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Abstract

Macroscopic quantities of graphenes have been prepared by different chemical meth-

ods and characterized by µSR spectroscopy, which proved a useful tool to study the

interactions of the hydrogen atom with the defective graphene plane. A clear muon

spin precession is observed in all the samples, contrary to the standard behaviour of

graphite. Its origin lies in the magnetic dipolar interactions of hydrogen nuclei present

at defects and reveal the formation of an extremely stable CHMu (CH2) state. The

signal amplitude suggests that vacancies saturated by hydrogen have an extraordinary

hydrogen capture cross-section.

In addition the µSR results, together with our SQUID investigations, pose important

limits on the debated possibility of magnetism in graphene: µSR, indeed, is very

sensitive to the local internal field and does not show the presence of any magnetization.
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Introduction

The 2010 Nobel Prize award to the first successful research activities on graphene

has shown the importance of this material even to the general public. Its amazing

physical properties promise future technological applications in various fields. From

electronics [1] to lightweight material engineering [2], from sensors [3, 4, 5] to energy

storage [6, 7], graphene will probably be one of the leading materials in the technologies

of the 21st century.

Even if these applications are still far to come, these first years of research on graphene

have been really fascinating: this system has shown a wealth of interesting phenom-

ena related to fundamental physics. As it will be detailed in chapter 1, most of them

arise from the low dimensionality of this material, which is properly bidimensional,

and from its electronic energy spectrum, characterized by linear dispersion relations.

Charge carriers in graphene behave as massless Dirac fermions and thus provide a

valuable benchmark for relativistic quantum physics. They display extremely high

mobility, even above 200000 cm2 / V s, ballistic conduction and interesting magneto-

transport properties, including the anomalous quantum Hall effect, observed already

at room temperature.

Despite the great enthusiasm of the scientific community about the physics of graphene,

documented by the over 7500 papers appeared in five years [8], this research field is

very young and many topics are still unexplored. This is the case of graphene magnetic

properties: many theoretical investigations suggest the onset of magnetic order in the

bidimensional carbon lattice, triggered by defects [9, 10], but a full characterization

of the material is not yet available. Similarly, the experimental studies of graphene

interactions with other chemical species, important for future applications, are just

at the beginning: for the case of hydrogen, for example, recent theoretical [6] and

experimental [11] works have suggested that bulk graphene could represent a promising

material for reversible hydrogen absorption, thanks to its huge specific surface area.

Recently, however, the development of chemical methods for the production of bulk

quantities of graphene, achieved only at the end of 2008, has opened new possibil-
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ities: the availability of gram-scale samples, indeed, allows to investigate the low-

dimensional, nanoscopic graphene with spectroscopic techniques usually reserved to

bulk solid state materials (the techniques used are shortly reviewed in chapter 2, while

chapter 3 discuss the optimization of samples synthesis and their characterization).

Stimulated by these new opportunities, the present thesis work is focused on the

µSR characterization of chemically synthesized graphene. The capabilities

of this experimental technique are particularly suitable to explore different topics of

interest: on the one hand µSR is extremely sensitive to magnetic interactions and, com-

plemented by magnetometry investigations, can offer relevant insights into graphene

magnetic properties and their connections with defects (chapter 4). On the other hand,

muons in matter can act as light hydrogen isotopes and help to study the interactions

of hydrogen atoms with graphene (chapter 5).
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Chapter 1

Graphene

Graphene is a wonder material with many superlatives to its name. It

is the thinnest known material in the universe and the strongest ever mea-

sured. Its charge carriers exhibit giant intrinsic mobility, have zero effective

mass, and can travel for micrometers without scattering at room tempera-

ture. Graphene can sustain current densities six orders of magnitude higher

than that of copper, shows record thermal conductivity and stiffness, is im-

permeable to gases, and reconciles such conflicting qualities as brittleness

and ductility. Electron transport in graphene is described by a Dirac-like

equation, which allows the investigation of relativistic quantum phenomena

in a benchtop experiment.

(A.K.Geim, Graphene: Status and Prospects, Science 2009 [12] )

Figure 1. Graphene structure as an ideal
2dim hexagonal lattice.

Graphene is a single layer of carbon atoms, ar-

ranged in an planar honeycomb lattice (fig.1).

It’s the simplest carbon allotrope and may

be regarded as the “mother” of others car-

bon structures: this two-dimensional system,

in fact, can be stacked to form 3dim graphite,

rolled into 1dim nanotubes and even wrapped

into 0dim fullerenes, as displayed in fig.2.

As a building block for all these systems,

graphene has been the most theoretically stud-

ied, since 1947, when Wallace [13] calculated

its band structure in the tight-binding approx-

imation (see section 1.3). Nevertheless, it has

been the latest carbon form to be experimen-
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Chapter 1. Graphene

tally discovered: graphene sheets could not be isolated and recognized until 2004 [14].

The remarkable discovery and first characterization of monolayer graphene was accom-

plished at the University of Manchester by the Russian researchers Andre K. Geim and

Kostantin Novoselov, who were awarded the Nobel Prize for physics in 2010.

From its two-dimensional nature and its electronic energy spectrum graphene de-

rives many outstanding properties. They are highlighted by prof.Geim nice picture

of graphene, quoted above, and are discussed through this chapter. First the struc-

tural and mechanical characteristics of the system are revised. Then the electrons

behaviour and their similarity to Dirac fermions are examined, together with the sub-

sequent electric and transport properties. An overview of the main applications in the

field of electronics is also given. A final discussions about the presence of defects on

the graphene plane and the rise of possible magnetic interactions will help to introduce

the main topics of the present study.

Figure 2. The graphene plane seen as the building block for all other carbon allotropes: from left to right
wrapped into 0dim fullerenes, rolled up in 1dim nanotubes and stacked to form 3dim graphite. Adapted

from [15].
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1.1. Graphene structure

1.1 Graphene structure

Figure 3. Graphene structure. Blue
and Red carbon atoms marks the two

different triangular sublattices.

In a first ideal approximation, graphene can be de-

scribed as a planar carbon sheet, only one atom thick.

The atoms display sp2 hybridization and are arranged

in an honeycomb lattice, with a carbon-carbon bond

distance of 1.42Å. Thus graphene unit cell is hexagonal

and contains two carbon atoms. Its crystal structure

shall be seen as two identical, interpenetrating triangu-

lar sublattices, evidenced in fig. 3: this distinction not

only helps to define the stacking order in multilayer

graphene and graphite1, but it’s also intimately con-

nected to the electronic properties of the system, as will

be explained later. The graphene plane may be termi-

nated either by armchair or zig-zag edges, topologically

speaking the two possible ways to cut an hexagonal lat-

tice. As an example fig.4b shows the alternation of armchair and zig-zag edges in a

real graphene sample, observed with Scanning Tunneling Microscopy2.

(a) (b)

Figure 4. (a)Schematic representation and (b)STM image of the Zig-Zag and Armchair conformations
at graphene edges. Adapted from [16].

Graphene was first obtained in 2004 from highly oriented pyrolytic graphite by the

micromechanical cleavage technique [14], i.e. scotch-tape peeling of graphite surface.

1In graphitic materials the stacking order indicates the mutual position of subsequent layers.
Graphite usually display the Bernal stacking ABAB, where one sublattice in layer B results aligned
with the centers of the hexagons of layer A.

2Further detail on graphene edges will emerge while discussing their peculiar electronic states.
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Chapter 1. Graphene

The novel idea which made possible the discovery of graphene and then valued the No-

bel prize for physics to Novoselov and Geim, was the development of a method to probe

the existence of single layer samples, based on the combination of optical interferome-

try and atomic force microscopy3. From the time of these first experiments, different

more effective techniques have been developed to monitor the existence of single layer

graphene, featuring Raman [18], Angle-Resolved PhotoEmission Spectroscopy [19],

electron microscopies [20] and nanobeam electron diffraction [21]. The latter method

was the first one to allow important insights in graphene structure and it is worth

discussing it here, while for the other techniques the reader may refer to section 3.2

and to several recent reviews [20, 22]. Figure 5 displays the ED pattern of graphene

at several incidence angles. No sudden intensity variation are observed in any of the

diffraction peaks, as expected for monolayer graphene, whose reciprocal space is a set

of equal rods (fig.7a). For the case of multilayer graphene, instead, simulations yield

a non-monotonic behaviour, due to the more complex geometry in the Fourier space.

The experimental and simulated intensity profiles are shown in the lower panels.

The observation of monolayer graphene seems to prove the existence of strictly 2dim

crystals and is therefore a great surprise. As first discussed by Landau [23] and

Peierls[24] in the 30s and then formalized in the Mermin and Wagner theorem [25],

long-range crystalline order should not exist in less than three dimensions. Indeed they

proved that in one or two dimensions, within the harmonic approximation, the number

of long wavelength phonons diverges at the thermodynamic limit: the induced dynam-

ical fluctuations would exceed the limit of 1/10 of the lattice constant and, according

to the Lindemann criterion, the material would melt.

Low-dimensional crystals are therefore not thermodinamically stable, as observed dur-

ing the first CVD growth of graphene, which tended to collapse towards 3dim nanos-

tructures. In the graphene crystal these destructive fluctuations are suppressed by

anharmonic coupling of the C-C bending and stretching phonon modes, which give

rise to nanoscaled corrugations, called ripples (see fig.6).

3This method will not be used through this work and hence there is no need to explain it in detail
here. Nevertheless it may deserve a short description: Geim’s group observed (supp.inf. from [14] that
graphenes prepared on a SiO2 wafer (with a proper thickness, they used 300 nm), through transparent
to visible light, can be detected in interferometry experiments, as the added optical path shifts the
interference colors. In particular for graphenes with less than 3 layers this effect proved too small to be
appreciated (see the supporting information from [14],fig.S2 therein. Thanks to recent improvements,
this method now allow the observation of monolayers [17].). These optical measurements allowed to
select few-layers graphenes among multilayers one, while SEM and AFM were used to determine the
exact number of layers. AFM shows a thickness of approximately 1 nm for the first layer (these
number will become clear later in the text) and additional 0.334 nm for each further sheet.
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1.1. Graphene structure

Figure 5. Electron diffraction from monolayer graphene. Above: diffraction patterns at different incidence
angles. Below: intensity of Bragg reflections measured (point and solid lines) and expected (dashed lines)

for single and bilayer graphene. Adapted from [21].

Figure 6. Schematic representation of rip-
ples, the nanoscopic corrugations present on
the graphene plane. On average their size
ranges between 5 and 25 nm and they are

∼ 1nm high.

To this extent, graphene structure is not strictly

2dim and then reconciles to the Mermin and

Wagner theorem. Actually ripples are observable

also in the electron diffraction patterns discussed

above (fig.5): one can easily see a broadening

and blurring of the diffraction peaks with increas-

ing tilt angle, effect even larger for points farther

away from the tilt axis. This broadening, also

considering that the total intensity of the peaks

does not vary, implies that the reciprocal space

of graphene is better represented by fig.7b, where

rods wander about their average directions. Correspondingly, in the real space, the

graphene plane assume many different orientations. In particular, since the broaden-

ing is isotropic, the observed “waviness” is randomly oriented. Further analysis of the

electron diffraction patterns of different samples [21], reveals that graphene surface

deviates from its average plane by ±5◦. The ripples are found to be on average 1nm

high and from several to 25nm large. These nanoscopic corrugations are typical of

monolayer graphene and rapidly disappear in multilayer samples (fig.7c).
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Chapter 1. Graphene

(a). Reciprocal Space
of an ideal 2dim hexag-

onal lattice.

(b). Reciprocal space of
corrugated graphene.

(c). Gaussian FWHM of the (0-110)
diffraction peaks, as a function of tilt an-
gle, for mono- and multilayer graphene.The
apparently flat region between 0 and 5◦ is

due to sensitivity issues.

Figure 7. Analysis of the electron diffraction patterns. The broadening of the diffraction peaks - black
data in panel (c) - indicates the reciprocal space of graphene is not the set of rods expected for an ideal

hexagonal plane (a), but is rather represented by cones around the average directions (b). From [21].

1.2 Mechanical properties and Applications

Figure 8. (a) SEM image and (b)
schematic representation of a sus-
pended graphene resonator, used for
the measurements of graphene me-

chanical properties. From [26].

Graphene is an extremely light-weight material, a hun-

dred times stronger than the strongest steel and it’s

then exceptionally promising for mechanical applica-

tions in the nextcoming future. It is the thinnest mate-

rial ever observed, with a density that can be estimated

from the lattice parameters to be 0.77 mg/m2 [27] and

nevertheless graphene exhibit record mechanical prop-

erties: measurements performed on suspended sheets

with an AFM tip [26, 28] allowed to estimate its spring

constant to be of the order of several N/m and the

Young modulus to be approximately 1 TPa. Finally its

breaking strength is evaluated in 42 N/m: this means

that, as described by the Royal Swedish Academy of

Science in the documentation for the Nobel prize [27],

a fictional hammock of 1 m2 made out of graphene4

would hold a cat while weighting less than 1 mg. Com-

4Actually graphene sheets 1 m2 large are no more science fiction. Researchers at Sung Kyun Kwan
University, Korea, in cooperation with Samsung, have presented such large graphene sheets in summer
2010. Further information about their published results will be discussed later in the section about
electronics application.
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1.2. Mechanical properties and Applications

pared to a steel film as thick as the interlayer separation in graphite, 3.34 Å, graphene

results more than 100 times stronger than the strongest steel, which exhibit a 2dim

breaking strength of 0.4 N/m. Graphene is thus “the strongest material ever mea-

sured” [28] and it’s also ductile and flexible, in spite of its brittleness.

In front of these outstanding mechanical properties of suspended graphene layers, some

questions arise : can these properties be transferred to macroscopic materials? Could

one produce graphene-based fibers or paper for large-scale structural applications?

Recently different examples of carbon-based materials have been developed (see fig.9):

graphene and graphene oxide paper [29, 30], graphene films [31, 32, 33], and carbon

nanotubes sheets [34], films [35] and fibers [36]. Unfortunately none of these materials

keep the original strength of graphene or CNT: buckypaper is comparable to ordinary

paper, while graphene oxide sheets are the best performing and shows about one tenth

of the original tensile strength and Young modulus. As discussed by prof.Pugno in a

recent work [37], could one reduce this frustration of the scaling-up processes? How?

Several strategies have been suggested to increase the mechanical properties of

Figure 9. Examples of macroscopic graphene-based materials: (a-b) Graphene oxide paper, (c) Graphene
paper, (d) carbon nanotubes sheets (adapted from [30, 29, 38]).

macroscopic graphene-based systems, like the engineering of extra cross-links among

graphene layers [37, 30], but up to now the most successful approach has been to

use graphene as an ingredient for composite materials [39]. Studies from the research

group of prof. Nikhil Koratkar at Rensselaer Polytechnic Institute [2, 40] have shown

that �graphene is far superior to carbon nanotubes or any other known nanofiller in

transferring its exceptional strength and mechanical properties to a host material. For

example epoxy composites, which are usually brittle and prone to fracture, greatly

enhance their mechanical performances when mixed to graphene�5. Even a concen-

tration of 0.1% in weight is enough improve the stiffness and strength of the material

up to the performances obtained when adding carbon nanotubes at much higher (1%)

concentration.

5From an interview to prof.Koratkar appeared on Inside Rensselaer [40].
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Chapter 1. Graphene

Indeed graphene has 3 major advantages over CNT in these applications [40]:

The large surface area. As a planer sheet, graphene benefits from considerably

more contact with the polymer matrix than CNT.

The surface roughness which also helps to interlock graphene in the host material

and derives from the high density of surface defects, resulting from the thermal

exfoliation processes used to manufacture bulk quantities of graphene6.

The 2 dim geometry which is effective in reducing cracks propagation inside the

composite. When a crack encounter a graphene sheet it’s forced to deflect or to

twist around the sheet, so that a large part of its propagation energy is adsorbed.

Graphene has been shown to improve the composite’s resistance to fatigue crack

propagation by almost two orders of magnitude [2].

Advanced composites are increasingly important in new windmill blades, aircraft com-

ponents and other applications requiring ultralight, high strength materials; and graphene

demonstrates to be the best candidate to enhance the performances of these materials.

Mechanical applications of graphene, however, are not limited to the macroscopic scale.

In particular two interesting ideas have been developed to exploit the record mechanical

properties of graphene at the nanoscopic scale and deserve to be mentioned: electrome-

chanical resonators [41, 42] and pressure and strain sensors [43].

1.3 Inside Graphene: Electronic Properties of a

bidimensional material

Most of the scientific excitement about graphene has been focused on its electrons: their

linear dispersion relations and the similarity to relativistic Dirac Fermions, explored

in this section, are the basis for fascinating transport properties, including ballistic

conduction and the quantum hall effect, which will be discussed afterwards.

As already mentioned, the electronic energy spectrum of graphene was first derived

by Wallace [13] in 1947, in the standard tight-binding approximation. The details of

these calculations can be found in the original paper and are thoroughly discussed in

a recent review [44] by Castro Neto and coworkers7.

6Chemical methods for the production of gram-scale quantities of graphene and the corresponding
defects’ concentration are discussed through chapter 3.

7The reader can found in this paper, published on Reviews of Modern Physics, a complete discus-
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1.3. Inside Graphene: Electronic Properties of a bidimensional material

Figure 10. σ and π molecular orbital on
the graphene plane.

Qualitatively each carbon atom is in the sp2 hy-

bridized state and uses these three hybrid elec-

trons to form the C-C bonds of the hexago-

nal lattice (the corresponding molecular orbitals,

sketched in fig.10 are labelled σ). The excep-

tional strength of these bonds is the basis of many

of the outstanding properties of graphene and

carbon nanotubes. The linear combination of the

remaining atomic orbitals (LCAO), one per car-

bon atom, may be used to compute the resulting

energy bands. In correspondence to the two sublattices of graphene the π

electrons give rise to two bands whose functional form is expressed as

E±(~k) = ±t1~
√

3 + F(~k) − t2~F(~k) (1.1)

F(~k) = 2 cos(
√

3kya) + 4 cos

(√
3

2
kya

)
cos

(
3

2
kxa

)
where a = 1.42Å is the C-C distance, ~k is the electronic wavevector, t1 and t2 are

respectively the nearest and next-nearest neighbours hopping energies and the plus

and minus signs apply to the upper (conduction) band π* and to the lower (valence)

band π.

Figure 11. The graphene lattice and its Brillouin zone. ~a1 and ~a2 are the lattice unit vectors, ~b1 and ~b2
the unit vectors in the reciprocal space.

These two bands touch each other at the corners of the Brillouin zone, in the points

K and K ′. Near these points expanding the wavevector as ~k = ~K + ~q, |q| � |K|

sion of the electronic properties of graphene, as well as many mathematical details. In the present
study only an overview of the main results is given.
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Chapter 1. Graphene

equation 1.1 reduces to

E±(~q) = ±3

2
at~|q| + O

[
q2/K2

]
= ± ~ vF |q| (1.2)

Opposite to the usual case where E(~k) = ~2k2

2m
, the dispersion relations in this

region result linear and the speed of the charge carriers does not depend any more

on their momentum, but it assumes the constant value vF = 3at/2 ' 1 · 106m/s,

called the Fermi velocity.

This peculiar dispersion law also reflects on the charge carrier interactions. In a normal

metal, with parabolic dispersion, the electronic kinetic energy is proportional to the

charge surface density K ∝ σ while Coulomb repulsion depends on its square root

U ∝ σ1/2. Then below a certain threshold σ0 electron correlations prevail, while at

higher charge concentration the system behaves as a weakly interacting electrons gas,

known as the Fermi liquid. In graphene, on the contrary, also the kinetic energy

depends on the square root of the charge density, so that the ratio U
K

assume the

constant value α = e2

ε~vF
known as graphene’s fine structure constant.

Graphene is then a zero-gap semiconductor (or semimetal), with symmetric valence and

conduction bands and linear dispersion relations near the Fermi energy (see fig.12).

Figure 12. Electronic energy bands in graphene. The valence and conduction band assume conical
shapes near the Fermi energy, in correspondence to linear dispersion relations. The material is a zero-gap

semiconductor.
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1.3. Inside Graphene: Electronic Properties of a bidimensional material

This peculiar energy spectrum is strictly analogue to that of fermions satisfying the rel-

ativistic Dirac equation, bringing to the conclusion that charge carriers in graphene

behaves as massless Dirac particles. It’s then convenient to review in detail how

and to which extent the properties of Dirac fermions trace back to the electrons in

graphene.

1.3.1 Chiral Dirac fermions in graphene

Linear dispersion relations and Energy Gap

First it’s useful to illustrate the similarities in the energy spectra of graphene

electrons and Dirac fermions. The latter display an energy gap proportional to

the rest mass of the particles EGAP = 2E0 = 2mc2 and above E0 the energy

follow the linear dispersion relation E(~q) = ~c|q|.
In graphene there’s no energy gap and correspondingly the charge carrier must

be considered to have zero effective mass. Linear dispersion relations are then

valid for any energy near the Dirac points and, as seen in eq. 1.2, the Fermi

velocity vF = c/300 takes the place of the speed of light.

Existence of antiparticles

One of the major results of Dirac theory is the existence of antiparticles. In

graphene the role of particles and antiparticles are played by electrons and holes,

which display exactly symmetrical behaviours, as is evident from the electric

measurements displayed in figure 15 below.

Charge conjugation symmetry

Particles and antiparticles are expected to be represented by identical wavefunc-

tions (spinors), distinguished only by their spin component8. The role of the

(pseudo)spin in graphene is played by the different sublattices A and B. In par-

ticular, in the basis set of momenta, the eigenstates of the bidimensional Dirac

equation

−i vF ~σ · ~∇ψ(~r) = E ψ(~r) (1.3)

are symmetrical for the two sublattices, i.e. near K and K ′, and can be written

as [44]

ψ±,K(~k) =
1√
2

(
e−iθk/2

±eiθk/2

)
ψ±,K′(~k) =

1√
2

(
eiθk/2

±e−iθk/2

)
. (1.4)

8This symmetry property is called the charge conjugation symmetry.
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Here the plus and minus signs correspond to the two possible energy eigenvalues

±~vFk, that is to the π* (electrons) and π (holes) bands 9. Actually the useful

quantity to distinguish the electrons-holes symmetry is the chirality or helicity,

defined as the projection of the pseudospin along the direction of motion:

h =
1

2
~~σ · k̂ . (1.5)

One can notice that the energy eigenstates are also eigenstates of h and can then

write [44]

hψ±,K(~r) = ±1

2
ψ±,K(~r) hψ±,K′(~r) = ±1

2
ψ±,K′(~r) .

According to these last equations, electrons and holes respectively have a well-

defined positive and negative helicity, indipendently if they are located in the K

or K’ valley. This is how charge conjugation symmetry is reflected in graphene.

Please recall that the Dirac equation in graphene is valid only in the limit of low energy

excitations, where dispersion curves follow the linear regime. Far away from the Fermi

energy this approximation is no longer valid and helicity is no more well-defined.

1.3.2 Electronic Edge States

Figure 13. σ dangling bonds at graphene armchair and zigzag edges.

Electrons behaviour is completely different at the edges of the graphene layer, where

geometry and localization effects play the major role. Each carbon atom at the edge

has one of its sp2 electrons free form the carbon network. Usually most of these orbitals

are saturated by atomic hydrogen or hydroxyl groups and, in a few cases, by larger

functional groups. However, if the sample is annealed under vacuum at sufficiently high

9Notice that in both the given eigenfunctions (due to the factor 1/2) a 2π rotation of the phase
θ causes the wavefunction to change sign, that is introduce a phase difference of π. This change of
phase is typical of spinors and is called the Berry’s phase [38].
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temperature (above 750◦C) [45, 46], or if the edges are generated in inert atmosphere,

it is possible to have these σ electrons unbound, as sketched in the figure. In this case

they’re named dangling bonds. On the zigzag edge, where atoms are all identical, the

dangling bonds are perpendicular to the edge line, while on the armchair edges they

preserve the hexagonal symmetry.

The behaviour of pi electrons further distinguish the two edge configurations. Indeed

along the zigzag edge they combine to form a unique quasi-localized electronic state,

distributed along the edge (fig.14). Its electron density decay exponentially while en-

tering the graphene sheet and its penetration depth, function of the electron wavector,

is typically of the order of a few atomic rows. This electronic state was first derived

theoretically by Fujita in 1996 [47] and then experimentally observed by Scanning Tun-

neling Microscopy in 2005 [16, 48, 49].

(a). Schematic representation of the quasi-
localized state originating from π elec-
trons at graphene zigzag edge. Adapted

from [47].

(b). Simulated STM image (con-
stant current mode) of graphene

zigzag edge. Adapted from [50].

Figure 14

In the present work these edge states have been investigated by µSR spectroscopy and

their characterization is shown in chapter 4. Mechanical high energy ball-milling of

graphite in Argon atmosphere was used to obtain samples with a high concentration

of edges and dangling bonds.
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1.4 Transport Properties

Thanks to the relativistic behaviour of the electrons and to their zero effective mass,

exceptional transport properties are observed in graphene. The following paragraphs,

far from an exhaustive description of graphene’s physical properties, will outline only

the main phenomena observed. These will made apparent why graphene has gather so

much interest from the scientific community and why it is considered a useful material

for future technological applications10.

1.4.1 Conductivity in graphene

Figure 15. Conductance of a suspended graphene
sample as a function of carrier density at 40 K.
Carrier density is controlled by a gate voltage. The
dashed line indicates the behaviour theoretically ex-

pected for ballistic conduction.

Charge transport is characterized by ballis-

tic conduction, with large mean free path

and extremely high mobility. In the first

graphene samples, produced by the scotch

tape technique and deposited on silicon ox-

ide substrates, mobility at room tempera-

ture was of the order of 2 000 cm2 / V s [53],

value probably inhibited by an high concen-

trations of defects. Rapidly, improvement

of sample preparations and removal of ad-

sorbed molecules led to devices with mobil-

ity higher than 20 000 cm2 / V s. In these

systems, charge carrier diffusion is limited

by scattering from charged impurities and

from the phonons of the substrate [54, 55].

Indeed recent measurements on free-

standing graphene [56, 57] highlighted a mobility increased by another order of mag-

nitude with respect to the first samples, exceeding 200 000 cm2 / V s. This value and

the measured dependence on charge carrier concentration (fig.15) have confirmed the

expectations in case of ballistic transport, with mean free paths on the micrometer

scale (l ' 1µm)11. As it is evident from this exceptional mobility, the electron-phonon

interaction in graphene is small and will not be discussed here. The reader can find a

detailed account on this topic in a recent paper by Mariani and von Oppen [60].

10For the mathematical aspects of transport phenomena in graphene the reader should refer to the
works of Gusynin and Sharapov [51], Adam and coworkers [52] and to the already cited review [44].

11Notably the same characteristic length scale apply to spin transport, allowing the fabrication of
graphene-based spintronics devices [58] and the observation of Andreev reflections [59].
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Figure 15 also shows that, despite the density of states vanishes in the zero-energy

limit, conductivity never drops below a minimum value, namely e2/h (or, equiva-

lently, resistivity never exceeds 6.45 kΩ). This minimum conductivity is observed

only in monolayer graphene [61] and is an instrinsic property of bidimensional Dirac

fermions. Indeed in such systems no localization effects are expected [62] and Mott’s

argument [53] for metals can then be used: this states that the mean free path of

charge carriers cannot be shorter than their wavelength at the Fermi energy λF . For

the case graphene, the corresponding minimum conductivity turns out to be σ ' e2/h,

as experimentally observed.

1.4.2 Magnetotransport: the anomalous QHE

and SdH oscillations

Figure 16. SEM
micrograph of a
graphene (dark vio-
let) device for Hall

measurements.

The first experimental proofs of the presence of Dirac fermions in

graphene came from magnetotransport measurements. Indeed stan-

dard devices like the one shown in fig.16, made out from deposited as

well as suspended graphene, allowed to easily observe the half-integer

quantum Hall effect and Shubnikhov-de Haas oscillations [53, 38], al-

ready from the beginning of graphene’s story. In the following, the

characteristics of these phenomena in graphene are described and are

shown to be fully consistent to the Dirac-like energy spectrum.

According to classical physics, in two dimensions electrons subjected

to a magnetic field ~B (perpendicular to the plane) follow circular

orbits with the so-called cyclotron frequency ωc = eB
m

. When the

field is large enough compared to thermal energy ~ωc � kBT these

orbits are quantized and their possible energies are given by

EN = ±
(
N +

1

2

)
~ωc . (1.6)

For the case of relativistic fermions in graphene this equation be-

comes

EN = ±vF
√

2e~BN . (1.7)

These Landau Levels are plotted in figure 17 as a function of magnetic field for both

cases. When increasing the magnetic field the degeneracy of each Landau level also

increase, that is, the higher energy levels gradually empty and all the electrons fall into

the lower energy states. This is represented in fig.18.
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Chapter 1. Graphene

Figure 17. Landau energy level of a charged particle in a strong external magnetic field ~B.
(a) for a bidimensional electron gas in a normal metal and (b) for the case of graphene.

For a normal metal or small-gap semiconductor, each time the Fermi energy crosses

a Landau level (as in fig.18b) we have a sharp maximum in the density of states

at the Fermi energy and consequently a minimum is observed in the longitudinal

resistivity ρxx. As a function of the applied field, ρxx(B) thus display the well known

Shubnikov-de Haas oscillations. They’re displayed for the case of graphene in fig.19.

Figure 18. Density of electronic States in the Landau Levels. At constant Fermi Energy, the degeneracy
of the levels increases for increasing magnetic field (the DoS “stretches” in energy). Each time a Landau
level empties (its energy exceeds the Fermi energy, panel b) a new plateau in the QHE and a new maximum

in SdH oscillations are observed.
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Figure 19. (a) Shubnikov-de Haas oscillations in monolayer graphene at 10 K. b Cyclotron Mass as a
function of carrier concentration, extracted from the experimental data according to eq.(1.8). The square

root dependance is consistent with the linear energy spectrum. Adapted from [53].

Three important features have emerged from the investigations of such oscillations:

1. the resistivity show maxima rather than minima when the energy matches a Lan-

dau level. This can be seen as a manifestation of Berry’s phase or, equivalently,

can be traced back to the existence of a Landau level at the charge neutrality

point, which will be further discussed below.

2. the fundamental frequency of SdH oscillations follow a linear dependance as a

function of the charge carrier concentration n, as expected in any 2dim system

BSdH = β n. The measured value of β = 1.04 · 10−15T m2
[53] can be related

to the degeneracy d of each electronic state, yielding d = 4, as expected for

graphene due to the double-valley (K,K ′) and double-spin degeneracy.

3. from the temperature dependance of the oscillations amplitude A it is possible

to extract the cyclotron mass mc of the charge carriers12 thanks to the expres-

sion [53]

A =
T

sinh
(

2π2kBTmc

~eB

) . (1.8)

The cyclotron masses estimated from the experiments follow a square root de-

pendence on the carrier concentration mc ∝ n1/2, result that is fully consistent

with the linear dispersion relations (eq. 1.2). Indeed, called A(E) = πk2 the

area of Landau orbits in momentum space, the following relations hold

BSdH = ~
2πe

A(E)

BSdH = h
4e
n

=⇒ A(E) ∝ n

12SdH oscillations in single-layer graphene are exactly identical for holes and electrons.
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mc = ~2

2π
∂A(E)
∂E

mc ∝ n1/2
=⇒ ∂A(E)

∂E
∝ n1/2

yielding

A ∝
(
∂A

∂E

)2

=⇒ A ∝ E2 =⇒ E ∝ k .

At higher magnetic fields, when a few Landau Levels are populated, also the quantum

Hall effect (QHE) becomes visible in the transversal magnetoconductivity σxy.

In the case of a standard electron gas, under increasing magnetic field, conductivity

plateaux are expected for integers value ν of the conductance quantum ν (4e2

h
) and a

step between two subsequent conductance eigenstates is observed when the Fermi level

crosses one of Landau energies. No plateaux are present for ν = 0. On the contrary,

in the case of graphene, the plateaux are observed for half-integer values ν of the

conductance quantum
(
N + 1

2

)
(4e2

h
) and the sequence is not interrupted across zero,

when switching from holes to electrons (both the plateaux for ν = ±1
2

are observed).

(a). QHE at low temperature (4 K), in a constant
field of 14 T .

(b). QHE at room temperature, in a strong mag-
netic field of 29 T.

Figure 20. Quantum Hall Effect in graphene. Measurements are taken at constant magnetic field, as
a function of the carrier concentration (gate voltage).

To explain this unique quantum Hall effect, it is necessary to have a closer look to

graphene’s Landau levels (LL) expressed by eq. (1.7)

EN = ±vF
√

2e~BN .

This relation implies the existence of a LL N = 0 at the charge neutrality point (zero

energy). Holes and electrons equally contribute to the population of this level, but
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they assume only one value of the pseudospin, so that the total degeneracy is the same

as in all other eigenstates13. In correspondence to its compound population, the N = 0

LL is responsible for both the ν = ±1
2

conductivity plateaux. Apart from this shift

by 1
2
, Hall conductivity in graphene display the regular integer steps, resulting in an

equispaced ladder at half-integer values of ν.

Thanks to the zero effective mass of the charge carriers and to their low scattering rate

in good-quality graphene, the Quantum Hall Effect and Shubnikov-de Haas oscillations

can be detected even at room temperature (see fig. 20b).

These last observations are rather impressive, in particular as one may expect that

the existence of ripples, bringing field inhomogeneities up to 1T , should quench the

QHE already at low temperature. Actually the Atiyah-Singer index theorem can be

invoked to show this does not happen in graphene [53, 63]: this theorem, important

for superstrings and quantum field theory, guarantees that, as the Landau states are

chiral, they’re also invariant for gauge fields and space curvature. As a consequence

ripples cannot inhibit the QHE 14.

1.4.3 Thermal properties

The electronic properties of graphene, especially the zero effective mass of the charge

carriers and their high mobility, reflect into its thermal transport characteristics.

Graphene is an exceptional thermal conductor, with conductivity values in the range

4800 · · · 5300 W
mK

at room temperature [64]. This figure can be compared to the thermal

conductivities of copper (400Wm−1K−1) and of graphene “competitors”, the parent

compounds diamond (2200Wm−1K−1) and carbon nanotubes (3000 · · · 5000Wm−1K−1

[65]). This outstanding conductivity, together with its mechanical stiffness and its lower

cost with respect to carbon nanotubes, makes graphene the material of choice for the

production of new heat sink devices.

13These characteristics of the N = 0 LL make it different from all other levels. Each LL for
N 6= 0 is populated by either holes or electrons (according to the + or − sign), independently of their
pseudospin.

14In its general formulation, the Atiyah-Singer index theorem states that, under proper conditions,
the analytical index of an elliptical differential operator equal the topological index of the manifold on
which the operator is defined. For a full formulation and discussion of the index theorem on graphene
the reader can refer to a recent paper by Park [63].

21



Chapter 1. Graphene

1.5 Graphene inside:

towards carbon-based electronics

The International Technology Roadmap for Semiconductors, responsible to pursue

cost-effective advancements in microelectronics, has recently indicated carbon, and in

particular graphene, as the most promising candidate to replace silicon and go beyond

CMOS (Complementary Metal-Oxide Semiconductor) technology.

A look back to the history of electronics also seems to suggest carbon as the basic ma-

terial for future devices. The first transistors produced in the 50s, indeed, were made

out of germanium; this was soon replaced by silicon, which is more energy efficient and

far less expensive; from the chemistry point of view silicon is very similar to Germa-

nium and just lie above it in the Periodic Table, in group IV (group 14 according to

current IUPAC regulations). The next and latest element up in the series is carbon.

In particular a future upgrade to graphene would represent a further major gain in

energy efficiency and raw material cost and would break the 10nm limit of scalability

typical of Si-based systems [66].

A wealth of graphene-based electronics devices has already been built: from transis-

tors [67, 68] to electrochemical sensors [69, 70], from transparent electrodes [71] to

LCD [72] and touchscreens [1]. Field effect transistors made from pure (epitaxial or

CVD-growth) graphene have been engineered into logic gates [73] and basic memory de-

vices [74], while large scale fabrication methods, suitable for industrial processes, have

been suggested [75, 76]. State-of-the-art transistors developed at IBM have reached the

operating frequency of 100 GHz [77, 78] and, symbol of these fast progresses towards a

real carbon-based microelectronics, the graphene inside logo, in place of intel inside,

has already appeared on the web. Nevertheless it’s rather difficult to think that devices

such as graphene microprocessors will be on the market in the next ten or fifteen years.

More readily available applications of graphene are based on its use as a material for

transparent electrodes. The scientific community has made strong efforts towards the

fabrication of graphene films [31, 79, 33, 32] (see section 3.1) which can be used in

device like solar cells [80, 81] and as replacement of the expensive Indium Tin Oxide

in LCDs [72]. In particular researchers from Sung Kyun Kwan University, in Korea,

have centered a double success, published as the cover story in Nature Nanotechnol-

ogy [1]: they have managed to growth record graphene sheets as large as 1m2, with

standard chemical vapor deposition on metal substrates and, most importantly, they

have developed a simple technology to transfer these graphenes onto plastics surfaces,

reaching the fabrication of a flexible, graphene-based touchscreen.
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Figure 21. Left: Roll-to-roll transfer process of graphene layers onto plastics substrates and below the
largest graphene sheet ever made deposited on PET. Right: The graphene-based touchscreen, flexible and
transparent (upper panel) is connected to a computer with control software for operation (bottom panel).
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1.6 Optics, Photonics and Optoelectronics

The application of graphene as a material for transparent electrodes suggests the impor-

tance of its optical properties, which deserve to be briefly discussed here. Experimental

measurements in the visible and infrared frequency range [82, 83], displayed in fig.22,

have shown that graphene is almost transparent, as each layer invariably absorbs only

' 2.3% of normal incident light, almost independently from wavelength. The observed

universal transmittance perfectly matches the theoretical expectations for massless

fermions in graphene [84] given by

T =
Iout
Iin

=

(
1 +

1

2
πα0

)−2

R =
1

4
π2α2

0T A ' πα0 = 2.293% (1.9)

for transmittance, reflectance and absorbance respectively (A is approximated to the

first order term). Here α0 = e2

4πε0c~ = 1
137

is the ordinary fine structure constant.

Actually effects related to finite temperature, doping (non-zero chemical potential µ)

and intraband scattering (this last one only for the lower energy photons), result in

a residual frequency dependence of the optical conductivity [83]. The right panel in

figure 22 show that this deviation from the universal behaviour is almost negligible for

photon energies above 0.5 eV, i.e. in the near-infrared and visible region.

Figure 22. Optical properties of graphene monolayers. Left: Absorbance measurements yields an almost
constant value πα0, in agreement with the theoretically expected behaviour. Center: Transmittance
(transparency) of graphene, compared to other applicative materials including ITO and single wall CNT.
Right: Calculated graphene absorption spectra at T = 300K, showing that deviations from the universal
constant behaviour (see text) are relevant only below 0.5 eV (far infrared). Results are shown for different

values of the chemical potential µ and scattering rate Γ.

Applications of graphene’s optical properties are not limited to exploit its transparency,

as discussed above for electrodes, but also its broad absorption range has proved use-

ful [85, 86]:

• in the nonlinear response regime, graphene has been used as a broadband sat-

urable absorber in pulsed lasers;
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• Graphene films can serve as optical frequency converters and second-harmonic

generators, in order to expand the wavelengths accessible to lasers;

• Graphene dispersions can act as optical limiters : the absorbed light energy con-

verts into heat, resulting in reduced transmission. Functionalized graphene has

shown to outperform C60 for these applications.

• graphene-metal junctions and graphene-based transistors can be used as photode-

tectors over the whole visible range. Optimized devices �were shown to reliably

detect optical data streams of 1.55µm light pulses at a rate of 10 GBits/S� [86].

A comprehensive review about the mentioned and further applications in the field of

photonics and optoelectronics can be found in [85].

1.7 Defects in graphene

Figure 23. Schematic represen-
tation of two common in-plane

defects in graphene.

In mesoscopic materials and structures the distribution

and type of defects can affect dramatically the electronic

and transport properties of the system and are thus rel-

evant for technological applications. On the one hand,

as in the realm of semiconductors and microelectronics,

clean and pure materials may be required, to minimize the

scattering centers and get uniform transport behaviour

(as seen before for the conductivity of graphene samples

with different purity); on the other hand the control and

even the maximization of defects concentration is some-

times important to engineer a specific property of interest

inside the material. In the following the different types

of defects commonly present in graphene are shortly re-

viewed.

In-plane defects

Carbon vacancies

The simplest defect on the graphene plane are isolated

carbon vacancies. In such cases two of the freed electrons

bind each other to form a pentagonal ring, while the third

dangling bond becomes a paramagnetic center. Such type

of defects can then be easily detected as a Curie contribution in SQUID magnetometry.
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Adsorbed molecules

In samples derived from wet chemical methods (see chapter 3) a variety of

functional groups can be bound to the carbon network, but the most common

chemisorbed species is atomic hydrogen. In next section it will be shown that hy-

drogen impurities generates localized spin states closely analogue to the vacancy

case.

Structural modifications

In some cases array of carbon vacancies, fractures and cluster of non-hexagonal

rings have been observed in graphene or even engineered for specific purposes

like the opening of a band gap. These types of defects are of minor importance

within this study and will not be further discussed.

Defects at graphene edges

Different types of defects have been observed along graphene edges, including protrud-

ing atoms [87], folding edges [87, 88], pair of pentagonal and heptagonal rings [50] and

single atom vacancies [16]. On zigzag edges the latter defect causes the π electron

quasi-localized state to break in two separate regions and eventually quench possible

hyperfine interactions along the edge, which are allowed by the superexchange across

the π state [89]. Edges themselves can be considered as defects with respect to the

ideal graphene plane.

In µSR spectroscopy electronic states of edges and defect sites have revealed radically

different signals with respect to the standard case of graphite (or of an ideal graphene

plane) [90] and their throughout investigation with this technique will be discussed

in chapter 4. The distribution of different defects types in graphene is of interest

because it is strongly related both to the existence of possible magnetic phases in

graphene, as explained in the next section, and to the interaction between hydrogen

and the bidimensional carbon lattice, which makes graphene a promising material for

hydrogen storage applications [6, 91, 92].
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1.8 Magnetic interactions in graphene

Magnetometry investigations in samples produced by different chemical routes15 show [90]

that monolayer and few-layers graphenes are essentially diamagnetic materials. In ad-

dition a paramagnetic contribution, originated by electrons at dangling bonds and

defects sites, can be easily observed in the temperature dependent magnetization and

a slight ferromagnetic signal is detected at 300 K: the latter has proven fully compat-

ible with the few ppm of magnetic impurities present in these samples. These results,

obtained within the present study and described in chapter 4, allow to conclude that

no long range magnetic order is present in graphene down to 2 K, as recently

confirmed in a work published by Geim’s group [93].

Figure 24. Magnetic hysteresis
curves at 300 K, reported in ref.[94]
for graphene samples produced by
3 different methods: exfoliation of
graphite oxide (EG), conversion of
nanodiamonds (DG) and arc evap-
oration of graphite in hydrogen at-

mosphere (HG).

Nevertheless other magnetometry experiments [95,

96, 97] have renewed the interest towards possi-

ble carbon-based magnetism in graphene. Fig-

ure 24 16 shows the hysteresis curves registered

by Rao and coworkers [94] in samples obtained

by exfoliation of graphite oxide (EG), conver-

sion of nanodiamonds (DG) and arc evapora-

tion of graphite in hydrogen atmosphere (HG):

the latter sample display the highest ferromag-

netic contribution, with a saturation magneti-

zation which should be above possible impuri-

ties contaminations. Once again in the his-

tory of carbon magnetism, hydrogen and de-

fects [96] appear as the main actors that can

be held responsible for the rise of magnetic or-

der.

Many different theoretical studies [9, 98, 99, 32], based on ab initio calculations, also

converge to expect the existence of magnetic interactions in graphene,as a result of

correlations among electronic states localized at defects. In particular it is worth

discussing here the model proposed by prof. Oleg Yazyev and coworkers [10, 100, 101].

His studies and personal collaboration, indeed, served as one of the bases of discussion

for the experimental results obtained within the present work.

15Synthesis of graphene samples used in this study are detailed in chapter 3.
16This figure is not intended to be representative of graphene’s magnetic properties, but only to

evidence that magnetic order have been observed in some graphene-based systems.
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Consider the two types of in-plane defects discussed above, namely chemisorbed hy-

drogen atoms and carbon vacancies. Their electronic properties are quite similar and

can be summarized as follow: each defect generates a quasi-localized electronic density,

which is distributed on the sites of the complementary sublattice (odd nearest neigh-

bours) and decay as a function of the distance according to a power law. On these sites

a positive spin polarization is found due to the exchange energy brought by the defect

states (see fig.25a). The resulting exchange field polarizes the remaining electronic

orbitals, originating a negative spin polarization on the even nearest neighbours and

a further positive contribution on the odd nearest neighbours. The spin density map

for the two types of defects is represented in fig. 25a and its decay as a function of

the distance is plotted in fig. 25b. Here the solid line describes the behaviour for the

chemisorbed hydrogen defect, while the dashed line correspond to the carbon vacancy:

the spin polarization in this case is not defined at the defect sites (index 0) where the

atom is missing, and is out of scale (0.39) on site 1, due to the contribution of the

paramagnetic electron of the dangling bond. This is the main difference among the

two cases.

(a). Electron spin density maps around a hydrogen
chemisorption defect and a carbon vacancy. Black
atoms denote the odd nearest neighbours and white

atoms denote the even nearest neighbours.

(b). Spin populations as a function of the dis-
tance from the defect site, averaged over the i-th
nearest neighbours, for hydrogen chemisorption
defects (black circles) and vacancies (white cir-

cles).

Figure 25. Spin polarization density around point defects on the graphene plane. Adapted from [10].

The polarized electronic states located at defects can interact among themselves if

the defects concentrations is high enough (that is if the defects are close enough so

that their spin densities, represented by fig. 25b, can spatially superimpose). These

magnetic interactions among localized states can be described in terms of the Stoner

model for itinerant magnetism [102, 10] and two different situations are expected on
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graphene (fig.26):

• defects located on the same sublattice should give rise to ferromagnetic correla-

tions;

• on the contrary, defects located on different sublattices has an antiferromagnetic

ground state.

In the bulk material as a whole, in the hypothesis that the defects are randomly dis-

tributed on the honeycomb lattice, an antiferromagnetic order should then be favoured.

Figure 26. Magnetic interactions among defect states: spin density distribution in a system with three
hydrogen chemisorption defects, two in one sublattice and one in the other. The same colour scale of the

previous figure apply. Adapted from [10].
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Chapter 2

Solid state spectroscopies

applied to Low-Dimensional and

Nanostructured materials

One of the most intriguing challenges in today materials physics is to exploit spectro-

scopies and experimental techniques traditionally devoted to bulk solid state materials

for low-dimensional and nanoscopic systems. To face this challenge many efforts are

spent by the research community especially in two directions:

The development of the technique in both its experimental and theoretical as-

pects. This includes on the one hand the optimization of experimental proce-

dures and instruments performance for 1dim and 2dim materials; this is, for

example, intensively pursued on large scale facilities, even with the construction

of dedicated beamlines. On the other hand, there is the need to elaborate new

theoretical models and adapt existing ones to properly described the significant

interactions in the system under study, taking into account low-dimensionality

and finite-size effects.

The fulfilment of experimental requirements by these systems, in spite of their

nanoscopic structure. In particular the development of synthetical methods for

the production of gram-scale amounts of samples is needed for techniques like

neutron scattering and µSR, which employ particles with a relatively large pen-

etration depth.

Next chapter will take care of the latter issue, describing the synthesis procedures used

to obtain graphene samples, while in the following sections the different experimental

techniques applied for their characterization are discussed.
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In particular Muon spin rotation and relaxation (µSR), Nuclear magnetic resonance

(NMR), Inelastic neutron scattering (INS) and SQUID magnetometry are shortly re-

viewed: for each technique an introduction, an explanation of the basic mechanisms

and an overview of the possibly probed interactions are given. These are not intended

to be comprehensive descriptions, but only to provide fundamental insights into the

interactions encountered in graphene and discussed in the experimental section.

2.1 Nuclear Magnetic Resonance

NMR spectroscopy studies the magnetic response of atomic nuclei, in order to gain

valuable information on them and on their environment.

Since its development at the end of World War II, the NMR technique has been rapidly

spreading in the scientific community and it has become one of the most exploited spec-

troscopies in analytical organic chemistry, as well as a powerful tool for the investigation

of the physical properties of materials. Another commonly known application of this

technology is the Magnetic Resonance Imaging (MRI), routinely used in hospitals to

obtain direct images of soft tissues in the human body.

The employment of a resonance technique is necessary to reach enough selectivity,

as it’s often the case in the observation of very weak phenomena, like nuclear mag-

netism, which would be otherwise hidden by electronic interactions. In NMR nuclear

spin energy levels are splitted by the application of a strong static magnetic field and

the system is then excited with an electromagnetic radiation whose frequency exactly

matches the energy difference between these levels. Typical frequencies, proportional

to the applied field through the gyromagnetic ratio ω = γH0, are within the radiowave

spectral region (10 · · · 800MHz). The transitions induced by this resonant radiation

cause the energy levels population to vary, that is generate a net magnetization not

aligned with the external field. At the end of the excitation, the relaxation of magne-

tization as a function of time is measured: indeed, valuable information on structure,

chemical composition, electronic configuration and other properties can be obtained

by studying how the system lose its energy to the environment.

In the following the basic principles of NMR spectroscopy are discussed and it is shown

that, despite nuclear spin is namely a quantum observable, it is possible to describe an

NMR experiment even in a semi-classical picture. Within this frame the phenomeno-

logical Bloch equations are also introduced. The fundamental nuclear interactions are

then considered, but only the electric quadrupole effects, important for the present

study, are thoroughly analyzed.
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2.1. Nuclear Magnetic Resonance

2.1.1 NMR Nuclei

It’s first important to specify which nuclei can be (more or less easily) studied by NMR.

To interact with external magnetic fields the considered nucleus must have a non-zero

spin I 6= 0, condition satisfied by almost all chemical elements (except Argon, which

result NMR silent), but only for specific isotopes. Using the composition of angular

momenta, one easily discover that the nuclei with zero spin are the ones with an even

number of both protons and neutrons (e.g. 12C and 16O).

A further limit is that each isotope is characterized by a NMR sensitivity, defined as

the signal intensity with respect to a reference nucleus (usually 1H). The product of

sensitivity and isotopic abundance is named NMR receptivity and provide an estimation

of the actual possibility to observe a NMR signal: a too low receptivity, as it happens for
43Ca (RH ' 8 ·10−6), indicates that the signal is completely hidden by electronic noise

and it’s not detectable within a reasonable time. Isotopic substitutions are sometimes

used to enhance the receptivity.

Easily observed nuclei include 1H, 7Li and 19F, while 13C is an example of nucleus

with a rather low receptivity and can be studied only waiting for a large number of

acquisitions. Nevertheless carbon NMR is widely applied in chemistry and materials

science. The following table lists the NMR properties for some relevant nuclei.

2.1.2 Basic theory and mechanism of NMR spectroscopy

Figure 27. Zeeman en-
ergy levels for a nucleus

with spin I = 1.

In a nuclear magnetic resonance experiment the sample is sub-

jected to a static magnetic field, of high intensity1 and good

homogeneity. In these conditions the behaviour of a nucleus of

magnetic moment ~µ and angular momentum ~I is described by

the Zeeman Hamiltonian

H = −~µ · ~H0 = −γ~I · ~H0 . (2.1)

In a reference frame whose z axis is directed along the exter-

nal field, as usual in quantum mechanics, this is written as

H = −γJzH0 and by solving the steady-states Schroedinger

equation one obtain the Zeeman nuclear energy levels

Em = −γ}H0m m = −I, . . . ,+I

that can be experimentally observed by inducing transitions among the corresponding

spin eigenstates.

1Typical field values obtained from laboratory superconducting magnets range form 6 to 10 T.
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Isotope Spin I γ (MHz/T) Nat.Abundance RH µ(µN) Q(fm2)

1H 1/2 42.576 99.985% 1.00 4.837 –
2H 1 6.536 0.015% 1.45 · 10−6 1.213 0.286
7Li 3/2 16.5478 92.58% 0.27 4.204 −4.01
10B 3 4.575 19.9% 0.0198 1.801 8.46
11B 3/2 13.663 80.1% 0.165 2.689 4.06
13C 1/2 10.708 1.10% 0.0159 0.702 –
14N 1 3.078 99.63% 1.01 · 10−3 0.404 2.02
17O 5/2 5.774 0.038% 0.029 −1.894 −2.558
19F 1/2 40.0765 100% 0.834 2.62 –

23Na 3/2 11.2686 100% 0.093 2.217 10.89
25Mg 5/2 2.6083 10.00% 2.68 · 10−4 −1.012 19.94
27Al 5/2 11.103 100% 0.207 3.64 14.03
31P 1/2 17.25 100% 0.0665 1.13 –
35Cl 3/2 4.176 75.77% 4.72 · 10−3 0.92 −8.165
39K 3/2 1.989 93.26% 5.1 · 10−4 0.39 6.01
41K 3/2 1.092 6.73% 8 · 10−5 0.215 7.33
59Co 7/2 10.08 100% 0.278 4.63 42
63Cu 3/2 11.3187 69.17% 0.065 2.875 −22
65Cu 3/2 12.1027 30.83% 0.0354 3.0746 −20.4
75As 3/2 7.315 100% 0.025 1.44 31.4
85Rb 5/21 4.125 72.165% 0.11 1.35 27.4
115In 9/2 9.385 95.7% 0.353 5.54 81
151Eu 5/2 10.58 47.8% 0.18 3.47 90.3
153Eu 5/2 4.674 52.2% 0.015 1.53 241

Table 1. The most important NMR parameters for some nuclei: the spin angular momentum I, the
gyromagnetic ratio γ, the natural isotopic abundance, the NMR receptivity relative to hydrogen, the
nuclear magnetic moment in units of nuclear magneton (in SI units µN = e~

2mp
= 0.505 · 10−26 Am2),

the electric quadrupole moment Q (in fm2 or 10−2barn).
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2.1. Nuclear Magnetic Resonance

The simplest possible excitation is an alternate magnetic field ~H1, linearly polarized

on the (xy) plane

Hpert = −γH1 coswtIx

whose frequency should exactly match the energy differences among nuclear levels

ω = ω0 = γH0.

This is why we talk about a resonance technique.

In a NMR experiment magnetization, rather than energy, is measured and it’s then

useful to evaluate this observable. The expectation value of the magnetic moment ~µ

for a singular nuclear spin can be computed with the methods of quantum mechanics,

but as it will soon be evident, one can limit to the calculation of its time derivative d~µ
dt

in a generic magnetic field ~H. In particular, since ~µ = γ~I, it’s convenient to evaluate

first the derivative of the angular momentum

d~Ik
dt

= i
}

[
Ĥ, Î

]
d~Ix
dt

= − i
} [γHIz, Ix] = − i

}γHi}Iy = γHIy
d~Ix
dt

= −γHIx
d~Ix
dt

= 0 .

These relations are summarized by the vector equation d~I
dt

= ~I × γ ~H and in turn for

the magnetic moment we obtain

d~µ

dt
= ~µ× γ ~H . (2.2)

This last expression matches the second cardinal equation of classical dynamics and

it’s then possible to conclude that the response of nuclear magnetic moments to any

external field (no restrictions on ~H have been considered) follow the classical equations

of motion. Therefore a semi-classical picture is fully adequate to properly describe the

basics phenomena of a NMR experiment.

In case only the static magnetic field ~H0 is considered, eq.(2.2) represents the well-

known Larmor precession (fig.28a), with the nuclear magnetic moment precessing

around the external field at the frequency ~ωL = −γ0k̂. If both ~H0
~H1 are present,

instead, according to (2.2) the nuclear spin follow a nutation motion (fig.28b), result-

ing from the composition of Larmor precession and of a further rotation around ~H1.
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(a). Larmor precession of a mag-
netic moment around the external
field. The spin precess clockwise
for γ > 0 and counterclockwise for

γ < 0 .

(b). Nutation motion of the magnetization vector

under the contemporary action of a static field ~H0

directed along z and a rotating field ~H1, polarized
in the (xy) plane.

Figure 28. Motions of a magnetic moment in the presence of external fields.

Therefore starting from the thermal equilibrium, where the total nuclear magnetization
~M is directed along the z axis ( ~H0), if a field pulse ~H1 is applied for a time t, it is

possible to rotate the magnetization by an arbitrary angle θ, according to

θ = γH1t

Mz = M0 cos (γH1t)

M⊥ = M0 sin (γH1t) .

When the pulse is complete, the magnetization will continue to precess around the

static field and, if θ = 90◦ has been chosen, it will be possible to detect it on the (xy)

plane, by means of a proper induction coil. The registered signal is commonly known

as FID (Free Induction Decay), because it’s the electric signal induced in absence of
~H1 (i.e. free from external perturbations), which spontaneously decay according to

an exponential relaxation function. This signal is made up of the contributions of all

the nuclei and its decay is the result of the energy exchange among spins (spin-spin

relaxation), which rapidly lose their coherence, and with the crystal lattice (spin-lattice

relaxation), that allow to restore thermal equilibrium.

The procedure we have just shortly described is the basic idea underlying Fourier

Transform NMR spectroscopy. Nowadays this is the most commonly used form of

NMR and takes this name as usually information are extracted not from the signal in
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2.1. Nuclear Magnetic Resonance

time domain, but from its frequency spectrum2.

In order to model the characteristics of the NMR signal the relaxation processes must

be properly taken into account and eq.(2.2) must be modified accordingly. This yield

the phenomenogical equations proposed by Bloch in 1946, where the magnetization is

expected to decay exponentially towards M0 along z and towards 0 in the perpendicular

plane:


dMx

dt
= γ

(
~M × ~H

)
x
− Mx

T2

dMy

dt
= γ

(
~M × ~H

)
y
− My

T2

dMz

dt
= γ

(
~M × ~H

)
z

+ M0−Mz

T1

Bloch’s Equations (2.3)

In NMR T1 and T2 are commonly known as longitudinal and transverse relaxation

times respectively, as they are the characteristic time constants of the exponential

functions obtained by integrating eqs.(2.3)

Mx = Mx0 e
− t

T2

My = My0 e
− t

T2

Mz = M0

(
1 + e

− t
T1

)
.

Please notice that if on the one hand the phenomenological introduction of Bloch’s

equations may not be “convincing”, on the other it’s possible to derive eqs.(2.3) in the

framework of Redfield theory, by applying the standard methods of statistical quantum

mechanics [103].

2.1.3 Nuclear interactions

The Spin Hamiltonian hypothesis. The following description of nuclear interactions is

based on the adiabatic approximation, i.e. the assumption that electronic and nuclear

dynamics have different timescales (typically of the order of femtoseconds and picosec-

onds respectively) and that their wavefunctions are therefore separable. The nuclear

spin Hamiltonian can then be expressed as a function of nuclear coordinates, while the

electronic motions are so fast that there’s no need to include the details of the related

electromagnetic fields, but only effective potentials which can model their interaction

with nuclei.

2As the Fourier transform of an exponentially decaying sinusoidal function, the spectrum is usually
a Lorentzian peak centered at the resonance frequency ωL. More generally it will be a set of peaks,
one for each different effective field probed by the different nuclei
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The total spin hamiltonian can be written as3

H = Hmagn +Helet = Hext +Hdip +HCS +HKnight +HJ +HQ (2.4)

and it is made up of two contributions:

1. An electric part which describes the interactions of the nuclear electric charge

distribution with the surrounding electric forces. We will deal with this part

in detail and we will notice that its most important term is the quadrupolar

interaction.

2. A magnetic part which entail all the interactions listed in table 2.

As the magnetic interactions are not relevant within this work, we will not discuss

the latter part and the reader may refer to the excellent textbooks of Levitt [104] and

Slichter [103].

Table 2. Map of the magnetic nuclear interactions of interest in a NMR experiment.

3Some minor contributions, like spin rotation, are neglected here.
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2.1. Nuclear Magnetic Resonance

Electric Spin Hamiltonian

To discuss the electric interactions between the nucleus and its environment, it’s useful

to write the nuclear charge distribution as a multipole expansion

Q(~r) = Q(0)(~r) + Q(1)(~r) + Q(2)(~r) + Q(3)(~r) + . . . (2.5)

In (2.5) the terms Q(n)(~r) are proportional to the corresponding spherical harmonic

functions and each represent respectively a spherical, dipolar, quadrupolar charge dis-

tribution and so on. The modulus of the zero-order term Q(0)(~r) is the total nuclear

electric charge, while the subsequent terms are referred to as nuclear dipolar moment,

quadrupolar moment, etc.

We can correspondingly expand also the electric potential to a Taylor series

V (~r) = V (0)(~r) + V (1)(~r) r + V (2)(~r) r2 + V (3)(~r) r3 + . . . (2.6)

Here V (0) is the electric potential from the center of the nucleus, V (1) the gradient of

the potential, that is the electric field, V (2) the gradient of the electric field.

Two observations on the nuclear charge distribution are of fundamental importance:

1. For any nucleus the dipolar electric moment is identically zero (within experimen-

tal error) as a consequence of the parity of the nuclear wavefunction. Therefore

all the odd order terms Q(2m+1) vanish.

2. As can be inferred from the Wigner-Eckart theorem, the Q(n) series is truncated

at 2I, where I is the nuclear spin quantum number.

For spin 1/2 nuclei the multipole expansion is therefore limited to the zero-order

term and the electric energy does not depend on the structure or orientation of the

nucleus, which act as a point charge.

For all other nuclei with spin I > 1/2 the charge distribution has a non spherical

symmetry and critically depend on the orientation. The most important energy con-

tribution is the interaction of the nuclear quadrupole moment Q(2) with the electric

field gradient V (2), while higher order terms can be neglected. When present, the

quadrupolar interaction is quite intense, with frequencies ranging from several kHz up

to tenths of MHz and can be even comparable to Zeeman energy. In the following the

effects of the quadrupolar interaction in NMR are thoroughly discussed, as they will

be of particular interest for the analysis of experimental results.
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Chapter 2. Solid-state spectroscopies applied to nanostructured materials

The quadrupolar interaction

The interaction of the nuclear quadrupole moment with the surrounding environment

depends on on the electric field gradient. This is a second order tensor, whose elements

Vij are the second derivatives of the potential ∂2V
∂xi∂xj

. In other words it is defined as

the Hessian matrix of V. We notice that, according to Laplace equation ∇2V = 0 this

tensor has a vanishing trace.

In the reference frame where Vij assumes a diagonal form VXX 0 0

0 VY Y 0

0 0 VZZ

 (where we assume |VXX | 6 |VY Y | 6 |VZZ |)

the quadrupolar hamiltonian can be written as

HQ =
eQ

4I(2I− 1)

[
VZZ(3Î2

z − Î2) + (VXX − VY Y )(Î2
x − Î2

y )
]
. (2.7)

where Q is the intensity of the nuclear quadrupole moment (constant depending on the

considered chemical element), I is the nuclear spin quantum number and Î2, Î2
x, Î

2
y , Î

2
z

are the spin angular momentum operators 4.

One can notice from eq.(2.7) that to describe the quadrupolar interaction only the

parameters VZZ and (VXX − VY Y ) are needed.

It’s customary to define also the asymmetry coefficient5

η =
VXX − VY Y

VZZ
, 0 6 η 6 1 (2.8)

so that eq.(2.7) becomes

HQ =
eQ

4I(2I− 1)
VZZ

[
3Î2
z − Î2 + η(Î2

x − Î2
y )
]
. (2.9)

To switch from the coordinate system defined by the principal axes of the quadrupolar

interaction to the laboratory reference frame, it is necessary to introduce in the Hamil-

tonian a term dependent on the Euler angles α, β, γ that defines the transformation

HQ =
eQVZZ

4I(2I− 1)

[
3Î2
z − I(I + 1)

](3 cos2 β − 1

2
+
η

2
sin2 β cos 2α

)
. (2.10)

4This Hamiltonian is restricted to 1st order term (in the quadrupolar frequency ωQ), but 2nd order
terms are also often important. However, as it is not the case for the deuterium nucleus investigated
here, these 2nd order contributions will not be considered.

5In the literature it’s not uncommon to define also the electric field gradient in elementary charge
units q = VZZ

e and the quadrupolar coupling constant CQCC = e2qQ
h .
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Figure 29. Effect
of the quadrupolar
interaction on the
energy levels of a
nucleus with spin 1.

In order to show the effects of the quadrupolar interaction in solid

state NMR we consider the case of a spin 1, in the hypothesis of

η = 0 (we will discuss the role of asymmetry later on). Considering

the Hamiltonian (2.10) as a perturbation to Zeeman energy levels,

it’s easy to see that they become

Em = −γ}H0m +
eQVZZ

4I(2I− 1)

(
3 cos2 β − 1

2

)[
3m2 − I(I + 1)

]
(2.11)

As displayed in figure 29, the quadrupolar coupling does not change

the center of the energy levels, as is expected for an operator with

vanishing trace. The energy perturbations are identical for the two

±m levels, so that both transitions, (−1→ 0) and (0→ +1), results translated in

frequency with equal and opposite changes. The resonance for ω = ωL is therefore

splitted into a doublet.

More generally, for any I, symmetrical side peaks are generated and they are the

fingerprint of quadrupolar interactions in NMR. In a natural way, their distance is

called quadrupolar frequency, but unfortunately there is no general consensus on the

definition of this quantity in the literature. We will adopt the most common convention,

fixed by Freude [105, 106]

ωQ =
3eQVZZ

2I(2I− 1)}
. (2.12)

Figure (30) shows the quadrupolar powder spectra for different spin values and help

to clarify the relation among the definition (2.12) of ωQ e and the spectroscopic line

shape. Notice that for half-integer spins corresponding peaks are separated by ωQ,

while for integer spins the peak-to-peak distance is
ωQ

2
.

Figure 30. NMR powder line shapes in presence of first order quadrupolar interaction, for integer and
half-integer spins. For clarity a slight Gaussian broadening has been added to the theoretical lineshape.

Adapted from [107].
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To avoid this inconsistency it is generally preferred to adopt a separate definition for

integer spin

ωQ =
3eQVZZ

4I(2I− 1)}
, I = 1, 2, ... . (2.13)

Within this work NMR investigations have been extended only to spin 1 nuclei and

therefore this last definition of ωQ is adopted from here onward.

Asymmetry of the quadrupolar interaction

It is now appropriate to go beyond the initial assumption η = 0: with the help of fig.31

we shall shortly study the effect of the asymmetry parameter on NMR powder line

shapes6.

Figure 31. Left: Evolution of NMR powder spectra as a function of η, for a spin 1 nucleus. For clarity
a slight Gaussian broadening has been added to the theoretical lineshape. Right: NMR powder spectrum

for I = 1, η = 0.4. The different widths ∆νi are defined in the text.

For increasing η the two peaks gradually shift towards the centre of the spectrum,

according to the expression ∆ν1 = νQ (1− η)

until they collapse into a single peak for η = 1. Meanwhile the peaks intensity drop

and the corresponding spectral density is found at higher frequencies (in modulus), so

that pronounced shoulders outside the peaks become visible. Their distance increase

with increasing η as ∆ν2 = νQ (1 + η) , while the broadest part of the quadrupolar

spectrum keeps the fixed width ∆ν3 = 2 νQ .

6The following observations are made for a spin 1.
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Figure 32. NMR powder line shapes in presence of first order quadrupolar interaction, for different values
of the spin quantum number and of the asymmetry parameter η. Here the different definitions for integer
nd half-integer spins are used. For clarity a slight Gaussian broadening has been added to the theoretical

lineshape. Adapted from [107].
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2.2 µSR spectroscopy

Muons are spin 1/2 particles, easily produced in fully polarized beams, which can be

implanted into matter to study its magnetic and electronic properties. The related ex-

perimental technique is named µSR spectroscopy, where the acronym assumes different

meanings: Muon Spin Rotation, Relaxation or Resonance, depending on the type of

experiment performed.

The Muon

Classification in SM Lepton

Mass 105.6585 MeV/c2

' 207me ' 1
9
mp

Charge ±e
Spin 1/2

Mean Lifetime 2.197µs

Gyromagnetic γµ = 8.5161 · 108 rad/T

Ratio γµ/2π = 13.554 kHz/G

Table 3. Main Muon properties.

Conceptually analogue to NMR and EPR, it provides information on the distribution

of internal magnetic fields in matter and therefore its original and most common areas

of application are superconductivity and magnetism [108, 109, 110, 111]. With respect

to the latter µSR has important advantages over other techniques:

• because of their high magnetic moment, about 4.5 · 10−26 J/T , the muons are

sensitive to extremely weak internal magnetic fields, down to 10−5 T ;

• opposite to magnetometry, which measure the bulk magnetic response of the

sample, µSR probes the LOCAL hyperfine interactions present at the muon site.

For example muons can give a direct measurement of the internal field of an

antiferromagnet.

• In principle the muons implantation takes place randomly in the sample and

the signal amplitude in the spectrum turns out to be proportional to the volume

fraction. On the one hand µSR is thus insensitive to magnetic impurities. On the

other, it is very useful in the study of multiphasic or partially ordered samples.

These characteristics of µSR make it suitable also for the exploration of magnetic

phases in carbon-based materials [112], where the possible magnetic interactions are

expected to be weak and extended to limited regions [98].
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Nevertheless µSR is also widely applied in the field of chemistry: as we will discuss

later, the muon can bind to an electron to form Muonium, a light hydrogen isotope [113],

which has been exploited for many different studies, from electronic radicals (especially

in organic compounds) [114, 115] to endohedral fullerenes [116, 112].

Muons were first observed in 1933 by Kunze [117] in the tracks of a Wilson chamber

exposed to cosmic rays, where he noticed a new ionizing particle having electric charge

±e and a lifetime of ' 2.2µs. Because the existence of this particle was really unex-

pected7, further experiments by Anderson and Neddermeyer [118] at Caltech in 1936

and by Street and Stevenson [119] in 1937 were needed to confirm the muon discovery.

In a later experiment it turned out that muons may reach the earth surface only thanks

to the relativistic time delation, providing the first experimental proof of the special

relativity predictions. The µSR technique was conceived 20 years later, by Garwin and

coworkers [120] in 1957 and was developed during the 60s and 70s8.

Muons are available for condensed matter studies only at a few large accelerator fa-

cilities: in Europe there are ISIS, at the Rutherford Appleton Laboratory in the UK,

and SµS, at the Paul Scherrer Institute in Switzerland9. The latter is a continuous

muon source, where muons are “observed one by one”, while the former is a pulsed

source, where a bunch of many muons is implanted into the sample all at a time. All

the µSR experimental studies for this work were carried out at the EMU and MuSR

spectrometers at ISIS.

2.2.1 The Muon fate in a µSR experiment

Muons are the products of the β decay of heavier particles, pions, which are in turn

obtained from the “bombardment” of a graphite target with an accelerated proton

beam. The weak interaction lead the pion to decay with a mean lifetime of 26ns into

a muon and a neutrino, following the scheme

π− −→ µ− + ν̄µ π+ −→ µ+ + νµ . (2.14)

A parity violation takes place and hence the emerging muons all have a negative he-

licity h = −1, that is their spins are 100% polarized against the direction of motion10.

7An expression has become famous and is often reported to stress the surprise for muon discovery
at the time: when Nobel laureate I.Rabi was told about the muon he exclaimed �Who ordered that?�.

8Further detail on the history of muons and µSR can be found here [121].
9Other Muons laboratories are TRIUMF, near Vancouver, in North America and KEK in Japan

10Helicity, indeed, is defined as the scalar product of the particle’s momentum and spin h = ~p · ~I.
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This is also one of the major advantages of µSR over NMR: no magnetic fields are

needed to polarize the spins and therefore many experiments can be performed in zero

external field (ZF). The polarization is maintained as the beam is transported to the

muon spectrometers, while positive muons only are selected for experiments, since the

negative ones may undergo a nuclear capture, which yields not negligible effects in case

of nuclei with high atomic number.

Polarized muons are implanted in the sample, where they rapidly lose energy and

in about 1 ns come at rest in some positions in the bulk sample. Here their spin

polarization evolve as an effect of the local magnetic interactions, until the particles

decay according to

µ −→ e+ + νe + ν̄µ (2.15)

with a mean lifetime of approximately 2.2µs, which makes muons suitable to probe

magnetic interactions on the microseconds timescale. Once again the decay is led by

the weak interaction and a parity violation occurs: this yields an anisotropic emission

of the positron, more pronounced for higher positron energy.

muon spin

μ+

e+

53 MeV

e+

26 MeV

Figure 33. Angular probability distribution for the
positrons emitted by the decay of a µ+, for different
positron energies. The positrons are preferentially emit-
ted in the direction the muon spin had just before the

decay.

The angular distribution of the decay

probability density is shown for differ-

ent positron energies in figure 33 and is

given by

W (θ) = 1 + a cos θ, (2.16)

where θ is the angle between the muon

spin and the direction of the positron

emission and the factor 0 6 a 6 1, in-

creases monotonically with the positron

energy. Most of the positrons are emit-

ted in the direction the muon spin was

pointing at just before the decay and

thus their detection allow to measure

the time evolution of the muon

spin polarization P(t).
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In summary, in a µSR experiment muons are implanted in the sample, their spin

polarization evolve as an effect of the external and local magnetic fields and finally

they decay emitting a detectable positron in the direction of their final polarization.

These positron are detected by means of scintillators, connected to photomultipliers

for amplification, to obtain P(t) measurements.

Figure 34. Schematic representation of a ZF or LF µSR experiment. The detectors are arranged in two
groups (forward and backward).

Because of geometrical constraints, generally two sets of detectors are employed: for

ordinary longitudinal field measurements they are disposed as sketched in figure 34,

in forward and backward directions with respect to the muon momentum. The counts

of these two detector banks are separately summed up and the time evolution of the

difference between forward (F) and backward (B) counts in principle describes the time

evolution of the muon spin polarization. However, two important corrections must be

taken into account:

• The exact difference of the F and B counts correctly describes the system only

if the two sets of detectors are arranged in an ideal geometrical way, which is

never the case. For this reason the counts of the backward detectors NB are

considered as miscalibrated by a factor α, called the asymmetry of the detectors.

The effective backward counts are given by N true
B = α ·NB.
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• The number of counts exponentially reduces with time by the effect of the ra-

dioactive decay of the muons. This reduction of the signal is intrinsic in the

technique, but it contains no useful information and can be removed. The most

relevant physical quantity is considered the decay asymmetry or polarization

P =
NF − αNB

NF + αNB

(2.17)

P represents the asymmetry of the forward and backward counts normalized

point by point for the effect of the statistics of muon decay and therefore its time

evolution reflects the true sample behaviour. The parameter α can be directly

calibrated by a measurement in a low applied transverse field, typically of 20 or

100 G (these measurements are known as TF20 and TF100).

The two most common experimental configurations used in µSR experiments (actually

we have already mentioned them) are the transverse field (TF) and longitudinal field

geometry (LF or ZF if the magnetic field is set to zero). In the former the magnetic

field is applied in a direction perpendicular to the muon polarization: the spins are

thus forced to precess around this field at the frequency ω = γµH and an oscillating

signal is observed11. In the latter, on the contrary, the external field ~H is applied along

the same direction of the muon spin. In general it will add to the local fields and, if it

is large enough, it will keep the muon polarization fixed in the original direction.

The measurements performed on graphene and ball-milled graphite, shown in the ex-

perimental sections, were mainly performed in the longitudinal ZF geometry, with the

aim to observe the muons precession induced by the internal fields12. Therefore it is

worth discussing here the different behaviours that can be expected for the muon spin

polarization in ZF, at least in the most significative physical situations. Next section

takes care of this issue for the case of solid state powder samples, with a special focus

on the dipolar interaction among nuclear and muon spins.

11A spin precession motion is seen as an oscillating signal because the detectors are disposed along
one direction only (let’s say the z axis) an the projection of a circular motion onto an axis is a
cosinusoidal oscillation.

12TF measurements were routinely used too, but only for calibrations and they will not be further
discussed. In the experimental section, instead, minor experiments dedicated to the study of the
signal changes under increasing LF are also reported.
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2.2.2 Muon precession and relaxation in ZF

When the muon µ+ is implanted in the sample it can either remain as a free particle

in an equilibrium position of minimum electrostatic energy, “jump” among different

equivalent sites, or form a bound state with an electron, called Muonium: this is

essentially a light hydrogen isotope and from the chemical point of view acts exactly

as an hydrogen atom and can covalently bind to the sample.

Once stopped in the sample, each muon spin, in principle, precesses around the local

effective field ~Heff present at the muon site. However only in a few cases it is actually

possible to observe a single frequency coherent oscillation in the µSR signal. In par-

ticular the polarization can be described by an harmonic wave in two main situations

of interest:13

• if all the muons probe a constant and uniform local field within the sample, that

is in the presence of long range magnetic order, either of ferromagnetic (FM)

or antiferromagnetic (AFM) type.

• for muonated radical species, which is often the case for organic unsaturated

molecules [114]; like in an hydrogen addition reaction, muonium breaks a double

bond present in the molecule and yields a muonated molecule with an unpaired

electron. A simple example is ethylene H2C = CH2 which forms the paramag-

netic ethyl radical H2Ċ − CH2Mu. Actually in a such a state, a ZF analysis

generally shows a missing fraction rather than an oscillation, as the related fre-

quency is so high (typically a few hundreds kHz or more) that most of the times

is out of the spectrometer bandwidth14. The radical formation can be verified

either by the application of a small TF (2 G), which is expected to induce tran-

sitions among the muonium triplet states (see fig.35), or by measurements as a

function of an applied LF, which allow to observe the repolarization of the initial

asymmetry[115].

Coherent oscillations that are beats made up of more than one frequency can instead

be observed when the muon interacts with a few surrounding nuclei, case that will be

discussed in detail below, as it is of particular interest for the present study.

13Here we are leaving out several special cases where coherent oscillations are also observed, like
spin density waves [122], where however the polarization is described by a Bessel function rather than
by an harmonic wave.

14The expression missing fraction is used to indicate that in the µSR signal at t = 0 only a part of
the full asymmetry is observed, while the fraction of muons which form the radical species is missing.
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Figure 35. a. A simple picture of Muonium. b. The Breit-Rabi diagram for free Muonium in vacuum:
the plot shows Muonium spin energy levels as a function of the applied transverse magnetic field. In a low
TF (a few Gauss) is possible to observe the two nearly degenerate transitions among the triplet states,

highlighted by the black arrows on the left (the corresponding precession frequency can be detected).

In most situations, on the contrary, a relaxation of the muon polarization is expected.

A common case is when the muon, stopped in an electrostatic equilibrium position, ex-

periences randomly oriented dipolar fields (with zero average) from neighbouring elec-

trons and nuclei: this is usually described by a Gaussian (approximation of relatively

high concentration [123]) or Lorentzian (approximation of dilute spin system [124])

static field distribution. The resulting polarization turn out to follow the gaussian

or lorentzian Kubo-Toyabe function:

P (t) =
1

3
+

2

3

(
1− σ2t2

)
e−σ

2t2/2

P (t) =
1

3
+

2

3
(1− λt) e−λt

(2.18)

where the relaxation rate σ and λ describe the width of the local field distribution

function at the muon site15.

If the muons jump between different positions or if static muons sense fluctuations in

the local fields the mathematical description is more complicated and, in principle,

system-specific numerical simulations should be performed.

15The constant factor 1/3 is present in most functions describing muon polarization in powder
samples and deserve a brief explanation. Its mathematical derivation is not simple [125, 123, 126]
and we will limit to an heuristic consideration: on the average, 1/3 of the muons sense a magnetic
field parallel to the initial polarization direction, while 2/3 feel a transverse field. The latter start to
precess and thus dephase progressively yielding the decaying part of the signal
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However in the strong collision approximation (extreme motional narrowing regime

in NMR language) the resulting relaxation function can be shown to take a simple

Lorenztian form ( e−λt ). This is appropriate for several physical situations, including

the fast fluctuations of paramagnetic electrons.

2.2.3 Dipolar interactions with a few nuclei:

the µ-H and µ-D cases

Figure 36. ZF µSR data in (AsF6)2C60 at 1.4 K,
displaying the typical oscillating signal from the F-µ-F

dipolar interaction.

A special case that is worth discussing

in details occurs when the muon stops

at particular sites where only one or

two nearby nuclei produce a dipolar field

much higher than all the others. It is

then possible to neglect the rest of the

system and solve the quantum mechani-

cal few spins problem, in order to directly

obtain the analytical expression for the

polarization. In the following we deal in

particular with the cases of hydrogen and

deuterium and we can anticipate that,

as a general result, the muon interaction

with the strong nuclear fields gives origin

to beats of the dipolar frequency and its

multiples in the µSR spectrum.

The prototype example is the F-µ-F in-

teraction, first investigated in the 80s by

Brewer and coworkers [127]. In many fluorinated compounds the muon is easily at-

tracted by the high electrostatic potential of fluorine and tend to sit between two atoms

to form collinear F-µ-F configurations. Fingerprint of the dipolar interaction among

the muon spins and the two nuclei are beats of the form16 [128]

〈P (t)〉 =
1

6

[
3 + cos(

√
3ωD t) +

(
1 +

√
3

3

)
cos

(
3−
√

3

2
ωD t

)
+(

1−
√

3

3

)
cos

(
3 +
√

3

2
ωD t

)] (2.19)

16In eq.(2.19) 〈· · · 〉 denotes that the powder average have been perfomed and ωD is the dipolar
frequency, which accounts for the energy of the interaction. Its precise definition is given below for
the µ - H case.
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like the one displayed in figure 36 for the case of the fullerenium salt (AsF6)2C60. This

system, recently synthesized and characterized by my coworkers[129], provide an up-

to-date example on how µSR can be used to study the local geometry of the fluorinated

species [130].

The µ-H interaction

Of direct interest for the present work is the hyperfine dipolar interaction between

the muon spin ~I and the spin ~S of a single hydrogen nucleus (µ-H). The related

Hamiltonian can be written as

H = − µ0

4πr3
~2 γµ γH

[
3
(
~I · r̂

)(
~S · r̂

)
− ~I · ~S

]
= −~ωD

[
3
(
~I · r̂

)(
~S · r̂

)
− ~I · ~S

] (2.20)

where, for convenience, the front coefficients and the dipole-dipole distance r are in-

cluded in the definition of the dipolar frequency ωD = −~ γµ γH µ0

4πr3
.

Chosen a reference frame with the z axis oriented along the dipole axis this become

H = −~ωD (2IzSz − IxSx − IySy) .

Starting from ordinary spin Pauli matrices (I = S = 1
2
), it is possible to evaluate this

Hamiltonian in the (4 × 4) tensor space obtained from the spins direct product. The

detailed calculations, from the diagonalization of H to the computation of the muon

spin polarization, can be found in the literature [131] and finally yield

〈P (t)〉 =
1

6

[
1 + cos (ωDt) + 2 cos

(
1

2
ωDt

)
+ 2 cos

(
3

2
ωDt

)]
. (2.21)

The latter equation is the model function to be used for the interpolation of ZF µSR

data in powder samples where the muon experience the nuclear dipolar field of an

hydrogen atom.

The calculations are intentionally omitted here, because they will result apparent in

the following, where their extension to the case of deuterated samples is considered17.

The µ-D interaction

As will emerge in chapter 5 the investigation of isotopically substituted species proved

necessary for the correct interpretation of µSR data. It is then worth to extend the

17For the sake of completeness and for future reference, however, the calculations for the µ-H case
are reported in appendix A.
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existing theory to the muon-deuterium interaction. The µ-D Hamiltonian is no

more limited to the dipolar term, but it must also include the deuterium quadrupolar

contribution (spin D = 1). 2H NMR experiments (see section 5.4) have shown that

graphene display a vanishing asymmetry of the quadrupolar interaction (η = 0), as

expected for a 2dim material. Within this approximation the full Hamiltonian is:

H = − ~ωD
[
3
(
~I · r̂

)(
~D · r̂

)
− ~I · ~D

]
+

+
eQVZZ

4D(D + 1) · 2
(
3 cos2 β − 1

) [
3D2

z −D(D + 1)
] (2.22)

Here the dipolar frequency is defined like in the µ-H case and the quadrupolar pa-

rameters are the same introduced in the NMR section (2.1). β is the angle between

the dipole axis and the direction of the electric field gradient at the deuterium site (Z

principal axis of the quadrupolar interaction).

It is convenient to define also the quadrupolar frequency ωQ and the quadrupolar

constant kQ as

ωQ =
3eQVZZ

4D(2D − 1)~
kQ =

ωQ
2

(
3 cos2 β − 1

)
(2.23)

and, if once again a reference frame with the z axis oriented along the dipole axis is

chosen, the Hamiltonian reduces to

H = −−~ωD (2IzSz − IxSx − IySy) +

+
~kQ

3

[
3D2

z −D(D + 1)
]

The last term D(D + 1) is a constant and introduce only a rigid shift of the energy

levels: as far as we are interested in the muon precessing frequencies (i.e. in energy

differences) this part can be neglected and the latest expression further simplifies to

H = −~ωD (2IzSz − IxSx − IySy) + ~ kQD2
z . (2.24)

In the following the time evolution of the muon spin polarization is evaluated starting

from the Hamiltonian (2.24). The various steps of these calculations are only sketched

out, while algebraic manipulations and some minor maths operation (e.g. computation

of some tensor products) are reported in appendix B.

1. First consider the Pauli spin matrices for the muon spin (I = 1/2) and for the

deuterium spin (D = 1):

Ix =
1

2

(
0 1

1 0

)
Iy =

1

2

(
0 −i
i 0

)
Iz =

1

2

(
1 0

0 −1

)
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Dx =
1√
2

 0 1 0

1 0 1

0 1 0

 Dy =
1√
2

 0 −i 0

i 0 −i
0 i 0

 Dz =
1√
2

 1 0 0

0 0 0

0 0 −1


2. The different terms of the Hamiltonian can be evaluated as direct products of

these spins in a (6× 6) tensor space (in the products deuterium is chosen as the outer

components, while the muon is associated to the inner component). For example:

Dz ⊗ Iz =
1

2



1 0

0 −1
0 0

0 0 0

0 0
−1 0

0 1


The total Hamiltonian turns out to be

H = ~



−2ωD + kQ 0 0

0 +2ωD + kQ

√
2

2
ωD

0

√
2

2
ωD 0

0

0

0

√
2

2
ωD 0

√
2

2
ωD +2ωD + kQ 0

0 0 −2ωD + kQ



(2.25)

For clarity in the subsequent calculations the D and Q subscripts of the dipolar fre-

quency ω and quadrupole constant k will be omitted and we define the additional

parameter α as

α =
√

6ω2 + 4ωk + k2 (2.26)

3. The computation of the energy eigenvalues λi yields

λ1,2 = ~(−2ω + k) λ3,4 =
~
2

(2ω + k − α) λ5,6 =
~
2

(2ω + k + α) (2.27)

and the matrix U that express the transformation from the basis set of Iz, Dz to the

basis set of the energy eigenstates (commonly called the “matrix of the eigenvectors”)
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results 18

U = ~



1 0 0 0 0 0

0 0 0
2ω + k − α

ω
√

2
0

2ω + k + α

ω
√

2
0 0 0 1 0 1

0 0 −2ω + k + α

ω
√

2
0 −2ω + k − α

ω
√

2
0

0 0 1 0 1 0
0 1 0 0 0 0


(2.28)

4. The diagonal form of the Hamiltonian allows to easily evaluate the time evolution

operator

Ediag(t) = e−i
H
~ t

which back in the basis set of angular momenta (Iz and Dz) is given by

E(t) = U Ediag(t)U
−1

5. As we deal with LF µSR experiment, we now need to change the reference frame

from the principal axes of the dipolar interaction to a new coordinate system (x′, y′, z′)

whose z′ axis is oriented along the initial muon spin polarization. The muon spin

projection along the dipole axis (which we call Iζ and not Iz anymore, in order to

stress we are writing it in a different reference frame) is now given by

Iζ = Iz′ cos θ+ Ix′ sin θ =
1

2
cos θ

(
1 0

0 −1

)
+

1

2
sin θ

(
0 1

1 0

)
=

1

2

(
cos θ sin θ

sin θ − cos θ

)
and in the tensor space it is written as

Iζ = I3 ⊗ Iζ =
1

2


cos θ sin θ
sin θ − cos θ

0 0

0 cos θ sin θ
sin θ − cos θ

0

0 0 cos θ sin θ
sin θ − cos θ


6. The polarization observed in µSR is the expectation value of this operator and can

be obtained as

P (t) = Tr [E(t) Iζ E(−t) Iζ ] (2.29)

18As indicated by the dotted lines, the eigenvectors in these matrix are ordered by columns. Notice
that this convention, although very common, is opposite to the one used in the Mathematica software,
generally used to handle similar symbolic matrices. According to this convention the diagonal form
of the Hamiltonian is given by HD = U−1HU .
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After proper algebraic manipulations this results

P (t) =
1

2α2
cos2 θ

[
3k2 + 12kω + 14ω2 + 4ω2 cos (αt)

]
+

+
1

4α2
sin2 θ

{
2ω2 cos (αt) + 2

(
α2 − ω2

)
+(

α2 − kα− 2ωα
)

2 cos

(
k − 6ω + α

2
t

)
+

(
α2 + kα + 2ωα

)
2 cos

(
k − 6ω − α

2
t

)
+

}
(2.30)

This expression describe the muon spin polarization for the case of a single crystal

with the dipole axis which form an angle θ with respect to P (0).

7. For polycrystalline samples the “powder average” over all possible orientations [132]

must be performed

〈P (t)〉 =
1

8π2

∫ 2π

0

dα

∫ 2π

0

dγ

∫ π

0

dθ sin θ P (t) (2.31)

This yields

〈P (t)〉 =
1

6α2

[(
5k2 + 20ωk + 4ω2

)
+ 6ω2 cos (αt) +

+ 2
(
α2 − kα− 2ωα

)
cos

(
k − 6ω + α

2
t

)
+

+ 2
(
α2 + kα + 2ωα

)
cos

(
k − 6ω − α

2
t

)] (2.32)

Eq.(2.32), made up of beating oscillations depending on both the dipolar and quadrupo-

lar frequencies, is the model function that can be employed to fit ZF µSR data for the

case of the muon-deuterium interaction.
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2.3 DC SQUID Magnetometry

Magnetometry is the experimental technique devoted to measure the bulk magnetic

response of a sample. Among all the different types of magnetometers, the Super-

conducting Quantum Interference Device (SQUID) can reach in principle the highest

sensitivity (optimized SQUID devices have been used to measure the magnetic fields of

human brain, of the orders of several fT [133]). For this reason SQUID technology has

become widely used and it is the most common among commercially available magne-

tometers. A SQUID-based Magnetic Properties Measurement System from Quantum

Design has been used to characterize all the samples studied in this work.

Essentially a SQUID magnetometer is a transducer that convert a magnetic flux vari-

ation into a voltage output [134]. Its working principle, outlined below, relies on the

electronic properties of a Josephson junction and is an amazingly simple application

of superconductivity and quantum physics. Its relative simplicity is probably the rea-

son why SQUID magnetometry was developed in a record short time: in 1962 Brian

Josephson postulated the homonymous effect [135, 136], a year later John Rowell and

Philip Anderson at Bell Labs built the first Josephson junction and it took only one

more year to a team of scientist from Ford Research Labs to develop the idea of the

SQUID magnetometer in 1963 (Jaklevic, Lambe, Silver, Mercereau [137]).

Figure 37. Schematic representation of the Josephson junction.

The Josephson junction

A Josephson junction is made out of two pieces of a superconducting material inter-

rupted by an insulating slab, thin enough to let the superconductor charge carriers

(the Cooper pairs) tunnel across the junction (fig.37).

The superconducting wavefunction can be written in the form ψ = ψ0 e
iθ and is

identified by a magnitude ψ0 and a complex phase θ. If the two superconducting regions

were in direct contact they would have the same phase, while the finite tunneling

probability across the Josephson junction leads to a well-defined relation among the

phase values, usually called a weak link between the two superconductors. In particular
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the phase difference is related to the number of tunneling particles and hence to the

current density by the relation

J = J0 sin δ0 , δ0 = θ1 − θ2 (2.33)

The corresponding voltage can be computed as

V =
~
2e

dδ0
dt

Notice that according to the last equation a static phase difference (and stationary

current) does not generate any voltage across the junction. Thus in these conditions

the junction can be considered to act as an extended superconductor.

Figure 38. Schematic illustration of a SQUID device, made out of a superconducting ring and two
Josephson junctions.

The Superconducting Quantum Interference Device

A Direct Current SQUID consist in a superconducting ring, interrupted by two Joseph-

son junctions in parallel configuration, as depicted in fig.38. A bias current is main-

tained in the ring and flow equally through the two branches. When a magnetic flux

Φ is concatenated with the loop (e.g. due to the magnetic moment of a sample), it

generates an extra phase shift in the two tunnel junctions A and B, opposite in sign19

δA = δ0 +
e

~
Φ δB = δ0 −

e

~
Φ

and from eq.(2.33) the total current density becomes

J = JA + JB = 2 J0 cos

(
eΦ

~

)
sin δ0 . (2.34)

19The induction of a phase shift by a magnetic field is a quantum mechanical effect, known in
quantum optics as the Aharonov-Bohm effect.
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The current is therefore periodic in Φ and the output voltage turns out to be also

periodic with a period which equal a single flux quantum Φ0 = h
2e

= 2 · 10−15 T m2 =

2 · 10−5Gmm2 .

This accounts for the high sensitivity of SQUID magnetometers.

Actually the SQUID ring is not directly used to measure the sample moment, as it

would be strongly disturbed by the possible fluctuations of the high magnetic fields

applied for measurements. The SQUID is then generally placed in a region isolated

from the effect of external fields and it is coupled to a superconducting circuit where the

magnetic flux variation is measured by a specific pick-up coil, arranged in a second order

gradiometer configuration. As displayed in fig.40, this is composed by four aligned

identical turns, the inner ones wound clockwise and the outer ones counterclockwise:

this special geometry has the advantage that it measures only the gradient of the

magnetic field, while any constant external field does not contribute to the signal.

Figure 39. Fluxed Locked Loop (FLL) configuration for SQUID electronics. A change in the magnetic
field at the pick-up coil (inductance Lp) induces a change in the field at the input coil (inductance Li).
The SQUID is inductively coupled to the input coil and detects a change in the related magnetic flux.
However the SQUID voltage response is not used directly: a Flux Locked Loop modulation circuit is used
to reduce electronic noise and improve the linearity of the SQUID response (until now we have neglected
the presence of the field in the Josephson junctions regions: the latter cause the current to follow a sinc
function rather than a sinusoidal function and this intensity loss for high fluxes must be corrected). The

final output voltage V0 is proportional to the field at the pick-up coil [138].

To perform a measurement the sample is moved along the gradiometer’s axis and thus

generates a signal that is transferred to the SQUID loop to yield the final voltage out-

put, thanks to the control of an appropriate electronics(see fig.39). The flux variation

induced by moving the sample through the pick-up coil can be evaluated from the

relation

ΦB =
µ0mR2

2 (x2 +R2)3/2
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expressing the flux of the magnetic moment m having position x along the axis of a

coil with radius R. The corresponding induced voltage V turns out to be

V (x) ∝ µ0mR2

2

4∑
i=1

[
(x+ di)

2 +R2
]−3/2

(2.35)

where di indicate the relative positions of the single coils in the gradiometer configu-

ration. The voltage detected as a function of sample position (averaged over several

scans) is fitted with eq.(2.35) to yield the measurement of the magnetic moment (a

typical curve is shown in figure 40).

Figure 40. Left. Second-order gradiometer pick-up coil. This configuration decouples the SQUID
response from the external applied field, so that only the sample magnetic moment is measured. Adapted
from [138]. Right. A typical SQUID signal for a diamagnetic sample. Its functional form is described by

eq.(2.35).

2.3.1 Probed magnetic properties

Magnetometry measurements can be easily performed as a function of temperature and

magnetic field: in the case of the instrument used here, the Quantum Design MPMS

XL 5, fields up to 5 T and the temperature range 2 · · · 400K were available. Such

measurements allow to explore and characterize the magnetic properties of materials.

In the following it is assumed that the reader is familiar with the fundamental magnetic

phases of matter, whose temperature and field dependence of the magnetization are

recalled in fig.42. Therefore the discussion will be limited to the two aspects that

were accurately studied in all the considered graphene samples and this part

is intended only to offer a guideline for the analysis of the magnetic data shown in the

next chapters.

60



2.3. DC SQUID Magnetometry

Figure 41. Longitudinal section of the sample space for the commercial SQUID used for this work: the
second order gradiometer pick-up coils and the external superconducting main coil for the production fo

the magnetic field (up to 5T) are highlighted. From [138].
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Figure 42. Schematic diagram of the Temperature and Field dependence of Magnetization in the main
magnetic phases of solid state materials. For the AFM case it has been represented the M(H) curve in

case of strong magnetocrystalline anisotropy.
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2.3. DC SQUID Magnetometry

Magnetic impurities

The first SQUID characterization considered has been the study of the field dependence

of magnetization at room temperature (M(H) at 300 K ). These type of measurement

on the one hand offers a first insight into the bulk magnetic response of the material; on

the other it allows a fast estimation of the magnetic impurities content in the samples.

As already mentioned, graphene revealed to be essentially diamagnetic and thus it’s

worth focusing our attention to the latter aspect. For clarity, in the following it is

assumed that all the ferromagnetic contribution observed come from impurities and

not from the sample (this proved to be actually true for the investigated samples).

Ferromagnetic (FM) impurities, like Nickel, Iron and Cobalt are often present in chem-

ically synthesized samples, even when they are prepared with the greatest care. To

be aware of the sample impurities content can be important whenever weak magnetic

effects are expected, like in the case of the possible magnetic phases of carbon ma-

terials [139]. Magnetic metallic elements all have high transition temperatures, well

above 300 K and then room temperature is probably one of the best temperature to

detect them, as they are not hidden by paramagnetism and other interactions that can

dominate at low temperatures.

Figure 43. Left panel. M(H) data at 300 K from a graphene sample. The diamagnetism is superimposed
to the ferromagnetic impurities contribution, which is reported alone in the Right panel.

A magnetic impurities contribute to the SQUID signal with an hysteresis curve, like

the one depicted in the right panel of figure 43. This can be easily observed once the

diamagnetism (or paramagnetism) of the bulk sample have been subtracted from the

data, by means of a linear fit of the high filed region, where the FM contribution is
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constant (left panel). The key parameters to be evaluated are the saturation magne-

tization MSAT and saturation field HSAT , also evidenced in the figure. The latter

is important as an experimental parameter, in the sense that any measurement as a

function of temperature has to be performed at a higher field, in order to get rid of

the spurious contribution of FM impurities: indeed if a field H < HSAT is applied the

magnetization M(T ) would be strongly affected from the FM component; if, on the

contrary a higher field is used, the impurities contribution will be limited to a constant

baseline. The saturation magnetization, instead, provide the estimation of the mag-

netic impurities content. Indeed its value, tipically of the order of several memu/g,

is commonly expressed in equivalent content of iron (in ppm): within the simplifying

hypothesis that all the impurities are iron (218 emu/g), one memu/g approximately

corresponds to 4.5 ppm of iron.

Defects concentration: paramagnetism

In graphene magnetometry can be exploited as a tool for characterizing the defects

concentration in the sample. Many of the defects discussed in section 1.7, indeed,

are populated by a paramagnetic electron, including in-plane vacancies and edges [10].

Since graphene has a diamagnetic response, the paramagnetic contribution observed in

the temperature dependence of magnetization can be attributed to these paramagnetic

defect sites20.

The magnetic susceptibility χ of a paramagnetic system obeys Curie-Weiss law

χ(T ) =
C

T −Θ
with C =

N p2
eff

3 kB
=

N µ2
B g

2 J(J + 1)

3 kB
(2.36)

where Θ is the Curie-Weiss asymptotic temperature, which accounts for residual FM

(Θ > 0) or AFM (Θ < 0) correlations in the paramagnetic state, and C is the Curie

constant, from which the number N of defects can be estimated.

Notice that to evaluate the defects concentration from C, peff (or equivalently g and J)

must be known. They can be measured from the field dependence of the magnetization

at low temperature and in the case of graphene, as expected for a pure carbon material

(only s and p orbitals), one yields within experimental errors g = 2, J = 1/2, peff =
√

3

.

20However, as not all the defects give a magnetic contribution, in the experimental section we will
see that another technique, Raman scattering, have been used for a parallel characterization of defects
concentration.
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2.4 Inelastic Neutron Scattering

Neutrons are ideal probes for the investigation of many structural and dynamical as-

pects of matter. They are massive, neutral particles which deeply penetrate into the

sample, allowing its bulk study. In contrast with X-Rays, to which they are commonly

compared, neutrons are sensible also to the light elements, but less intense beams are

available and thus large samples are usually measured. Inelastic Neutron Scattering

(INS) techniques, in particular, offer the possibility to study the vibrational, rotational

and diffusive motions that takes place in the investigated material, depending on the

energy transfer between neutrons and the sample. The analysis of the neutron scatter-

ing data recorded in graphene is still in progress and thus, within the present study,

only a few qualitative results will be discussed. For this reason the following descrip-

tion of the technique is limited to those fundamental aspects that are relevant for the

considerations advanced in next chapter and many other important characteristics are

left out. For a proper introduction to Neutron Scattering the reader may refer either

to standard textbooks ([140, 141]) or to the proceedings of a recent school [142].

Due to its neutral electric charge, neutron in matter essentially interact with the atomic

nuclei. Since the range of the nuclear forces is much shorter than the typical neutron

wavelength, the interaction can be described by a Fermi contact potential [141]

V (~r) =
2 π ~2

m

∑
j

bj δ
(
~r − ~Rj

)
(2.37)

where the summation is extended over all involved nuclei and the scattering lengths

bj account for the strength of the interaction. The values of these coefficients are

characteristics of each nucleus and also depend on the nuclear spin state. We will soon

come back to their significance.

By evaluating the matrix elements of the assumed potential from the incident to the

final neutron states, it is possible to calculate the fundamental quantity measured in

a neutron scattering experiment, the double differential cross-section

d2σ

dΩ dω
= N

kf
ki

[(
b̄2 − b̄2

)
Sinc( ~Q, ω) + b̄2Scoh( ~Q, ω)

]
(2.38)

The multiplication of this quantity by the flux of incoming neutrons gives the number

of neutrons scattered into a solid angle element dΩ with an energy transfer ~ω. In

equation (2.38), N is the number of scattering elements in the sample, kf and ki

are the final and incident wave vectors respectively, and the coherent and incoherent

scattering functions

S( ~Q, ω) =
1

2π

∫
d3~r dt ei(

~Q·~r−ωt)G(~r, t) (2.39)
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provide a direct link to the microscopic motions of the atoms. In particular Scoh( ~Q, ω)

is the double Fourier transform in space and time of the density-density correlation

function

G(~r, t) =
1

ρ0

〈ρ(~0, 0) ρ(~r, t)〉 =

=
1

N
〈
∫
d3~r′

∑
i,j

δ(~r − ~r′ + ~rj(t)) δ(~r′ − ~ri(0))〉

that can be interpreted as the probability density of finding at time t an atom at a

distance ~r from the position of another atom at time 0.

Similarly the incoherent scattering function Sinc( ~Q, ω) is the double Fourier transform

of the self correlation function

Gself (~r, t) =
1

N
〈
∫
d3~r′

∑
i

δ(~r − ~r′ + ~ri(t)) δ(~r′ − ~ri(0))〉

which expresses the probability density of finding an atom at time t at a distance ~r

from its position at time 0.

These scattering functions are weighted over the scattering lengths average bcoh = b̄

and variance binc =
√
b̄2 − b̄2. When performing experiments on graphitic materials

or carbon nanostructures the inelastic neutron scattering signal is dominated by the

high incoherent contribution of hydrogen: its incoherent scattering length and hence its

total incoherent cross section σinc = 4πb2inc is an order of magnitude higher than that

of carbon and other atoms (mainly oxygen) possibly present in the material (see Table

4). This consideration is the basis of the incoherent approximation, which assumes

that S( ~Q, ω) can be calculated neglecting the coherent part (mainly from carbon).

Table 4. Neutron scattering cross sections of common elements in carbon-based materials. The values
are in barn (1 barn = 100 fm2).

Element σcoh = 4πb̄2 σinc = 4π(b̄2 − b̄2)
C 5.551 0.001

H 1.7568 80.26

D 5.592 2.05

O 4.232 0.0008
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2.4.1 The Phonon Density of States

The derivation of the scattering functions for the case of crystal or molecular dynamics,

within the incoherent approximation leads to the result [140, 143]

S( ~Q, ω) = exp
(
−2W ( ~Q)

) ~2Q2

2mkBT
exp

(
~ω

2kBT

)
2 ~ω
kBT

sinh
(

~ω
2kBT

) g(ω) . (2.40)

Equation (2.40), where W is the Debye-Waller factor, states that S( ~Q, ω) is propor-

tional to the generalized phonon density of states g(ω) 21 and thus directly links the

neutron scattering spectrum to the dynamics within the sample. Notice, however, that

to get the phonon density of states a significant data treatment is necessary: the typical

INS spectrum, indeed, displays the raw scattered intensity against the neutron energy

loss in the sample.

2.4.2 Instrumental Setup on IN1bef

All the neutron data displayed in next chapters have been recorded on the IN1 spec-

trometer at Institut Laue Langevin, in Grenoble. In the configuration used, IN1bef,

this is a two-axis spectrometer with a beryllium filter added just before the detectors

(fig.44). Hot neutrons are sent through a single crystal copper monochromator to select

the incident energy and the beam is then focused on the sample; finally the filter stops

any neutrons with an energy higher than 2.5 meV, so that only the particles that have

exchanged all their energy with the sample can reach the detectors. Therefore, in this

configuration, the incident energy always matches the exchanged energy Ein = ∆E

within the filter resolution.

21It is equivalent to say that the scattering functions are inversely proportional the derivative of the
energy dispersion curves. Indeed, in points of the reciprocal space where the dispersion curve ω(~k)
gets flatter (the derivative drop to lower values), more phonons are found in an energy interval dω,
that is a peak in the density of states is observed; correspondingly, according to eq.(2.40), a peak is
observed in the neutron spectrum.
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Figure 44. Instrumental setup of the IN1bef at ILL. Adapted from the instrument official website
(http://www.ill.eu/instruments-support/instruments-groups/instruments/in1).
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Chapter 3

Chemical synthesis and

Processing of Graphene

This chapter discusses the production of bulk graphene samples. This task and the

more general issue of obtaining macroscopic quantities of a nanoscopic material, are of

scientific interest both in the short and long term: their solution, indeed, on the one

hand allows us to characterize these materials also by solid-state spectroscopies, and

on the other could favour the development of future applications.

Since the discovery of graphene, during the last six years, the scientific community

has developed a number of strategies either for the production of good-quality single

monolayers and for the chemical synthesis of gram-scale samples. In the following

we will give an overview of these methods and explain in detail the procedures used

to synthesize the samples under study. A particular focus is kept on the presence of

defects, as this will be relevant in the discussion of experimental results.

Besides and tightly connected to the production of graphene, some fundamental char-

acterization techniques will be discussed. Microscopies are the natural candidates for

the observation of a 2dim nanostructured material and have been extensively applied

to “see graphene-based sheets” [20]. Microscopy imaging allow to determine whether

single layers are present and it is often considered an “indispensable quality control tool

since it can provide immediate feedback to improve synthetic and processing strate-

gies” [20]. Nevertheless we will show that also a bulk technique can answer these issues:

in particular Neutron Scattering data has proven extremely valuable to identify the

effects of the different chemical and thermal treatments performed on the samples.
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3.1 Graphene Synthesis

Most of the initial investigations of graphene properties relied on single graphene

sheets obtained by the micromechanical cleaveage technique, that was used to first

isolate graphene in 2004 [14]. This is essentially a refined development of the idea

of deriving single layers from scotch-tape peeling of graphite (a short description has

already been introduced in section 1.1). Graphene soon started to be studied in view of

microelectronics application and the request for a more clean and reproducible material

led to the development of epitaxial growth on silicon carbide [144, 145]: in this method

the thermal treatment of SiC at 1650◦C in Argon atmosphere [146] results in the

sublimation of silicon in the proximity of the surface and in a subsequent graphitization.

However only recently [147] this method has yielded good quality samples.

Table 5. Main methods for the production of single graphene sheets and Gram-scale graphene samples.

Meanwhile similar efforts have allowed to optimize the growth of graphene by chemical

vapor deposition on metal surfaces : At the beginning of 2009 three different research

groups [31, 148, 149] independently demonstrated the ability to produce single layer

graphene by CVD and transfer it to an arbitrary substrate. Their approach is the

development of a method already used from the 70s [22] for producing multilayer

graphene [150] or vertically-aligned carbon nanowalls [151, 152]: in proper conditions

of high temperature (1000◦C) and low pressure, the flux of a carbonaceous gas (ethy-

lene, benzene) over a very clean metal substrate (usually Nickel[31] or Copper[153])

results in the deposition of the carbon atoms, which start to diffuse in the metal. The

subsequent cooling leads the carbons to emerge at the surface and form single-layer

graphene [154]. The sample quality depends on the cooling rate, on the type and

concentration of the carbon gas and on the substrate thickness. The optimization of

these parameters has already led to the production of very large graphenes, up to the

dimensions of a flat TV panel [1]. Therefore the bottom-up approach of CVD is prov-

ing to be by far the best method for the production of single graphene sheets.
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3.1. Graphene Synthesis

Figure 45. TEM image of a graphene
sample obtained by the solvothermal
method. The majority of the sample is
made up of curved and fused graphene
sheets. Scale bar is 200 nm. Adapted

from [155].

On the other hand there is a large interest in the

synthesis of gram-scale samples of graphene,

as it is the case in the present study, in order

to have enough sample for the characterization

with solid-state spectroscopies like µSR and neu-

tron scattering. There are three main methods to

obtain “massive” powder samples:

the first is a bottom-up approach based on a

solvothermal reaction [155] of sodium and ethanol

(3 days in a sealed vessel at 220◦C, 1:1 molar ratio).

This yields a solid precursor whose subsequent flash

pyrolysis generates graphene flakes, displayed in a

TEM image in fig.45. These samples were the first

to become available, at the end of 2008, and thus

we chose them as the first set of sample for µSR in-

vestigations, starting a fruitful collaboration with

the group of professor John Stride at the University

of New South Wales, who developed the method.

Pure Graphite powder

OXIDATION

Graphite Oxide

PARTIAL REDUCTION
WITH NaBH4

Reduced Graphite Oxide

THERMAL EXFOLIATION
AT 1050◦C

Graphene

Figure 46. Pathway to the chemical synthesis
of graphene. The various steps are thoroughly

discussed in the following sections.

The second, less used, approach is the ex-

tension to graphene of the arc-discharge

method exploited for the routine production

of fullerenes, where an hydrogen rather than

helium atmosphere is used [94, 95]. Finally

the most successful top-down approach is

based on wet chemical synthesis routes [156]:

in the most common procedure, outlined in

the table opposite, pure graphite powder is

oxidized by the reaction with strong acids,

to yield graphite oxide (GO) [157, 158]; this

material eventually undergo a partial reduc-

tion with NaBH4 [159] or hydrazine [160,

161], which help to obtain a less defective

graphene, and then a flash thermal treatment

at 1050◦C completes graphite exfoliation to

a material largely composed of single-layer

graphene [90]. This method has been used to

produce most of the sample studied in this
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work and it is then worth describing here the different steps in detail, according to the

exact preparation procedures followed.

As a closing remark, please notice that this family of wet chemical methods is often

intended to include also minor different techniques [22], that are not discussed here: in

particular the emerging techniques to obtain dispersion of graphene in solutions [162,

163] and the production of graphene Langmuir-Blodgett films [164].

3.1.1 Graphite Oxidation

Three methods for graphite oxidation are known since long time and, thanks to the re-

cent interest, have been carefully optimized: the Brodie [165, 166, 157], Staudenmaier[167,

168, 161] and Hummers methods [169, 170]1. The latter proved less efficient and have

not been used for the production of graphene samples. Thus it will not be described.

Brodie oxidation

Figure 47. A picture taken during
the preparation of Graphite Oxide.

Pure graphite powder from SGL Carbon, RW-A grade,

is used as a starting material (5 grams) and the oxida-

tion process go through the following steps:

• Graphite and KClO3 (49 g) are mixed and put

inside a flask kept in ice bath;

• 100% nitric acid HNO3 (30 ml) is slowly added

by a dropping funnel over 2 hour; the solution is

let to reach room temperature and it is stirred

for several hours. (These reactions are highly

exothermal and the slow addition of the acid is

required to avoid explosion).

• The reaction is completed by a thermal treatment

at 60◦C for 8h. During this treatment ClO2 is

released in gas form.

• The solution is then diluted into water, filtered,

washed in HCl (3 M).

• It is finally rinsed with water until a pH value of

' 6 is reached. The obtained green graphite powder is then dried at 60◦C.

1For each oxidation method a few references are given in chronological order: the first is to the
original article, the following ones to more recent modifications of the method
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Staudenmaier oxidation

This method, which uses also sulfuric acid in addition to nitric acid, can be seen as a

variation of Brodie method, except that the order of the main operations is shuffled,

as graphite is first mixed to the acids and the salt is then slowly added during the

reaction. In particular:

• Concentrated H2SO4 and HNO3 (2:1 in volume) are mixed inside a flask kept

in ice bath;

• Graphite powder is added (3.5 g for 100 ml of H2SO4);

• KClO3 (50 g) is gradually added over 2 days and the reaction continues under

stirring at room temperature up to a total of 4 days.

• The solution is diluted into water, filtered, washed in HCl (5%) and filtered again.

• The obtained brown powder of graphite oxide is washed with water several times

until pH ' 7 and then dried at 60◦C.

• The sample is finally annealed above 100◦C to get rid of intercalated water.

Graphite Oxide

The product of these oxidation procedures, known as graphite oxide, is an expanded,

functionalized graphite, which structure is represented in fig.48. Graphite oxidation,

indeed, leads to the bonding of many functional groups (hydroxide, peroxide, epoxy and

carboxyl moieties) to the graphite planes [156]. As a consequence GO is hydrophilic,

unlike the hydrophobic parent graphite, and the stacking distance among its planes is

noticeably increased.

(a). Adapted from [159]. (b). Adapted from [161].

Figure 48. Schematic representations of Graphite Oxide.

Laboratory XRays diffraction spectra, displayed in fig.49, show the (002) reflection

is rather left-shifted down to a lower angle, corresponding to an interplane distance

which is almost doubled. These result confirm previous XRD studies present in the

literature [158]. In addition GO has been structurally characterized by a number of
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Figure 49. Laboratory X-Ray diffraction spectra for the starting graphite, graphite oxide and exfoliated
graphite oxide. The spectra are vertically sifted for clarity.

techniques, including XPS [171, 172], NMR [173], Raman Spectroscopy [174], Electron

microscopy and diffraction [158]. These studies all contributed to get a clear picture

of the types and arrangement of the functional groups.

3.1.2 Thermal Exfoliation

Sudden heating of GO to 1050◦C forces these groups to detach from the plane, gen-

erating an overpressure, mainly of CO2 and CO, that separates the graphene layers.

This exfoliation increase the sample volume by more than 1000 times, as it is apparent

in the pictures below. It yields a dark grey material made of soft, expanded, “floating”

graphene flakes, with a very low density. Its characterization, introduced below, proved

that a consistent part of the sample is made out of single layer graphene.

Notice that the formation of CO2 and CO have been mentioned, implying that when

the functional groups are disrupted from the plane, most of the times they bring

away the carbon atom they were attached to. Thus samples obtained from thermal

exfoliation are rich in defects and especially in carbon vacancies. These may either

remain paramagnetic or be saturated by the hydrogen freed during the exfoliation

process.

For the implementation of this thermal treatment, the sample is placed in a large quartz

vial, which is evacuated below 10−4mbar. The vial, in static vacuum conditions, is

rapidly inserted into a tube furnace, preheated at 1050◦C, to obtain a heating rate of

almost 2000◦C/min [22]. The system is kept 1 minute at high temperature and is then

taken out from the oven and left to thermalize at room temperature.
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(a). The GO powder is loaded inside a vial for the thermal exfoliation
treatment.

(b). The expansion of graphite to graphene leads to a huge increase
in volume.

Figure 50. Pictures taken (a) before and (b) after thermal exfoliation.

Three additional remarks:

• The main exfoliation reaction and expansion happen within the first few seconds.

One minute is the time expected to be long enough to warranty that all regions

of the sample reach the maximum temperature and are then properly exfoliated

(even the part of sample that is moved far away from the oven center by the

initial reaction), but short enough to avoid annealing effects. However the time

parameter may be further optimized.

• At the end of the thermal treatments the vial is evacuated from the excess gas

formed (approximately 200 mbar) and then opened inside a Argon glove box.

From this moment on, graphene samples are never exposed to air, neither for

storing and handling, nor for further treatments or for µSR experiments. In this

way unsaturated defects and dangling bonds are retained and can be character-

ized.

• The experimental feasibility of this treatment required special care towards se-

curity and the construction of several specifically-designed items, including: a

proper water cooling system and a trolley, constrained to railings, which hold

the sample vial to be sure it can enter/exit smoothly in the furnace (to have the

maximum sample chamber volume the vial is chosen with a diameter which just

fits the furnace).
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3.1.3 Partial Reduction of Graphite Oxide

We have evidenced that the thermal exfoliation of GO generate highly defective graphene

planes. If interested in a more clean material, a step of partial reduction can be in-

troduced before the exfoliation: this process “repairs” the planes, by decreasing the

number of adsorbed functional groups and thus the vacancies concentration in the final

graphene sample. On the other hand, the strongest the reduction the less effective will

result the exfoliation process, because if only a few adsorbed molecules are present, a

lower pressure is generated among the planes.

Figure 51. Schematic representation of the structure of GO and reduced GO. A lower concentration of
adsorbed molecules and a larger stacking distance characterize the reduced GO. Adapted from [159].

An effective partial reduction can be obtained by reaction either with hydrazine [160,

161] (but this compound is seldom used because it is toxic and explosive) or with

sodium borohydride NaBH4, which has been used within this study.

For this reaction GO powder (1 g) is dispersed into water by sonication and a solution

of NaBH4 (6 g over 100 ml of water) is slowly added by a dropping funnel, under ultra-

sound sonication. Then to optimize the reaction conditions the pH value is corrected

to 10 by adding a water solution of NaCO3 (5% in weight). The sample then undergo a

thermal treatment at 80◦C for a few hours and is cooled down under stirring and soni-

cation. Finally the resulting suspension is filtered, rinsed with water and dried at 60◦C.

Recently also other compounds have been used as reducing agents for GO, including

NaHSO3 [175] and hydriodic and acetic acid [176] and, noticeably, it has been proposed

to move the reduction step after the thermal exfoliation [176, 22].
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Further treatment in H2SO4

In order to gain a control of the defects concentration in the samples, a further cleanup

of the material in sulfuric acid have been considered. As shown in figure 52 this

treatment has proven effective in removing residual functional groups from the GO

planes [159]. Reduced GO is suspended in H2SO4 and undergo a thermal treatment

at 120◦C for 6 h, under stirring. Then the suspension is left to cool down and settle,

and it is finally rinsed and filtered with water.

Figure 52. Schematic representation of the structural evolution of reduced GO
under the treatment in sulfuric acid.

In summary three types of differently-prepared samples have been considered for char-

acterization: graphene obtained from the solvothermal method, prepared by the group

of prof.Stride (method 1), and two chemically synthesized graphenes, derived by ther-

mal exfoliation of GO with (method 2) or without (method 3) the reduction step. For

the reduced samples a mild exfoliation at lower temperature has been used and hence

these systems are more compact than the properly exfoliated ones. The preparation

procedures are summarized in table 6.
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Table 6. Summary of the preparation procedures followed for the production of gram-scale graphene.

3.2 Morphological Characterization

The samples have been characterized first with respect to their morphology, by Trans-

mission and Scanning Electron Microscopy and Electron Diffraction2. These are among

the most common techniques used for graphene structural analysis. In addition we have

already shown x-ray diffraction data and we will discuss in next chapter the investi-

gation by another technique often applied to graphenes, Raman spectroscopy, which

helped to identify the defects concentration in the samples. The techniques commonly

used for graphene structural studies are gathered in fig.53 and were already mentioned

in section 1.1.

Figure 45 above (page 71) shows a TEM image of samples obtained from method

1, which entirely consist of fused graphene sheets forming a weak porous network.

Their full characterization as already been published in [155], where evidence for the

presence of single layers are given. The samples produced by exfoliation of GO have

a quite different morphology. Their SEM and TEM images are shown in figure 54, for

a sample of type 2 on the left and of type 3 on the right, respectively. The former

appears as the aggregation of thick plates, each consisting of overlapping thin sheets,

stacked in random orientations. The free sheet at the center of fig.54a is approximately

1µm × 1µm in size and, though its thickness cannot be measured by SEM, it is thin

2These morphological characterization were performed at the University of New South Wales by
our collaborators Mohammad Choucair and John Stride.
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Figure 53. Major techniques for graphene characterization. a. Optical Microscopy, b. Atomic Force
Microscopy, c. Scanning Tunneling Microscopy (scale bar 0.1 nm), d. Angle-resolved photoemission
spectroscopy (ARPES), e. Rayleigh scattering, f. Fluorescence Quenching Microscopy (scale bar 10 µm).

g. Raman Imaging (scale bar 3 µm), h. Raman Spectroscopy. Adapted from [22, 20, 177].
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enough to be almost fully transparent under the beam. High-temperature exfoliated

samples, instead, consist of flakes with a porous, layered structure where many single

graphene sheets overlap and fuse together, as is apparent in figure 54b. The TEM

images in both cases highlight the presence of an high concentration of single layer

graphene sheets, with evident folding and crumpling in fig.54c.

(a). SEM image of a sample of type (2). (b). SEM image of a sample of type (3).

(c). TEM image from a region in a sample of
type (2). The graphene sheet shows an evident
folding and a crumpled-like appearance. Scale

bar indicates 200 nm.

(d). TEM image from a region in a sample of
type (2). A single layer sheet is shown with a
prominent tear and crumpling at the edge. Scale

bar indicates 100 nm.

Figure 54. Scanning and Transmission Electron Microscopy images from regions in samples prepared
according to method (2) on the left and to method (3) on the right.
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3.3 Reduction treatments “seen”

by Inelastic Neutron Scattering

To conclude our discussion about the synthesis of graphene it is useful to look at the

inelastic neutron scattering data we have recently recorded with the IN1bef spec-

trometer at Institut Laue Langevin, in collaboration with Dr.Stéphane Rols (ILL).

This experiment proposed to identify the dynamical features of graphene observable

by INS, in comparison to that of graphite, in order to evidence the possible contri-

butions of ripples (in the quasi-elastic region) and of in-plane and edge defects. In

principle neutron scattering should be able even to sort out the contributions from dif-

ferent types of defects, on the basis of the different nature of their vibrational dynamics

(localized for vacancies, collective for edges). The data analysis is still in progress and

here we will limit to discuss some qualitative results which provided useful feedbacks

on the preparation procedures.

Figure 55 displays the normalized neutron spectra for graphene samples prepared from

direct exfoliation of GO (method 3, black data points), with the inclusion of the

reduction step (method 2, red) and with the further treatment in sulfuric acid (yellow).

In addition data taken on a graphene sample treated at high temperature in hydrogen

are shown (we will come back to this blue curve soon).

Please now recall a consideration made in the introduction to neutron scattering: when

performing experiments on graphitic materials or carbon nanostructures, the inelastic

neutron scattering signal is dominated by the high incoherent contribution of hydrogen.

With this statement in mind, it can be easily observed that neutron scattered intensities

reflects the expected composition of the different samples, prospected in the structural

models above, and hence confirm the effectiveness of the reduction treatments. In

particular the background intensity of the highly defective as-prepared graphene is

large, due to the residual groups attached to the plane and to the hydrogen impurities

which may have saturated the paramagnetic electrons located at carbon vacancies; the

reduction step, by lowering the concentrations of the adsorbed species, also strongly

reduce the final hydrogen content in the sample, yielding a weaker signal; the intensity

is further reduced in case the treatment in H2SO4 is applied, as it is consistent with

the clean carbon planes expected in this system(fig.52).

In the two latter samples, the spectra are comparable to the ones of graphite and carbon

nanotubes: this observation evidence that, in these cases, the coherent carbon signal

is the main contribution and thus the samples have a rather low hydrogen content.

On the contrary, the signal is strongly enhanced for the sample exposed to hydrogen.

For µSR investigations a whole set of “hydrogenated” graphene samples were prepared
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Figure 55. Inelastic neutron scattering spectra for different graphene samples. An higher intensity
corresponds to a higher concentration of hydrogen in the sample.

and characterized: they were obtained by thermal treatment of different as-prepared

graphenes in an hydrogen flux of 100 ml/min for 1h30’. The treatment temperature

was varied from 600 to 1000◦C and the optimal value turned out to be 800◦C (see

section 5.1). The increased intensity of the neutron scattering signal confirms that

the considered thermal treatments are effective in hydrogenating the samples. The

full characterization of hydrogenated species is the main topic of chapter 5, where a

discussion of neutron data can also be found.
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Chapter 4

The role of Defects in Graphene:

a µSR investigation

In many areas of materials science, from crystal growth to mechanical applications,

from transport properties to semiconductor devices, defects often play a significant role.

Graphene makes no exception, as we have seen discussing the possible magnetic phases

triggered by defects (section 1.8). Stimulated by these theoretical previsions [10, 89], in

the following we study how the different types of defects influence graphene properties.

In particular we show and discuss the major results of the first µSR investigation ever

performed in graphene. It will become apparent that the observed interactions are

strongly linked to the presence of defects, even beyond their relation to magnetism.

4.1 Edges States and Ball-Milled Graphite

At the beginning of this project, while developing the methods for the synthesis of

graphene, the study of defects already started from the investigation of edge states in

mechanically ball-milled graphite (BMG). This material is mainly made of nanometre-

sized crystallites and it is then particularly suitable for edge studies.

After a preliminary vacuum annealing at high temperatures (> 800◦C), known to

remove oxygen and moisture contamination [45]1, graphite powder is processed by me-

chanical ball-milling in strictly oxygen and moisture free Ar atmosphere (6 1 ppm O2,

6 1 ppm H2O). This mechanical treatment induces several structural deformations,

well described in the literature [178, 179]: with increasing milling time turbostratic dis-

order, planes cleavage, planes breaking and reduction of crystal grain size are observed,

until sp3 hybridization develop in small group of atoms and the material gradually get

1These treatments, however, keep the hydrogen saturation of dangling bonds at the edges.
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amorphous. Xray diffraction (fig.56a) helped to optimize milling time2 in order to

avoid the latter transformation and obtain small graphite grains (known in the liter-

ature as nanographites), with a strongly increased volume fraction of graphene edges

and in plane defects (mainly vacancies). Raman [180] and TEM investigations (fig.56)

confirmed the produced ball-milled graphite is composed by exfoliated graphene sheets

and elongated nanographites with an average thickness of 6 nm.

(a). Laboratory X-Ray diffraction spectra of BMG for increasing
milling time. On the left the peak related to the (002) reflection

is zoomed.

(b). TEM images of Ball-Milled
Graphite. Nanographites and ex-
foliated graphene sheets are ob-

served in the samples.

(c). Central region of the Raman spectra of BMG. The ID/IG
ratio and the width of the G band give two independent measures

of crystallites size.

(d). Explosion of the side view of
a nanographite, which evidences
its structure composed of approx.

30 graphene planes.

Figure 56. Structural characterization of BMG.

2We employed a Fritsch ball-milling system, equipped with an agate jar (3 cm in diam.) and 3
agate balls: the optimal time in this configuration is 1 h at 50 Hz (separated in session of 10 minutes
to avoid overheating).
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The zero field µSR characterization of BMG (fig.57) has shown three different contri-

butions:

1. the majority of the muons retains almost the full polarization, following their

well-known behaviour in standard graphite, described in detail by Cox [181];

2. a second fraction (20%) displays a slow lorentzian depolarization, with a

relaxation rate which vary slightly from sample to sample around an average

value λ = 0.25 ± 0.06µs−1 at 5 K and decreases with increasing temperature

down to λ = 0.15± 0.04µs−1 at 300 K;

3. a small missing fraction (10%).

Figure 57. ZF µSR measurements in BMG at 5 K. Contrary to the case of graphite, a slow lorentzian
depolarization and a small missing fraction are observed. The latter is supposed to arise from the muon
interactions at armchair edges (left), while the relaxing contribution is attributed to zigzag edges (right).

Although no definitive conclusions have been reached, contributions (2) and (3) are

found to be consistent with the following hypotheses: the lorentzian depolarization may

derive from muonium binding at the zigzag edges, where it is affected by the param-

agnetic electrons of nearby dangling bonds. A simple model, where each zigzag site

near the muon host a paramagnetic electron randomly fluctuating on a sphere and thus

generating an average dipolar field H̄dip, has been numerically implemented and the re-

sulting relaxation rate is found to be3 λ =
∑
ω2
µ(i) τ =

∑(
γµH̄dip(i)

)2
τ = 0.32µs−1,

3Here the characteristic time of electron fluctuations τ is an experimental parameter, derived form
the observation that these fluctuations frezees at 1.6K, where the relaxation start to follow a Gaussian
rather than Lorentzian form.
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in good agreement with experimental data. The analog influence of paramagnetic elec-

trons along the armchair edges can be excluded, because the different geometry would

induce a quite higher relaxation rate.

The missing fraction contribution, instead, can be tentatively attributed to the for-

mation of a muonated radical species at armchair edges. Preliminary repolarization

experiments in LF, indeed, seems to indicate an hyperfine interaction of ' 350 MHz4:

this is compatible with the σ electrons at armchair edges, since their electronic con-

figuration is similar to several organic compounds where typical frequencies of some

hundreds MHz are measured [114].

4.2 µSR investigation of Graphene

We now turn to the “heart” of the present research, the µSR studies of chemically

synthesized graphene. The investigated samples can be divided into 3 groups, corre-

sponding to the 3 synthesis methods adopted (table 6). For convenience they are listed

again in the following table:

Group of Samples studied

1 Solvothermal Graphene

2 Exfoliation of Reduced GO

3 Exfoliation of GO

Table 7. The three different groups of samples characterized by µSR.

In addition a few single samples with slightly different preparation have been consid-

ered, including a sample which underwent a treatment in H2SO4 (see paragraph 3.1.3).

Apart from a constant background from muons stopped in the sample holder, two main

contributions are observed in ZF µSR data, independently of sample preparation (20

different samples were investigated):

• A Lorentzian relaxation of polarization, experienced by a large fraction of the

muons, most probably due to the isolated paramagnetic electrons located at

unsaturated defects sites. This signal is analogue to the one already observed in

BMG, but the relaxation rate is almost one order of magnitude lower.

4The considered missing fraction is really small and more accurate experiments are needed. There-
fore this result should be taken with extreme care.
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Figure 58. ZF µSR data for a sample of group 1. The dashed line display the relaxation contribution
(from the fit in next figure), in order to evidence the oscillating component.

• A damped oscillation, fingerprint of the muon spin precession around a local

magnetic field (of the order of a few Gauss);

The striking observation of muon spin precession in graphene is of great interest, es-

pecially as it occurs in a 2dim material and because it opens relevant discussions on

the possibly related physical properties.

The model function that describes the muon polarization will be in the form

P (t) = Abg + A1e
−λt + A2Posc(t) (4.1)

where the first two terms account for the contributions of the silver sample holder 5 and

of the lorentzian relaxation respectively. To explain the origin of the observed preces-

sion, two different physical interpretations, which demonstrated to fit the experimental

data, can be considered:

Long range magnetic order

The rise of an ordered magnetic phase in the sample, either of ferro- or antifer-

romagnetic type.

µ-H dipolar interaction

The dipolar interaction between the muon and an hydrogen nucleus, similarly to

what is observed in the F-µ-F configuration [127] (section 2.2.3).

5Muon polarization in silver is essentially constant. It shows only a tiny lorentzian relaxation rate,
which was actually included in the fit.
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In the following we thoroughly analyze these two hypotheses and show that both are

fully consistent with the data. The discussion will allow important insights into the

physics of graphene. First the “magnetic interpretation” is developed and the role of

defects is discussed; then the “µ-H hypothesis” is introduced and, with the analysis

of hydrogenated samples at the beginning of next chapter, the main focus shift to the

interaction among graphene and the hydrogen atom. Finally the results of a specifically

designed experiment will solve the ambiguity and some more advanced considerations

will be possible.

An important notice: since the mathematical equations that describes the muon polar-

ization are quite different in the two models, any value obtained (even for the lorentzian

part) and any subsequent consideration hold valid only within the corresponding hy-

pothesis.

Figure 59. Best fit (yellow solid line) of ZF µSR data for a sample of group 1, in the hypothesis of
magnetic order (eq.4.2). The inset display the only oscillating contribution. The involved volume fraction

A and precession field Hhf vary slightly form sample to sample in the specified ranges (see text).
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4.3 The hypothesis of long range magnetic order

In the first model it is assumed that an ordered magnetic phase is present in (some

regions of) the sample. The oscillating signal observed is then attributed to the Larmor

precession of the muon spin around the internal field of the magnet Hhf and is described

by a single gaussian-damped harmonic wave

Posc(t) =
1

3
+

2

3
cos(γHhf t) exp (−σ2t2) (4.2)

A representative fit of eq.(4.2) to experimental data is shown in figure 59. In this

model all the samples from groups 1-3 follow the same behaviour, with frequencies

and amplitudes varying slightly from sample to sample, respectively in the ranges

Hhf = 4 · · · 9G and A = 5 · · · 15% (in volume fraction). The limited volume fraction

is probably due to the fact that the magnetic phase can form only where the defects

concentration is high enough and, most importantly, where the material is exfoliated

to single layers.

4.3.1 At the origin of Magnetism: defects

Based on the theoretical predictions of defect-induced magnetism (see section 1.8),

we performed Raman spectroscopy and SQUID susceptibility measurements on our

samples. Both techniques are indeed indicative of the defects concentration in the

samples: in magnetometry, since graphene has a diamagnetic response, the paramag-

netic contribution observed in the temperature dependence of magnetization provide

a quantitative estimation of defects concentration. Both unsaturated and saturated

vacancies, as well as chemisorbed hydrogen, are known to bring a magnetic moment

(see section 2.3.1). Regarding Raman spectroscopy, instead, this display a G band

(1580− 1590 cm−1), corresponding to the hexagonal order and a D band (1450− 1500

cm−1), with contributions from defects and edges [18]. Hence the ID/IG ratio of the

integrated intensities of the two peaks is relative indication of the total amount of

defects.

Despite SQUID measures only the paramagnetic fraction of the defects, the estima-

tions made by the two techniques agree well (fig.61a). The high correlation observed

between the defects concentration and the µSR precession signal amplitude (panel b)

and frequency (panel c) is a strong suggestion that the observed magnetism should be

traced back to the presence of defects in graphene.

Some considerations about the type of defects involved can also be advanced. Within

each group of samples (except the first), different graphite powders were taken into

consideration as a starting material: most of the samples are made from graphite
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(a). Typical Raman spectrum from a graphene
sample.

(b). Temperature dependence of magnetic sus-
ceptibility for a graphene sample in a field of 5kOe.
The solid line is the Curie-Weiss best fit to exper-

imental data (black points).

Figure 60. Techniques for the characterization of Defects concentration.

Figure 61. a.Correlation between the amplitude of SQUID paramagnetic susceptibility and Raman ID/IG
ratio. Both quantities are indicative of defects concentration in graphene. b-c. The dependence of the
muon precession amplitude and frequency from the Raman ID/IG suggests that defects could be the
origin of the observed magnetism. While the dashed lines are intended just to evidence the presence of
correlation in a and b, in panel c a logarithmic correlation is displayed, in agreement with the theoretical

predictions (see next section).

powder with an average grain size of 66 µm, but a part of the samples were made from

a graphite with smaller mesh (1.5 µm) and from ball-milled graphite. However, within

experimental errors, no differences have been found among these samples. This result

suggest that mainly carbon vacancies and chemisorbed species (H,OH) contribute to

the formation of the magnetic phase, since edges seem not to play a major role.
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4.3.2 Comparison to theoretical results

As discussed in section 1.8, theoretical studies have shown both single atom vacancies

and chemisorbed hydrogens induce a net spin polarization on the neighbouring atoms.

When the density of this defects is large enough, magnetism appears [10]. On this

basis, our collaborator prof. Oleg Yazyev has implemented first-principles calculations

on a defective honeycomb lattice, using the spin-polarized Density Functional Theory

(GGA) scheme implemented in the SIESTA code [182, 183]. The calculated hyperfine

interaction between the defect states and the muon spin follow a logarithmic behaviour

as a function of the defects concentration x

Aloc =

[
ln

(
a +

b

x

)]−1

a = 1.0078G−1 b = 4.75 · 10−5

(4.3)

For the defects concentration estimated in our samples (a few hundred ppm) the the-

oretical expectations match the measured values of the local field (4 · · · 8 Oe).

Figure 62. Theoretically expected dependence of the Hyperfine interaction Hhf (local field on the muon,
in G) on defects concentration.

4.3.3 Nature of the magnetic interactions

Once it is clear if the observed precession is a signature of the presence of long range

magnetic order, the question of whether it is of ferromagnetic (FM) or antiferromag-

netic (AFM) character emerges. ZF µSR is unable to distinguish between the two

cases as it probes the magnetization locally. However, the application of a longitudinal

external field can help to clarify this issue.
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Figure 63 shows the field dependence of the observed precession field at room tem-

perature (in the same sample of the data shown above). The dashed line represents

the expected dependence if the local field Hhf is considered insensitive to the external

field, behaviour which is generally expected in the case of AFM order. The total field

is then evaluated as the simple vector sum ~Htot = ~Hext + ~Hhf (0), averaged over all

the possible powder orientations. On the contrary, in the case of FM ordering below

saturation, the internal magnetization is expected to partially screen the external field,

even in the 2dim case [184].

Figure 63. Left.Dependence of the muon precession frequency on small LF. The observed behaviour
follows the expectation for the AFM case. Right. Ferromagnetic contribution of the SQUID magnetization

curve of graphene at 300 K. The dominant diamagnetism has been subtracted (see fig.43, p.63.

A further insight into this issue is obtained by SQUID magnetometry. The field depen-

dence of magnetization in a graphene sample from group 2 (all the samples show the

same qualitative behaviour) is shown in the right panel of fig.63. A small ferromagnetic

contribution is actually observed and looks contradictory with the evidence of AFM

mentioned previously. However, this can be attributed to a small quantity of magnetic

impurities (' 25 ppm in this case), observed by elemental analysis.

This result completes the SQUID characterization of graphene, which do not evidence

the presence of any magnetic phase in graphene, as confirmed by a recent study [93].

4.4 The hypothesis of nuclear dipolar interactions

The observed precession of the muon spin is also consistent with the formation of a µ-H

state, where the local field is the dipolar field of the hydrogen nucleus (see sec.2.2.3).
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To yield a similar state the implanted muon have to form Muonium and ends up close

to a single hydrogen nucleus.

Figure 64. Best fit (yellow solid line) of ZF µSR data for a sample of group 1, in the hypothesis of µ-H
interaction (eq.4.4). The inset display only the oscillating contribution.

In this model the muon polarization is no more described by a simple harmonic os-

cillation, but takes the form given in eq.(2.21) (with an additional phenomenological

damping)

Posc(t) =
1

6

[
1 + cos (γµBdipt) + 2 cos

(
1

2
γµBdipt

)
+ 2 cos

(
3

2
γµBdipt

)]
eλosct .

(4.4)

The best fit of this expression to the ZF data of a sample from group 1 (same data

analyzed for the magnetic hypothesis) yields a dipolar field Bdip = 5.20± 0.05G and

hence a µ-H distance

rµ−H = 3

√
µ0 ~ γH
4πBd

= 1.76± 0.006 Å. (4.5)

On the graphene plane, this distance is consistent with a Mu−C −H (CH2) configu-

ration, where the muon and the hydrogen are bound to the same carbon atom (fig.65).

A similar species can only form either next to a in-plane vacancy or at graphene edges:
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Figure 65. A Mu−C−H (CH2) configu-
ration, in proximity of an in-plane vacancies.

the carbon atom, indeed, should be bond only

to two other carbons and to an hydrogen, in or-

der to have the last orbital free to host muo-

nium. These “hydrogenated vacancies”, as we

can shortly call the configuration in the above

figure, should be admitted to have an exception-

ally high cross section for hydrogen capture, due

to the high fraction of precessing muons with re-

spect to the rather low density of defects mea-

sured by Raman and SQUID. This suggests that

muons (and hence also hydrogen atoms) can eas-

ily diffuse onto the graphene plane before being

trapped by the defects.

The whole analysis of experimental data, performed with the MuLab suite [185], led

to the following results:

• the amplitudes vary irregularly from sample to sample and the interaction interest

up to 18% of the total incoming muons;

• All the samples from group 2 revealed, within experimental error, the same

dipolar field (and µ-H distance)

B2 = 5.20± 0.2G r2 = 1.76± 0.025 Å

and similarly the samples from group 3, but with slightly different values

B3 = 4.45± 0.1G r3 = 1.85± 0.02 Å.

• The behaviour of samples of type 1 is more complex, since they contain an

higher concentration of adsorbed chemical species (H,O,OH) and moisture. If

they are annealed in vacuum above 600◦C, in order to remove these impurities,

they display a muon precession frequency consistent to the values of group 2. In

their as-prepared form, instead, they display an higher frequency:

Bas−prep.
1 = 5.75± 0.05G ras−prep.1 = 1.70± 0.02 Å.

A first idea to shed new light on these µSR results and try to distinguish the correct hy-

pothesis has been to characterize a group of hydrogenated samples. Their investigation

is proposed in the next chapter.
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Chapter 5

Hydrogen dipolar interactions in

Graphene

5.1 Hydrogenated samples

Stimulated by the interesting results obtained in as-prepared graphenes, the µSR inves-

tigations have been extended to hydrogenated samples or, more precisely, to samples

treated in hydrogen atmosphere at high temperatures (between 600◦C and 1000◦C),

treatment that proved effective in increasing the hydrogen content in the material (as

described in section 3.3). Figure 66 displays the fit of ZF µSR experimental data with

(a). The solid line is the best fit according to
the µ-H model (eq. 4.4).

(b). The solid line is the best fit in the hypoth-
esis of magnetic order (eq. 4.2). The inaccuracy
of the fit at long times indicate that this model
cannot properly account for the muon behaviour

in hydrogenated samples.

Figure 66. ZF µSR data in a graphene sample prepared according to
method 3 and hydrogenated at 1000◦C.
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both the considered models. It is apparent that the amplitude of the observed preces-

sion is much larger in these new samples: according to the µ-H model, the involved

volume fraction ranges from 25 up to 40%, taking the maximum value in the sample

hydrogenated at 800◦C, and the dipolar field probed by the muon results to be the

same in all hydrogenated samples, independently from the preparation of the original

graphene

B4 = 5.75± 0.08G r4 = 1.70± 0.02 Å.

We may then add a fourth group to the samples table and summarize the µSR results

in the µ−H model as follow:

Group of Samples studied

1 Solvothermal Graphene
as-prepared r1 = r4

annealed r1 = r2
2 Exfoliation of Reduced GO r2 = 1.76± 0.025 Å

3 Exfoliation of GO r3 = 1.85± 0.02 Å

4 Hydrogenated Graphene r4 = 1.70± 0.02 Å

Table 8. The four different groups of samples characterized by µSR and the observed µ - H distance.

Therefore three different values of the muon-hydrogen distance are measured, with as-

prepared samples of type 1 that are found to be equivalent to hydrogenated samples,

probably as they actually contain many hydrogen impurities, as anticipated. Since all

these dipole-dipole distances are quite closer one to each other, it is difficult to say

whether they are geometrical distortions of the same configuration or if the muon-

hydrogen interaction occurs at distinct sites. We will address this issue later, with the

help of complementary experimental techniques.

Figure 66b also offer an evidence that the magnetic hypothesis does not properly

account for the data in hydrogenated samples, as a simple harmonic oscillation does

not fit properly in the long times range. On the other hand, the increase of the µSR

signal upon hydrogenation is consistent with both the considered models and does not

allow to discriminate between the two: indeed it is apparent that the amplitude should

increase in the case of a muon-hydrogen dipolar interaction and, when discussing the

magnetic properties of graphene, we introduced that a chemisorbed hydrogen could

contribute to the formation of a magnetic phase. Further investigations on the origin

of the precession are thus needed.
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5.2 A specifically designed experiment

A simple experiment has been designed to definitely clarify the origin of the precessing

µSR signal. In particular it is proposed to study graphene samples where hydrogen

is isotopically substituted by deuterium: in this system, in case of long-range mag-

netic order the signal should not change with respect to as-prepared or hydrogenated

graphene; on the contrary, if the magnetism is of nuclear origin, a lower precession field

is expected, due to the lower gyromagnetic ratio of deuterium. The isotope substitution

is performed by a thermal treatment in D2 flow at 800◦C: the deuterium-hydrogen ex-

change during this process resulted efficient, as tested by deuterium NMR experiments

(see section 5.4) and inelastic neutron scattering (where the signal of the deuterated

sample drop to low intensities and is essentially given by the contribution of carbon,

see fig. 67).

Figure 67. Inelastic neutron scattering spectra for as-prepared, hydrogenated and deuterated graphene
and for graphene treated in H2SO4 before the exfoliation. The hydrogen contribution is almost negligible
in the deuterated sample. The blue arrows stress the features present only in the hydrogenated samples

(see the text in section 5.4).
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Preliminary µSR data in a deuterated sample shows a relaxation of polarization (that

on the typical timescale of the µSR experiment could be also a slow precession, approx.

1G). Although more systematic measurements on deuterated species are needed1, this

result already allows to conclude that the onset of µ-H dipolar interactions

is the correct interpretation of the µSR experiments.

Figure 68. Preliminary µSR ZF measurements in deuterated and hydrogenated graphene. The precession
signal is not observed any more in the deuterated sample.

Once again this technique proves to be an efficient experimental tool for the investi-

gation of the hydrogen behaviour in materials. In particular we have seen that muons

in graphene probe the dipolar interaction among hydrogen nuclei. The dipole-dipole

distance measured is compatible with the formation of CH2 fragments and suggests

that vacancies saturated by hydrogen are effective in binding a second hydrogen atom.

Consequently hydrogen shall be supposed to diffuse on the graphene plane before being

captured by these sites.

With respect to the magnetic hypothesis, these µSR results, together with our SQUID

investigations, pose important limits on magnetism in graphene: µSR, indeed, is very

sensitive to the local internal field and does not show the presence of any magnetization.

1The fast-relaxing component observed here does not allow to fit this preliminary data to the model
developed in chapter 2. A specific µSR experiment on deuterated samples, including measurements
at low temperature where the relaxation may slow down, has already been accepted at ISIS and is
scheduled shortly.
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5.3 More µSR results

In this section some more results of the µSR investigations are described, in order to

highlight other relevant features of the muon-hydrogen dipolar interaction. The work

on these topics is still in progress and any observation made here (and in the following

section) should not be taken as a definitive conclusion, but rather as a suggestion of

possible interpretation.

5.3.1 Thermal stability

An important feature of the µSR signal in graphene, which we have left out so far,

is its exceptional thermal stability. ZF measurements on hydrogenated graphene have

shown that the muon can probe the hydrogen dipolar interaction up to 1220 K, the

maximum investigated temperature. This experimental evidence is rather surprising

since the thermal detachment of hydrogen (and muonium) from the graphene plane

is expected at far lower temperatures: in particular graphane is known to convert to

graphene already at 720 K [186].

Figure 69. Temperature dependence of (Left) the dipolar frequency and of
(Right) the precessing signal amplitude.

As displayed in figure 69 the nuclear dipolar field is constant from low temperature

up to 400 K and then gradually lower with increasing temperature, reaching 4 G

at 1220 K. A more complete study is in progress, however the thermal activation

of molecular dynamics may be suggested to explain this behaviour, especially if we

take into account the isotope effects related to muonium: this hydrogen isotope has

a substantially smaller mass and thus its bending and vibrational motions are much
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wider and could account for the longer distance (lower precession field) observed at

high temperature. On the other hand, the amplitude of the precessing signal is found

to increase linearly with temperature. A preliminary explanation can be advanced as

follow: we evidenced in section 4.4 that muons could diffuse onto the graphene plane

before being trapped by the defects; with high temperature the increase in kinetic

energy can bring to a longer average diffusion length and hence the muons would have

more probability to reach the defects sites. Furthermore please notice that the damping

of the precession component (eq.4.4) changes from Lorentzian to Gaussian above 800

K, as pointed out in the figure. This relaxation is introduced as a phenomenological

parameter, related to the dephasing of the muon spins during the precession, similarly

to what is usually done with the Bloch equations in NMR (sec. 2.1.2): in general

many factors influence this quantity and thus further analyses are needed to explain

its complex behaviour. An additional insight on the damping rate, however, is given

by its temperature dependence, shown in fig.70b: here it can be seen that it decreases

linearly with increasing temperature until it keeps a Lorentzian form and then increases

when changing to a Gaussian form.

(a). The Lorentzian relaxation rate is constant
over the whole temperature range.

(b). The damping rate for the precessing con-
tribution.

Figure 70. Temperature dependence of µSR relaxation parameters in graphene.
Lines are guide for the eye.

Finally, to complete the overview of the temperature dependence of µSR signal, it

is worth looking at the behaviour of the non-oscillating component (see eq.4.1): the

lorentzian relaxation of polarization, caused by paramagnetic impurities, does not dis-

play any dependance on temperature over the whole investigated range, as can be

expected due to the high energy of electrons fluctuations, and varies slightly from

sample to sample around the average value λ = 0.048± 0.01µs−1.
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5.3.2 Behaviour in Longitudinal Fields

The dependence of the µ-H interaction on an externally applied field can also be

of interest. Preliminary Longitudinal field (LF) measurements in an hydrogenated

sample have shown that, for increasing external field, the muon precession frequencies

gradually raise, while the involved volume fraction slowly decreases, as can be expected

since more and more muons starts to align their polarization to the external field.

Unfortunately it is not possible to offer here a quantitative analysis of the signal, since

the mathematical description of the µ-H interaction in presence of an external field is

rather complicated and it is still under development.

5.3.3 High statistic measurements

Apart from the groups of samples 1-4 a few additional samples were measured: these

include a sample which underwent the reduction step with NaBH4 (typical of group

2) and a further chemical treatment in H2SO4, described in section 3.1.3, which is

known to remove the defects from the graphene plane. The ZF µSR signal of this

“repaired graphene” is different from anyone else: it displays beats corresponding to a

lower hydrogen dipolar field of only 2.1±0.3G and hence to a muon-hydrogen distance

rµ−H = 2.4± 0.1 Å.

Figure 71. ZF µSR data in the sample treated with sulphuric acid. A slow precession is observed.
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This result can be compared to a very high statistics measurement2 performed on a

sample from group 13 . The accuracy reached allows to recognize that a single oscil-

lating component is not enough to properly account for the observed signal and an

additional contribution has to be considered. Therefore two different muon-hydrogen

interactions sites are involved: one is characterized by the dipole-dipole distance ob-

served from the beginning

Bdip = 5.22± 0.05G r = 1.76± 0.02 Å

while the dipolar field at the second site is found to be consistent to the one measured

in the “repaired graphene”

Bdip = 1.70± 0.15G r = 2.55± 0.06 Å .

Figure 72. ZF µSR data (black points) in a sample from group 1, recorded with a very high statistic.
An accurate fit (yellow solid line)is obtained by considering two precessing components. The sum of their

contributions is shown in the inset, where the relaxing part is subtracted.

2We have not considered up to now this high statistics measurements for clarity.
3This sample has been annealed in vacuum at 800◦C and then, as discussed, display the same

dipolar frequency of samples from group 2.
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5.4. Sites of interaction

Figure 73. Distances of 2.4Å in the
graphene structure.

This may lead us to consider that in-plane de-

fects, similar to the hydrogenated vacancies of

fig.65, are the sites with a typical µ-H distance of

approximately 1.75 Å; after the chemical treat-

ment in H2SO4, that is effective in removing

these vacancies, only the other component is left:

its characteristic µ-H length, 2.4 − 2.5 Å, may

be identified in the graphene lattice as the dis-

tance between the aromatic meta-carbons (sec-

ond nearest-neighbours) or as the C-C distance

along zigzag edges.

5.4 Sites of interaction

In the following we address the emerging question about which types of defects host

the muon-hydrogen dipolar interactions and are therefore privileged sites for hydrogen

in graphene. To this aim, besides µSR results, we consider the perspective offered by

a complementary technique, solid state NMR; thanks to the availability of deuterated

graphene samples, we have performed NMR measurements on the deuterium nuclei:

the quadrupolar interaction, indeed, strongly depend on structural details and may

help to distinguish the sites of interaction.

2H NMR in graphene

Deuterium NMR measurements in graphene has been performed with a commercial

Tecmag Apollo spectrometer and a Bruker standard probe for solid state NMR, in

an external field of approximately 8 T (2H resonance frequency 52.3178 MHz). Both

deuterated water and plexiglass were used as reference compounds4.

Figure 74 displays the NMR powder spectrum recorded over a long acquisition (3

week, approximately 200 000 repetitions), after proper data analysis. Here the red

solid line is the best fit to the spectrum5 , including two quadrupolar components with

vanishing asymmetry parameters and quadrupolar frequencies ωQ1 = 136 kHz and

ωQ2 = 36.6 kHz for the most and least intense respectively.

4In water motional narrowing effects occur and a single line is observed. This may help to tune
the resonance frequency and set the pulse length. In plexiglass the full quadrupolar spectrum of alkyl
deuterons is visible and the sequence and parameters for the experiments can be tested.

5For the interpolation of NMR spectra we used specific libraries for the simulation of quadrupolar
powder pattern, courtesy of Prof. G.Allodi (Parma University).
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Figure 74. 2H NMR spectrum of deuterated graphene at 300 K . The best fit (red solid line) to
experimental data (blue points) include two well evident quadrupolar contributions (dashed lines).

The evidence for two different quadrupolar frequencies suggest deuterium (hydrogen)

populates two distinct sites on graphene. However, to obtain more information from

NMR, calculations of the electric field gradient need to be developed.

Comparison with other techniques

The observation of two different sites for hydrogen in graphene seems to be related

to other experimental observations. In Inelastic Neutron Scattering the major peaks

in the spectrum of as-prepared graphene seem to be related to a single molecular

dynamics, already observed in other carbon-based systems [187] , while additional

features are visible only in hydrogenated samples: in particular, as evidenced by the

blue arrows in fig.67, the contribution around 150meV becomes more pronounced and

a new peak appears at 120meV . At first sight, from these results it seems that upon

hydrogenation a new site starts to be populated by the hydrogen atoms and a total

of two sites are thus seen by neutrons. To confirm these suggestions, first principle

simulations on hydrogen dynamics in graphene have to be performed. Together with

the planned investigation of the Quasi Elastic region of the spectrum, these calculations

will help to get a more complete picture.
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5.4. Sites of interaction

The existence of two possible sites of interaction is also strongly related to µSR re-

sults: at the current development of the analyses, however, it is not possible to confirm

whether the two quadrupolar frequencies seen by NMR correspond to the two dipolar

lengths discussed in the last section (1.75 and 2.50 Å) or rather to two of the slightly

different distances reported in table 8. Moreover we cannot exclude the possibility that

the two sites evidences may have the same muon-hydrogen dipolar frequency.

The experimental results outlined above about the possible sites of interaction lead

to a few open questions: the 2 possible hydrogen sites observed can be attributed

to specific defects (maybe in-plane vacancies and edges)? Is there any possibility to

distinguish the µSR contributions of different type of defects? Which sites are more

effective in attracting hydrogen? The development of the researches started in this

chapter, mainly arisen from the µSR characterization, can answer these questions and

be of help for the general understanding of the hydrogen interactions in graphene.
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Conclusions

In the present thesis large scale samples of graphene have been prepared by different

chemical methods and characterized by Muon Spin Rotation/Relaxation and other

complementary techniques.

With respect to synthesis, the graphite oxidation and thermal exfoliation processes

have been optimized and are found to be effective for the production of single-layer

gram-scale graphene samples. Besides the traditional electron microscopies, also a

bulk solid-state technique, Inelastic Neutron Scattering, has demonstrated to provide

valuable structural information and feedbacks on the preparation procedure.

The main results has come from µSR spectroscopy, which proved a useful tool to study

the interactions of the hydrogen atom with the defective graphene plane. A clear muon

spin precession is observed in all the samples, contrary to the standard behaviour of

graphite and to what observed in nanographites, which displayed only a slow relaxation.

Its origin lies in the magnetic dipolar interactions of hydrogen nuclei present at defects,

which reveal the structural conformation of hydrogen impurities sites. In particular

it was found that the observed precession could be attributed to the formation of a

CHMu (CH2) state and the signal amplitude suggests that vacancies saturated by

hydrogen have an extraordinary hydrogen capture cross-section.

With respect to the magnetic hypothesis, the µSR results, together with our SQUID

investigations, pose important limits on magnetism in graphene: µSR, indeed, is very

sensitive to the local internal field and does not show the presence of any magnetization.

From the µSR investigation several open questions have emerged, in particular regard-

ing which type of the defects that host the CH2 species. The Neutron Scattering and

NMR investigations discussed at the end of chapter 5 are intended to address these

issues and the analyses are in progress. In particular to extract structural informa-

tion from the NMR data, it will be necessary to evaluate the electric filed gradient at

deuterium sites. The study of graphene dynamics by Inelastic neutron scattering will

be extended to the Quasi-Elastic region and first-principle simulations will allow the

interpretation of the spectra.
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Other short-term developments of the µSR studies include:

• further investigations on the thermal stability of the interactions even above the

maximum investigated temperature (1220 K);

• the extension of µSR measurements of deuterated samples at low temperature,

where the possibly slower relaxation may help to fit the data;

• the mathematical description of the µ-H interaction in presence of an external

field and the analysis the corresponding LF µSR data.

More long-term perspectives are related to the integration of the present research into

the international HyCarbo6 project, addressed to the development of carbon-based

materials for hydrogen storage applications.

Within this framework, useful studies can be directed on the one hand to a compre-

hensive understanding of the interactions of hydrogen atoms and molecules with the

graphene layer and, on the other hand,to the improvement of synthesis procedures,

to possibly control and even engineering the defects concentration and the hydrogen

interaction sites.

6This project is funded by the Swiss National Science Foundation and sees the collaboration among
Parma University, the EMPA Swiss federal institute, section Hydrogen and energy, and other Swiss
academic institutions.
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Appendix A

Muon-Hydrogen dipolar interaction

The dipolar interaction between the muon spin ~I and the hydrogen nuclear spin ~S can

be expressed by the Hamiltonian

H = − µ0

4πr3
~2 γµ γH

[
3
(
~I · r̂

)(
~S · r̂

)
− ~I · ~S

]
= −~ωD

[
3
(
~I · r̂

)(
~S · r̂

)
− ~I · ~S

] (A.1)

where, for convenience, the front coefficients and the dipole-dipole distance r are in-

cluded in the definition of the dipolar frequency ωD = −~ γµ γH µ0

4πr3
.

Chosen a reference frame with the z axis oriented along the dipole axis this become

H = −~ωD (2IzSz − IxSx − IySy) .

In the following the time evolution of the muon spin polarization is evaluated starting

from the above Hamiltonian.

1. First consider the ordinary Pauli spin matrices (I = S = 1
2
)

Ix = Sx =
1

2

(
0 1

1 0

)
Iy = Sy =

1

2

(
0 −i
i 0

)
Iz = Sz =

1

2

(
1 0

0 −1

)

2. The different terms of the Hamiltonian can be evaluated as direct products of these

spins in a (4 × 4) tensor space (in the products the proton is chosen as the outer

components, while the muon is associated to the inner component):

Sz⊗Iz =
1

4


1 0
0 −1

0

0 −1 0
0 1

 Sx⊗Ix =
1

4

 0 0 1
1 0

0 1
1 0

0

 Sy⊗Iy =
1

4

 0 0 −1
1 0

0 1
−1 0

0


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The total Hamiltonian results

H = −~ωD (2IzSz − IxSx − IySy) =
~ωD

2


−1 0 0 0

0 1 1 0

0 1 1 0

0 0 0 −1



3. The computation of the energy eigenvalues can be obtained from the characteristic

equation

det(A− λI) = 0

(−1− λ)2 [(1− λ)2 − 1
]

= 0

(λ+ 1)2 (λ2 − 2λ
)

= (λ+ 1)2 λ (λ− 1) = 0

and results

λ1/4, = −1

2
~ωD λ2 = 0 λ3 = ~ωD

The transformation from the basis set of Iz, Dz to the basis set of the energy eigenstates

results turns out to be expressed by the unitary matrix 1

U = ~


1 0 0 0

0 −
√

2

2

√
2

2
0

0

√
2

2

√
2

2
0

0 0 0 1



4. The diagonal form of the Hamiltonian allows to easily evaluate the time evolution

operator

Ediag(t) = e−i
H
~ t =


e

1
2
iωDt 0 0 0
0 1 0 0
0 0 e−iωDt 0

0 0 0 e
1
2
iωDt

 =

α−1 0 0 0
0 1 0 0
0 0 α2 0
0 0 0 α−1


1As indicated by the dotted lines, the eigenvectors in these matrix are ordered by columns. Notice

that this convention, although very common, is opposite to the one used in the Mathematica software,
generally used to handle similar symbolic matrices. According to this convention the diagonal form
of the Hamiltonian is given by HD = U−1HU .
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where, for convenience, α has been defined as α = e−
1
2
iωDt. Back in the basis set of

angular momenta (Iz and Dz) the time evolution operator is given by

E(t) = U Ediag(t)U
−1 =


α−1 0 0 0

0
1

2
+

1

2
α2 −1

2
+

1

2
α2 0

0 −1

2
+

1

2
α2 1

2
+

1

2
α2 0

0 0 0 e
1
2
iωDt


For later use, it is worth evaluating this matrix also at time −t

E(−t) = U Ediag(−t)U−1 =


α−1 0 0 0

0
1

2
+

1

2
α−2 −1

2
+

1

2
α−2 0

0 −1

2
+

1

2
α−2 1

2
+

1

2
α−2 0

0 0 0 e
1
2
iωDt


5. As we deal with LF µSR experiment, we now need to change the reference frame

from the principal axes of the dipolar interaction to a new coordinate system (x′, y′, z′)

whose z′ axis is oriented along the initial muon spin polarization. The muon spin

projection along the dipole axis (which we call Iζ and not Iz anymore, in order to

stress we are writing it in a different reference frame) is now given by

Iζ = Iz′ cos θ+ Ix′ sin θ =
1

2
cos θ

(
1 0

0 −1

)
+

1

2
sin θ

(
0 1

1 0

)
=

1

2

(
cos θ sin θ

sin θ − cos θ

)
and in the tensor space it is written as

Iζ = I2 ⊗ Iζ =
1

2


cos θ sin θ
sin θ − cos θ

0

0 cos θ sin θ
sin θ − cos θ


6. The muon spin polarization observed in µSR is the expectation value of this operator

and can be obtained as

P (t) = Tr [E(t) Iζ E(−t) Iζ ] .

Exploding the complex exponentials in their real and imaginary parts one gets

P (t) =
1

4
cos2 θ [2 + cos (ωDt)− i sin (ωDt) + cos (ωDt) + i sin (ωDt)] +

+
1

4
sin2 θ

[
cos

(
ωDt

2

)
− i sin

(
ωDt

2

)
+ cos

(
ωDt

2

)
+ i sin

(
ωDt

2

)
+ 2 cos

(
3

2
ωDt

)]
111
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P (t) =
1

2
cos2 θ [1 + cos (ωDt)] +

1

2
sin2 θ

[
cos

(
ωDt

2

)
+ cos

(
3

2
ωDt

)]
This expression describe the muon spin polarization for the case of a single crystal

with the dipole axis which form an angle θ with respect to P (0).

7. For polycrystalline samples the “powder average” over all possible orientations have

to be performed [132]

〈P (t)〉 =
1

8π2

∫ 2π

0

dα

∫ 2π

0

dγ

∫ π

0

dθ sin θ P (t)

=
1

8π2
2π 2π

∫ π

0

P (t) sin θ dθ

=
1

4
[1 + cos (ωDt)]

∫ π

0

cos2 θ sin θ dθ +
1

4

[
cos

(
ωDt

2

)
+ cos

(
3

2
ωDt

)]∫ π

0

sin3 θ dθ

The simple integrals to be performed are:

−→
∫ π

0

cos2 θ sin θdθ =

∫ π

0

− cos2 θ d(cos θ) =

=
cos3 θ

3
|π0 =

2

3

−→
∫ π

0

sin2 θ sin θdθ =

∫ π

0

(1− cos2 θ) sin θdθ =

=

∫ π

0

sin θdθ −
∫ π

0

cos2 θ sin θdθ =

= (− cos θ)|π0 −
2

3
= 1 + 1− 2

3
=

4

3
.

And the powder average of polarization finally results

〈P (t)〉 =
1

6

[
1 + cos (ωDt) + 2 cos

(
1

2
ωDt

)
+ 2 cos

(
3

2
ωDt

)]
.

The latter equation is the model function to be used for the interpolation of ZF µSR

data in powder samples where the muon experience the nuclear dipolar field of an

hydrogen atom.
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Muon-Deuterium dipolar

interaction

In the following the full calculations of the muon spin polarization function in case of

µ-D dipolar interaction are shown. The general procedure and the main steps followed

are already described in section 2.2.3. Here more mathematical details can be found.

The µ-D Hamiltonian includes both a dipolar and a quadrupolar term (spin D = 1).
2H NMR experiments (see section 5.4) have shown that graphene display a vanishing

asymmetry of the quadrupolar interaction (η = 0), as expected for a 2dim material.

Within this approximation the full Hamiltonian is:

H = − ~ωD
[
3
(
~I · r̂

)(
~D · r̂

)
− ~I · ~D

]
+

+
eQVZZ

4D(D + 1) · 2
(
3 cos2 β − 1

) [
3D2

z −D(D + 1)
]

Here the dipolar frequency is defined like in the µ-H case and the quadrupolar pa-

rameters are the same introduced in the NMR section (2.1). β is the angle between

the dipole axis and the direction of the electric field gradient at the deuterium site (Z

principal axis of the quadrupolar interaction). It will remain up to the end and will

be considered a parameter of the fit model function.

It is convenient to define also the quadrupolar frequency ωQ and the quadrupolar

constant kQ as

ωQ =
3eQVZZ

4D(2D − 1)~
kQ =

ωQ
2

(
3 cos2 β − 1

)
and, if a reference frame with the z axis oriented along the dipole axis is chosen, the
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Hamiltonian reduces to

H = −−~ωD (2IzSz − IxSx − IySy) +

+
~kQ

3

[
3D2

z −D(D + 1)
]

The last term D(D + 1) is a constant and introduce only a rigid shift of the energy

levels: as far as we are interested in the muon precessing frequencies (i.e. in energy

differences) this part can be neglected and the latest expression further simplifies to

H = −~ωD (2IzSz − IxSx − IySy) + ~ kQD2
z .

In the following the time evolution of the muon spin polarization is evaluated starting

from the above Hamiltonian.

1. First consider the Pauli spin matrices for the muon spin (I = 1/2) and for the

deuterium spin (D = 1):

Ix =
1

2

(
0 1

1 0

)
Iy =

1

2

(
0 −i
i 0

)
Iz =

1

2

(
1 0

0 −1

)

Dx =
1√
2

 0 1 0

1 0 1

0 1 0

 Dy =
1√
2

 0 −i 0

i 0 −i
0 i 0

 Dz =
1√
2

 1 0 0

0 0 0

0 0 −1


2. The different terms of the Hamiltonian can be evaluated as direct products of

these spins in a (6× 6) tensor space (in the products deuterium is chosen as the outer

components, while the muon is associated to the inner component):

Dz ⊗ Iz =
1

2



1 0

0 −1
0 0

0 0 0

0 0
−1 0

0 1



Dx ⊗ Ix =
1

2
√

2



0
0 +1

+1 0
0

0 +1

+1 0
0

0 +1

+1 0

0
0 +1

+1 0
0


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Dy ⊗ Iy =
1

2
√

2



0
0 −1

1 0
0

0 1

−1 0
0

0 −1

1 0

0
0 1

−1 0
0


The last term to be computed is

D2
z =

 1 0 0

0 0 0

0 0 1

 and in the tensor space I2 ⊗D2
z =


1 0
0 1

0 0

0 0 0

0 0 1 0
0 1


To evaluate the total hamiltonian

H = −~ωD (2IzSz − IxSx − IySy) + ~ kQD2
z

one can first perform the sum in the parentheses

2 0 0 0 0 0

0 −2 − 1√
2

0 0 0

0 − 1√
2

0 0 0 0

0 0 0 0 − 1√
2

0

0 0 0 − 1√
2
−2 0

0 0 0 0 0 2


.

and, in turn, H results

H = ~



−2ωD + kQ 0 0

0 +2ωD + kQ

√
2

2
ωD

0

√
2

2
ωD 0

0

0

0

√
2

2
ωD 0

√
2

2
ωD +2ωD + kQ 0

0 0 −2ωD + kQ


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For clarity in the subsequent calculations the D and Q subscripts of the dipolar fre-

quency ω and quadrupole constant k will be omitted and we define the additional

parameter α as

α =
√

6ω2 + 4ωk + k2

3. The computation of the energy eigenvalues λi yields

λ1,2 = ~(−2ω + k) λ3,4 =
~
2

(2ω + k − α) λ5,6 =
~
2

(2ω + k + α)

and the eigenvectors matrix U that express the transformation from the basis set of

Iz, Dz to the basis set of the energy eigenstates results 1

U = ~



1 0 0 0 0 0

0 0 0
2ω + k − α

ω
√

2
0

2ω + k + α

ω
√

2
0 0 0 1 0 1

0 0 −2ω + k + α

ω
√

2
0 −2ω + k − α

ω
√

2
0

0 0 1 0 1 0
0 1 0 0 0 0



4. The diagonal form of the Hamiltonian allows to easily evaluate the time evolution

operator

Ediag(t) = e−i
H
~ t =



ei(2ω−k)t 0 0
0 ei(2ω−k)t 0

0 0 e−
i
2
(2ω+k−α)t

0

0
e−

i
2
(2ω+k−α)t 0 0

0 e−
i
2
(2ω+k+α)t 0

0 0 e−
i
2
(2ω+k+α)t


which back in the basis set of angular momenta (Iz and Dz) is given by

E(t) = U Ediag(t)U
−1

and for convenience we should also evaluate

E(−t) = U Ediag(−t)U−1

1s indicated by the dotted lines, the eigenvectors in these matrix are ordered by columns. Notice
that this convention, although very common, is opposite to the one used in the Mathematica software,
generally used to handle similar symbolic matrices. According to this convention the diagonal form
of the Hamiltonian is given by HD = U−1HU .
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5. As we deal with LF µSR experiment, we now need to change the reference frame

from the principal axes of the dipolar interaction to a new coordinate system (x′, y′, z′)

whose z′ axis is oriented along the initial muon spin polarization. The muon spin

projection along the dipole axis (which we call Iζ and not Iz anymore, in order to

stress we are writing it in a different reference frame) is now given by

Iζ = Iz′ cos θ+ Ix′ sin θ =
1

2
cos θ

(
1 0

0 −1

)
+

1

2
sin θ

(
0 1

1 0

)
=

1

2

(
cos θ sin θ

sin θ − cos θ

)
and in the tensor space it is written as

Iζ = I3 ⊗ Iζ =
1

2


cos θ sin θ
sin θ − cos θ

0 0

0 cos θ sin θ
sin θ − cos θ

0

0 0 cos θ sin θ
sin θ − cos θ


6. The polarization observed in µSR is the expectation value of this operator and can

be obtained as

P (t) = Tr [E(t) Iζ E(−t) Iζ ]

P (t) =
1

2α2
cos2 θ

[
3k2 + 12kω + 14ω2 + 4ω2 cos (αt)

]
+

+
1

4α2
sin2 θ e−2ikt ·{

ω2eit(2k−α) + ω2eit(2k+α) + 2ei 2kt
(
α2 − ω2

)
+

+ e
it
2

(3k−6ω−α)
(
α2 − kα− 2ωα

)
+

+ e
it
2

(5k−6ω+α)
(
α2 − kα− 2ωα

)
+

+ e
it
2

(5k−6ω−α)
(
α2 + kα + 2ωα

)
+

+ e
it
2

(3k+6ω+α)
(
α2 + kα + 2ωα

)}
P (t) =

1

2α2
cos2 θ

[
3k2 + 12kω + 14ω2 + 4ω2 cos (αt)

]
+

+
1

4α2
sin2 θ{

ω2e−itα + ω2eitα + 2
(
α2 − ω2

)
+

+ e
it
2

(−k+6ω−α)
(
α2 − kα− 2ωα

)
+

+ e
it
2

(k−6ω+α)
(
α2 − kα− 2ωα

)
+

+ e
it
2

(k−6ω−α)
(
α2 + kα + 2ωα

)
+

+ e
it
2

(−k+6ω+α)
(
α2 + kα + 2ωα

)}
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P (t) =
1

2α2
cos2 θ

[
3k2 + 12kω + 14ω2 + 4ω2 cos (αt)

]
+

+
1

4α2
sin2 θ{

2ω2 cos(αt) + 2
(
α2 − ω2

)
+(

α2 − kα− 2ωα
) [
e−

it
2

(k−6ω+α) + e
it
2

(k−6ω+α)
]

+(
α2 + kα + 2ωα

) [
e

it
2

(k−6ω−α) + e−
it
2

(k−6ω−α)
]}

P (t) =
1

2α2
cos2 θ

[
3k2 + 12kω + 14ω2 + 4ω2 cos (αt)

]
+

+
1

4α2
sin2 θ

{
2ω2 cos (αt) + 2

(
α2 − ω2

)
+(

α2 − kα− 2ωα
)

2 cos

(
k − 6ω + α

2
t

)
+

(
α2 + kα + 2ωα

)
2 cos

(
k − 6ω − α

2
t

)}
This expression describe the muon spin polarization for the case of a single crystal

with the dipole axis which form an angle θ with respect to P (0).

7. For polycrystalline samples the “powder average” over all possible orientations [132]

must be performed

〈P (t)〉 =
1

8π2

∫ 2π

0

dα

∫ 2π

0

dγ

∫ π

0

dθ sin θ P (t)

〈P (t)〉 =
1

8π2
4π2

[
A

∫ π

0

cos2 θ sin θdθ + B

∫ π

0

sin2 θ sin θdθ

]
Where A and B are respectively the content of the square brackets and braces of the

above expression of polarization. The integrals to be performed are:

−→
∫ π

0

cos2 θ sin θdθ =

∫ π

0

− cos2 θ d(cos θ) =

=
cos3 θ

3
|π0 =

2

3

−→
∫ π

0

sin2 θ sin θdθ =

∫ π

0

(1− cos2 θ) sin θdθ =

=

∫ π

0

sin θdθ −
∫ π

0

cos2 θ sin θdθ =

= (− cos θ)|π0 −
2

3
= 1 + 1− 2

3
=

4

3
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The powder average of polarization then results

〈P (t)〉 =
1

3
A +

2

3
B =

1

6α2

[
3k2 + 12kω + 14ω2 + 4ω2 cos (αt)

]
+

+
1

6α2

[
2ω2 cos (αt) + 2

(
α2 − ω2

)
+

2
(
α2 − kα− 2ωα

)
cos

(
k − 6ω + α

2
t

)
+

(
α2 + kα + 2ωα

)
2 cos

(
k − 6ω − α

2
t

)]
.

Remembering that α2 = 6ω2 + 4ωk + k2 one finally obtain

〈P (t)〉 =
1

6α2

[(
5k2 + 20ωk + 4ω2

)
+ 6ω2 cos (αt) +

+ 2
(
α2 − kα− 2ωα

)
cos

(
k − 6ω + α

2
t

)
+

+ 2
(
α2 + kα + 2ωα

)
cos

(
k − 6ω − α

2
t

)]
The latter equation describes beats depending on complex functions of both the dipolar

and quadrupolar frequencies and is the model that can be employed to fit ZF µSR data

for the case of the muon-deuterium interaction.
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