic bacteria yeasts 

time           
(days) 

mean        
(log cfu/g) 

SD          
(log cfu/g) 

mean        
(log cfu/g) 

SD         
(log cfu/g) 

10 7.68 0.34 7.48 0.32 

24 10.27 0.18 10.29 0.11 

40 9.81 0.03 nd nd 

56 10.03 0.09 10.11 0.13 

71 10.62 1.23 nd nd 
 

Table 2. Microbial enumeration by plate counting of bacteria and yeasts in cheese rind over time. 

 

Three separated batches were enumerated (n = 3) for each time point for mean and standard deviation calculation. 

nd: not determined.  

 

In order to describe the overall cultivable population, macroscopic and microscopic 

observations of colonies were performed. Thus, 59 different colony morphologies were 

distinguished in 138 colonies observed during rind formation. 46 colonies were bacterial cells, 

7 colonies were yeast cells and 6 were filamentous fungi. Thus, the 59 colony morphotypes 

were isolated in the appropriate media and the bacterial and fungal species were identified by 

rDNA sequencing (Table 3). Species belonging to the Staphylococcus genus were the most 

frequently observed among isolates, and were identified as Staphylococcus saprophyticus 

(14% of total isolates), Staphylococcus equorum (14%), Staphylococcus succinus (7%) and 

Staphylococcus xylosus (7%). Lactococcus lactis was the most abundant lactic acid bacterium, 

with 12% of isolates, and Leuconostoc mesenteroides (7%) and species belonging to 

Enterococcus genus were also present. Enterococcus was identified as Enterococcus faecalis 

(8%) and Enterococcus casseliflavus (3%). The yeasts were also detected and comprised 
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Candida catenulata with 10% of the total isolates and a minority presence of Debaryomyces 

hansenii (2%). Macrococcus caseolyticus (3%) and Klebsiella sp. (3%) were observed less 

frequently among isolates. Among filamentous fungi, the most abundant species was 

Penicillium commune or Penicillium camemberti (5%), followed by Penicillium 

aurantiogriseum/allii (3%) and Penicillium roqueforti (2%). 

 

Phyla 
number of isolates            

(n = 59) 
closest sequence relative (species)

a % 
identity 

GenBank accession 
no. 

Firmicutes 2 Enterococcus casseliflavus  99 AB547326.1 

Firmicutes 5 Enterococcus faecalis  99 CP002621.1 

Firmicutes 7 Lactococcus lactis  100 HQ721275.1 

Firmicutes 4 Leuconostoc mesenteroides  99 JF261155.2 

Firmicutes 2 Macrococcus caseolyticus  99 FJ263452.1 

Firmicutes 8 Staphylococcus equorum 99 GU595329.1 

Firmicutes 8 Staphylococcus saprophyticus  99 FJ210844.1 

Firmicutes 4 Staphylococcus succinus  99 GU084442.1 

Firmicutes 4 Staphylococcus xylosus 100 HM854231.1 

Proteobacteria 2 Klebsiella sp. 99 AF129440.1 

Ascomycota 6 Candida catenulata  99 GU246267.1 

Ascomycota 1 Debaryomyces hansenii  99 GQ458041.1 

Ascomycota 1 Penicillium roqueforti 99  AB479313.1 

Ascomycota 2 Penicillium aurantiogriseum/allii 99  AY280957.1 

Ascomycota 3 Penicillium commune/camemberti 99 GQ458026.1 

          

 

Table 3. Identification by traditional 16S and ITS sequencing of bacteria, yeast and filamentous fungi 

isolated from cheese surface at different stages of ripening. 

 

a
Based on complete 16S rRNA and internal transcribed spacer (ITS) regions between the 18S and 28S rRNA 

genes. 

 

Microbial interaction test 

A spot-on-lawn assay was performed in order to determine whether interactions occurred 

among microorganisms. Thus, isolates from the natural rind throughout cheese ripening, 

particularly bacteria and yeasts, were used for the analysis. Table 4 summarizes interaction 

data. It was observed that C. catenulata spot inhibited D. hansenii highlighted by zones of 

inhibition (Figure 5). None of the bacteria was inhibitory to the yeasts C. catenulata and D. 

hansenii. Both C. catenulata and D. hansenii spots enhanced the growth of S. equorum. This 

was represented by both an increased number and largest colonies near the spot. One strain of 
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S. saprophyticus was inhibited by lactic acid bacteria, i.e., E. casseliflavus, E. faecalis and L. 

lactis. However, other two S. saprophyticus strains were not inhibited by LAB.  
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  negative interaction  

  positive interaction 
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Table 4. Interactions of bacteria and yeast isolates from the cheese rind. 

 

To more appropriately screen yeast-yeast interactions, another spot-on-lawn experiment 

was performed evaluating the different strains isolated from the natural rind and from smear 

rind from another cheese (data not shown). Thus, for C. catenulata, the 6 different strains 

isolated from the natural rind and 3 strains isolated from the smear rind were used. For D. 

hansenii, 1 strain from the natural rind and 8 strains from the smear rind were used. For the 

experiment, the 9 strains of C. catenulata were spotted and were overlaid with each of the 9 

strains of D. hansenii. The same approach was used for the 9 strains of D. hansenii. Figure 6 

shows some representative pictures in which inhibition zones can be observed. On the C. 

catenulata spots there were zones of inhibition of D. hansenii growth that resulted to be of 

different intensities among strains. None of the D. hansenii strains inhibited C. catenulata 

(Figure 6 A).  
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Figure 5. Image of a spot-on-lawn assay on a petri dish of 120 mm. Spots of different microorganisms 

(colonies) in an overlay of D. hansenii growth are shown. Inhibition halo of D. hansenii growth can be 

observed for the C. catenulata spot, whereas bacterial spots did not show any interaction. 

 

 

 

Figure 6. Image of a spot-on-lawn assay. (A). D. hansenii spots (9 strains) in an overlay of C. 

catenulata. (B)., (C). and (D): C. catenulata spots (9 strains) in an overlay of 3 D. hansenii strains. 

Inhibition halos of different intensities of D. hansenii growth can be observed among the different 

Candida strains. 

A. B. 

C. D. 
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3.5.5 Discussion 

 

By means of high-throughput sequencing (Illumina and 454 sequencing), it was possible to 

examine the diversity of the microbial rind community at the end of ripening (56 days). PCR 

amplification of the 16S rRNA gene for bacteria and ITS region for fungi from bulk cheese 

rind DNA and subsequent sequencing by next-generation sequencing technology were 

performed. Bacterial and fungal populations were identified. In terms of diversity, it was 

observed that there was much greater diversity among bacteria than among fungi, particularly 

regarding Staphylococcus species. The most abundant component of the bacterial consortium 

was represented by the Staphylococcus genus while among yeasts and filamentous fungi 

Candida catenulata and Penicillium commune/P. camemberti were the most frequently 

observed, respectively. The contribution of each population (i.e. bacteria and fungi) could not 

be compared since separated sequencing experiments were performed. Only by plate counting 

it was possible to quantify and compare the contribution of each population. Further studies 

are currently focused on quantification of these two populations. Moreover, since bulk cheese 

rind DNA was analyzed, it was not possible to determine the viability of these organisms in 

the rind. Thus, in order to obtain more information regarding what species are actively present 

and to perform interaction studies that may explain the progression of species during rind 

formation, plate counting was performed and different representative colony morphologies 

were identified. In agreement with Illumina sequencing, by culturing and species 

identification, it was shown that the Staphyloccus genus dominates among isolates, in 

particular S. saprophyticus and S. equorum were detected as the dominant species and S. 

succinus and S. xylosus as minor components. Different origins could be attributed to these 

microorganisms. Staphylococci are found living naturally on the skin and mucous membranes 

of warm-blood animals and humans (Mounier et al., 2006) but are also isolated from milk, 

cheese (Irlinger et al., 1997, Addis et al., 2001, Ercolini et al., 2003; Rasolofo et al., 2010) and 

smear rinds (Brennan et al., 2002; Mounier et al., 2005, Rea et al., 2007). All strains 

recognized for their technological value and involved in desirable reactions (flavor and aroma 

formation) during cheese ripening are coagulase-negative staphylococci (Irlinger, 2008).  

The fungal community evaluated by 454 sequencing of the cheese rind at the end of 

ripening was represented mainly by the yeast C. catenulata and, in minor abundance, by the 

filamentous fungi P. polonicum. P. polonicum is a common mold found on dry-cured meat 

products (Núñez et al., 2000). In agreement with 454 sequencing, a high number of isolates 

corresponding to viable cells of the yeast C. catenulata were found by culturing; moreover, 
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viable cells of D. hansenii were also isolated in minor abundance but were not detected by 454 

sequencing at 56 days of ripening. This may suggest that viable D. hansenii was present at the 

beginning of the rind development and became undetectable during ripening. Since D. 

hansenii is well-adapted to grow under the rind environmental conditions (i.e. high NaCl 

concentration, high pH, presence of lactose and lactate) (Mounier et al., 2008; Dolci et al., 

2009), we can hypothesize that this can be a consequence of some interactions among 

organisms causing inhibition. In fact, in this work, inhibition of the growth of D. hansenii by 

C. catenulata was observed by using a spot-on-lawn experiment and a different degree of 

inhibition was observed among strains. Yeasts are known to positively contribute to flavor and 

texture development in blue cheese (Roostita and Fleet, 1996). Candida spp. has been isolated 

in the core and surface of a Danish blue cheese (van den Tempel and Jakobsen, 1998) and D. 

hansenii was proved to have lipolytic activity and a weak proteolytic activity in blue cheese 

(van den Tempel and Jakobsen, 2000; Addis et al., 2001). Moreover, the yeasts are known to 

play a role in the deacidification of the cheese surface by oxidizing lactic acid to lactate, and 

that leads to the growth of acid-sensitive and salt-tolerant bacteria such as coagulase-negative 

staphylococci and coryneform bacteria. In smear cheese rinds, at the early stages of rind 

formation, the yeasts dominate, reaching high numbers (~6 log cfu/g) and then remained stable 

or decrease (Mounier et al., 2008; Cogan, 2011). The general trend is that the yeasts dominate 

during the early stages and are followed by bacterial domination at the end of ripening 

(reaching ~7-8
 
 log cfu/g). The yeasts metabolize the lactic acid produced by starter LAB and 

together with NH3 production from deamination of amino acids, cause the increase of pH on 

the surface where bacteria can grow (Brennan et al., 2002). Differently from the trend in 

smear cheeses, in this work it was observed that bacterial and yeast populations developed at 

the same time from about 7 to 10 log cfu/g of cheese rind at the late stages of ripening. The pH 

variations on the surface showed an increase in the first 14 days. Particularly pronounced 

during the first 7 days, this result agrees with pH variations on the surface of smear cheese that 

registers a maximal increase during the first 6 days of ripening (Mounier et al., 2008). Thus, 

this deacidification of the cheese surface was highly correlated with the growth of bacteria and 

yeasts during the first 24 days. Since it was not possible to gain quantitative information about 

the contribution of bacterial and fungal species, real-time PCR experiments will be performed 

for quantification of bacterial and fungal communities during natural rind development.  

Conidia of P. roqueforti were added to the cheese milk to confer the typical color and 

flavor to the cheese by lipolytic and proteolytic processes. This mold was isolated from the 

cheese surface, but it was not found by 454 sequencing at 56 days of ripening. This was not 
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surprising since the growth of P. roqueforti is inhibited by high salt concentration, being more 

concentrated near the surface of the cheese where the salting proceeds (Ardö, 2011). In this 

work, salt concentration on the rind was registered to be initially high, about 0.87 M, at 7 days 

and about 0.12 M at 56 days of ripening. 

Lactic acid bacteria such as Lactococcus lactis and Leuconostoc mesenteroides were 

isolated from the rind. Since these species were used as starters cultures, they were probably 

recovered from the early stages of ripening when the rind is still developing and is basically 

curd, in which they are well-adapted to grow. The bacterial composition evaluated over time 

during natural rind development by Illumina sequencing confirmed this observation. 

Lactococcus and Leuconostoc were detected in rinds at 10 days and strongly decreased to very 

low abundances from 24 days of ripening. The high salt concentration (about 0.87 M), high 

pH (about pH 6.1), and the aerobic conditions on the rinds were not optimal for LAB growth. 

This result disagrees with what found by Dolci et al. (2009) who found high levels of LAB in 

smear rind cheese at 90 days of ripening. The analysis on Stilton cheese (a similar blue cheese) 

agrees with our observations; Ercolini et al. (2003) revealed the presence of different 

microenvironments based on the spatial distribution of bacteria and according to pH, oxygen 

and nutrient gradients in the core compared to the veins and the rind. These authors found 

Leuconostoc microcolonies distributed in the core, veins and rind; lactococci were found only 

in the internal part of the veins and core, whereas Lactobacillus plantarum was detected only 

underneath the surface. Gas production by Leuconostoc sp. is considered to be important for 

the subsequent development of P. roqueforti and hence good flavor (Robinson, 2002).  

Subdominant species belonging to the non-starter LAB Enterococcus genus, such as 

Enterococcus faecalis and Enterococcus casseliflavus, were also isolated. These species are 

normally found in raw milk (Delbès et al., 2007; Giannino et al., 2009) and Enterococcus spp. 

was isolated at high levels from cheese cores in blue mold cheese made from raw milk (Ardö, 

2011). Surprisingly, this genus was not revealed by Illumina sequencing during the overall 

rind development. Any important role of the non-starter LAB in blue cheese, however, was not 

demonstrated (Ardö, 2011). 

In order to describe the temporal pattern of rind development during ripening, bacterial 

16S rDNA was analyzed by Illumina sequencing. A microbial succession was observed and no 

genus remained constant throughout ripening. The progression of different bacterial genera on 

the cheese surface over time corresponded to variations in pH and NaCl concentrations during 

ripening. The increase of pH in the cheese surface during the first 2 weeks could have favored 

the growth of secondary bacterial species, such as staphylococci and coryneform bacteria. 
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Moreover, salt concentration was initially high and then drastically decreased at 14 and 21 

days (to ~ 0.25 M); this could have consequences on the selection of salt-tolerant bacteria. In 

fact, between 10 and 24 days, the diversity changed considerably. LAB were greately reduced 

(as explained above) and Brevibacterium spp. and Brachybacterium spp. began to grow. Thus, 

Staphylococcus dominated the early stages and Coryneform bacteria, particularly the 

Brevibacterium genus, dominated later. Coryneform bacteria are known to play the most 

important role in surface-ripening, in particular, in smear cheeses (Dolci et al., 2009). 

However, among all the bacteria found in the smear, only the role of Brevibacterium linens in 

ripening was studied in detail (Cogan, 2011). B. linens produces several proteinases, 

peptidases, and lipases, many of which have been purified and characterized, and are also 

involved in ripening (Cogan, 2011). In this work, Corynebacterium and Brachybacterium 

genera were also found and increased during ripening. Similarly, Brachybacterium spp. was 

detected on the surface of hard French cheeses (Schubert et al., 1996) and the 

Corynebacterium genus was detected in the core of Danish soft cheese at low percentages by 

the next-generation pyrosequencing technology at 14 and 56 days of ripening (Masoud et al., 

2011). Among coryneform bacteria, Brevibacterium dominated throughout ripening. Being the 

most abundant at the end of ripening, thorough studies has to be performed to understand 

whether these bacteria contribute to ripening in this cheese variety.  

Some of the patterns observed in the succession may be a result of microbial interactions. 

Thus, in order to indentify some of these interactions, isolation of the individual species were 

subjected to interaction experiments (agar overlay technique). Similarly to the findings by 

Addis et al. (2001), in this work, yeast-yeast and yeast-bacterium interactions were observed. 

In the first case, C. catenulata inhibited D. hansenii and in the second case, C. catenulata and 

D. hansenii enhanced the growth of S. equorum. The negative interaction among yeasts could 

be responsible for absence of D. hansenii species detection during rind formation. 

Furthermore, growth factors produced by yeasts may explain the stimulation of S. equorum 

growth (Cogan, 2011). However, the mechanisms involved in these interactions remain 

unclear.  

Understanding the nature and extent of these interactions within the cheese microbial 

community could lead to insights on how to manipulate the microorganisms involved, 

however, more studies have to be performed to discover the molecules involved in this 

interactions. 
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3.5.6 Conclusions 

 

Combining the next-generation sequencing platforms and traditional culturing techniques, 

it was possible to describe in details the microbial community structure on the surface of a 

blue cheese made with raw cow milk and mesophilic LAB starters in which the rind naturally 

develops during ripening. These new sequencing platforms are powerful since allow not only 

to describe the community structure but also to evaluate the abundance of the community 

members, also considering the minor components. 

The microbiota on the surface of the blue cheese during natural rind development showed 

microbial diversity comprising fourteen genera of bacteria (Enterococcus; Lactococcus; 

Leuconostoc; Macrococcus; Staphylococcus; Klebsiella; Brevibacterium; Corynebacterium; 

Brachybacterium;, Nocardiopsis;, Cobetia; Psychrobacter; Halomonas; Haererehalobacter), 

two yeast genera (Candida; Debaryomyces) and one mold genus (Penicillium). Bacterial 

succession was observed during rind formation and no genus remained constant throughout 

ripening. Staphylococcus dominated the early stages and then Coryneform bacteria the later 

stages. In particular, Brevibacterium was the most numerous genus at the end of ripening. 

The species of the Staphylococcus genus were found to be S. saprophyticus, S. equorum, S. 

succinus and S. xylosus, while C. catenulata and D. hansenii were found among yeasts. 

Penicillium genus comprised P. commune/P. camemberti, P. aurantiogriseum/allii, P. 

roqueforti and P. polonicum. Furthermore, high and comparable densities of viable bacteria 

and yeasts were observed. Inhibition and stimulation have been observed among several 

species that could explain some contributions to community formation. 

This natural rind was formed by natural microbial colonization through the contact with 

the environment during salting and ripening for 71 days. It can be considered an active rind 

formed by a rich and dense microbial consortium. Thorough studies have to be performed in 

order to evaluate whether these bacteria, yeasts and molds play a role in the cheese ripening 

process. In this blue cheese with natural rind, this contribution may hardly be observed 

because the ripening process proceeds mainly from the interior by the proteolytic and lipolytic 

activities of P. roqueforti. However, other cheese varieties could be benefited by this natural 

microbiota. 
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4. GENERAL CONCLUSIONS 
 

Cheese is a biologically and biochemically dynamic food in which the microbial 

population structure changes under the influence of continuous shifts in environmental 

conditions and interactions among microorganisms during manufacturing and ripening. In 

cheese manufacturing, the selection of technological parameters can influence and even induce 

several biochemical processes needed for this product. The microbiota present in cheese is 

complex and their growth and activity represent the most important, but the least controllable 

steps. Cheese microorganisms can be either deliberately added as starters or simply 

adventitious contaminants, that is non-starter organisms. In this PhD thesis different 

ecosystems such as natural whey starters, hard Italian cheeses (i.e., Grana Padano and 

Parmigiano Reggiano) and natural rind of mold-ripened cheese (i.e., blue cheese), were 

investigated following cheese manufacturing and ripening by culture-dependent and culture-

independent techniques.  

In this PhD thesis, by studying microbiota in natural whey and in the cheese since the first 

days of manufacture, it was possible to describe starter lactic acid bacteria (SLAB) 

fermentative activity determining the ripening progress of the cheese. Whey starter titratable 

acidity did not seem to be related to the cell amount (total and cultivable cells) nor to the 

different species contribution. It was found that the SLAB microbiota in the whey ecosystem 

did not necessary behave on the same way on the cheese ecosystem. In fact, a direct 

correlation between the SLAB species composition and acidifying efficacy in whey starters 

was not found. Contrarily, in the cheese matrix, the SLAB fermentative activity seemed to be 

species-dependent. High concentrations of lactic acid and free amino acids were found in 

cheeses with higher levels of L. helveticus species and cultivable thermophilic bacterial 

densities. The presence of residual galactose was associated to higher contents of S. 

thermophilus species. In this sense, despite their presence is not necessarily related with their 

development in the curd, the significance of S. thermophilus in the whey starter has to be 

reconsidered. In particular, being whey starter a natural mix of LAB strains, the occurrence of 

S. thermophilus strains lacking in β-galactosidase is likely undesired. Finally, the biotypes 

composition of whey starters seems to be far more important than the species composition in 

insuring their good performances. 

Hard cheese resulted a useful system to study the LAB population dynamics in one 

environment characterized mainly by the absence of sugar since the first months of ripening. 

In these ecosystem, both SLAB and non-starter LAB (NSLAB) seemed to contribute to 
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acidification and ripening. However, SLAB, and in particular L. helveticus, resulted to be the 

species mainly subjected to the lysis occurring at 2 months of ripening. NSLAB are the lactic 

microflora not involved in curd acidification and, generally naturally present in cheese matrix. 

NSLAB were able to grow after brining, and became more relevant during ripening. They 

could arise both from the raw milk and the natural whey starter but their contribution to the 

development of cheese characteristics is still unknown. Furthermore, the presence of L. 

helveticus and L. delbrueckii subsp. lactis in a non-cultivable state, up to 13-month of 

ripening, suggested these species could play a different but still unknown role in cheese 

ripening. 

Differently from PR and GP, in which ripening is mainly due to the microorganisms that 

are in the core, in other cheese varieties, a complex microbiota develops on the cheese surface 

naturally (i.e., Stilton blue cheese) and could contribute to ripening. The importance of this 

natural microbiota in defining cheese features, is still under study. Moreover, little is know 

about the composition and diversity of this wide microbial population that could also be 

involved in flavor formation. Thus, the cheese surface was elected as a suitable ecosystem to 

study what adventitious microorganisms, differently from the starters, bring to cheese 

ripening. However, the species contribution is difficult to determine. The microbiota on the 

surface of a blue cheese during natural rind development showed a microbial diversity 

comprising fourteen genera of bacteria (Enterococcus; Lactococcus; Leuconostoc; 

Macrococcus; Staphylococcus; Klebsiella; Brevibacterium; Corynebacterium; 

Brachybacterium;, Nocardiopsis;, Cobetia; Psychrobacter; Halomonas; Haererehalobacter), 

two yeasts genera (Candida; Debaryomyces) and one filamentous fungal genus (Penicillium). 

High and comparable densities of viable bacteria and yeasts were observed. Bacterial 

succession was observed during rind formation and no genus remained constant throughout 

ripening. The Staphylococcus genus dominated the early stages and then was replaced by 

Brevibacterium at the end of ripening. By using interaction experiments, inhibition and 

stimulation were observed among several species; these interactions could explain how some 

microorganisms contribute to community formation. Candida catenulata and Debaryomyces 

hansenii enhanced the growth of Staphylococcus equorum while C. catenulata inhibited D. 

hansenii growth. However, thorough studies need to be performed in order to evaluate whether 

these bacteria, yeast and molds can be beneficial and play a role in flavor and texture 

development of other cheese varieties with similar natural rinds. 
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By these complementary approaches it was possible to describe which microorganisms 

were mainly involved in each dairy matrix and to address the importance of their presence, 

that if balanced, can help obtaining the distinctive features of each product.  
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