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ABSTRACT 
 

The gastrointestinal (GI) tract is a chemosensory organ that detects nutrients in the lumen to 

initiate an appropriate response of digestion and absorption of nutrients or elimination of 

harmful substances. It has been shown that bitter taste receptors (T2Rs), a large family of GPCRs 

detecting bitter compounds in the mouth, and their signaling molecules, are also expressed in 

the GI tract mucosa. Because bitter taste has evolved as a warning mechanism in the mouth, we 

hypothesize that T2Rs in the GI tract might serve as a second level of defense towards harmful 

compounds. 

In this study, we used qRT-PCR to investigate the distribution of two T2Rs subtypes 

(mT2R138 and mT2R108), and their signaling molecule Gα-Gustducin (Gust), in the mouse GI 

tract, and different diets to see whether they are modulated by luminal content. To test the 

hypothesis that T2Rs in the gut might serve as a mechanism of defense against pathogens, 

additional studies measured by WB the phosphorylation of mitogen activated protein kinase 

(MAPK) to evaluate whether T2Rs respond to Acyl Homoserine Lactone (AHL), quorum sensing 

molecule for Gram negative bacteria. The response on STC-1 and NCM-460 cells was compared 

to the ones elicited by T2Rs agonists_phenylthiocarbamide (PTC) and denatonuim benzoate 

(DB)_and blocked by the T2R138 antagonist Probenecid. The pathway following T2Rs activation 

was further characterized using GF-1, a protein kinase C inhibitor, and nitrendipine, a Ca++ 

channel blocker. 

We found that mT2R138, mT2R108 and Gust are expressed throughout the entire mouse 

GI tract, with different levels of expression, and that different diets selectively modulate T2Rs in 

specific GI regions. Also, we showed that both NCM-460 human colonocytes and STC-1 mouse 

enteroendocrine cells express T2Rs and respond to bitter stimuli and AHL with rapid dose-

dependent phosphorylation of MAPK p44/42. PTC and AHL-induced signal was blocked by 

Probenecid and reduced by GF-1, but not by nitrendipine, in contrast with DB-induced MAPK 

phosphorylation. Furthermore, exposure of NCM-460 cells to PTC or AHL for 4-24 h induced a 

significant increase in hT2R38 mRNA, the homologus of mT2R138. 

In summary, these data suggest that T2Rs are involved in chemosensing in the GI tract and 

that different functions might exist depending upon receptor subtype, site of expression and 

molecular mechanism. We showed that different T2R subtypes are expressed in different GI cell 

types and that they might use different pathways. Also, we suggest that T2Rs might detect 

bacterial stimuli in GI cells, supporting the hypothesis that activation of these receptors might 

provide a second level of defense in the GI mucosa to initiate an inflammatory process in 

response to bacteria in the gut lumen.  
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ABSTRACT (italiano) 

 
Il sistema digerente è un organo sensorio capace di riconoscere le sostanze presenti nel lume e 

di iniziare un’ adeguata risposta, che si traduce in digestione ed assorbimento per i nutrienti o 

eliminazione per le sostanze nocive. E’ stato dimostrato che i recettori per l’amaro (T2R), 

un’ampia famiglia di GPCR in grado di riconoscere composti amari nella bocca, così come le 

molecole coinvolte nella trasduzione del segnale, sono espressi a livello della mucosa 

intestinale. Poiché l’amaro si è evoluto come un meccanismo di allarme nella bocca, 

proponiamo che i T2R nel sistema gastrointestinale possano servire come un secondo livello di 

difesa verso composti nocivi. 

In questo studio abbiamo usato qRT-PCR per stabilire la distribuzione di due sottotipi 

recettoriali dei T2R (mT2R138 e mT2R108), e della loro subunità Gα-Gustducin (Gust), nel 

sistema digerente del topo, e varie diete sono state usate per vedere se il contenuto del lume è 

in grado di modulare i recettori dell’amaro. Per testare l’ipotesi che i T2R nel sistema digerente 

possano servire come meccanismo di difesa nei confronti di patogeni, in ulteriori studi si è 

misurato tramite WB il grado di fosforilazione della proteina chinasi attivata da mitogeni (MAPK 

p44/42) per valutare se i T2Rs rispondano ad acil-omoserin-lattoni, molecole prodotte da batteri 

Gram negativi. La risposta, valutata su cellule STC-1 e NCM-460, è stata confrontata con quella 

evocata da agonisti per i T2R_feniltiocarbamide (PTC) e denatonio benzoato (DB)_e bloccata 

dall’antagonista del recettore T2R138, Probenecid. Il meccanismo che segue l’ attivazione dei 

T2R è stato ulteriormente caratterizzato con l’uso di GF-1, un inibitore della proteina chinasi C, e 

di nitrendipina, un bloccante dei canali calcio. 

Questo studio dimostra che mT2R138, mT2R108 e Gust sono espressi lungo tutto il sistema 

digerente, con diversa abbondanza, e che diverse diete sono in grado di modulare 

specificamente alcuni recettori, in aree selezionate lungo il sistema digerente. Abbiamo anche 

dimostrato che sia la linea cellulare umana di colonociti NCM-460, sia la linea di cellule 

enteroendocrine di topo STC-1 esprimono T2R e rispondono allo stimolo del gusto amaro e ad 

AHL con una rapida fosforilazione della MAPK p44/42, mostrando un profilo dose-dipendente. Il 

segnale indotto da PTC e AHL è bloccato dal Probenecid e ridotto dal GF-1, ma non dalla 

nitrendipina, al contrario del segnale indotto dal DB. Inoltre, l’esposizione delle cellule NCM-460 

per 4-24 ore a PTC o AHL induce un aumento significativo dell’espressione del recettore T2R38 

umano, omologo del T2R138 nel topo. 

In conclusione, questo lavoro di tesi propone che i T2R siano coinvolti nell’abilità sensoria del 

sistema gastrointestinale e che possano esistere diverse funzioni a seconda del sottotipo 

recettoriale espresso, del sito di espressione e del meccanismo utilizzato. Abbiamo mostrato 

che diversi tipi di cellule di origine intestinale esprimono diversi sottotipi di T2R e che essi 

possano usare diversi meccanismi. Inoltre, suggeriamo che i T2R possano interagire con batteri 

nel sistema gastrointestinale, a supporto dell’ipotesi per cui i recettori dell’amaro costituiscono 

un secondo livello di difesa nel sistema gastrointestinale, in grado di iniziare una risposta 

infiammatoria per combattere i batteri patogeni presenti nel lume. 
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CHAPTER I 
 

 

GENERAL INTRODUCTION 

 

a. Rationale for Proposed Research 

 

The gastrointestinal (GI) tract is the largest interface between our body and the 

environment. This system is in direct contact with the outside world and it’s continuously 

exposed to environmental factors, including food nutrients, microorganisms and toxins. 

Recent growing evidences indicating that the GI mucosa expresses the same transcripts 

for taste receptors and their signaling molecules found in the tongue [1] [2] supported 

the idea that the gastrointestinal tract might be able to detect luminal stimuli and to 

specifically respond to them through a machinery similar to the one found in the mouth. 

The sense of taste is important to evaluate the quality of food prior to its ingestion and 

among the 5 different tastes, bitter has evolved as a warning mechanism against toxic or 

harmful substances, which are often bitter [3]. In the GI tract the detection of intraluminal 

compounds is thought to activate a cascade of events culminating in the release of 

incretins, which can act as neurotransmitters locally and centrally, or enter the blood 

stream as hormones, to regulate many GI function such as absorption, pancreatic and 

gastric secretion, motility, food intake and metabolism [4] [5]. Strong evidence support 

the hypothesis that a chemosensory machinery similar to the one in the oral cavity 

operates in the gut. However, the molecular mechanisms underlying these biological 

responses to luminal molecules are still largely unknown. Also, though many taste 

signaling molecules are found in the gut, the pathway following T2Rs activation still 

needs to be fully elucidated. Understanding the location and distribution of T2Rs, the 

kind of molecules they can recognize in the gut and which signaling pathways are 
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utilized will allow for a better understanding of the role of bitter taste receptors in the GI 

tract and the mechanisms underlying the processes of chemosensing in gut, which 

regulates a variety of functions including digestion, absorption and feeding as well as 

initiation of defense responses against toxins or environmental hazards. This, in turn, 

will provide insights into understanding feeding disorders and GI pathologies that might 

be elicited in response to changes in intraluminal content and assist in the development 

of new products in the food and drug industry that could be beneficial for individuals with 

eating disorders, obesity and chronic inflammation. 

 

b. The role of the gastrointestinal tract in luminal chemosensing 

 

The GI tract is connected to every major system in the human body. It hosts the majority 

of the immune system and it produces 99% of the body's neurotransmitters. It is also the 

largest endocrine organ in the body, producing hormones that have important sensing 

and signaling roles in regulating body weight and energy balance. Its functions are 

numerous and include nutrient digestion and absorption, elimination of toxins, hormone 

metabolism, and energy production/expediture. A wide variety of stimuli –such as 

chemical, mechanical and others– occur in the GI. Once transduced, the information is 

used by the enteric nervous system (ENS) to generate local responses within the GI 

tract and to send information to the central nervous system (CNS) via the vagal and 

dorsal afferents. 

The GI itself is as complex as the variety of stimuli affecting it. The structures forming 

the wall of the gastrointestinal tract from the posterior pharynx to the anus are shown in 

figure 1. There are some local differences, but in general the GI is composed by four 

layers from the lumen outward: the mucosa, the submucosa, the muscularis mucosae, 

and the serosa. The mucosa lining the gastrointestinal tract always consists of a 
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superficial layer of epithelium attached to the basement membrane, the lamina propria, 

containing collagen, reticular and elastic fibers and several different types of immune 

cells. The submucosa is a layer of connective tissue that supports the mucosa. It hosts 

glands and neurons (Meissner's plexus or submucosal plexus) and connects the 

mucosa to the underlying muscularis mucosae. The muscolaris mucosae is a layer of 

smooth muscle (circular and longitudinal smooth muscle) that contributes to the 

peristalsis which moves digested material along the gut. Between the two layers of 

external smooth muscle lies the myenteric plexus (or Auerbach's plexus). Lastly we find 

the serosa, which consists of a thin layer of loose connective tissue covered with mucus 

to prevents friction from the intestine against other tissues. Enclosing all these is a 

double layer of peritoneum, the mesenteries, which contains nerves and lymphatic and 

blood vessels supplying the GI tract and holds the intestine in place in the abdominal 

cavity. 

 

 

 

Figure 1: Representation of the layers of the wall of the intestine. [www.pharmacistworld.com] 
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Within the mucosa of the stomach, small intestine, and colon, the epithelial layer 

comprises different cell types (Fig. 2). This layer is the one in contact with luminal 

content and it contains specialized epithelial cells able to respond to these luminal 

stimuli with the release of active substances. More than 20 different types of hormone-

secreting specialized cells have been identified. These cells, called enteroendocrine 

cells (EECs), secrete mediators that play a role in digestive functions such as 

gastrointestinal motility, pancreatic and gall bladder secretions, gastric emptying, energy 

balance and food intake [4] [5]. In the twentieth century Bayliss and Starling observed 

that the presence of protons in the proximal small intestine elicited a strong stimulation 

of pancreatic fluid secretion, mediated not by nerves innervating the gut but by a 

substance released in the blood stream, an hormone they called secretin [6]. This led to 

the recognition of the ability of gut endocrine cells to detect the presence of luminal 

chemicals. 

 
 

Figure 2:Representation of the different types of epithelial cells in the intestine [Nature Reviews, 

2006] 
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Based on this discovery, enteroendocrine cells can be seen as primary chemo-

receptors, able of responding to luminal content by releasing mediators that activate 

neuronal pathways or act in an endocrine or paracrine way through different 

mechanisms (Fig. 3). This model is particularly suitable for the so called ―open cells‖ 

with microvilli extending to the luminal surface. ―Closed cells‖, however, can be 

regulated by luminal content indirectly through neural and humoral mechanisms [7].  

 

 

Figure 3: Possible pathways involved in GI chemosensing [from Sternini C. et al, Curr Opin 

Endocrinol Diabetes Obes., 2008]  

INCRETINS 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=An external file that holds a picture, illustration, etc.
Object name is nihms-234793-f0001.jpg [Object name is nihms-234793-f0001.jpg]&p=PMC3&id=2943060_nihms-234793-f0001.jpg
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The enteroendocrine cells lying within the gut epithelium secrete numerous hormones, 

such as gastrin (G cells), ghrelin (X\A like cells), CCK (I cells), GLP-1 (L cells), PYY (L-

cells), GIP (K-cells) and 5-HT (enterochromaffin cells) in response to different nutrients. 

Their products are synthesized and accumulated in secretory granules and secreted, 

upon stimulation, by exocytosis at the basolateral membrane into the interstitial space 

[7] [8] [9] [10]. A short review of the most important hormones mediating chemosensing 

and thus regulating GI functions follows and it is summarized in Table I and Fig 4. Also, 

for each hormone I briefly report references about their link to T2Rs in the gut. 

 

 

 

Figure 4: Gut hormones and the regulation of energy homeostasis [from Murphy and Bloom, 

Nature, 2006] 
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Ghrelin 

 

Ghrelin, a 28 amino-acid peptide, is mainly produced by the ―X/A-like‖ cells in the 

stomach [11] and in pancreas in response to energy need, typically before meals, and 

its levels are usually decreased after meals. It is also known as the ―hunger hormone‖, 

since it increases food intake, and it is considered the counterpart of leptin, an hormone 

produced by adipose tissue, which induces satiation instead. Ghrelin expression is not 

limited to the stomach, but is found in many other sites such as the small intestine, 

brain, lungs, skeletal muscle, islets of Langerhans, adrenal glands, ovary, and testis 

[12]. Therefore is clear that ghrelin has many different actions linked to feeding behavior, 

energy homeostasis, reproduction, sleep regulation, corticotrope secretion and 

regulation of gastro-entero-pancreatic functions [13] [14]. However, despite this variety 

of effects, ghrelin KO mice demonstrate normal growth, energy expenditure and food 

intake under normal conditions [15] [16], suggesting that ghrelin plays primarily a 

facilitatory role in several complex endocrine functions. The ghrelin receptor is known as 

the GHS receptor (growth hormone secretagogue receptor) and it is part of the G 

protein-coupled receptor family (GPCR). Plasma levels of ghrelin depend upon caloric 

content [17] and macronutrient composition of the meal [18], but factors involved in the 

chemosensory ability of ghrelin secreting cells are unknown. T2Rs might be involved in 

these mechanisms, since it has been recently shown that gavage with T2R agonists 

increases plasma octanoyl ghrelin levels in WT mice and the effect is partially blunted in 

Gust KO mice [19]. Also, intragastric administration of T2R agonists increases food 

intake during the first 30 min in WT but not in Gust and ghrelin receptor knockout mice, 

suggesting that T2Rs stimulation in the stomach leads to the release of ghrelin, 

consequently acting on food intake. 
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Gastrin 

 

Gastrin is a linear peptide hormone produced by G cells of the duodenum and G cells in 

the stomach. Its release is stimulated by proteins and amino acids in the lumen of the 

stomach or by parietal distension, causing secretion into the bloodstream. It stimulates 

secretion of gastric acid (HCl) directly by the parietal cells of the stomach or through the 

activation of Enterochromaffin-Like cells secreting histamine and it plays a role in the 

relaxation of the ileo-cecal valve [20]. It also induces pancreatic secretions and 

gallbladder emptying [21] and aids in gastric motility. In the stomach, gastrin also exerts 

trophic effect on gastric mucosa [22]. It has recently been shown that PTC increases 

ABCB1 (ATP-binding cassette B1) expression in STC-1 cells through CCK and gastrin 

signaling mechanism [23], suggesting that T2Rs stimulation in the GI tract leads to the 

release of these incretins. In my study I have shown that a high protein diet (composed 

of casein and soy, which are degraded to bitter compounds, able to activate T2Rs) is 

able to increase mT2R138 mRNA expression in the stomach, effect which might found a 

possible explanation in reference to these previous evidences showing that gastrin 

producing cells, located in the stomach, respond to peptides and to PTC, a T2Rs 

agonist. 

 

Cholecystokinin (CCK) 

 

CCK was first discovered in 1905 by the British physiologist Joy Simcha Cohen. It can 

be found both within the brain and in the GI tract. In the brain, CCK functions as a real 

neurotransmitter. In fact it is found in neurons, and it’s released in response to 

depolarization. In the gastrointestinal tract, CCK is synthesized by I-cells in the duodenal 

and jejunal mucosa and secreted in the duodenum. More than being a single substance, 

http://en.wikipedia.org/wiki/Duodenum
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CCK is actually a family of hormones identified by the number of amino acids (e.g., 

CCK58, CCK33, and CCK8. CCK58) and it assumes a helix-turn-helix configuration. 

CCK is very similar in structure to gastrin and has a large variety of physiological 

functions in the human body, such as the stimulation of gallbladder contraction and 

emptying, pancreatic enzyme secretion, intestinal motor activity and inhibition of gastric 

emptying. CCK also sends signals to the brain, which result in satiety sensations and 

decreased food intake. Basal plasma levels of CCK are ~ 1 pM and rise up to ~ 5 to 8 

pM following meal ingestion [24] and the release of CCK is mainly induced by fat and 

proteins in the small intestine. Recent evidences indicate that stimulation of STC-1 cells 

with PTC leads to the release of CCK and this effect is reduced in cells where mT2R138 

expression is silenced by siRNA [25]. CCK is also released by STC-1 cells in response 

to stimulation with denatonium benzoate [26]. 

 

Glucagon-like peptide 1 (GLP-1) 

 

GLP-1 is an incretin derived from post-translational modification of the larger precursor 

molecule: proglucagon. Proglucagon is synthesized within the endocrine L-cells in the 

intestine, primarily the ileum and colon, and from pancreatic alpha cells. The release of 

GLP-1 is elicited by nutrients in the distal part of the small intestine, but also, to a lesser 

extent, from the proximal region, and the release depends on the size of the meal [27]. 

Macronutrients, primarily fat [28] and carbohydrates, are likely to stimulate the L-cells to 

secrete GLP-1. Once present in the circulation, most plasma GLP-1 is rapidly degraded 

(within 2 min.) by the enzyme dipeptidyl-peptidase IV (DPP-IV). Biological functions of 

GLP-1 are stimulation of insulin secretion, reduction of glucagon secretion, regulation of 

gastric emptying, motility of the gut, acid secretion and food intake. Because GLP-1 

inhibits gastrointestinal motility, reduces gastrointestinal secretions and attenuates 

http://en.wikipedia.org/wiki/Helix-turn-helix
http://en.wikipedia.org/wiki/Gastrin
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gastric emptying, it has been indicated as a major component of the ―ileal brake 

mechanism‖ (Fig. 5). 

 

 
 

Figure 5: The ileal brake mechanism. Unabsorbed nutrients present in the ileum, especially fat, 

stimulate the endocrine cells to secrete gastrointestinal hormones such as GLP-1 and PYY. 

These hormones affect gastric emptying, intestinal motility, transit, and pancreatic secretions, 

and by doing so, inhibit food intake. [http://www.ifr.ac.uk/info/science/foodstructure/emulsions-

interfaces.htm] 

 

This mechanism is a combination of effects influencing ingestive behavior and GI 

functions. Basically it’s a negative feedback mechanism by which unabsorbed nutrients, 

especially fat, present in the ileum inhibit gastric emptying, decrease intestinal motility, 

transit and pancreatic secretions. 

There is evidence that GLP-1 is secreted in a taste receptor-dependent manner by gut 

enteroendocrine L cells in response to natural and artificial sweeteners [29], which is 
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also interesting for bitter taste receptors study because there is evidence of an 

association between T2R and altered glucose and insulin homeostasis [30]. Moreover, 

in mice Gust often colocalizes with L-cells, producing GLP-1 [19]. 

 

Peptide YY (PYY) 

 

PYY is a short (36-amino acids) protein, first isolated by Tatemoto et al. in 1980 [31] and 

named PYY because of the presence of a terminal amino acid tyrosine (Y) and a 

carboxyl terminal tyrosine amide (Y). The hormone is co-secreted with GLP-1 and 

released by L-cells in the distal gut (ileum and colon), but there is also a small amount of 

PYY, about 1-10%, in the esophagus, stomach, duodenum and jejunum [32]. PYY is 

also produced by a discrete population of neurons in the brainstem, localized to the 

gigantocellular reticular nucleus of the medulla oblongata [33] and PYY producing cells 

are also located in the islets of Langerhans in rats [34]. PYY concentration in the 

circulation is increased after meals, expecially by fat, followed by carbohydrates and 

proteins [35] and decreased by fasting [36]. Biological functions of PYY are 

vasoconstriction, inhibition of gastric acid secretion, reduction of pancreatic and 

intestinal secretion, inhibition of gastrointestinal motility, and food intake inhibition [37] 

[38]. PYY is also a mediator of the ileal brake (Fig. 5). In humans, cells expressing PYY 

colocalize with Gust in the colonic mucosa and colonic cells also express transcripts 

corresponding to members of the T2R and T1R families of bitter and sweet taste [2], 

suggesting that Gust-dependent signaling in open enteroendocrine cells producing PYY 

plays a role in sensing bitter/sweet compounds in the lumen. Also, activation of neurons 

in the nucleus tractus solitarii (NTS) following intragastric administration of T2R agonists 

involves Y2 receptors, located on vagal afferent terminals in the gut wall [39]. Therefore, 
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T2Rs may regulate GI function via release of regulatory peptides including PYY and 

activation of the vagal reflex pathway. 

Serotonin (5-HT) 

 

Serotonin or 5-hydroxytryptamine (5-HT), a mono-aminergic neurotransmitter, is 

primarily found in the GI, as indicated by its original definition ―enteramine‖ from its 

discoverer Prof V. Erspamer [40]. In fact, about 95% of the serotonin in the body lies in 

the digestive system, where it is stored in specific enteroendocrine cells, called 

enterochromaffin cells (EC). ECs are the predominant neuroendocrine cells in the GI 

tract and play a key role in the regulation of secretion, motility and visceral pain. 

Serotonin is released in response to a wide variety of stimuli [41] and it has been proved 

to be a signaling molecule participating in mucosal sensory transduction [42] [43]. It is 

mainly involved in the regulation of peristalsis, gastric motility, and postprandial 

pancreatic secretion [44] [45] [46] [47] [48] [49]. In humans, serotonin levels are affected 

by diet: for instance, a diet rich in carbohydrates and low in protein will increase 

serotonin by secreting insulin [50]. 

In mouse small intestine Sutherland and colleagues [51] showed that 27% of Gust 

positive cells co-labeled for 5-HT, suggesting that this mediator can be released in 

response to tastants (sweet, bitter or umami) present in the lumen. 
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Table I: Gut hormones, cell types and effect on food intake: summary. [from Neary MT & 

Batterham RL. Gut hormones: Implications for the treatment of obesity. Pharmacology & 

Therapeutics 2009] 

 

 

In summary, based on previous evidences, reviewed here and further on in this work, 

we hypothesize that TRs, including T2Rs, are involved in GI chemosensing. The 

possible pathway involves enteroendocrine open cells, which face the lumen and are 

stimulated by luminal content. Intraluminal nutrient/non nutrient molecules activate 

receptors (possibly TRs and T2Rs) on the surface of enteroendocrine cells and lead to 

the release of molecules which act on neurons within the ENS or on peripheral nervous 

system (PNS) neurons, or enter the circulation as hormones, as shown in Fig. 3. 
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c. Taste 

 

The gustatory system is essential for nutritional and survival: it allows animals to detect 

and discriminate between safe and dangerous food, to select the appropriate nutrients 

and to avoid the ingestion of harmful substances. Although we can taste a variety of 

chemical entities and complex flavours, it is extensively accepted that they elicit only five 

basic taste sensations: salty, sour, sweet, bitter and umami (meaning ―savory‖ in 

Japanese). Each of these taste represent different physiological needs. Salty taste 

alerts for intake of minerals, primarily sodium ions, which play an essential role in 

electrolyte balance of the body, important for cell health and function. Sour taste detects 

the presence of acids, in order to maintain the acid-base balance of the body. Sweet 

signals the presence of carbohydrates, usually indicating energy rich nutrients [52]. 

Umami taste detects a few L-amino acids, mainly L-glutamate, and three main 

substances are considered umami taste: monosodium glutamate (MSG), guanosin 

monophosphate (GMP) and inosine monophosphate (IMP) [53]. This taste reflects the 

protein content in food. Finally, bitter taste evolved as a warning mechanism to prevent 

consuming toxins and poisons in food. Usually, tastes are not elicited by a single 

chemical. Also, there are different thresholds for detection of taste, and this is true both 

for chemicals that taste the same or for substances in different categories. For example, 

sucrose, 1-propyl-2 amino-4-nitrobenzene and lactose all elicit a sweet taste in humans, 

but the sweet sensation is prompted at different concentrations, of roughly 10 mM, 2 uM 

and 30 mM respectively [54]. 

Substances sensed as bitter typically have very low thresholds, since they alert from 

dangerous compounds, which are active at low (nanomolar) concentrations (Table II). 
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TASTE SUBSTANCE THRESHOLD (uM) 

Salty NaCl 0.01 

Sour HCl 0.0009 

Sweet Sucrose 0.01 

Bitter Quinine 0.00008 

Umami Glutamate 0.0007 

 

Table II: Threshold values for different tastes. [modified from 

http://biology.about.com/library/organs/blpathodigest2.htm] 

  

The sense of taste is classically referred to the mouth, where taste receptors are 

expressed on gustatory cells and organized in taste buds, found on the tongue. The 

majority of taste buds are in the lingual epithelium, on papillae. Based on the 

morphological structure, four types of papillae have been described on the mammalian 

tongue (Fig. 6). 

Fungiform papillae are mostly located on the dorsal surface in the anterior two-thirds of 

the tongue. 

Foliate papillae are on lateral margins towards the posterior part of the tongue. 

Circumvallate papillae, the one containing the highest number of taste buds, are few (8 

to 12 in humans) and arranged in a V-shaped row at the back of the tongue. 

Filiform papillae do not contain taste buds and are found all over the surface of the 

tongue. They are considered to have a mechanical function and to be not directly 

involved in taste sensation [3] [55]. 
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Figure 6: Taste cells in  buds, organized in different kind of papillae, distributed in specific 

regions of the tongue.[www.nature.com/.../fig_tab/nature05401_F1.html] 

 

Based on ultra-structural features, we can also classify different cell types in taste buds: 

basal cells, type I, II, and III taste cells, whose functions have not been fully established 

[56]; [57] (Fig. 7). Basal cells are progenitor cells, regulating taste cells turnover. Type I 

taste cells are the most abundant cells in taste buds. Their primary function is to support 

type II and III taste cells [58]. Type II taste cells are thought to be the actual taste 

receptor cells, containing receptors and signaling components for sweet, bitter and 

umami. Mammalian taste cells are not neurons and thus do not form conventional 

synapses onto afferent nerve fibers. Instead, they generate action potentials and release 

various mediators in response to taste stimuli, and this signal is transmitted by neurons 

that innervate taste buds. The adjacent Type III taste cells express synaptic proteins and 

form synapses with nerve fibers. which then transfer taste information to the central 

nervous system. 
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Figure 7: Different cell types in taste buds: Type I cells are supporting cells, Type II contain taste 

recepotrs and type III form synapses with afferent nerves, receiving information from many 

different taste cells.Type IV (basal) are progenitor cells appearing during the regular turnover. 

[http://www.kqqy.com/html/perfessional/Topics/surgery/16010.html] 

 

Starting from the tongue, nerves relay taste information to the rostral and lateral regions 

of the solitary tract nucleus (NTS) of the medulla in a topographical manner. Gustatory 

information are then transferred from the NTS to the thalamus, and then to gustatory 

areas of the cortex [59] (Fig. 8). 

  



19 
 

 

Figure 8: Organization of the taste system: (A) connection between the oral gustatory system 
and the nucleus of solitary tract and cortex in the brain (B) Diagram of taste information network. 
[from Purves D, Augustine GJ, Fitzpatrick D, et al., editors, The Organization of the Taste 
System, 2001] 

 

Humans usually exhibit a strong innate aversion to strong bitter taste. However, bitter 

taste perception is complicated and depends on various factors, including genetic, 

cultural habits, age [60]. The best known example of this variation is the genetic ability to 

taste the synthetic compounds phenylthiocarbamide (PTC) and 6-n-propylthiouracil 

(PROP), agonists for a specific receptor subtype (T2R38) [61], which depends on the 

receptor isoform. On average, based on their phenotype, 75% of people can taste PTC, 

while 25% cannot. 
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d. Bitter Taste receptors 

 

In all mammals bitter is one of the few innate sensations universally recognized as 

disgusting and it induces aversive reactions [3]. This ability to detect the presence of 

toxic substances is strongly associated with the development of T2Rs in the oral cavity, 

an evolutionary-conserved mechanism to prevent ingestion of bitter-tasting compounds, 

which might often be toxins (such as alkaloids, saponines, etc.) and are often contained 

in plants (Fig 9). 

 

The biological warfare agent ricin comes from the bean of the 

Castor tree (left). A scant handful of castor beans contains 

enough ricin to deliver a toxic dose. The toxic alkaloid atropine 

comes from the highly poisonous Deadly nightshade (right). 

The common name belladonna  came about during the 

Renaissance. Women placed atropine-containing drops in their 

eyes to dilate their pupils,  many of these women later became 

blind! 

 

Figure 9: Bitter plants [from: http://learn.genetics.utah.edu/content/begin/traits/ptc/] 

 

All vertebrate species investigated so far possess several bitter taste receptor genes 

(T2Rs). Avian and amphibian genomes represent the extremes, with 3 and ~50 T2R 

genes respectively, whereas mammalian species express between 15 and 36 T2R 

genes [62] [63] [64]. Twenty-five T2Rs were identified in the human genome [65] [66]. 

As a result of higher frequency of gene duplication, rodents developed a significantly 

higher number of T2R genes compared to humans [1]. Therefore, rodents possess 

about 30% more bitter taste receptors, probably corresponding to a wider spectrum of 

bitter sense detection. The most conserved T2Rs (e.g., hT2R1, hT2R4, and hT2R38) 
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between human and rodents have known bitter taste ligands, such as 

phenylthiocarbamide (PTC) and denatonium benzoate (DB), both used in this study. 

Whereas 80% (20 of 25) of the human T2Rs are deorphanized, only for 6% of mT2R 

genes there are known agonists [67] [68]. The situation is even more complicated 

because many taste receptors are ―broadly tuned‖, which means that they can recognize 

many different substances. A recent screening of all 25 hT2Rs with 104 natural and 

synthetic compounds [68] revealed that the most broadly tuned are T2R10 [64], T2R14 

[69] and T2R46 [70]. Some others, instead, are narrowly tuned, such as T2R5-13-49 

[68], meaning that they recognize one or really few compounds. Most of T2Rs, however, 

show intermediate characteristics: this group includes T2R138 [71] and T2R108 [67], 

which predominantly detect respectively PTC and PTU (T2R138/T2R38) and DB 

(T2R108/T2R4) and are therefore considered ―specifically tuned‖ receptors. In this study 

we focused on two of these well conserved receptors: mT2R138 (which is hT2R38) and 

mT2R108 (which is hT2R4) and Gust, their major signaling molecule. Not only the 

extent of tuning but also the sensitivity differs considerably among T2Rs, ranging from 

EC50 values in the nanomolar range, as for the hT2R43 challenged with aristolochic 

acid [72], to low millimolar concentrations determined for hT2R16 stimulated with D-

salicin [64]. On a qualitative level, the human T2R gene family is highly variable. As 

discussed before, the best example for this is the hT2R38 non-taster variant [73], which 

leads to a dramatic decrease in the possibility to taste the bitter substances PTC and 

PROP in subjects homozygous for this variant [74]. Additional examples are provided by 

functional polymorphisms in hT2R16 [75] as well as in hT2R43 and hT2R31 [76] or 

mT2R105 [67]. In general, T2Rs are seven trans-membrane receptors which couple to 

specific G alpha subunits, common to all taste GPCRs (sweet, bitter, umami), called 

Gustducin and Transducin, which are Gi/Go proteins [77]. Beta subunits are β1 β3 and 

gamma are γ13 subunit [78] [79]. At a molecular level, the signal transduction 

components after the initially activated heterotrimeric G protein are well established in 
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the mouth [80] [81]. Biochemical experiments [82] [83] and genetically modified mouse 

models [84] [85] demonstrate the involvement of phospholipase C β2 (PLCβ2). After 

activation by a tastant, the trimeric complex dissociates and the Gβ/Gγ heterodimer 

stimulates PLCβ2, resulting in the generation of the second messengers diacylglycerol 

(DAG) and inositol triphospate (IP3) [78]. Next, the activation of the type III IP3-receptor 

residing in the endoplasmic reticulum membrane causes calcium release from internal 

stores [86] [87], which, in turn leads to the opening of a transient receptor potential 

channel, TRPM5, located in the plasma membrane [88]. The activation of this non-

selective cation channel results in cell depolarization [89] [90] and further Ca++ influx 

from voltage-gated Ca++ channels. This Ca++ increase causes an hemichannel to open 

and release ATP, which acts as a neurotransmitter linking taste buds to the nervous 

system. ATP secreted from receptor (type II) cells, in fact, excites primary sensory 

afferent fibers and probably also stimulate presynaptic (type III) cells to release 5-HT 

and norepinephrine [91] [92]. 

 

Figure 10: Taste receptors activation mechanism in the tongue and in the gut. [Cummings DE, J 

Clin Invest. 2007] 
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However, there are also observations indicating residual taste responses in various Gust 

KO models which do not allow to draw conclusions on the exclusiveness of Gust as 

initial taste transduction component for taste responsiveness in mammals [89]. 

 

 

Table III: Complexity and variety of T2Rs. Approved gene symbols and previous symbols for 

human and mouse G protein-coupled taste receptors.[M. Behrens, W. Meyerhof, Physiology & 

Behavior, 2011] 
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e. Functional implications and clinical relevance of T2Rs study 

 

T2Rs and their signaling molecules in the gut are found in cells secreting hormones that 

control GI functions and food intake, therefore their study is open to many clinical 

applications. Modulation of endogenous incretin levels by tastants may provide novel 

therapeutic applications for the treatment of eating and gastrointestinal motility 

disorders. Also, since bitter taste evolved as a warning mechanism against harmful 

substances, the study of bitter taste receptors in the gut might provide insights into T2Rs 

function as possible defense mechanism toward harmful substances. This study 

suggests that T2Rs might recognize bacteria in the enteroendocrine cell line STC-1 and 

in human NCM-460 colonocytes, as well as they do in the airways [93]. We also suggest 

that T2Rs can respond to a change in commensal gut microbiota, such as the one 

caused by a high fat diet. This change in microbiota seems to be an important 

component in the development of obesity and inflammation. Therefore the elucidation of 

T2Rs function might provide useful information that could lead to the development of 

new therapeutic approaches to treat obesity or to control the inflammatory response 

evoked by bacteria in the gut. hT2R38 variants also seem to be involved in colorectal 

cancer risk [94] and they might be an important factor in the development of nicotine 

dependence [95], expanding the clinical importance of T2Rs in these fields as well. 

Furthermore, understanding the luminal chemosensory mechanisms may help to 

identify novel molecular targets for treating and preventing mucosal injury, metabolic 

diseases and abnormal visceral sensation. Moreover, further studies on bitter taste 

recognition in the GI might also help commercially by providing information that could 

lead to the creation of new products in the food and drug industry, as functional food or 

products controlling drug absorption. 
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CHAPTER II 

 

T2R138, T2R108 and Gustducin are distributed 

throughout the GI tract and are specifically regulated 

by different diets 
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BACKGROUND 

 

a. Bitter taste receptors and taste signaling molecules in the GI tract 

 

Bitter taste receptors are expressed in the oral cavity and couple to Gα proteins, in 

particular Gα-gustducin and Gα-transducin [96]. These receptors were thought to have 

only gustatory functions, and to be limited to the oral cavity, but in the last 10 years there 

have been various reports of the presence of gustatory receptors and signaling 

molecules in extra-oral sites, with non-gustatory functions. The interest for the taste 

transduction machinery in the GI tract began in the late 90s. In fact, long before taste 

receptors expression was investigated, the presence of the taste signaling molecule Gα-

gustducin in the stomach, duodenum and pancreatic ducts of rat was reported [97] [98] 

[99]. Later, Gα-gustducin as well as the closely related molecule Gα-transducin, which 

was shown to be expressed in taste cells in addition to Gα-gustducin [188], were found in 

other regions of the gut [100] [1] [2]. More recently, additional molecules of the taste cell 

signaling cascade such as PLCβ2 [83] [82] and TRPM5 [101] were localized in the GI-

tract as well. However, thought almost all of the signaling components for taste signal in 

the mouth are found in the GI, co-localization studies performed with various taste cell 

markers in GI-tissues revealed that cells expressing all taste transduction components 

together are rare. The cell population expressing taste-related molecules is 

heterogeneous, including different enteroendocrine cell types as well as brush 

cells/solitary chemosensory cells [100] [102] [2] [99]. The apparent complexity of Gust-

expressing cell types in the gut was confirmed by a recent study in mouse small 

intestine where three types of Gust-positive cells were identified: expressing Gα-

gustducin only, Gα-gustducin and glucagon-like peptide-1 (GLP-1), or Gα-gustducin and 

5-HT [51]. 
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The first taste receptors identified in GI-tissue were the T2Rs, localized in endocrine 

cells in the mucosa of the gastric antrum and fundus, duodenum and gastroendocrine 

cells in rats stomach [102]. The same study demonstrated, using RT-PCR analysis, the 

presence of mouse T2R genes in the corresponding GI-tissues and in mouse STC-1 

cells, a mixed population of endocrine cells, indicating a conserved role in the gut. 

Subsequently, several additional rat and mouse T2Rs were detected by RT-PCR in GI 

tissues and cell lines of gastrointestinal origin. Similar studies on human gut tissues and 

cell lines from GI-tissues resulted in the identification of transcripts from human T2R 

genes [2] [103]. It is interesting to notice that bitter taste receptors are also expressed in 

a variety of other extra-oral sites, such as brain [104], testis [105] and respiratory system 

[106] [93] [107] besides the GI tract, suggesting that there is more than a ―taste‖ function 

for taste receptors. 

Most studies concerning the expression of bitter taste receptors in gastrointestinal cells 

use RT-PCR experiments to identify T2R mRNA in human or rodent gastrointestinal 

tissue or model cell lines for enteroendocrine cells, but their expression in situ has not 

been extensively proved yet. The tools to investigate these receptors still need to be 

better developed. For example at present only a single cellular co-localization 

experiment demonstrated the presence of mT2R138 co-localizing with chromogranin A 

(CgA), a marker for enteroendocrine cells, in sections of mouse small intestine [25]. In 

this study, we show some IHC images of mT2R138 and Gust, including some examples 

of co-localization with different cell markers. 

Functional studies, both on animals and cells, are mainly aimed to show that agonist 

local (GI) stimulation leads to the release of incretins by enteroendocrine cells, thus 

modulating GI functions, even if it’s not directly proved that these responses are T2Rs 

mediated. To show that T2Rs are stimulated by luminal content, Glendinning and 

colleagues separated oral and gastrointestinal stimuli by intragastric infusion of 

denatonium solutions in rodent experiments [108]. They saw that there is a robust 
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conditioned taste aversion in rats and that gastric emptying was slowed. Our group have 

also done a similar study in rats and showed aversion induced by T2R ligands 

stimulation [39]. Moreover, application of ligands for T2Rs, including DB and PTC to 

STC-1 cells, induces rapid Ca++ signaling [26], indicating that T2Rs in these cells are 

functional. The mechanism used by bitter compounds in the upper gastrointestinal tract 

to influence gastrointestinal function seems to involve vagal afferents and CCK and PYY 

receptors [39]. The pathway following receptor binding seems to resemble the one in the 

mouth, since many taste signaling molecules are expressed in the GI (Fig. 10). In 

addition, expression levels for components of the taste transduction machinery in the gut 

are not static but seem to respond dynamically to nutrient conditions. For example, 

Young and colleagues [109] have shown that mRNA expression for sweet taste 

receptors (T1R2 and T1R3 subunits), TRPM5 and Gα-gustducin were inversely related 

to blood glucose levels in human and mouse. Margolskee et al. [110] have shown that 

sweet taste receptors (T1R3 subunit) and Gα-gustducin are coupled to the mRNA levels 

of expression of Sodium-dependent glucose cotransporters (SGLT) both in mouse small 

intestine and in a murine enteroendocrine cell line (GLUTag). Furthermore, molecules 

involved in the regulation of fat metabolism have been shown to up-regulate T2Rs in 

EECs from mouse intestine and on the mouse small intestinal cell line STC-1 [25]. All 

the previous findings suggest an active role for taste receptors in chemosensing in the 

GI. 
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b. T2R138 and PTC 

 

 

Figure 11: PTC chemical structure [http://learn.genetics.utah.edu/content/begin/traits/ptc/] 

 

Back in 1931, a chemist named Arthur Fox was pouring some powdered PTC into a 

bottle. A colleague standing nearby complained that the dust tasted really bitter, but Fox 

tasted nothing at all. Curious how they could possibly be tasting the chemical differently, 

they tried to make other people taste the chemical and describe how it tasted (Fig. 12). 

Some people tasted nothing, some found it intensely bitter, and others thought it tasted 

only slightly bitter. 

 

Figure 12: Albert Blakeslee using a voting machine to tabulate results of taste tests at the AAAS 

Convention, 1938. 

[http://www.carolina.com/category/teacher%20resources/instructions%20and%20buying%20guides/biotech%20kit%20ins

truction%20manuals/using%20a%20single-

nucleotide%20polymorphism%20to%20predict%20bitter%20tasting%20ability.do] 
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Soon after this discovery, geneticists determined that there is an hereditary component 

that influences how we taste bitter and PTC. The PTC gene, hT2R38, was discovered 

later in 2003 and today we know that the ability to taste this compound is conveyed by a 

single gene that codes for this taste receptor on the tongue. 

 

 

Figure 13: Allelic variants for T2R38 and phenotypes. The ability to taste PTC shows a dominant 

pattern of inheritance. A single copy of a tasting allele (T) conveys the ability to taste PTC. Non-

tasters have two copies of a non-tasting allele 

[http://learn.genetics.utah.edu/content/begin/traits/ptc/] 

 

There are two common forms of the PTC gene, and at least five rare forms. One of the 

common forms is a ―tasting‖ allele, and the other is a ―non-tasting‖ allele. Depending on 

the allele, the shape of the receptor protein varies and this determines how strongly it 

can bind to PTC, in order to sense it. Since all people have two copies of every gene, 

combinations of the bitter taste gene variants determine whether someone finds PTC 

intensely bitter, slightly bitter, or without any taste at all (Fig. 13). hT2R38 variants also 

seem to be involved in adiposity [111] and colorectal cancer risk [94] and the receptor 

might also be an important factor in the development of nicotine dependence [95]. 

http://learn.genetics.utah.edu/content/begin/traits/ptc/
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Moreover, mT2R138 in the GI seem to participate in cholesterol metabolism [25], further 

expanding the possible roles for T2R138 besides its taste function. 

 

c. T2R108 and DB 

 

Figure 14: DB chemical structure. [http://www.lookchem.com/Denatonium-benzoate/] 

Denatonium, usually available as benzoate, is one of the bitterest known substances; 

with a threshold of 0.05 ppm [112] and it is used in taste warning, since it is stable and 

inert and just a few parts per million will make a product so bitter that children and pets 

will not be able to swallow it. It was discovered in 1958 in Edinburgh, Scotland, during 

research on local anesthetics. During routine work at Macfarlan Smith, laboratory staff 

noticed that denatonium benzoate powdered form was extremely bitter. After a while, 

the company registered DB solutions under the trademark ―Bitrex‖ (Fig. 15) and still 

today denatonium salts are used as aversive agents to prevent accidental ingestion of 

many commercially available products. 

Figure 15: The Bitrex® logo, first commercial form of denatonium 

benzoate, used for its bitter properties. [http://www.bitrex.com/] 

http://en.wikipedia.org/wiki/Bitter_%28taste%29#Bitterness
http://en.wikipedia.org/wiki/Edinburgh
http://en.wikipedia.org/wiki/Scotland
http://en.wikipedia.org/wiki/Local_anesthetic
http://en.wikipedia.org/wiki/Aversive_agent
http://en.wikipedia.org/wiki/Eating
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r/mT2R108 and its human homologous hT2R4 are found in rat brain [104], in human 

airway epithelial cells [113], rat duodenal mucosa [102], in mouse antrum, fundus and 

duodenum and in STC-1 cell line [1]. DB intragastical administration increases plasma 

octanoyl ghrelin levels significantly [19] and activates vagal afferent neurons in NTS 

[39], suggesting the presence of active hT2R4/mT2R108 in the GI. 

 

d. Gα-gustducin 

 

Gustducin is the GTP-binding α-subunit of a trimeric G-protein complex specific for taste 

GPCRs. Its sequence places it in the G inhibitory (Gi) related class of G-proteins. Its 

discovery dates back to 1992, when Margolskee and his colleagues syntetized 

degenerate oligonucleotide primers_based on the conserved sequence of known G 

proteins_and mixed them with a taste tissue cDNA library. The DNA products were 

amplified by PCR and eight positive clones were shown to encode the α subunits of G-

proteins [97] interacting with GPCR. Of these eight units, two had previously been 

shown to encode Gα-transducin, a molecule involved in visual transduction and 

previously localized only in the retina. Gα-gustducin showed significant homology with 

Gα-transducin since 80% identity was found between rat Gα-gustducin and rat rod Gα-

transducin and their interactions and functions are almost identical [114], indicating that 

Gα-gustducin and Gα-transducin are evolutionarily closely related signal molecules. 

When challenged with DB and quinine, both Gα-gustducin and Gα-transducin can 

activate taste specific PDE, indicating that both molecules are important in the signal 

transduction of bitter compounds. On the other hand, some studies show that Gα-

transducin seems not involved in responses to bitter or sweet compounds but it is 

involved in responses to umami [89]. Gα-gustducin mRNA appears to be expressed in 
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about 40 % of the taste receptor cells and immunocytochemistry localizes the protein to 

rat and human taste receptor cells [115], which strongly suggests that it mediates taste 

signal transduction. To prove Gα-gustducin’s role in bitter taste transduction, 

Margolskee’s group used Gust KO mice [116]. KO mice showed reduced behavioural 

and electrophysiological responses to bitter compounds, which returned to normal when 

the Gα-gustducin gene was re-inserted. However, the loss of the Gα-gustducin gene 

does not completely remove the ability of the knock-out mice to taste bitter food. This 

indicates that Gα-gustducin is probably not the only mechanism for tasting bitter 

molecules. 

Also, later on it was discovered that gustatory neurons can specifically strongly respond 

to a single taste stimulus (usually sweet) but can also be activated by multiple tastes 

[117] [118], although a neuron typically would favor one specific stimulant over others. 

This suggests that, while many neurons favor bitter taste stimuli, neurons that favor 

other stimuli such as sweet and umami may be capable of detecting bitter stimuli in the 

absence of bitter receptors or bitter signaling components, as in the Gust KO mice. 

While Gα-gustducin was known to be expressed in lingual taste cells, studies with rats 

showed that it was also present in a limited subset of cells lining the stomach and in 

brush cells in the intestine [98]. These cells appeared to share several features with 

mouth taste receptor cells, since they expressed other taste signaling molecules such as 

TRPM5, PDE, PLCβ2 and others. From these evidences started the idea that the same 

receptors and signaling molecules found in the mouth could be active and have a role in 

the GI tract and that they could share the same pathway operating in the mouth. 
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AIM 

 

The aim of this study was to evaluate mT2R138, mT2R108 and Gust distribution along 

the mouse GI tract and to investigate whether these molecules can be modulated by 

luminal stimuli coming from different diets. This was done to assess if different T2Rs are 

differently distributed along the GI and to prove an involvement for T2Rs in luminal 

chemosensing in the GI. 
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2. Material and methods 
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a. Animals and diets 

 

Experiments were performed on adult male C57/BL6 mice (Charles River Laboratory 

International, Inc, Wilmington, MA). Care and handling of the animals were in 

accordance with all National Institute of Health recommendations for humane use of 

animals. All experimental procedures were reviewed and approved by appropriate 

Animal Research Committees at UCLA, Los Angeles, CA, USA. For fasting and 

refeeding experiments, mice were fasted 18 hours and refed for 2 or 4 hours after 

fasting. For cholesterol lowering diet mice were fed regular chow supplemented with 

Lovastatin (100 mg/100 g chow) and Ezetimibe (21 mg/100g chow) for 7 days. For high 

fat diet, mice were fed 10% (Research Diets D12450B), 45% (D12451) or 60% 

(D12492) fat by calories diet for 2 or 8 weeks. For high protein diet mice were fed with 

40% protein (by calories) diet, 20% from casein and 20% from soy (Harlan TD.110338) 

for 14 days. All experimental groups were compared to mice normally fed with regular 

chow. At the end of the diets, mice were sacrificed by isoflurane overdose for tissue 

removal. Intestinal specimens were obtained from the whole gastrointestinal tract and 

snap frozen for qRT-PCR or fixed for 2h in 4% PFA for immunohistochemical analysis. 

 

b. RNA extraction and qRT-PCR 

 

Total RNA was isolated from gastrointestinal tissue (stomach antrum and corpus, 

duodenum, jejunum, ileum, proximal and distal colon) using Absolutely RNA® RT-PCR 

Miniprep Kit (Stratagene, La Jolla, CA) and a DNase treatment was performed to 

eliminate genomic DNA contamination. RNA quality was estimated by the absorbance at 

260 nm and 280 nm ratio (OD260nm/OD280nm>1.7). RNA integrity was verified by 
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presence of two distinct bands that correspond to 18S and 28S rRNA in 2% agarose gel 

upon electrophoresis. Complementary DNA was generated using Superscript III 

Reverse Transcriptase kit (Invitrogen) according to the manufacturer’s instructions on a 

DNA Thermal Cycler Engine, BIO-RAD. Quantitative real-time reverse transcription 

polymerase chain reaction (qRT-PCR) was performed using Taqman Gene expression 

assays for mT2R138 (Applied Biosystem, Mm01700131_s1), mT2R108 (Applied 

Biosystem Mm00498514_s1) and Gust (Applied Biosystem, Mm01165313_m1). 

Standard thermal cycles (50 cycles) for Taqman Gene assays were run on a Mx3000P 

Real-time PCR Detection System (Stratagene) and data were analyzed with Mx Pro 

1000 software. Actin beta (BA) and 18S RNA were used as housekeeping genes (data 

shown for BA) and the relative abundance of mRNA expression was calculated using 

the Delta delta Ct method (User Bulletin #2, ABI Prism 7700 Sequence Detection 

System). Data were expressed relatively to the control group, chosen as 1, or to antrum, 

arbitrary chosen as the unity of measurement for each primer in distribution studies. An 

enteroendocrine cell line (STC-1) expressing these transcripts and a fibroblast cell line 

(3T3) not expressing T2Rs [102] were used respectively as a positive and negative 

control. Samples were run at least in duplicate in separate experiments and No-RT and 

distilled RNAse-free water controls were always included. qRT-PCR products were 

checked by 4% agarose gel horizontal electrophoresis and specific bands of the same 

base pair seizes as the expected size were detected. All assays were validated for 

linearity of amplification efficiency and standard curves obtained using RNA samples 

serial dilutions. 

  



39 
 

c. Immunohistochemistry 

 

Tissue was fixed in 4% PFA for 2 hours. Transgenic mice (with a C57/BL background) 

expressing GFP for Gα-gustducin were used to assess the expression of the signaling 

molecule at a protein level in the GI tract and to show some co-localization with specific 

cell type markers. Specimens from male C57/BL mice were used for the study on WT 

mouse tissue. Immunohistochemistry was performed on frozen sections, 10μm thick. 

Slides were washed 3 times 10’ with PB 0.1 M, incubated 1h in donkey serum to block 

unspecific binding and immunostained overnight at 4°C with Gt anti T2R138 (Sc-34357), 

Rb anti Gust 1:250 (Sc-395) and Rb anti Chromogranin A 1:500 (Sc-1488), all from 

Santa Cruz Biotechnologies. Tissues were then incubated 2 h in secondary antibody (Dk 

anti Gt or Dk anti Rb ALEXA 488, dil 1:1000, for green fluorescence or Rhodamine Red 

X, dil 1:300, for red). Images were scanned with a confocal microscope (ZEISS 510 

laser scanning confocal microscope, Carl Zeiss Inc, Thornwood, NY) running LSM5 

software. 

 

d. Data analysis and Statistics 

 

Values were expressed as the mean ± S.E.M.. One way ANOVA followed by Bonferroni 

post-test for multiple comparison was used for statistical analysis when groups were 

more than two. Two-way ANOVA was used in groups where the results of a single 

treatment vs control were assessed in different GI specimens. Values P<0.05 were 

considered significant. The statistical software package Prism 5.0 (GraphPad Software, 

San Diego, CA) was used for these analyses. 
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3. Results 
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a. T2R138, T2R108 and Gust are expressed throughout the mouse GI 

tract, with different distribution 

 

qRT-PCR and gel electrophoresis showed the presence of the amplified products 

generated by the Taqman Gene Expression Assay primers specific for mT2R138, 

mT2R108, Gust and β-actin in the entire GI tract (Fig. 16). 

 

Figure 16: Agarose gels for mT2R138-mT2R108 and GUST distribution. RT-PCR products were 

analyzed by 4% agarose gel and single bands of the predicted size are shown for each primer, in 

all GI segments analyzed, confirming their specificity. (A=antrum C=corpus D=duodenum 

J=jejunum I=ileum PC=proximal colon DC=distal colon) 

 

mT2R138 and mT2R108 transcripts showed a different distribution along the GI: 

mT2R138 mRNA (Fig. 17A) is more abundant in colon, particularly in the distal portion 

(distal colon=165.07±39.88, P<0.01 vs all other regions; proximal colon=31.57±12.25, 

P<0.01 vs jejunum, ileum and stomach) and in duodenum (24.33±5.59 P<0.05 vs 

jejunum, ileum and stomach) compared to other regions of the gut, with the lowest levels 

in the stomach (small intestine average=4.78±1.42, stomach average=0.79±0.21, 

P<0.05 vs duodenum; P<0.001 vs distal colon), while mT2R108 mRNA expression  
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(Fig. 17B) is most prominent in the stomach (P<0.01 for corpus vs all other GI regions). 

Taste receptor signaling molecule, Gα-gustducin transcript (Fig. 17C), is also distributed 

throughout the entire GI tract, with highest levels in the stomach (P< 0.01 for antrum and 

corpus vs small intestine; P<0.05 vs DC ) and proximal colon (P<0.015 for proximal 

colon vs other regions, besides DC), matching the distribution of mT2R138 and 

mT2R108 transcripts. These receptors were not detectable in 3T3 cell line, a fibroblast 

cell line used as a negative control, and were highly abundant in STC-1 cells, an 

enteroendocrine cell line, or in the tongue, used as positive controls. 

 

 

 

Figure 17C. Distribution of Gust, a signaling molecule common to different taste receptors, 

matches overall, but not completely, with the distribution of the two T2Rs. Gust is in fact 

abundantly expressed in stomach, as T2R108, and distal colon, as T2R138, and it’s also highly 

expressed in proximal colon. 

 

C 
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Figure 17A and B:.T2Rs and Gust distribution. mRNA levels were analyzed in the stomach 

(corpus and antrum), duodenum (D), jejunum (J), ileum (I), proximal (PC) and distal colon (DC) 

and normalized to β-actin. A.T2R138 distribution: this transcript is abundant in colon, expecially 

distal, and in duodenum. It is low expressed in stomach. B. T2R108 distribution: T2R108 is 

mostly expressed in stomach, expecially corpus (CORP), and is also abundant in colon.  

  

A 

B 
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Immunohistochemistry showed that mT2R138 immunoreactivity is localized to 

isolated epithelial cells in the villi, distributed throughout the GI tract (Fig 18a). 

Specificity of immunoreaction was demonstrated by the strong labeling of taste bud cells 

in the tongue (Fig. 18a, 1) and immune-blocking experiments showing abolition of 

immunostaining with pre-incubation of antibody with an excess of peptide used for the 

production of the antibody. Double labeling showed that in several cells mT2R138 co-

localizes with Chromogranin A (Fig. 18b) and Gust (Fig. 18c), indicating that the 

receptor is expressed by some enteroendocrine cells and by cells expressing the main 

signaling molecule for taste transduction. T2R138 staining is localized at the apical 

membrane. mT2R138 immunoreactivity is also found in many epithelial cells exhibiting 

Gα-gustducin-driven GFP fluorescence, confirming that the same cells containing the 

receptor also contain its signaling protein. These Gα-gustducin-driven GFP fluorescent 

cells were distributed throughout the GI mucosa (Fig 18d) confirming previous 

observations of Gα-gustducin immunoreactivity in the mouse GI mucosa. 
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Figure 18: Immunohystochemistry a. Confocal pictures showing rapresentative mT2R138 

immunostaining in the tongue (a1) and along the GI, proceeding from the stomach (2) to the 

small (3,4,5,)and the large (6,7,8,9) intestine (different magnifications). 

a 

1 2 3 

4 5 6 

7 8 9 
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b.Double label of intestinal epithelial cell showing co-localization between mT2R138 and 

Chromogranin A, marker for enteroendocrine cells. c. Double label of small intestine (IL) 

epithelial cells showing co-localization between mT2R138 and Gust, main signaling molecule for 

TRs  

  

b 

c 
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d: Image showing Gust immunostaining in Gust-GFP positive mouse stomach, small (IL, JEJ) 

and large (PC) intestine 

 

 

b. Fasting decreases T2Rs and Gust expression 

 

mT2R108 (control 1.15±0.20 vs 0.36±0.04 fasted, P<0.05) and mT2R138 (control 

1.59±0.39 vs 0.07±0.03 fasted, P<0.05) mRNA levels were significantly decreased after 

18 hours of fasting and fully restored after 4 h refeeding (Fig. 19) in the antrum, whereas 

changes in their level of expression were not observed in any other region of the gut. 

Similarly, there was a significant decrease of Gust mRNA levels in the antrum after 

fasting (control 1.26±0.23 vs 0.67±0.04 fasted, P<0.05) followed by a restoration of 

normal expression after 4 hrs refeeding. Gust was also significantly decreased (control 

  

d 
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 1.07±0.21 vs 0.45±0.05 fasted, P<0.05) in fasting conditions and then restored in 

duodenum, but not in other regions of the gut (data not shown). 

 

 

 

 

 

Figure 19: T2R138, T2R108 and Gust regulation by fasting/refeeding. Targets mRNA levels in 

the stomach were analyzed with quantitative real-time RT-PCR and normalized to β-actin in each 

tissue. Relative quantities were determined using the comparative ΔΔCt method. T2R138, 

T2R108 and Gust levels were significantly decreased (* P< 0.05) after fasting and fully restored 

after 4 h refeeding in stomach antrum.  



49 
 

c. A high fat diet increases T2R138 and Gust mRNA levels in the large 

intestine 

 

   

 

 

Figure 20: Effect of a high fat diet on mT2R138 and Gust expression. qRT-PCR analysis shows 

that mT2R138 mRNA levels (a) are significantly (P < 0.05 vs 10% fat) up-regulated by a long 

term high fat (60%) diet in the large intestine only. mT2R108 expression is not affected by this 

diet. Gust is also up-regulated (b) by the same fat diet and also by 45% fat diet in the large 

intestine, supporting the data about mT2R138.  

b 

a 

* 
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When mice were fed 10-45 or 60% fat diet for 8 weeks, mT2R138 was selectively up-

regulated by a 60% fat diet (1.80±0.21 treated vs 1.00±0.17 control, P<0.05) in the large 

intestine, but not in the small (Fig.20). No difference was found in mT2R108 expression, 

both in the small and large intestine. Gust was also up regulated by both 45% 

(2.04±0.34 treated vs 1.00±0.17 control, P<0.05) and 60% (2.01±0.29 treated vs 

1.00±0.17 control, P<0.05) fat diet, matching the data obtained for mT2R138. 

 

d. Effect of a cholesterol lowering diet on T2Rs expression  

 

The effect of a cholesterol lowering diet on mouse T2Rs expression in the gut is 

illustrated in Fig. 22. First, we ensured that sterol depletion increased HMG-CoA 

reductase mRNA expression in treated vs control animals (Fig. 21) to ensure the 

cholesterol lowering drug effect [25]. Then we assessed our targets expression. Our 

data show that 7 days on a diet supplemented with drugs to lower cholesterol levels 

significantly increase mT2R138 expression in duodenum (control 1.00±0.20 vs 

2.02±0.29 low cholesterol, P<0.05) and jejunum (control 1.00±0.28 vs 2.06±0.30 low 

cholesterol, P<0.05), but not in other regions of the small or large intestine. mRNA levels 

for mT2R108, instead, were not increased by the same diet in any GI region. 

The signaling molecule Gα-gustducin was also significantly up-regulated by low 

cholesterol diet in duodenum (control 1.00±0.21 vs 2.80±0.65 low cholesterol, P<0.01). 
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Figure 21: HMG-CoA reductase mRNA levels measured by RT-PCR in normal (N) vs treated 

(L/E ) animals (** P< 0.01 vs normal). 

 

 

Figure 22: Effect of a low cholesterol diet on mT2R138 expression: qRT-PCR analysis shows 

that bitter taste receptor mT2R138 is up-regulated (* P< 0.05) in the small intestine (duodenum 

and jejunum), but not in the large intestine, following 7 days of a cholesterol lowering diet. Data 

are supported by Gust expression levels, which are also up regulated in duodenum (not shown). 
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e. Effect of a high protein diet on T2Rs expression in the mouse gi tract  

 

Mice kept on a high protein diet (40%) for 14 days showed no statistically significant 

difference in mT2R108 and Gust mRNA levels of expression when compared to control. 

mT2R138 expression, instead, was significantly increased by the high protein in 

stomach corpus (1.00±0.10 control vs 2.05±0.27 treated, P< 0.05) and in the proximal 

colon (1.00±0.25 control vs 2.12 ±0.26 treated, P< 0.05), as shown in Fig. 23. 

 

Figure 23: mT2R138 modulation after 14 days on a high protein diet (HP). A 40% protein by 

calories diet selectively increases mT2R138 mRNA expression in stomach corpus and in 

proximal colon (* P< 0.05 vs normal). Both mT2R108 and Gust were not increased by the high 

level of proteins in meals. 
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4. Discussion 
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Bitter taste receptors are expressed in the small [1] [102] and large [119] [2] intestine in 

mouse. Several GI segments and receptor subtypes have been investigated, but we are 

not aware of a systematic distribution study for any T2Rs in the mouse GI. The aim of 

this study was to investigate the physiological expression and distribution of two T2Rs 

subtypes (mT2R138 and mT2R108) and one of their signaling molecules (Gust) along 

the GI tract. We also wanted to see whether these are modulated by luminal content. 

We showed through immunohistochemistry and qRT-PCR that mT2R138, mT2R108 

and Gust are distributed in the entire GI tract, with different levels of expression. Also, 

this study provides evidence that different diets modulate different mT2Rs subtypes in 

specific GI regions: fasting reduces mRNA expression of mT2R138, mT2R108 and Gust 

in stomach antrum; a high fat diet increases mT2R138 and Gust levels in the large 

intestine; a cholesterol lowering diet increases mT2R138 and Gust in the proximal small 

intestine and a high protein diet selectively increases mT2R138 in stomach and proximal 

colon. 

 

a. Distribution 

 

Our data showing expression of mT2R138, mT2R108 and Gust along the entire GI, with 

different levels in different regions, confirm and expand previous studies showing the 

presence of several T2Rs transcripts in both the upper GI [1] [102] and in colon [119] [2]. 

Our data are also in agreement with previously published data showing that Gust has a 

higher expression in stomach (antrum and fundus) vs small intestine (duodenum) in rats 

[102]. However, a systematic analysis and comparison of mRNA levels for these 

receptors in different GI segments was not published yet. 

In this study we show immune-reactivity for mT2R138 and Gust along the whole GI, in 

control and Gα-gustducine-GFP mouse tissue, in single cells in the epithelial layer, and 
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 both Gust and mT2R138 show co-localization with Chromogranin A, an 

enteroendocrine cell marker, and mutual co-localization. These evidences support and 

extend previous data [25] [120] [121] showing how T2Rs are expressed throughout the 

gut by epithelial cells, including EECs, and that the receptor and its signaling molecule 

can be found in the same cell. Immunohystochemistry also showed that Gust and 

mT2R138 positive cells are mainly located in the upper villi, which is in agreement with 

Dyer et al [122] findings about a higher expression of Gust in this area compared to the 

crypts or the lower villi. There is evidence that substances activating T2Rs and in 

general bitter tasting compounds are many and structurally diverse [68]. They belong to 

many chemical families, such as peptides, amino acids, fatty acids, alcohol, steroids, 

lactones and flavonoids [123] [124], found in food and food borne products. Our findings 

about the non homogeneous distribution of T2Rs along the gut, which shows different 

profiles for different subtypes, together with the variety of substances potentially 

recognized, suggests that there might be a different role for specific T2Rs in the gut 

depending upon receptor, site of expression and ligand. 

 

b. Fasting and refeeding 

 

Previous studies showed that fasting is able to modulate incretin levels in mice stomach 

by increasing ghrelin and somatostatin and lowering gastrin/CCK [125] [126] and 

physiologically the antrum, vs corpus and fundus, is particularly rich in secreting 

enteroendocrine cells and therefore it is particularly affected by fasting. Our data show a 

significant decrease for mT2Rs and Gust mRNA expression only in stomach antrum, 

following 18 h fasting and, by IHC, we showed that mT2Rs and Gust are expressed in 

stomach by enteroendocrine cells. We therefore suggest that fasting might modulate, 

also through bitter taste receptors expression modulation, the gastric incretine balance, 
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 increasing somatostatin and ghrelin and decreasing gastrin secretion, in order to 

increase food intake, lower acid secretion and delay gastric emptying, exerting a 

sensory effect. This hypothesis is supported not only by the T2Rs and Gust mRNA 

modulation we assessed and by IHC evidence of T2Rs in EECs, but also by recent 

studies showing that stomach is able to directly respond to macronutrients in order to 

regulate gastric ghrelin release [127], and more specifically that gavage with bitter taste 

receptors agonists can delay gastric emptying and increase food intake by increasing 

plasma ghrelin levels, partially through Gust [19], consequently demonstrating the 

chemosensory capacity of stomach and supporting the idea that T2Rs might participate 

in the luminal chemosensing through incretin secretion in mouse stomach. The fact that 

T2Rs and Gust mRNA levels are decreased, whereas ghrelin plasma concentration 

increases with T2Rs stimulation, are not in contrast since mRNA levels not always 

match with the protein expression. An example is shown by the same ghrelin, whose 

mRNA expression in the stomach is increased upon 48 h fasting, but the ghrelin peptide 

content is decreased, and both levels are restored to normal after refeeding [126]. 

 

c. Cholesterol lowering diet 

 

The finding of increased mT2R138 and Gust expression levels in mouse small intestine 

following a cholesterol lowering diet expands those by Jeon et al [25], showing the effect 

of this diet on the small intestine for several T2Rs. Our study investigates in detail the 

different regions of the small intestine and adds an analysis of the effects on the colon, 

assessing also Gust expression. As reported before [25], up-regulation for mT2R138 

might reflect bitter taste receptors activation, since a naturally low-cholesterol diet is rich 

in plants, which often contain bitter potentially toxic components, compared to a high-

cholesterol diet composed of significant amounts of animal meat. Thus, a low- 
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cholesterol diet might act on T2Rs expression and function to prevent the consumption 

and absorption of potentially toxic/bitter substances in plant-derived foods. Also, T2R138 

is one of the most important receptors that define a ―bitter tasting‖ phenotype [128] 

[129], therefore its regulation and sensitivity might be important in a diet rich in bitter 

potentially harmful plant-derived compounds. 

 

d. High fat diet 

 

Our data showed that 8 weeks on a high fat (HF) diet results in increased levels for 

mT2R138 and the signaling molecule Gust mRNA in mouse GI. According to our 

distribution data, mT2R138 (which is affected by HF diet) is highly expressed in the 

colon, where the microbiota is abundant. In fact the human intestine hosts about 100 

trillion microorganisms, representing hundreds of species, and the colon bacterial 

density has been estimated at 1011 to 1012 per milliliter, which makes this GI segment 

probably one of the most densely populated microbial habitats on Earth [130]. Previous 

studies showed how a high fat diet causes changes in the gut microflora, in composition 

and quantity, starting after 2 weeks and becoming significant after 6-8 weeks and these 

changes are related to a low grade of inflammation, involved in the development 

of pathologies such as obesity [131] [132]. The change we detected in mT2R138 

and Gust expression is developed after 8 weeks, but not after 2, and it develops 

in the large intestine, suggesting that the effect is more likely to be related to the 

change seen in the microbiota than to a direct effect of fat. Therefore, we 

speculate that there might be an interaction between microbes in the gut and 

mT2R138, which might serve as a defensive mechanism against bacteria, 

perhaps initiating an inflammatory response to contrast bacterial invasion.  
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In further support to this hypothesis, there is evidence that T2Rs in the airways 

can be activated by Acyl Homoserine Lactones [93], considered quorum sensing 

molecules for Gram negative bacteria, and we have preliminary data (shown in 

chapter III) showing that STC-1, an enteroendocrine cell line, and NCM-460 

human colonocytes, are also activated by this same bacterial molecule. 

 

e. High protein diet 

 

14 days on a 40% protein diet significantly increases T2R138 mRNA levels, only in 

stomach and proximal colon. Diets rich in proteins are known to enhance satiety and 

promote weight loss acutely [133] [134] [135] and cronically [136] [137]. Mechanisms 

explaining protein-induced satiety mainly consist in elevated amino acid concentrations, 

causing the release of hormones controlling appetite and gut functions [138]. It has been 

published that PYY is strongly stimulated by protein meals [139], GLP-1 appears to be 

stimulated by a high protein diet in combination with carbohydrates [137], gastrin is 

strongly released by protein meals [140], whereas ghrelin does not seem to be strongly 

affected [141] and little is known about CCK. Also, hydrolysis of proteins produces many 

peptides which are major stimulants of EEC secretion of hormones influencing gastric 

emptying, acid secretion, pancreatic secretion and food intake [142]. Moreover, a wide 

variety of fermented proteins are bitter and some of those peptides, such as soy and 

casein hydrolysates, are recognized by T2Rs [143]. The exact mechanism for these 

effects is not clear, but there is evidence of a role for a GPCR in protein sensing in the 

gut in STC-1 cells [144]. Our diet used casein and soy proteins (50:50% by calories), 

which are hydrolyzed to several bitter compounds recognized by T2Rs [189]. Based on 

previous evidences, we hypothesize that the change in mT2R138 expression in proximal 

colon and stomach might be the result of an interaction between peptides/bitter peptides  
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 derived from food proteins and the T2Rs. We propose that a high amount of proteins 

(casein and soy) and their metabolic products, which are bitter peptides, lead to release 

of those incretins which are mostly influenced by protein meals_ PYY, mainly located in 

colon, and gastrin, in stomach_ through T2Rs, which are expressed in cells releasing 

PYY and CCK/gastrin [2], are activated by bitter hydrolyzed proteins [189] and which 

levels are increased by a high protein diet in the same regions where this diet mainly 

causes release of incretins [139]. To further support the hypothesis that gastric peptides 

might be released by proteins and bitter compounds acting on T2Rs, it has recently 

been shown that PTC, a T2R138 agonist, acts on STC-1 leading to CCK and gastrin 

release [23], which is also released by proteins and amino acids in the lumen. 

Furthermore, intragastric administration of the bitter taste agonist DB stimulates vagal 

neurons via Y2 and CCK1 receptors in the gut wall [39] and also ghrelin release from 

stomach [19], supporting a connection between T2Rs stimulation by bitter 

compounds_such as the hydrolyzed proteins_ and a stimulation affecting stomach 

(releasing ghrelin, gastrin/CCK) and colon (releasing PYY). 

 

f. Summary 

 

In summary, mT2R138, mT2R108 and Gust are expressed along the entire mouse GI 

tract and show different levels of expression depending on the region. They are 

expressed by solitary epithelial cells, including enteroendocrine cells and cells 

expressing the taste signaling molecule Gust. The same receptors are selectively 

modulated in specific GI regions by different diets, containing different nutrients. There is 

an overall match between T2Rs and Gust expression modulation, which is not complete 

since Gust is a signaling molecule common to different TRs (sweet, bitter and umami). 

Also, Gα-gustducin is not the only Gα subunit related to taste, as shown by the fact that 
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KO mice have diminished behavioral and electrophysiological responses to many bitter 

and sweet compounds, but they retain residual responses to these substances [145]. 

This non homogeneous distribution and the region specific modulation by different 

nutrients for mT2R138, mT2R108 and their signaling molecule Gust support a different 

role for T2Rs depending upon receptor subtype, region of the gut and interaction with 

multiple luminal components. Overall, our data further support the idea of an 

involvement for T2Rs in chemosensing in the GI tract. 
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CHAPTER III 
Evidence for a role of T2Rs in sensing bitter stimuli and 

bacteria in human and mouse intestinal cell lines  
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1. Background and aim 
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BACKGROUND 

a. Type I Enteroendocrine Cells/STC-1 cells and bitter taste signaling 

 

Enteroendocrine cells (EECs) contain secretory granules and release mediators into the 

subepithelial space –where the sensory nerve terminals are. These cells are generated 

in the crypts and during the differentiation process they migrate to the tip of the villus. A 

variety of transmitters are found in different types of EECs. Also, some transmitters are 

co-stored within a single type of cell. Perhaps the reason for so many types of EECs is 

because each type has a specific function and communicates with a specific sub-

population of sensory nerves. It is clear that EECs are difficult to study directly because 

of the difficulty in isolating them, their sparse and irregular localization within the gut wall 

and their diversity. Therefore, many researchers adopt the use of cell lines as model 

systems for investigations of EEC functions. 

The mouse enteroendocrine cell line STC-1 is a small intestinal mixed population of 

enteroendocrine cells. STC-1 cells have been used for studying regulation of GI 

hormone release in response to bombesin/gastrin [146], free fatty acids [147], leptin 

[148], orexin [149] and amino acids [150]. STC-1 were the first cells to be characterized 

for the presence of taste signaling components and their responses to taste stimulation. 

It was shown that numerous T2R genes, as well as the taste signaling molecules Gα-

gustducin and Gα-transducin, Gβ3, Gγ13, PLCβ2 and TRPM5 are expressed in STC-1 

cells [102] [1] [26]. Stimulation on STC-1 with various bitter tastants leads to an increase 

in cellular calcium levels through the activation of L-type voltage-sensitive calcium 

channels [26], as monitored by functional calcium imaging experiments, indicating the 

presence of functional receptors in these cells. Furthermore STC-1 cells, which produce 

different peptide hormones including cholecystokinin (CCK), secrete CCK following DB 
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stimulation in a dose-dependent fashion [26]. STC-1 cells do not only express T2R 

genes, but also all three T1R genes [26] [122], which should enable them to respond to 

sweet and umami stimuli as well. Indeed, stimuli of all 5 basic tastes activate calcium 

responses in this cell line [151]. 

Recently, it has been shown that gut EECs express Toll-like receptors (TLR). Toll-like 

receptors are trans-membrane molecules that recognize bacterial breakdown products, 

such as lipopolysaccharide (LPS), bacterial lipoproteins, double stranded DNA and 

flagellin. Both mRNA and protein for TLR4, 5 and 9 are found in STC-1 cells. Activation 

of these receptors by their ligands (LPS, flagellin and CpG-ODN) induced secretion of 

CCK [152] [153]. Taken together, these observations suggest that EECs may be 

involved in the detection of the bacterial content of the lumen and participate in mucosal 

defense. For all the previous, STC-1 cells are a good model to study gut 

enteroendocrine cell responses to bitter taste ligands, including bacteria. Therefore, we 

use them to study the possibility that recognition of and response to bacteria by EEC 

might involve T2Rs. 

 

b. NCM-460 human colonocytes characteristics and their use in GI 

reaserch 

 
Figure 24: Phase contrast micrograph of NCM 
460 cells in culture [INCELL NCM460 product 

information 2007,v1.0 ] 
 

NCM-460 cells (Fig. 24) are normal human 

colonic mucosal cells, derived from the 

normal colon of a 68-year-old Hispanic male 

[154]. This cell line has extensively been 

used by many groups (including Rozengurt  
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and Pothoulakis, collaborating with us) to study multiple intestinal research areas, 

including infectious diseases [155], cell signaling [156], cytokine production [157] [158], 

vitamin transport, gene regulation [159] and protein expression and phosphorylation in 

multiple regulatory pathways [160] [161]. NCM-460 cells are almost exclusively epithelial 

cells, since they are positive to antigens against cytokeratins and villin, but are negative 

for antigens associated with other cell types, such as neural or endothelial cells (see 

table IV). 

 

 

.  

Table IV: Immunochemical characterization of NCM-460 cell line with different markers [Moyer et 

al, In Vitro Cellular & Developmental Biology – Animal, 1996] 
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These cells grow in monolayer and they require a specific media (M3D™, from INCELL) 

to maintain an appropriate phenotype for long term culture. Also, some cells might 

become positive to mucin synthesis with time or might acquire some sort of 

transformation-associated characteristic. Therefore we always worked on new cell after 

passage XV. 

Extensive experimental evidence suggests that differences in diets [162] [163] and 

variation in gut microbiota [164] might contribute to variation in susceptibility to 

pathologies, such as colon cancer, and NCM-460 cells have been used in this kind of 

studies. In this field, literature shows that long term consumption of red and processed 

or preserved meat, as well as other dietary products, increase colorectal cancer risk, 

whereas high Ca++, fish, fruit and soy show cancer-inhibitory activities in experimental 

studies [165] [166] [167] [168]. Also, obesity_ which is associated with a mild GI 

inflammation_ and diabetes Type II are often associated with a higher risk of colon 

cancer. These evidences, together with our previous data about diets and T2Rs 

expression modulation and the expression of hT2R38 we detected, led us to decide to 

study the effect of bacteria on NCM-460 and AHL influence on T2Rs expression. 

 

c. pMAPK p44/42 

 

The transmission of extracellular signals into their intracellular targets is mediated by a 

network of interacting proteins, acting to regulate various cellular processes. One of 

these networks involves activation of membrane receptors followed by a sequential 

stimulation of several cytoplasmic protein kinases, collectively known as mitogen-

activated protein kinases (MAPKs). MAPKs, also referred to as extracellular signal-

regulated protein kinases (ERKs), are serine/threonine proteins that respond to a variety 

of extracellular stimuli and regulate many cellular activities, such as gene expression, 
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mitosis, differentiation, proliferation, and cell survival/apoptosis [169]. All MAPK 

pathways operate through sequential phosphorylation events, known as ―MAPK 

cascade‖, and MAPK is the terminal enzyme in this three-kinase cascade: MAP kinase, 

MAP kinase kinase (MKK, MEK, or MAP2K) and MAP kinase kinase kinase (MKKK, 

MEKK or MAP3K) that are activated in series, as shown in Fig 25. 

 

 

 

Figure 25: Different pathways using MAPKs. In all of them, a MAP3K_that is activated by 

extracellular stimuli_phosphorylates a MAP2K on its serine and threonine residues, and this 

MAP2K activates a MAP kinase through the same phosphorylation on its threonine and tyrosine 

residues (Tyr-185 and Thr-183 of ERK2), leading to a biological response. [Cell signaling 

technology; http://www.cellsignal.com/reference/pathway/MAPK_Cascades.html] 
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Opposite, down-regulation of MAPK pathways occurs through dephosphorylation by 

serine/threonine phosphatases, tyrosine phosphatases, or dual-specificity phosphatases 

and through feedback inhibitory mechanisms that involve the phosphorylation of 

upstream molecules. Several MAPK cascades have been identified in mammalian cells. 

So far, the three major MAPK pathways identified and the most extensively studied are 

MAPK/ERK (including ERK1; ERK2; ERK3/ERK4, ERK5, ERK 7/8), SAPK/JNK 

(including JNK1, JNK2 and JNK3) and the p38 MAPK (including p38alpha, p38beta2, 

p38gamma and p38delta). 

ERK1 and ERK2, also known as classical MAPK p44/42 signaling pathway, are 

expressed almost in every tissue and were the first of the ERK/MAPK subfamily to be 

cloned. Therefore, they represent the best characterized pathway for MAPKs, which is 

the reason why we chose them as a target to measure. The ERK1/2 pathway is 

preferentially activated in response to growth factors and phorbol ester (a tumor 

promoter) and regulates cell proliferation and cell differentiation. ERK3 (MAPK6) and 

ERK4 (MAPK4) are structurally-related atypical MAPKs. They are primarily cytoplasmic 

proteins that bind, translocate and activate MK5 (PRAK, MAPKAP5). ERK5 (MAPK7), 

which has been discovered more recently, is activated both by growth factors and by 

stress stimuli, and it participates in cell proliferation. ERK7/8 (MAPK15) is the newest 

member of MAPKs and behaves like atypical MAPK. c-Jun N-terminal kinases (JNKs) 

are also known as stress-activated protein kinases (SAPKs) as they are strongly 

stimulated by numerous environmental stresses or genotoxic agents and modestly 

stimulated by mitogens, inflammatory cytokines, oncogenes or inducers of cell 

differentiation. p38 isoforms are responsive to stress stimuli, such as cytokines, 

ultraviolet irradiation, heat shock and osmotic shock, inflammatory cytokines (TNF-  

and IL-1) and growth factors and are involved in cell differentiation and apoptosis. 

  

http://en.wikipedia.org/w/index.php?title=Tumor_promoter&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Tumor_promoter&action=edit&redlink=1
http://en.wikipedia.org/wiki/MAPK6
http://en.wikipedia.org/wiki/MAPK4
http://en.wikipedia.org/wiki/MAPK7
http://en.wikipedia.org/wiki/MAPK15
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Phosphorylation of MAPK p44/42 has been extensively used to study activation of 

intracellular pathway in response to various ligands for receptors on the membrane. In 

this study, we evaluated pMAPK p44/42 over the total expression of ERK1/2 in STC-1 

and NCM-460 cells challenged with different stimuli, to establish whether T2R ligands 

or AHL activate different GI cells using MAPK pathway. 

 

d. AHL and bacteria 

 

 

Figure 26: AHL general chemical structure. 

[http://en.wikipedia.org/wiki/NAcyl_homoserine_lactone] 

 

Species-specific cell-to-cell communication in bacteria is critical for successful 

pathogenic or symbiotic interactions with plant or animals, and host immune responses 

are important mechanisms to develop the infection process. The level and nature of 

these responses mainly depend upon the type of infection and its site, therefore upon 

both the host and the pathogen. Bacterial cells sense their population density through a 

sophisticated cell–to-cell communication system and regulate expression of particular 

genes when the cell density reaches a specific threshold. This type of gene regulation, 

which controls many biological functions including virulence, is known as quorum 

sensing (QS) [170] [171]. Virulence factors controlled by QS include exoproteases, 

http://en.wikipedia.org/wiki/File:N-Acyl_Homoserine_Lactone.png
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siderophores, exotoxins, and lipases and QS is essential for the pathogen to be 

successful [172] [173] [174]. One of the best-studied QS signaling system is the acyl-

homoserine lactones (AHLs) system, which is used by a large number of Gram-negative 

bacterial species. Different pathogens use different strategies to modulate the immune 

response and there is considerable structural variety between AHLs from different 

bacteria and even between AHLs synthesized by the same bacterium, mostly in the 

length and substitution of the acyl chain. Also, target genes regulated by AHLs are 

abundant, as well as the regulatory mechanisms [174] [175] [176], as shown in some 

examples in table V. 

 

 

 

 

Table V: Examples of Homoserine Lactones (HSL) quorum sensors. [Clay Fuqua & E. Peter 

Greenberg, Nature Reviews Molecular Cell Biology, 2002] 
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However, the general mechanism of AHL-mediated quorum-sensing signaling is highly 

conserved: each bacterium produces a basal level of AHLs that move in and out of cell 

membranes through diffusion or active transportation. When AHLs reach a threshold 

concentration, signaling that there is a high bacterial population density, they interact 

with specific receptors and initiate expression of selected genes [175] [176] (Fig. 27). 

The specific receptors for AHLs signals are members of the LuxR family of 

transcriptional regulators. LuxR family members consist of two domains, a C-terminal 

DNA-binding domain, and an N-terminal AHL-binding domain [177]. A simple model 

showing AHLs quorum-sensing mechanism is shown in Fig. 27. 

 

 

 

Figure 27: Generalized scheme for an AHL quorum-sensing in a bacterial cell. When AHLs 

concentration is enough_indicating a numerous bacteria population_ the QS molecule binds to its 

receptor (LuxR) leading to the expression of genes required for production of a variety of 

pathogenic components. [Jayaraman et al, Annu. Rev. Biomed. Eng., 2008] 
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Tizzano and coworkers [93] have suggested that the airways epithelial cells might be 

capable of responding to AHLs produced by Gram-negative bacteria with a mechanism 

involving bitter taste receptors. Also, many lactones _such as sesquiterpene lactones_ 

are natural bitter substances occurring in vegetables and culinary herbs, as well as in 

aromatic and medicinal plants, and previous studies have shown their ability to activate 

bitter taste receptors [70]. Based on these previous evidences and on our findings 

showing up-regulation of mT2R138 and Gust in the colon only by high fat diet, which 

alters the level of intestinal bacteria, we hypothesized that T2Rs in the gut might interact 

with bacteria and initiate an inflammatory response thus providing a defense mechanism 

toward bacteria invasion. In this study we used N-(3-Oxodecanoyl)-L-homoserine 

lactone, which is used as an autoinducer of quorum signaling by Pseudomonas putida, 

Yersinia enterocolitica and other Gram-negative bacteria, in order to investigate whether 

AHL signaling can activate small intestinal enteroendocrine cells or colonocytes at 

micromolar concentrations, which are likely to trigger bacterial virulence and therefore 

provoke an immune response. 

 

 

AIM 

 

The aim of this study was to evaluate whether different kind of GI cells express 

functional T2Rs and whether these are activated by Acyl Homoserine Lactone (AHL), 

quorum sensing molecule for Gram negative, to test the hypothesis that T2Rs in the GI 

tract might serve as detector system for pathogens, thus providing a mechanism of 

defense against infection. 
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2. Material and methods 
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a. Reagents 

 

Phenylthiocarbamide (PTC, P7629), Denatonium Benzoate (DB, D5765), N-(3-

Oxodecanoyl)-L-homoserine lactone (AHL, O9014), Probenecid (P-8761), GF-1, B3306) 

and nitrendipine (N144) were purchased from Sigma. Probenecid was dissolved at 500 

mM in 1N NaOH and titrated to pH 7.0. AHL was dissolved at 50 mM in DMSO and used 

at a final concentration of 0.1 mM, containing 0.2 % DMSO, which was not toxic to cells 

for the time of the experiment (10 min to 24 h). GF-1 (an inhibitor of protein kinase C, 

PKC) and nitrendipine (an L-Type voltage-sensitive Ca++ channel blocker) were also 

dissolved in DMSO for a stock solution of respectively 2 mM and 0.1 mM and used at a 

final concentration of 5uM and 1 uM in DMEM for STC-1 or M3D™ media for NCM-460. 

 

b. Cell lines and treatments 

 

STC-1 and IEC-18 mouse cell lines were a gift from Dr. Rozengurt, CURE Digestive 

Diseases Research Center, Division of Digestive Diseases, David Geffen School of 

Medicine, UCLA, Los Angeles, CA. Both cells were cultured in DMEM + GlutaMax + 

10% FBS and 1xPenStrep (GIBCO 15140-122). NCM-460 were kindly donated, by Dr. 

Pothoulakis labs, IBD Center, Division of Digestive Diseases, David Geffen School of 

Medicine, UCLA, Los Angeles, CA and were cultured in M3D™ (M3DEF-500, Incell 

corporation LLC) media with 10% FBS and 1x PenStrep. All cultures were kept at 37°C 

in 5% CO2 atmosphere. Cells were starved 1h before experiments with media without 

FBS and treated with bitter agonists (DB and PTC 0.1 to 10 mM 3’) or AHL (0.5 to 100 

uM 10’) with or without 1h pre-incubation with either Probenecid (concentrations range 

0.1 to 5 mM), GF-1 (5 uM) or nitrendipine (1 uM). 
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c. Western Blot 

 

Cells were lysed in 2× SDS-polyacrylamide gel electrophoresis sample buffer (20 mM 

Tris-HCl, pH 6.8, 6% SDS, 2 mM EDTA, 4% 2-mercaptoethanol, 10% glycerol) on ice 

and boiled for 10 min. After SDS/PAGE, proteins were transferred on PVDF membrane. 

Membranes were blocked 1h at room temperature in blocking buffer (LI-COR®), 

incubated at 4°C overnight with antibodies specifically recognizing pMAPK p44/42 

(9106, dil 1:1000,  Cell Signaling) and ERK-2 (sc-154, dil 1:500, Santa Cruz 

Biotechnologies). Immunoreactive bands were visualized by using infrared fluorescent 

secondary antibodies (IRDye 800 Goat anti Mouse, dil 1:10000, and IRDye 680Goat anti 

Rabbit, dil 1:10000; LI-COR Biosciences). Images were collected using the LI-COR 

Odyssey infrared imaging system and analyzed with the 3.0 associated software. 

 

d. qRT-PCR 

 

Total RNA was isolated from STC-1 and NCM 460 cells using Qiagen RNeasy Minikit 

(74104, Qiagen, Valencia, CA) and a DNase treatment was performed to eliminate 

genomic DNA contamination. RNA quality was estimated by the absorbance at 260 nm 

and 280 nm ratio (OD260nm/OD280nm>1.8) Complementary DNA was generated using 

Superscript III Reverse Transcriptase kit (Invitrogen) according to the manufacturer’s 

instructions on a DNA Thermal Cycler Engine, BIO-RAD. Quantitative real-time reverse 

transcription polymerase chain reaction (qRT-PCR) was performed using Taqman Gene 

expression assays for mT2R138 (Applied Biosystem, Mm01700131_s1), mT2R108 

(Applied Biosystem Mm00498514_s1) and hT2R38 (Applied Biosystem_ Hs00604294-

s1,) and hT2R4 (Applied Biosystem_ Hs00249946-s1). Standard thermal cycles (50 

cycles) for Taqman Gene assays were run on a Mx3000P Real-time PCR Detection 
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System (Stratagene) and data were analyzed with Mx Pro 1000 software. 18S RNA 

(18S RNA, Applied Biosystem Hs03928990_g1 and Mm03928990_g1) was used as 

housekeeping gene and the relative abundance of mRNA expression was calculated 

using the Delta delta Ct method (User Bulletin #2, ABI Prism 7700 Sequence Detection 

System). Samples were run at least in duplicate in separate experiments and No-RT 

and distilled RNAse-free water controls were always included. qRT-PCR products were 

checked by 4% agarose gel horizontal electrophoresis and specific bands of the same 

base pair seizes as the expected size were detected. 
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3. Results 
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a. STC-1 enteroendocrine cells and NCM-460 colonocytes express 

T2Rs. 

 

qRT-PCR and gel electrophoresis showed the presence of the amplified products 

generated by the Taqman Gene Expression Assay primers specific for mT2R138, 

mT2R108 and Gust in STC-1 cells, but not in IEC-18 cells, as shown previously [102]. 

Also, qRT-PCR analysis of NCM-460 human colonocytes showed that this cell line 

expresses hT2R38, but not T2R4 (data not shown). 

 

b. Bitter stimuli induce a rapid dose-dependent MAPK p44/42 

phosphorylation in different intestinal mucosal cell populations. 

 

WB analysis showed that STC-1 cells responded to bitter ligands DB and PTC with 

MAPK p44/42 phosphorylation. The activation peaked at 3 minutes and showed a dose 

dependent profile (Fig. 28). DB induced a significant phosphorylation of MAPK 44/42 at 

2.5 mM (40.80%±10.89 treated vs 4.70%±0.33 control, P<0.05) and PTC at 5mM 

(51.18%±6.98 treated vs 4.25%±0.21 control, P<0.05). IEC-18 cells, a mouse small 

intestine cell line not expressing TRs, were not activated by either PTC and DB. 

When challenged with DB or PTC and analyzed by WB for MAPK phosphorylation, 

results on NCM-460 human colonocytes supported qRT-PRC data, since PTC activates 

MAPK p44/42 in a dose dependent manner (lowest active concentration 2.5 mM: 

24.82%±0.80 treated vs 17.05%±1.88 control, P<0.05), whereas there is no MAPK 

phophorylation following DB stimulation (Fig. 29). 
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Figure 28 :WB results showing the % of phosphorylation for MAPK p44/42 in STC-1 cells after 3’ 

incubation with increasing DB or PTC concentrations. 
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Figure 29 :WB results showing the % of phosphorylion for MAPK p44/42 on NCM 460 

colonocytes after 3’ incubation with increasing PTC concentrations. 

 

c. Different T2Rs subtypes show different pathways leading to 

MAPK p44/42 activation 

 

To further investigate the signaling pathway following T2Rs activation we used GF-1, a 

protein kinase C inhibitor, and nitrendipine, an L-type voltage-sensitive Ca++ channels 

blocker, and measured pMAPK following PTC/DB treatment in their presence. When 

STC-1 cells were treated with increasing concentrations of PTC or DB in presence of 

GF-1, PTC signal was blocked, whereas in presence of nitrendipine, DB signal was 

suppressed, as shown in Fig. 30. 
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Figure 30: Representative WB membranes showing pMAPK p44/42 after PTC or DB stimulation, 

in absence/presence of nitrendipine/GF-1. 

 

d. Human and mouse GI cell lines expressing T2Rs are activated by 

N-(3-Oxodecanoyl)-L-homoserine lactone, possibly through 

T2R138/T2R38 

 

Both NCM-460 and STC-1 cell lines responded with MAPK p42/44 phosphorylation 

when challenged with AHL at increasing uM concentrations. Cells rapidly died with 

concentrations ≥250uM but survived at least 24h for concentrations ≤ 100uM. Activation 

by PTC and AHL was blocked by Probenecid (100.00%±14.84 PTC vs 28.38%±12.85 

PTC+Probenecid 2.5mM, and 68.89%±7.66 AHL vs 19.37%±1.70 AHL+Probenecid 

2.5Mm, both P<0.05), an antagonist for a subgroup of T2Rs including T2R138, in a dose 

dependent manner in STC-1 cells and preliminary data show that both PTC and AHL-

induced MAPK phosphorilation is blocked by GF-1 but it is not blocked by nitrendipine in 

STC-1 cells (Fig. 32-33), whereas DB-induced MAPK phosphorilation was blocked by 

nitrendipine but not by GF-1. 
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Figure 31: Graphs showing WB results for: A) 3 mM PTC-induced ERK phosphorylation, blocked 

by probenecid in a dose dependent manner, in STC-1 cells B) 100 uM AHL–induced ERK 

phosphorylation, blocked by probenecid in a dose dependent manner, inSTC-1 cells. 
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Figure 32: Graphs showing WB results in STC-1 cells for A) PTC-induced ERK phosphorylation, 

blocked by GF-1 B) AHL–induced ERK phosphorylation, blocked by GF-1 , similarly to PTC 

signal. 
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Figure 33: Graphs showing WB results in STC-1 cells for A) 2.5 mM PTC-induced ERK 

phosphorylation, blocked by Nitrendipine B) 100 uM AHL–induced ERK phosphorylation, blocked 

by nitrendipine, similarly to PTC signal. 

 

IEC-18 cells were also activated by the lactone, but the signal was not blocked by 

Probenecid, if not at a high (5mM) concentration, that was above the concentration 

needed to block PTC response. Also, treatment with AHL 50 uM for 4 (**P<0.01) or 24h 

(***P<0.001) produced a significant increase in hT2R38 mRNA expression in NCM-460 
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cells (Fig. 34). Similarly, the same cell line challenged with PTC showed a significant 

(*P<0.05) increase in hT2R38 expression after 4 h. 

 

      

Figure 34: hT2R38 mRNA is up-regulated after 4-24h treatment with AHL (A)and PTC (B) in 

NCM-460 cells  
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4. Discussion 
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a. STC-1 and NCM-460 cell lines express T2Rs and are stimulated by 

bitter agonists through MAPK p44/42 phosphorylation 

 

T2Rs mRNA expression in the mouse GI has been studied by different groups (e.g [1] 

[102] [103]) and they showed how several T2Rs, including mT2R138 and mT2R108 and 

their signaling molecule Gust are expressed in mouse enteroendocrine and non-

enteroendocrine GI cells and in the small intestinal enteroendocrine cell line STC-1. Our 

study confirms that those receptors mRNA is expressed in these cells and qRT-PCR 

analysis of a large intestinal human cell line, NCM-460 normal colonocytes, revealed 

that they also express hT2R38, but they do not express hT2R4, the human homologus 

of mT2R108. Accordingly, when stimulated with DB or PTC_mT2R108/hT2R4 and 

mT2R138/hT2R38 agonists respectively_ STC-1 cells responded to both compounds 

with MAPK activation, whereas NCM-460 only responded to PTC, since they do not 

express hT2R4, the receptor for DB. These evidences confirm on cell lines that T2R 

subtypes are expressed in different species and different GI mucosal cell types, maybe 

with a specific distribution depending on the GI segment and on the specie. Since 

different species have evolutionary been stimulated with different food and a variety of 

different ingested compounds, it is possible that this might have caused a specific 

modulation of T2Rs expression, leading to a different distribution and a different receptor 

type spectrum, depending on the animal. Indeed, during evolution rodents developed a 

significantly higher number of T2R genes compared to humans [1] and different animals 

show a different number and pattern of many sense receptors, including T2Rs. [190 ] 

Also, the pathway following T2Rs activation seems to involve MAPK p44/42, which we 

found to be phosphorylated following PTC or DB treatment only in cells expressing T2Rs 

(STC-1 and NCM-460 vs IEC-18), as previously published by Wu et al, 2002 [102]. The 

use of GF-1, as a PKC antagonist, and nitrendipine, as a Ca++ channel blocker, helped 
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to characterize the pathway following T2Rs activation: our data indicate that selected 

T2R ligands activate different pathways and suggest different mechanisms of action for 

different that T2R ligands. 

Summarizing, based on our data, we hypothesize that T2Rs are distributed throughout 

the gut with different levels of expression and that selected subtypes might be 

expressed and have different functions in specific GI regions or different species. Their 

distribution and presence/absence might also depend on the receptor’s function. T2Rs 

activation by different ligands leads to the phosphorylation of MAPK p44/42 following 

different pathways, depending upon the receptor, as schematized in Fig. 35. 

 

 

 

Figure 35: Possible mechanism for different T2Rs activation, involving Ca++ channels or PKC 
[Modified from Rozengurt E. et al, Am J Physiol Gastrointest Liver Physiol., 2006] 
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b. Bacteria might interact with T2Rs in the gut 

 

It is already known that gut endocrine cells may be able to detect intestinal microbiota 

and pathogenic bacteria, as they express bacterial recognition receptors such as Toll-

like receptors, or receptors for bacterial products, such as short chain fatty acids [178]. 

Since AHL activate different gut cell lines expressing T2Rs (STC-1 and NCM-460) and 

the signal is specifically blocked by an antagonist for T2R138 and by blocking the 

signaling pathway (in particular for T2R138), we hypothesized that subpopulations of 

mucosal cells might detect bacterial stimuli, such as QS molecules like AHLs, through 

T2Rs, which is in line with previous observations on epithelial cells expressing T2Rs in 

the airways [93]. Also, we showed that a high fat diet, which is able to unbalance in 

quantity and quality the gut microbiota and to initiate a mild inflammatory response, 

significantly affects mT2R138 expression in the colon only, and only after 8 weeks, 

when the bacterial change occurs, suggesting that the effect is bacteria-mediated more 

than directly mediated by fat. Overall our findings, together with previous observations, 

suggest that bacteria might activate T2Rs to initiate an inflammatory process in 

response to pathogens such as Gram negative bacteria, and further support a functional 

role for T2Rs in chemosensing in the GI tract. 
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