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Abstract

Due to deformability of the polymeric interlayer, stiffness and strength of laminated glass are usually less
than those corresponding to a monolith with same total thickness. A practical design tool consists in the
definition of the “effective thickness”, i.e., the thickness of an equivaiemolithic glass that would
correspond to the same deflection and peak stress tHrttieatedglass, under the same constraint and load
conditions. Very recently, a new model has been proposed for the evaluation of the effective thickness. Here,
a comparison is made with the classical approach by Wélfel-Bennison and the new method is specialized to
the most common cases of the design practice, providing synthetic tables for ease of reference and immediate
applicability.

Keywords: Laminated glass, plate design, effective thickness, strength calculation, composite structures,
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1. Introduction.

An effective technique to enhance the post-glass-breakage performance of architectural
glazing consists in bonding glass plies together with polymeric interlayertamiaation in
autoclave at high temperature and pressure. In such a way a laminated glass acquires safety
properties because, after breakage, shards remain attached to the polymer and the system maintains
a small but significant load bearing capacity, avoiding injuries due to catastrophic collapse.

Stiffness and strength of laminated glass may be considerably less than those of a monolithic

glass with the same total thickness, because the interlayer is unable to provide a perfect shear



coupling. As a matter of fact, the response ischéig by the shear stiffness of the polymer (in
particular by its shear modul@®, that regulates the relative sliding of the citnent glass plies.
Two borderline cases can be recognizédthe monolithic limit for G - o, where the two
glass plies are perfectly bonded together (fig.dra) the flexural inertia is that corresponding to
the total thickness of the laminated glasgthe layeredlimit for G - 0, with free-sliding plies
(fig. 1b), for which the flexural inertia is therawf the inertiae of the isolated plies. In genetta

real condition is intermediate between these twadxtine cases (fig. 1c).

Figure 1. Laminated glass composed of two plies @mal interlayer under flexure. The two limit casés) monolithic
limit and b) layered limit; c) the intermediate figuration.

Polymers are highly viscoelastic and, consequetiibir response depends upon load duration
and temperature. In the design practice a full ogsastic analysis is seldom performed, but
rheological effects are taken into account by ateréing, for the shear moduls, the secant
stiffness at the end of the load history at actaam temperature. The problem is thus simplified
and reduced to a case in which all the materialduding the interlayer, are considered linear
elastic. Moreover, at least as a first order apjpnaxion for a preliminary design, geometric non-
linearities can be neglected when in-plane loadsabsent.

In numerical computations, the response of lamihglass could be conveniently modelled
by a layered shell element that takes into account the comgesiiffness between glass and
interlayer, but most of the commercial numericade®do not have such elements in their library.
On the other hand, a full three-dimensional analysicomplicated and time consuming. This is
why, in the design practice and especially in thdiminary design, it is very useful to consider

approximate methods for the calculation of lamidajkss.



Currently, the most used approach is probably pheposed by Bennison (2009) based upon

the theory for composed sandwich beams proposed/del (1987)0. To illustrate, consider a
laminated beam of lengthand widthb composed of two glass plies of thickndgsand h, and

Young's modulusE, connected by a polymeric interlayer of thickneasd shear modulus (fig.

2).
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Figure 2: Beam composed of two glass plies bondeal figlymeric interlayer. Longitudinal and crosstiemal view (not
in the same scale).

Let

hi+h bh3 bh3
A1=bh1,A2=bh2,H=t+ 12 2,11=1_21,12=1_22. (1)

When thelayered limitis attained (i.e., two free-sliding glass pligkle moment of inertia of the

laminated beam equals the st | ,. In themonolithic limit the moment of inertia reads

A4y
It0t=11+[2+A1+A2H, (2)
where'A‘lT'A:i\2 H? represents the baricentrical inertia of the tweaarA and A, supposed to be

concentrated in the corresponding centroid.
For intermediate cases, Wolfel (1987) proposedr@ngtapproximation according to which the

effective moment of inertia is of the form

AA
1412 H2 (3)

IL,=1,+1,+——~H?
e T2 A+ A,



where the parametel’, 0<T < 1, accounts for the capability of the interlayerttansfer shear

stress between the glass plies. Wolfel proposel fbe expression

1
tE_AA; (4)
bIZA; + A,

=
1+

where the parametgrdepends upon the loading and boundary conditidnfan the most common
cases, the corresponding values are recorded ifféW#987)0. Hypothesis (3) is equivalent to
assume that the individual bending stiffness ofakiernal layers has no influence on the coupling
offered by the central layer: the less the bendiifiness of the external layers, the more accurate
is this hypothesis.

Bennison (2009) has adopted Wolfel's approach fipally for the case of laminated glass
(Calderoneet al. 2009). A strong approximation in their proposahsists in using in (3) the
universal values = 9.6 although in Wolfel's theory this is associatedotte case only, i.e., the
case of simply supported beams under uniformlyritigied load. From (3), one can easily
calculate thestress-and thedeflection-effective thicknesse., the (constant) thickness of the
homogeneous plate that, under the same boundaripaddonditions of the considered problem,
has the same maximal stress or maximal defleatespectively.

Introducing, aper (Bennison 2009), the quantities

_ Hhy _ Hh, _ 1 A4y o 2 2
hs;l - h1+h2' hs;z - h1+h2' s = E A1 +A, H* = hlhs;z + hzhs;p (5)
the deflection-effective thicknesses turns outdp b
Refaw = i/hf + h3 + 12T, (6)

whereas the stress-effective thickness for glass pumber 1 and 2 is given by

h3.
Riero = ofe = |—L2—, 7
Lef;o 2;ef;0 hy+2Thg,q ( )

Although these expressions (referred to in the alegsl the Wolfel-Bennison approach) refer to a
very particular static scheme, they are commongduga numerical computations with models of

monolithic plates with constant thickness. Thesstrand strain so calculated are used for structural



verification and, even more so, sometimes alsoesgrestimate stress concentrations around holes

and/or at contact points; but no theoretical besists for this procedure.

An alternative formulation has been very recentlgppsed in (Galuppi and Royer-Cafagni
2012a). This procedure, call&hhanced Effective Thicknesgethod, is based upon a variational
approach and consists in finding the best appraxomdor the response of laminated glass among
a restricted class of shape functions for the defia surface through the minimization of the strai
energy functional. The main hypotheses for this ehade:i) the interlayer has no axial or bending
stiffness, but only shear stiffness); shear deformation of glass is neglectd;all materials are
linear elasticjv) geometric non-linearities are not considered. &&ably, the method applies to
the one-dimensional case of beams under bendingg@aand Royer-Cafagni 2012a) 0 but can be
naturally extended to the two-dimensional casdatkp (Galuppi and Royer-Cafagni 2012b) under
the most various load and boundary conditions.

The purpose of this paper is to present the patiggtof this latter approach for the design of
laminated glass. Paradigmatic cases are presetterkvits efficiency is proved by comparison
with the results of precise numerical simulationd aith the results obtainable with the classical
Wodlfel-Bennison approach. Tables for the calcutataf the relevant coefficients in the most

common cases have been added for ease of referedde facilitate the practical use.

2. Enhanced effective thickness approach

Theenhanced effective thickneg&ET) method defines the equivalent moment oftiadr; as the

weighted harmonic mean of the moments of inertimesponding to the layered and monolithic
limit. This is a substantial difference with respéx (3) that uses the weighted arithmetic mean.

This approach can be applied to the most vari@aig sichemes and load conditions.



2.1. The one-dimensional case. Laminated glass beams.

When applied to the same case of Figure 2, usiagséime notation of Section 1 the strain

energy of the laminated beam can be written asetifin of the vertical displacemenx), the

same for the two glass components, and the hodkalisplacementd)(X) and U,(X) of the

centroid of the upper and lower glass ply, respetiti Under the hypothesis that strains are small
and the rotations moderate, the minimization ofgtrain energy leads to differential equilibrium
equations with appropriate boundary conditionst tan be hardly solved without the use of a
numerical procedure.

In order to define simple expressions for dugiivalent thicknesshe problem is simplified by
introducing convenient shape functions fgx), U,(X) and U,(X) that are compatible with the
qualitative properties of the solution. It is nafuto consider as the shape function fgix) the

form of the elastic curvg(x) of a monolithic beam with constant cross sectiodeu the same
loading and boundary conditions of the problemaatch In particular, we set

g(x)
Elp’

v(x) =

8
where | ; is an unknown parameter representing the mometiteofnertia of the laminated glass
beam. We further assume thiat is the weighted harmonic mean b, (the monolithic limit) and

[, +1, (the layered limit), that is

n 1-n

Ig Ly LA+L

(9)

where the non-dimensional weight parametgiays a role analogous to that bfin (3), because
it tunes the response from the layered limit= 0) to the monolithic limit § = 1). As illustrated in
(Galuppi and Royer-Cafagni 2012a), minimizatiorited strain energy allows to determine the best

value ofn in the form



1
1o Eth ¥ LA+ 4
Gb Loy  AiA;

(10)

b4
where, by denoting b the one-dimensional domain representative of éfierence configuration

of the beam, the quantity is defined as

w o p(x)g(x)dx’ 1)
Jo 9'(x)%dx
wherep(x) is associated with the distributed load (see E@)r
Clearly,¥ depends upon the boundary and load conditionsteiwdlues are recorded in Sect. 3 for
the cases of most practical relevance. Notice db thvat n depends upon the mechanical and

geometrical properties of the laminated beam, amel can show (Galuppi and Royer-Cafagni

2012) that wherG - <o then n - 1 and whenG - 0, thenn — 1. From (9), the deflection-

effective thicknessﬁwthen turns out to be

A 1
3 3 + 3 3
RS+ hd+ 121, S+ R

Recalling the definitions (7) df;.; andh ., , one also finds the following expressions for ¢hress-

effective thickness:

3 3 73 3 3 73
fl1c= h1+h2+1215+h_w’ Aza: h1+h2+1215+h_w. (13)
2nhg,, hy 2nhg,y h,

The Enhanced Effective Thickness approach presenedditional difficulty with respect to
the Wolfel-Bennison formulations, giving compactrfuulas (12) and (13) for laminated glass

design. Moreover, it can be readily extended tawwedimensional case.

2.2. Thetwo-dimensional case. Laminated glass plates.



When considering the laminated glass plate ideatiby thex — y domainQ (see Figure 3)
under distributed loag(x,y), the strain energy can be written as a functiénthe vertical
displacementv(x, y), the same for the two glass plies, and the hotao andy components of
displacements of the middle plane of the upper lamgbr glass plate. Minimization leads to a
system of partial differential equations with aggiate boundary conditions. In order to simplify

the problem, we again introduce a convenient shapstions for the displacement components.
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Figure 3: Plate composed of two glass plies boryea polymeric interlayer. Overall and cross sewtlview (not in the

same scale).
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Defining the flexural rigidity of each glass ply Bs = and D, = , it can be

demonstrated that the flexural rigidity for the rabithic limit reads (Galuppi and Royer-Cafagni

2012b)

D1 D,

————H?, 14
D,h5 + D,h} (14)

DtOt = Dl +D2 + 12

Then, the shape function far(x,y) can be selected as the elastic deformed surfa@emmnolithic
plate with constant thickness under the same |gaa boundary conditions. In analogy with (5),

we set

g(x,y)
D (15)

w(x,y) =



whereDg is the equivalent rigidity and the shape functggr,y) is uniquely determined by the
shape of the laminated glass plate in y plane, by the external logafx, y) and by the geometric
boundary conditions.

Assuming, in analogy with (9),

1 n 1-n
— = + ) (16)
Dp Dyt D+ D,

minimization of the strain energy allows to deterenithe counter part of (10) for the two
dimensional case in the form

1
n= | tDi+D, 120D, ,° (17)
G Dot Dyh% + D,h?

where now

Jo PG y)g(x, y)dx dy (18)
J 192G 9)? + g, (x,y)?]dxdy

W=

depends upon the plate shape, the load distribptioyy) and the boundary conditions. The stress-
and deflection-effective thicknesses may be reachligulated and take expressions analogous to
(12) and (13), respectively.

It is important to note that the only “difficultydf the proposed method consists in calculatihg
from (18), because all the other formulas are sngmalytical expressions. In the following we

will report tables with values o¥ that refer to the most common cases of the desiagtice.

3. Examples

The results obtainable with the EET approach am® oompared with those proposed by
Bennison (2009)and with the numerical experiments performed bymseof the finite element

software SJ-Mepla, specifically conceived of foniaated glass (SJ MEPLA 2011).

3.1. One-dimensional examples. Various constraint and load conditions.



Table 1 summarizes the values 8f evaluated through equation (11) as a functiorhefldeam

length | for various constraint and load condition. Suchoafficient allows to simply evaluate

n through equation (10).
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Table 1: Laminated glass beams under different boundadyi@ad conditions; values of coefficieit for different
boundary and load conditions.

For the sake of comparison, in the present sechium, paradigmatic cases are analyzed in detail.
With the same notation of Figure 2, assumed gearaétind structural parameters afe= 3150
mm, b = 1000 mmh; =h, = 10 mm,t = 0.76 mm,E = 70 GPa, while the shear modul@f the
polymeric interlayer is varied to evaluate its irgihce on the shear-coupling of the glass plies. The
distributed pressure on the beam is taken equ@l76 kN/nf so that, withb = 1000 mm, the
distributed load per unit length beconmmes 0.75Nm. For the case of concentrated force, we take
F =1 kN.

In the following graphs, the stress- and deflectéfective thicknesses, calculated through (12)

and (13), are plotted as function @fwith a continuous line, whereas the effective khasses
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calculated with the Wodlfel-Bennison’s is represdntath a dashed curve. Results of numerical
experiments are indicated with dots.
The cases considered here @simply supported beam under uniformly distribuitead (
Figure4); ii) simply supported beam under concentrated loagl(Ei5);iii) beam with three
supports under distributed load (Figure i§); double clamped beam under uniformly distributed
load (Figure 7). For case ii), the val@ie= 12, recorded in the original Wolfel paper (Wolfel 198

has been used.
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Figure 4: Simply supported beam under uniform lo@dmparison of the effective thicknesses obtainetth:wi
Wolfel-Bennison (WB) approach; the enhanced effecthickness (EET) approach; the numerical simulatio
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Figure 5: Simply supported beam under concentrimi@d. Comparison of the effective thicknesses obthiwith:
Wolfel-Bennison (WB) approach witg = 12; the enhanced effective thickness (EET) appro#tod;numerical
simulations.

11



Deflection-effective thickness Stress-effective thickness

22 22
21t MONOLITHIC LIMIT _ 21t MONOLITHIC LIMIT ]
20+ 20t
19t 19t
18} 18}
E E 17l
£ £
161 16t
,
150 . 15¢
-
141 14f -
EET LAYERED LIMIT EET
13 - - - WB g 13+ - - - wB g
LAYERED LIMIT O Numerical [] O Numerical
12 -2 ‘71 ‘ 0 1 12 -2 ‘71 ‘ 0 1
10 10 10 10 10 10 10 10
G[MPa] G[MPa]

Figure 6: Beam with three supports under distribuded. Comparison of the effective thicknessesinbthwith:
Wolfel-Bennison (WB) approach; the enhanced effecthickness (EET) approach; the numerical simulatio
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Figure 7: Double clamped beam under distributed.ld@omparison of the effective thicknesses obtawvet:
Wolfel-Bennison (WB) approach; the enhanced effecthickness (EET) approach; the numerical simulatio

In the case of simply supported beams under unifioad the models give results that in
practice coincide, a finding that is not surpristmercause this is the simplest case upon which the
Wodlfel approach is calibrated. Numerical resultaftm the good approximation that is achieved.
Also for the case of simply supported beam undercentrated load, the two approaches give
results that practically coincide. However, it isgdent from Figure 5 that the agreement with the
numerical simulations is good for the deflectiofeefive thickness, whereas the stress-effective

thickness is qualitatively different, especiallytimse branches close to the monolithic limit.
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In the case of beam with three supports and of ptaibeam, there is a substantial deviation
between the EET and W-B approaches especiallyn®ridwest values o6, but the numerical
experiments are in favor of the EET approach. Qlesdrat W-B is not on the side of safeness,
because it predicts effective thicknesses grehtar in reality and, consequently, underestimates

deflection and stress.

3.2. Two-dimensional examples. Plates under various constraint and load conditions

In the present section, several cases of pradgtigartance for rectangular plates are analysed.
Apart from uniformly distributed pressure, we haalso considered the action of a (pseudo-)
concentrated load whose imprint, according to thdication of most structural standards. is
supposed to be a 100 mirl00 mm square.

Tables 2.1 and 2.2 collect values of the coefficiEfimm?10°] that are necessary to evaluate

n asper (17), calculated according to equation (18) asretion of the plate length[mm] and of

the aspect ratig=0/,.

The shape functiong(x,y) for w(x,y), introduced in (15), can be found in (Timoshenk@@)9
and (Batista 2010) in the form of trigopnometric dngberbolic series. In the calculation &f as
per (18), we have considered only the first ternthia series (first order approximation) for the
cases in which the load is distributéidgcan be directly verified that higher order appnaations,
obtained by considering more terms of the series,ndt substantially increase the level of
accuracy. On the other hand, when the plate isebah a small area (pseudo-concentrated load),
the use of higher-order terms of the series ineeamtably the precision of the deflection- and
stress-effective thickness. In Table 2.1, the @l for plates under pseudo-concentrated load
have been obtained by using a third order appraiama

It should also be remarked that for the case dakeplavith one edge built in, the deformed

shape under a uniformly distributed load is cylicakin type and, consequently, the coefficignt
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and hence the coefficient7 and the deflection- and stress-effective thicknéssis out to be

independent upon the width

2=b/a
- every value

m
IEE XX 500 |11,2000| Legend:
600 7,77778
800 | 4,37500
a |_1000 [2,80000
1500 | 1,24444
, [ 2000 [0,70000

Free edge e Clamped edge

Simply suppored + Supported corner

. b 2500 | 0,44800 edge
3000 |0,31111
ammf—] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

500 | 4018,00| 1042,79 | 486,328 | 290,422 | 199,746 | 150,612 | 121,070 | 101,947 | 88,8653 | 79,5280
600 | 2790,28 | 724,160 337,728 | 201,682 | 138,713 | 104,592 | 84,0766 | 70,7962 | 61,7120 | 55,2278
800 | 1569,53 | 407,340 | 189,972 | 113,446 | 78,0259 | 58,8328 | 47,2931 | 39,8229 | 34,7130 | 31,0656
a | 1000 | 1004,50 | 260,698 | 121,582 | 72,6055 | 49,9366 | 37,6530 | 30,2676 | 25,4866 | 22,2163 | 19,8820
1500 | 446,445 | 115,866 | 54,0364 | 32,2691 | 22,1940 | 16,7347 | 13,4523 | 11,3274 | 9,87392 | 8,83644
2000 | 251,125| 65,174 | 30,3955 | 18,1514 | 12,4841 | 9,41325 | 7,56690 | 6,37166 | 5,55408 | 4,97050
2500 | 160,720| 41,712 | 19,4531 11,6169 | 7,98985 | 6,02448 | 4,84281 | 4,07786 | 3,55461 | 3,18112
3000 | 111,611 | 28,966 | 13,5091 | 8,06728 | 5,54851 | 4,18367 | 3,36307 | 2,83185 | 2,46848 | 2,20911

e 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

500 |4918,34|1232,69 | 567,067 | 334,994 | 230,168 | 177,772 | 153,440 | 148,958 |162,5088]193,6331
600 | 3370,58 | 856,090 | 393,202 | 232,176 [ 160,114 | 125,082 |110,4136{110,6813|124,4915]150,3770
800 | 1887,99| 481,156 | 220,499 | 130,284 [ 90,4864 | 71,9804 | 65,5937 | 68,3750 | 79,1656 | 96,0054
1000 | 1208,10| 307,557 | 140,793 | 83,2878 | 58,1740 | 46,8728 | 43,5895 | 46,4238 | 54,3862 | 65,7299
1500 | 536,820 136,349 | 62,3643 | 36,9883 | 26,0733 | 21,4107 | 20,4625 | 22,3430 [ 26,4174 |31,62618
2000 | 301,823 76,5778 | 35,0205 | 20,8068 | 14,7442 | 12,2309 [11,84687]13,07316]|15,48895|18,42744
2500 | 193,088 | 48,9613 | 22,3909 | 13,3188 | 9,46975 | 7,90479 | 7,71696 | 8,56443 |10,15214|12,02886
3000 | 134,046 33,9778 | 15,5392 | 9,25103 | 6,59278 | 5,52651 | 5,42301 | 6,03981 | 7,15987 | 8,45939

L2 | 0.2 0.4 0.6 0.8 1 1.25 | 1.667 2.5 5

500 | 1232,69 | 334,994 | 177,772 | 148,958 |193,6331(311,1367|394,6583|387,8492(371,0113
600 | 856,090 | 232,176 | 125,082 [110,6813[150,3770|230,8654]|276,0053]|269,3501|257,6467
800 | 481,156 | 130,284 | 71,9804 | 68,3750 [ 96,0054 |138,2211]|156,1950|151,5144|144,9263
a| 1000 |307,557 83,2878 | 46,8728 | 46,4238 | 65,7299 | 91,0467 |100,2270] 96,9706 | 92,7528
1500 | 136,349 | 36,9883 | 21,4107 | 22,3430 | 31,6262 | 41,7225 |44,66439(43,09864|41,22347
2000 | 76,5778 | 20,8068 | 12,2309 [13,07316(18,42744|23,76545]25,15044|24,24312(23,18820
2500 | 48,9613 | 13,3188 | 7,90479 | 8,56443 |12,02886|15,31348]16,10541|15,51565(14,84045
3000 | 33,9778 9,2510 | 5,52651 | 6,03981 | 8,45939 |10,67955]11,18824[10,77477(10,30587

Table 2.1: Representative examples of laminatessgtates: values of coefficiert[mm2[10% for different load and
boundary conditions.

14



a2 | 0.2 0.4 0.6 0.8 1 1.25 | 1.667 2.5 5

500 | 59,8176 | 55,7770 | 51,6762 | 48,5518 | 46,3972 | 44,6462 | 42,9996 | 41,5644 | 41,6559
600 | 41,5400 [ 38,7340 | 35,8862 | 33,7165 [ 32,2203 | 31,0043 | 29,8609 | 28,8641 | 28,5614
800 | 23,3663 | 21,7879 | 20,1860 | 18,9655 | 18,1239 | 17,4399 | 16,7967 | 16,2361 | 15,6021
a| 1000 | 14,9544 13,9442 12,9190 12,1379 | 11,5993 [ 11,1615 | 10,7499 | 10,3911 | 10,4140
1500 | 6,64640 | 6,19744 | 5,74180 | 5,39464 | 5,15525 | 4,96069 | 4,77774 | 4,61826 | 4,41235
2000 | 3,73860 | 3,48606 | 3,22976 | 3,03449 | 2,89983 | 2,79039 | 2,68748 | 2,59777 | 2,60350
2500 | 2,39270] 2,23108 | 2,06705 | 1,94207 | 1,85589 | 1,78585 | 1,71999 | 1,66257 | 1,70853
3000 | 1,66160 | 1,54936 | 1,43545 [ 1,34866 | 1,28881 [ 1,24017[ 1,19443 [ 1,15457 [ 1,10309

e lE 0.4 0.6 0.8 1 1.25 | 1.667 2.5 5

H 500 42,3350 | 39,0757 | 38,1557 | 37,7017 | 37,4193 | 37,1767 | 36,8990 | 36,5295 | 35,7883
600 29,3993 | 27,1359 | 26,4970 | 26,1818 | 25,9856 | 25,8171 | 25,6243 | 25,3677 | 24,8530
800 16,5371 | 15,2639 | 14,9046 | 14,7272 | 14,6169 | 14,5221 | 14,4137 | 14,2693 | 13,9798
1000 | 10,5837 9,76893 | 9,53893 | 9,42544 | 9,35481 | 9,29417 | 9,22476 | 9,13236 | 8,94708
1500 4,7039 | 4,34175| 4,23953 | 4,18908 | 4,15769 | 4,13074 | 4,09989 | 4,05883 | 3,97648
v 2000 2,6459 | 2,44223| 2,38473 ] 2,35636 | 2,33870 | 2,32354 | 2,30619 | 2,28309 | 2,23677

o0

b 2500 | 1,6934 | 1,56303 | 1,52623 | 1,50807 [ 1,49677 | 1,48707 | 1,47596 | 1,46118 | 1,43153
3000 | 1,1760 | 1,08544 | 1,05988 | 1,04727 [ 1,03942 | 1,03269 [ 1,02497 | 1,01471 | 0,99412
b’ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

500 | 61,1205 59,8176 | 57,9303 | 55,7770 53,6340 | 51,6762 | 49,9790 | 48,5518 | 47,3700 | 46,3972
600 | 42,4448 | 41,5400 | 40,2294 | 38,7340 | 37,2459 | 35,8862 | 34,7077 | 33,7165 | 32,8958 | 32,2203
800 | 23,8752 | 23,3663 | 22,6290 | 21,7879 | 20,9508 | 20,1860 | 19,5231 | 18,9655 | 18,5039 | 18,1239
a | 1000 | 15,2801 | 14,9544 | 14,4826 | 13,9442 | 13,4085 | 12,9190 | 12,4948 | 12,1379 | 11,8425 | 11,5993
1500 | 6,79116 | 6,64640 | 6,43670 | 6,19744 | 5,95934 | 5,74180 | 5,55322 | 5,39464 | 5,26333 | 5,15525

4 2000 | 3,82003 | 3,73860 | 3,62064 | 3,48606 | 3,35213 | 3,22976 | 3,12369 | 3,03449 | 2,96062 | 2,89983
b 2500 | 2,44482 | 2,39270| 2,31721 | 2,23108 | 2,14536 | 2,06705 | 1,99916 | 1,94207 | 1,89480 | 1,85589
3000 | 1,69779 | 1,66160 | 1,60918 | 1,54936 | 1,48983 | 1,43545 | 1,38831 | 1,34866 | 1,31583 | 1,28881

b2 [ 0.2 0.4 0.6 0.8 1 1.25 | 1.667 2.5 5
H 500 | 325,393 | 114,750 | 74,9377 | 60,4550 | 53,5051 | 48,9526 | 45,3585 | 42,6990 | 37,9068

600 225,968 | 79,6875 | 52,0400 | 41,9827 | 37,1563 | 33,9949 | 31,4989 | 29,6521 | 32,7445
800 |127,1068| 44,8242 | 29,2725 23,6153 | 20,9004 | 19,1221 | 17,7182 | 16,6793 | 19,9520
a 1000 | 81,3484 |28,68749(18,73442|15,11376]13,37627|12,2381611,33962|10,67475] 9,47670
1500 | 36,1548 |12,74999| 8,32641 | 6,71723 | 5,94501 | 5,43918 | 5,03983 | 4,74433 | 4,02073
2000 | 20,3371 7,17187 | 4,68360 | 3,77844 | 3,34407 | 3,05954 | 2,83490 | 2,66869 | 2,36918
< b > 2500 | 13,0157 | 4,59000 | 2,99751| 2,41820| 2,14020 | 1,95811 | 1,81434 | 1,70796 | 1,90781
3000 |9,03871] 3,18750) 2,08160] 1,67931| 1,48625| 1,35980 | 1,25996 | 1,18608 | 1,00518

Table 2.2: Further examples of laminated glasteplander various boundary and load conditions ¢saatation of
Table 2.1). Value of the coefficier[mm?[107.

It is important to note that:

« for plates with the same boundary and loading d¢andin x andy direction (for example
plate supported on four sides) under a constatliited load, the parametardenotes
the longer edge of the plate (note that, in susesalables 2.1 and 2.2 give b/a <1);

« for plates with different boundary and loading citind in x andy direction (for example
plate supported on two sides) under a constantligtd load, the identification of the
edges is shown in the sketch of Tables 2.1 andir2 jch cases Tables give eitllex 1

oriA>1.
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For example, the value of coefficiefftfor a plate of dimension 3000 mm x 1800 mm, sufgabr

on 3000 mm edge, can be found in table 2.2 by ¢hgag=3000 mmA=0.6.

In the sequel, we compare the deflection- and s&éfective thickness calculated according

to the proposed EET approach through equationsgd@)(13), with the ones calculated with the

W-B formulas (3) and (4). Results are also validdig means of numerical analysis performed by

the finite element software SJ-Mepkssumed structural parameters are the size ofltie p =

3000 mm andb = 2000 mm; the thicknesses of the glass pliesh, = 10 mm; the thickness of the

interlayer t = 0.76mm; the elastic parameters for glass 70 GPaandv = 0.22 The shear elastic

modulus G of the polymeric interlayer is again varied betwegf1MPa and 10MPa. The

distributed pressure on the plate is taken equalZ®10° N/mnt.

The most frequent case in the design practiceriainy that of a rectangular plate with all the
sides simply supported, subject either to a disteédd or concentrated load. The graphs of Figure 8
compare the deflection- and stress-effective treskrcalculated according to the EET and the W-B
approaches to the results of the numerical expetisndt is very evident here that the two

formulations give different results at the qualitatievel. Again W-B is not on the side of safeness

because it underestimate deflection and stress.

Deflection-effective thickness

Stress-effective thickness

22 22
21 MONOLITHIC LIMIT 21 MONOLITHIC LIMIT
20 - 20 - q
e é %1 -

§ I3 % — O
19 7 e 19 | 1 s

- B

I / | @)

18 } | . 18 | ! P

| ! A4 L__ ! ,

E L ; E 7
E 17 3 E 17 4
4
16 ‘ 16 )
4 e
15 o 15 .z
B

14 - 14

_ EET LAYERED LIMIT EET
13 4 - - W-B 13 - WB

LAYERED LIMIT O Numerical O Numerical
12- o 5 s 12- 1 o \
10 10 10 10 10 10 10 10

G[MPa]

G[MPa]

Figure 8: Rectangular plate simply supported on feisles under distributed load. Comparison of thiectfe
thicknesses obtained with: Wélfel-Bennison (WB) apgtg the enhanced effective thickness (EET) approtee
numerical simulations.
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In such a case, the behavior predicted by the Egdroach is close to Wolfel-Bennison's

whenever the aspect ratio is such that plate respds similar to the response of a beam

(A= b/a > 1). This is not surprising because the Wolfel-Beanis model is calibrated on the case
of simply supported beams under uniformly distrdfstioad. On the contrary, the greatest
differences between the EET and W-B approachesl@sned when the plate is squake=(1),

i.e., when the deflections of beam and plate diffier most. This is shown in Figure 9, where the
percentage error on the evaluation of the deflaetamd stress- effective thicknesses are plotted as

a function of the aspect ratio

Error on the evaluation of the deflection- Error on the evaluation of the deflection-
and stress-effective thicness, a=3m and stress-effective thicness, a=2m
10+ E.E.T., erroronh || 10! E.E.T., erroronh ||
— — W-B, error on hef )Y\\ — — W-B, error on hef
—+— E.E.T., error on h —+— E.E.T., error on h
o || 8,3.&\ o |]
— % W-B, error on h(I \\ — % W-B, error on h(I
\
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=% — —F
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Figure 9: Error on the evaluation of the deflectiand stress-effective thickness, for different@lengthsa and aspect
ratio.

In the case of rectangular plates simply suppasteébur sides under a pseudo-concentrated load,
the conclusions about the stress and deflectiaetfe thicknesses are similar to those for the cas
of uniformly distributed load. As mentioned abovender load conditions of this type,
consideration of just the first-order approximatiohthe shape functiomgy(x,y) does not give
acceptable accuracy. This finding is evidencedigufés 10 and 11, where a comparison is made
between the effective thicknesses evaluated withegeifirst-order approximation or third-order
approximation. It is evident from the graphs thnet tise of third-order terms in the series improves

the precision especially for what the calculatibaleflection is concerned.
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For such cases, the val@e= 9.6 proposed by Bennison has been used; the yalid 2 recorded

in the original work by Wélfel for a beam under centrated load does not lead to better results.
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Figure 10 Rectangular plate simply supported on fdes under pseudo-concentrated load acting ateghze of the
plate. Comparison of the effective thicknesses abthiwith: Wolfel-Bennison (WB) approach; the enhane#dctive
thickness (EET) approach®(and & order accuracy); the numerical simulations.
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Figure 11 Rectangular plate simply supported on &des under concentrated load acting at the miofdtme edge of
the plate. Comparison of the effective thicknessktined with: Wolfel-Bennison (WB) approach; the emnten
effective thickness (EET) approacti@nd & order accuracy); the numerical simulations.

Figure 12 compares the EET and W-B results forcdse of plate simply supported on three
sides (with a free side of lengh). In this condition both models give results irogoagreement

with the numerical experiments.
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Figure 12: Rectangular plate simply supported omethsides under distributed load. Comparison of ffectere
thicknesses obtained with: Wolfel-Bennison (WB) ajagtg the EET approach; the numerical simulations.

It should also be observed, as discussed at leng@®aluppi and Royer-Cafagni 2012b), that when
the deformation of the plate tends to be cylindrisa that its response is similar to that of anbea
the predictions of W-B and EET tend to coincideisTis the case of a plate simply supported on

two opposite sides, to which Figure 13 refers to.
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Figure 13: Rectangular plate simply supported on siMes under distributed load. Comparison of thectfe
thicknesses obtained with: Wolfel-Bennison (WB) ajagtg the EET approach; the numerical simulations.

The case of rectangular plates point-wise suppa@tekde corners does apply to frameless glazing.
It is evident from Figure 14 that the EET and WgiBe similar results, in agreement to numerical

outcomes.
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Figure 14: Rectangular plate simply supported atftlue corners under distributed load. Comparisorhef effective
thicknesses obtained with: Wélfel-Bennison (WB) apgtg the enhanced effective thickness (EET) approtee
numerical simulations.

In the case of rectangular plate with two opposttge simply supported, the third edge built in and
the fourth edge free, it is evident from Figurettt the Enhanced Effective Thickness model and

Wolfel-Bennison approach give substantially différeesults and that numerical experiments are

in favor of EET.
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Figure 15: Rectangular plate with two opposite edgeply supported and one edge built in, underitisted load.
Comparison of the effective thicknesses obtainech:wWoélfel-Bennison (WB) approach; the enhanced dffect
thickness (EET) approach; the numerical simulations

Figure 16 shows the comparison the EET and W-Blte$ur the case of rectangular plate with

one edge built-in. From this, it is evident thae BET and W-B now give substantially different
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results; deflection-effective thickness calculatieugh EET approach is in agreement with the
results of the numerical simulation. The evaluat@f the stress-effective thickness is not so

precise, because it is affected by stress inteasifin near the clamped edge.
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Figure 16 Rectangular plate with one edge built mdar distributed load. Comparison of the effectiiieknesses
obtained with: Wélfel-Bennison (WB) approach; the E&pproach; the numerical simulations.

4. Conclusions

One of the currently most-used simplified approactoe the structural design of laminated
glass is that due to Bennison (2009), which is thag®on the original work by Wolfel (1987).
However, Wolfel's model was primarily conceivedfof a sandwich beam with external plies with
considerable axial stiffness but negligible benditifness and an intermediate layer that can only
bear shear stress, with zero axial and flexurangth. Whenever the external layers present
considerable bending stiffness, as in the caseaofinated glass, Wolfel proposed a very
approximate solution that in any case, as we havidied here, gives results in agreement with
more accurate (numerical) methods of analysisHerdnly case in which the load is uniformly
distributed and the deformed shape tends to badmdal, i.e. case of simply supported beams or
rectangular plates simply supported on two oppacsites.

When the load is not uniformly distributed, thenstard Wolfel — Bennison approach gives

results that are not on the side of safeness. iBafiproximations can be achieved with the
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Enhanced Effective Thickness approach. Here we havgerded the significant parameters
necessary for a quick calculation of the effectickness for the cases of most practical
importance, which presents no additional difficultigh respect to the more traditional formulation.

In the two-dimensional case of plates, the resabtained with Wdlfel-Bennison are accurate
only when the plate is rectangular and simply suiggoon two opposite edges, i.e., when its
deformed shape tends to be cylindrical and itsaesp similar to that of a simply supported beam.
When this is not the case, the Enhanced Effectiviekhess method gives results that fit more
closely the real situation both for the deflectiond the stress calculation.

The EET method furnishes compact formulas also the two-dimensional case and,
remarkably, the most relevant expression (12) a8) dre analogous to those corresponding to the
one dimensional case. The coupling offered by niterlayer can be readily evaluated by using the
values of ¥ that have been tabulated here for all those cHsssare relevant for the design
practice. However, using (18), the valuetbtan be calculated with no difficulty for any larated
plate under any load condition. The enhanced @fethickness approach thus seems to represent

an accurate and powerful tool for the practicéddation of laminated glass.
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