
 

  

                                                  

UNIVERSITÀ DEGLI STUDI DI PARMA 

FACOLTÀ DI SCIENZE MMFFNN 

Dottorato di ricerca in Biochimica e Biologia Molecolare 

Ciclo XXIII 

   

CRA-GPG Centro di ricerca per la Genomica e Postgenomica 

animale e vegetale 

Fiorenzuola d’Arda  

 

 

A CC-NB-LRR gene confers leaf stripe 

resistance at the Rdg2a locus in barley 

 

 
Tutor: 

Dr. Giampiero Valè  

 

Tutor interno: 

Prof. Giorgio Dieci 

 

Dottoranda: 

Chiara Biselli 

 

 

 

Anno accademico 2009/2010



Index 
 

1 
 

Index 
 
Summary                                                                                             4                                                                                                          

1. Introduction                                                                                       6 

1.1   The Plant Immune System                                                                6 

1.2   Resistance (R) proteins                                                                     9 

1.2.1 Structure of the NB-LRR proteins                                                             12 

1.2.1.1    The LRR domain                                                                                         12 

1.2.1.2    The NB domain                                                                                           14 

1.2.1.3    Other domains                                                                                             17 

1.2.2    The role of R proteins in plant innate immunity                                      19 

1.2.3    R proteins-mediated signaling pathaways                                                 23 

1.3    Barley leaf stripe disease                                                               27 

1.3.1    The Rdg2a locus                                                                                            29 

2.   Materials and methods                                                                   36 

2.1    Barley leaf stripe causal agent Pyrenophora graminea                36 

2.2    Plant materials                                                                               37 

2.3    Infection of the seeds with the leaf stripe isolates                         37 

2.4    Analysis of the Rdg2a candidates                                                  38 

2.4.1     Sequencing of Nbs3-Rdg2a cDNA from NIL3876                                    38 

2.4.1.1    Reverse Transcription-PCR and Rapid Amplification of cDNA Ends 

(RACE)                                                                                                                      40 

2.4.1.2    Sequencing procedures                                                                               41 

2.4.2     Sequencing of Nbs1-rdg2a and Nbs2-rdg2a alleles in the susceptible    

cultivar Mirco                                                                                                           43 

2.4.3     Screening by PCR-based molecular markers to verify co-segregation of 

promoter rearrangements with the Rdg2a locus                                                   44 

2.4.4     Expression analysis of the Rdg2a candidates                                            44 

2.4.4.1    Semiquantitative RT-PCR                                                                          46 

2.4.4.2    quantitative RT-PCR (qRT-PCR)                                                               47 



Index 
 

2 
 

2.5    Analysis of transgenic plants                                                         48 

2.5.1     Production of transgenic plants                                                                 48 

2.5.2     Analysis of T1 progenies of transgenic plants                                           48 

2.5.3     Expression analysis of the transgenes in T1 progenies                            50 

2.5.4     Southern blot analysis                                                                                 50 

2.6    In situ analyses                                                                              50 

2.6.1     Sectioning of the embryos                                                                          51 

2.6.2     Terminal deoxynucleotidil transferase-mediated dUTP Nick and 

Labelling (TUNEL) and Autofluorescence assays                                                51 

2.6.3     4’,6-Diamino-2-phelindole clorihydrate (DAPI) staining                        51 

2.6.4     Calcofluor staining                                                                                      51 

2.7    Analysis of the hypothetical Rdg2a locus in cultivar Morex        51 

2.7.1     Screening by PCR-based molecular markers                                           51 

2.7.2     Sequencing of Morex BAC146G20                                                            53 

2.7.3     Expression analysis in cultivar Morex                                                      54 

2.8    Analysis of different barley varieties                                            54 

2.8.1     PCR-based molecular markers analysis of different barley varieties    54 

2.8.2     Sequencing of Rdg2a in cultivars Rebelle, Haruna Nijo and Galleon    55 

2.8.3     Expression analysis of Rdg2a in Rebelle, Haruna Nijo and Galleon      57 

3.    Results                                                                                             58 

3.1    Sequencing of Nbs3-Rdg2a cDNA from NIL3876                       58 

3.2    Sequencing of Nbs1-rdg2a and Nbs2-rdg2a in cultivar Mirco     59 

3.3    Expression analysis of the Rdg2a candidates                                63 

3.4    Identification of the Rdg2a gene                                                   65 

3.5    The RDG2A protein                                                                      70 

3.6    Rdg2a-mediated resistance does not involved programmed cell 

death                                                                                                       75 

3.7    Analysis of the rdg2a locus in barley cultivar Morex                   79 

3.8    Haplotype analysis of the Rdg2a locus in different barley  

varieties                                                                                                  86 



Index 
 

3 
 

4.    Discussion                                                                                       91 

4.1    Identification of the Rdg2a resistance gene and evolution at the 

Rdg2a locus                                                                                            91 

4.1.1     The Rdg2a function is encoded by Nbs1-Rdg2a                                        91 

4.1.2     Evolution at the Rdg2a locus                                                                      96 

4.1.3     Haplotype analysis at the Rdg2a locus                                                      98 

4.2    RDG2A localizes in nucleus and cytoplasm and confers resistance 

without programmed cell death                                                            100 

4.2.1     Sub-cellular localization of the RDG2A protein                                    100 

4.2.2     RDG2A confers resistance in the absence of programmed cell  

death                                                                                                                        101 

5.    Conclusions and perspectives                                                     105 

References                                                                                           108 

Supplementary materials                                                                   140 

Acknowledgements                                                                             147 

Publications                                                                                         150 

  

 

  



Summary 
 

4 
 

Summary 
 

Barley leaf stripe, caused by the seed-transmitted hemi-biotrophic fungus 

Pyrenophora graminea, is a barley disease particularly acute in Nordic countries, 

during spring sowing, and in the Mediterranean’s winter barley districts where 

causes severe yield losses.  

To date, only two P. graminea race-specific resistance genes are known: Rdg1a, 

identified in cultivar Vada, and Rdg2a, identified in cv. Thibaut. Rdg2a confers 

immunity to at least three different P. graminea monoconidian isolates, including 

the most widespread and virulent Italian isolate Dg2, but it is overcome by Dg5.  

The aim of the present work was to isolate this gene, characterize the Rdg2a locus 

and its evolution and mine the bases of Rdg2a-mediated resistance.  

In a previous analysis the map-based cloning and the sequencing of the Rdg2a locus 

were carried out. Three homolog R genes encoding CC-NB-LRR proteins, that 

represent the majior class of resistance proteins, were identified at the locus and 

were named as Nbs1-Rdg2a, Nbs2-Rdg2a and Nbs3-Rdg2a (Bulgarelli et al., 2010). 

To determine which of the three genes is the Rdg2a gene, we started the research 

investigating their structure. RACE analyses showed that for the third candidate 

(Nbs3-Rdg2a) alternative splicing processes determine the synthesis of severly 

truncated and probably non-functional proteins. This allowed us to excluded Nbs3-

Rdg2a from acting in resistance to isolate Dg2. By means RT-PCRs on a pair of 

Near Isogenic Lines (NIL) that differ only for alleles at the Rdg2a locus (susceptible 

cv. Mirco and its resistant NIL, NIL3876), we demonstrated that both Nbs1-Rdg2a 

and Nbs2-Rdg2a are transcribed in embryos (where the resistance takes place) and 

leaf tissues of the resistant line, but they are not expressed in the susceptible near-

isogenic phenotype. Sequencing of the Mirco alleles revealed rearrangements in the 

putative promoter regions: two insertions, one next to a putative TATA-box element 

and the other, carrying terminal inverted repeats, in the 5’ UTR, for Nbs1-rdg2a, and 

a deletion just at the level of a MITE-like element, present in Thibaut Nbs2-Rdg2a, 

for Nbs2-rdg2a. It is likely that these changes represent the cause of the lacking of 

expression of these genes in the susceptible genotype. Moreover, qRT-PCRs showed 

that Nbs1-Rdg2a transcription was un-responsive to P. graminea infection, while 
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Nbs2-Rdg2a transcripts increased during the first stages of infection. However,  

Nbs2-Rdg2a mRNA abundance was significantly lower than that of Nbs1-Rdg2a.  

To define which gene is the Rdg2a gene, a complementation assay was conducted. 

Susceptible cv. Golden Promise was transformed by agoinfiltration with each gene 

independently, under the control of its native promoter. Interestingly, the rescue of 

Dg2-resistance was observed only when plants were transformed with Nbs1-Rdg2a 

(90-100% of resistance), suggesting that this gene is Rdg2a.  

Comparing the sequences of the three genes at the Rdg2a locus, we found that 

similarly to other R genes, Rdg2a underwent to diversifying selection, according to a 

model in which resistance genes co-evolves with pathogen effector(s) gene(s). The 

fact that the Rdg2a locus contains a gene cluster of highly similar sequences has 

most likely contributed to significative rearrangements during evolution, probably 

derived from unequal crossovers resulting in sequence exchange between paralogs 

and, possibly, in the generation of recombinant genes, as well as to 

expansion/contraction of gene copy number. Regarding this last case, we have also 

characterized the rdg2a locus of the susceptible cv. Morex. Morex rdg2a locus 

carries two deletions and the rdg2a allele might derived from an un-equal crossing-

over between Rdg2a and Nbs2-Rdg2a ancestors that led to a reduction of the number 

of the gene family members.  

Most resistance proteins function through inducing a Programmed Cell Death (PCD) 

that lead to a Hypersensitive Response (HR) at the level of the infected cells. 

Histological analyses using the TUNEL method did not reveal any significative 

difference in PCD between infected embryos of resistant and susceptible varieties 

and the number of cells undergoing PCD was transcurable. These finding let us to 

conclude that the Rdg2a-mediated resistance does not involve HR but it is most 

likely based on the strengthening of physical and chemical barriers in the cell walls 

and intercellular spaces of the embryo tissues.  

In conclusion, we identified, cloned and characterized the first resistance gene active 

against a seed-borne disease; importantly, the gene belongs to the poorly represented 

class of R genes which does not trigger a hypersensitive responce. 
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1. Introduction 

 

1.1 The Plant Immune System 

Like animals, plants are engaged in a constant battle against the wide range of 

microbial pathogens, but conversely to animals, they lack the circulating adaptive 

immune system and respond to pathogen challenges by developing a cell-

autonomous innate immunity system (Rafiqi et al., 2009; Ausbel, 2005). Plant 

immunity can be divided in two branches: the first is represented by passive 

defences that include endogenous compounds or barriers such as wall cell; while the 

second is an active defensive arsenal in turn composed by two branches: the “basal” 

or “primary” and the “Resistance (R) gene-mediated” innate immune system 

(Glowacki et al., 2010; Bent and Mackey, 2007; Chrislom et al., 2006; Jones and 

Dangl, 2006).  

Basal defences are activated by the action of transmembrane Pattern Recognition 

Receptors (PRRs), usually  Receptor-Like Proteins (RLPs) or Receptor-Like Kinases 

(RLKs). Most PRRs belong to the LRR-PRR class of receptor carrying a Leucine-

Reach Repeat (LRR) domain (Par. 1.2.1.1) and are located mainly on the plasma 

membrane, but also in endosomal compartments or cytoplasm. They resemble 

animal Toll-Like Receptors (TLRs) in terms of their structure and function 

(Glowacki et al., 2010) and interact with the Microbial- or Pathogen-Associated 

Molecular Patterns (MAMPs or PAMPs). MAMPs or PAMPs are invariant (surface) 

structures or molecules indispensable to the microorganism that do not exist in the 

host which recognizes them as non-self, through the PRRs (Postel and Kemmerling, 

2009), and activates MAP kinase signaling cascades leading to the induction of 

primary defence responses that inhibit colonization of non-adapted, non-pathogenic 

or non-host pathogens (Panstruga et al., 2009; Bittel and Robatzek, 2007; Jones and 

Dangl, 2006). This system is referred to as PAMP-Triggered Immunity (PTI). 

The most studied PAMP is the bacterial flagellin which triggers defence responses 

in various plants. A synthetic 22-amino acid peptide (flg22), from a conserved 

flagellin domain, is recognized by the LRR-RLK Flagellin Sensitive 2 (FLS2), 

consisting of an N-terminal signal peptide, 28 LRRs, a transmembrane domain, and 
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a cytoplasmic kinase domain. Upon binding of the ligand, this receptor dimerizes 

with a related LRR-RLK, BAK1, that positively regulates FLS2 function, and the 

complex is internalized in a kinase-dependent manner (Postel and Kimmerling, 

2009). Thus, a signaling cascade is triggered leading to the activation of many 

cellular responses, including the rapid transcriptional induction of at least 1100 

Arabidopsis thaliana genes (Zipfel, 2004). Well characterized PAMPs are also the 

bacterial N-terminal acetylated 18 and 26 amino acid-long fragments (elf18 and 

elf26) and Elongation Factor Tu (EF-Tu), recognized by an Arabidopsis LRR-RLK 

called EFR (Tsuda and Katagiri, 2010; Zipfel, 2006). EFR is a homolog of FLS2 

and, since these receptors are structurally similar and serve similar functions it is 

assumed that more members of the LRR-RLK family may be receptors for yet 

unidentified PAMPs (Postel and Kimmerling, 2009). Other MAMPs triggering PTI 

in Arabidopsis are peptidoglycans (PGNs, components of bacterial cell walls) and 

chitin (a major component of fungal cell walls) (Boller and Felix, 2009).  

Recently, another class of non-LRR receptors attracted common interest: the LysM 

motif proteins. From bacteria it is known that the LysM domain binds 

peptidoglycans. A LysM-receptor kinase CERK1/LysM RLK1 was shown to be 

necessary for perception of chitin oligomers (N-acetyl glucosamine oligomers) that 

are structurally related to peptidoglycans (N-acetyl glucosamine oligomers/N-acetyl 

muramic acid backbone with connecting peptide side chains). However, CERK1 

chitin-binding activity was not revealed, but it is possible that this protein cooperates 

with CEBIP for the recognition of chitin. CEBIP is a chitin binding protein 

identified in rice and consisting of a LysM domains and a transmebrane domain but 

lacking the kinase signalling domain (Postel and Kimmerling, 2009). 

Perception of pathogens must be expanded to the surveillance of the integrity of the 

plant itself. The so-called Danger-Associated Molecular Patterns (DAMPs) are 

signals produced by the host and released upon plant damage. One representative is 

the Arabidopsis AtPep1, a peptide derived from a pro-peptide that is induced after 

infection and recognized by its cognate receptor PEPR1. By the fact that the RLK 

Theseus, involved in cell elongation control in A. thaliana, seems to control cell 

integrity and the expression of genes involved in pathogens defense, it was proposed 



1. Introduction 
 

8 
 

that alteration of cell integrity might not only be a signal for developmental growth 

control but also for danger-associated processes (Postel and Kimmerling, 2009). 

The second defence takes place once adapted pathogens evolved the ability to 

suppress the first layer of defence, by delivering on the apoplast and/or in host cells 

effectors able to interfere with the basal responses (Rafiqi et al., 2009). As 

examples, in Arabidopsis, the Pseudomonas syringae AvrPto directly inhibits the 

intracellular kinase signaling domains of several PRRs (Xiang et al., 2008), and also 

the downy mildew proteins ATR1 and ATR13 promote disease susceptibility in this 

specie (Sohn et al., 2007). By this way and with additional effectors, that make use 

of the host's nutrients, pathogens can survive and complete their life cycle (Block et 

al., 2008; Alfano and Collmer, 2004). This phenomenon is called Effector-Triggered 

Susceptibility (ETS). In the dynamic co-evolution of host-pathogen interaction, 

plants have acquired highly specific cognate Resistance (R) proteins that either 

directly or indirectly recognize pathogen effector proteins. Thus, virulence factors 

are turned into Avirulence (Avr) factors that allow the plant to specifically detect 

formerly successful pathogens (Postel and Kemmerling, 2009). This second mode of 

immunity is named Effector-Triggered Immunity (ETI). ETI triggers a strong 

disease resistance by activating basal defence reactions, and often the Hypersensitive 

Reaction (HR) that implies Programmed Cell Death (PCD) at pathogen infection 

sites (Jones and Dangl, 2006; Dangl et al., 1996). HR typically does not extend 

beyond the infected cell: it may retard pathogen growth in some interactions, 

particularly those involving haustorial parasites, but, for ETI, is not always observed 

nor required. It is unclear what actually stops pathogen growth in most cases (Jones 

and Dangl, 2006).  

Although engaging different molecular receptors and activating different signaling 

pathways, PTI and ETI networks are believed to interconnect to stop pathogen 

infection (Rafiqi et al., 2009; Panstruga et al., 2008; Truman et al., 2006). Jones and 

Dangl (2006) represented the plant immune system as a four phased “zigzag” model 

(Fig. 1.1): in phase 1, PAMPs or MAMPs are recognized by PRRs, resulting in PTI 

that can halt further colonization. In phase 2, successful pathogens deploy effectors 

that contribute to their virulence. These effectors can interfere with PTI, leading to 

ETS. In phase 3, a given effector is “specifically recognized” by one or more R 
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proteins that trigger ETI. Recognition is either direct or indirect. Actually, ETI can 

be considered as an accelerated and amplified PTI response, resulting in disease 

resistance and, usually, HR at the infection site. In phase 4, natural selection drives 

pathogens to avoid ETI either by shedding or diversifying the recognized effector 

gene, or by acquiring additional effectors that suppress plant defence response. By 

contrast, plants also ungergo to natural selection developing new R specificities so 

that ETI can be triggered again. 

 

                 

 

 

 

 
 
 
 
 

 

1.2 Resistance (R) proteins 

Resistance (R) proteins are encoded by the so called Resistance (R) genes. One class 

of these genes encodes membrane bound proteins with an extracellular LRR domain 

(Par. 1.2.1.1), either with or without an intracellular kinase domain. The 

corresponding Avr proteins are secreted into the apoplastic space during infection, 

where they may be detected (Rafiqi et al., 2009). However, the majority of known R 

genes encode intracellular proteins with a LRR domain and a Nucleotide-Binding 

(NB) domain, connected by a region called ARC (Par. 1.2.1.2; Glowacki et al., 

2010). These are among the most numerous proteins found in plants with about 150 

Fig. 1.1 A zigzag model illustrates the quantitative output of the plant immune system. In phase 1 
plants detect MAMPs/PAPMPs (red diamonds) through PRRs to activate PTI. In phase 2, 
successfull pathogens deliver effectors that interfere with PTI, or otherwise enable pathogen 
nutrition and dispersal, resulting in ETS. In phase 3, one effector (indicated in red) is recognized by 
an R protein, activating ETI that often passes a threshold for induction of HR. In phase 4, pathogen 
isolates are selected that have lost the effector, and perhaps gained new effectors though horizontal 
gene flow (in blue); these can help pathogens to suppress ETI. Selection favours new plant R alleles 
that can recognize one of the newly acquired effectors, resulting again in ETI (Jones and Dangl, 
2006). 
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Nbs-LRR genes found in Arabidopsis and about 600 in rice (Rafiqi et al., 2009; Goff 

et al., 2002). The NB-LRR proteins, ranging from about 860 to 1900 amino acids 

(McHale et al., 2006), belong to a subgroup of the STAND (Signal Transduction 

ATPases with Numerous Domains) family (Lukaski et al., 2009) and they directly or 

indirectly recognize specific Avrs (Caplan et al., 2008; Bittel and Robatzek, 2007; 

Mackey and McFall, 2006) prior to intiating the specific resistance response.  

Two subfamilies of NB-LRR proteins can be distinguished on the base of the 

presence of different domains at the N-terminal: the first is characterized by the TIR-

NB-LRR (TNL) proteins containing the TIR domain, originnaly identified as an 

intracellular part of the Drosophila Toll and the human InterLeukin 1 (IL1) receptors 

(Par. 1.2.1.3); non-TIR-NB-LRR proteins belong to the second family and contain 

other domains. The largest group of these proteins is represented by the CNL (CC-

NB-LRR) receptors carrying an N-terminal Coiled-Coil (CC) domain (Tab. 1.1; 

Glowacki et al., 2010). Such domains are present in various organisms and have an 

important role in oligomerization processes like the TIR domain (Par. 1.2.1.3; Chen 

et al., 2007; Palsson-McDermott and O’Neil, 2007; Oakley and Hollenbeck, 2001). 

So far, no TNL proteins have been detected in monocotyledonous plants. Although 

analizying rice genome sequence databases made it possible to identify several 

genes encoding proteins that contain the TIR domain, they do not seem to be related 

to NB-LRR proteins (Bai et al., 2002). On the other hand, in dicotyledons, TNLs 

constitute a strongly diversified group in terms of their structure. Analizying the A. 

thaliana genomes it was possible to detect genes showing TNL proper sequences, 

but with a structure noticeably different from the typical TIR-NB-LRR domain 

arrangement. For example, the Arabidopsis RRS1-R protein (defined resistance to 

Ralstonia solanacearum) contains a C-terminal WRKY-type domain (Par. 1.2.1.3; 

Tab. 1.1; Deslandes et al., 2003). Other identified TNL proteins lack the TIR 

domain at their amino-terminus (NB(TIR)-LRR), and their classification as TNLs is 

determined by the NB domain sequences (Radwan et al., 2008; Meyers et al., 1999) 

or the presence of a C-terminal TIR domain (Glowacki et al., 2010). In the Populus 

genome, sequences encoding proteins which most likely contain a TIR domain at 

each terminal end were detected (Kohler et al., 2008). “Atypical” proteins were also 

found for the CNL sub-family. Arabidopsis, rice and poplar showed proteins lacking 
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an LRR domain (CC-NB), or containing two LRR domains, or lacking a CC domain 

but with a classic NB domain (NB(CC)-LRR) (Tab. 1.1; Kohler et al., 2008; Meyers 

et al., 2003). In addition, in rice, genes encoding proteins with two NB domains 

(CC-NB-NB-LRR) are present (Tab. 1.1; Zhou et al., 2004). Apart from CC-NB-

LRR proteins, the non-TIR-NB-LRR protein sub-family also comprises other 

smaller sub-families, including BEAF and DREF proteins that contain a zinc-finger 

DNA-binding domain, BED-NB-LRR or BED-NB, without the LRR domain, 

proteins (Tab. 1.1; Zhou et al., 2004; Meyers et al., 2003). In poplar, a group of the 

so-called “mixed” proteins showing both the N-terminal TIR and CC domains (TIR-

CC-NB-LRR) was identified (Tab. 1.1; Kohler et al., 2008). 

 

                 

 

 

In plants cells. there are other non-NB-LRR R proteins. Examples are those 

consisting of kinase domain (Pto) or transmembrane helix domains (Xa13 and 

MLO). These three proteins respectively take part in innate immunity, fertility and 

programmed cell death. The function of the others is still unknown (Xiao et al., 

2008). 

 

 

Tab. 1.1 Major classes of plant R proteins (Glowacki et al., 2010). 
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1.2.1 Structure of the NB-LRR proteins 

The three-dimensional structures of plant resistance proteins are based on the 

structures of their animal homologs, but advanced technologies in molecular biology 

and bioinformatics tools have enabled prediction of the structures and mechanisms 

of interaction of specific receptors with pathogen effectors. Although the two main 

domains of plant R proteins, NB and LRR, seem to be the most crucial in pathogen 

recognition and activation of ETI signal transduction, there are evidences that other 

domains act together in triggering resistance (Glowacki et al., 2010). For example, 

several recombinants at the flax L locus, conferring resistance to rust, combining 

TIR and NB domains from different alleles resulted in non-functional resistance 

genes (Luck et al., 2000).  

 

1.2.1.1 The LRR domain 

A functional LRR domain is constituted by at least two tandem repeats of 20-30 

amino acids containing the consensus LxxLxLxxLNxL, where L is leucine or 

another aliphatic amino acid, N is asparagin, threonin, serine or cystein, and x is any 

amino acid (Fig. 1.2(b); Bella et al., 2008; Stange et al., 2008). The terziary 

structure of a single LRR domain was predicted for the bovine decorin (12 LRR 

repeats) and is usually formed by a horseshoe-shaped superhelix, with a backbone of 

parallel β-strands containing hydrophobic residues and an outer part, usually 

composed of α-helices, connected with the backbone through β-strands by β-turns 

(Fig. 1.2(a); Bella et al., 2008; McHale et al., 2006).  



1. Introduction 
 

13 
 

                     

 

 

 

 

 

Each repeat forms other coils of this superhelix and the “hourseshoe” is the site of 

specific interaction with other proteins that, in the case of R proteins, provide the 

determinant for pathogen effector recognition (Glowacki et al., 2010). Notably, 

differences in the number and the amino acid composition of the repeats determine 

specificity of this recognition (Bella et al., 2008; Kobe and Kajava, 2000). For 

example, the variation of LRR copy number in tomato LRR-TM genes Cf-2, Cf-4, 

Cf-5 and Cf-9, which confer resistance against Cladosporium fulvum, determines 

their resistance specificity (Liu et al., 2007). On the other hand, the specific capacity 

to recognize pathogen of Pi-ta, a CC-NB-LRR protein acting against rice blast, 

depends on a single amino acid difference in the LRR domain (Jia et al., 2000) and, 

similarly, six amino acid changes between the flax rust resistance genes P and P2 

within the predicted β-strand/β-turn motif of four LRR units establish their 

resistance specificity (Dodds et al., 2001).  

Fig. 1.2 The predicted structure of the LRR domain of the Arabidopsis RPS5 onto bovine decorin 
(PDB code Ixku). (a) Cartoon rappresentation of the predicted structure of the LRR domain 
generated using PyMol. The β-sheets forming the concave face of the “hourseshoe” are represented 
as arrows. The conserved aliphatic residues are shown in blue. N = amino terminus; C = carboxyl 
terminus. (b) Alignement of the 12 LRRs in decorin and the 13 repeats in RPS5 as well as the 
amino terminal 9 amino acids. The conserved aliphatic residues are shown in blue (McHale et al., 
2006). 
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Although the importance of the LRR domain in determing pathogen specificity, it 

seems it can also function as a regulator of R protein activity (Rafiqi et al., 2009). In 

particular, it may be an intramolecular inhibitor of the receptor activity when an 

appropriate elicitor is absent (Glowacki et al., 2010). It has been proposed that after 

binding a proper Avr, conformational changes within the LRR domain would take 

place leading to its dissociation from the NB domain and consequently, to the 

activation of the receptor (Caplan et al., 2008; Liu et al., 2007). Neverthless, the 

dissociation of the LRR and NB domains might not be required for the activation, 

but repetitive rounds of dissociation and re-association could lead to the 

amplification of the signal originated from elicitors (Rairdan and Moffett, 2006). In 

some examples, deletion of the LRR domain in different NB-LRR proteins resulted 

in autoactivated proteins (Rafiqi et al., 2009). Similarly, a chimeric flax L6 protein 

carrying a 20-amino acid-long C-terminal fragment from L2 exhibited an autoactive 

phenotype (Howles et al., 2005). In RPS5 transgenic tobacco, the LRR and NB 

domains interact forming an inactive structure (Liu et al., 2007). In contrast, the 

presence of the LRR domain is required for HR induction of autoactive proteins 

mutated in the ARC domain, suggesting that the LRR domain can act both as a 

negative and positive regulator of R proteins in coordination with specific 

interaction with the ARC domain (Rafiqi et al., 2009). 

Altogether, these observations point out that, in the absence of pathogen stimuli, 

resistance proteins are kept in inactive conformation via intramolecular interactions 

and the presence of the corresponding Avr factor may induce subtle changes in 

domain interactions rather than a complete dissociation of the different subdomains 

to trigger activation of ETI (Rafiqi et al., 2009).  

 

1.2.1.2 The NB domain 

The NB domain, combined with an ARC motif, is even referred to as Nucleotide-

Binding Site (NBS) or NB-ARC and is present in different proteins involved in cell 

growth, differentiation, cytoscheletal organization, vescicle transport, apoptosis and 

defense, such as ATP synthase β subunits, ras protein, ribosomal elongation factors, 

adenylate kinase, other than R proteins (Liu et al., 2007). To date, the three-

dimensional structure of this domain for any plant R proteins has not been 
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determined; however, it was characterize for the human APAF-1 (Apoptotic 

Protease-Activating Factor 1) protein and its Caenorabditis elegans homolog CED-

4, making it possible to speculate about the structure and the function in plants (Fig. 

1.3; Glowacki et al., 2010). The NB domain of APAF-1 consists of four 

subdomains: NB containing a P-loop NTPase fold (Lukasik and Takken, 2009), 

ARC1, ARC2 and ARC3. Instead of ARC3, plant resistant proteins contain a short 

linker connecting ARC2 with the LRR domain. ARC1 is composed of a bunch of α-

helices and binds the LRR domain; while α-helics rolled up in a winged helix fold 

constitute the ARC2 subdomain (Fig. 1.3; Riedl et al., 2005). Most of the conserved 

motifs in the NB domain, such as the P-loop, the RNBS-A, kinase 2, RNBS-B, 

RNBS-C, GLPL, RNBS-D and MHD (McHale et al., 2009; Takken et al., 2006), are 

present at the interface of the NB, ARC1 and ARC2 domains where they form the 

nucleotide bindind poket (Fig. 1.3; Lukasik and Takken, 2009). In more detail, the 

P-loop and the MHD motif bind ADP and orientate it, as well as GLPL motif. The 

P-loop interacts with ATP and  Mg2+ ions, as does kinase-2 (Fig. 1.3; McHale et al., 

2009; Liu et al., 2007). RNBS-A, RNBS-B and RNBS-D are though to be involved 

in the hydrolysis of ATP (Tameling et al., 2006).  
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The NB domain in TNL proteins differes from the CNL ones for the presence of 

additional loops (McHale et al., 2009). 

In tomato, two CC-NB-LRR proteins, I-2 conferring resistance to Fusarium 

oxysporum and Mi-1 involved in resistance to root-knot nematodes and aphids, were 

found to bind ATP and the P-loop was essential for this binding (Tameling et al., 

2002). Similar results were also abserved for the tobacco N protein (Ade et al., 

Fig. 1.3 Schematic representation of a typical NB-LRR protein and predicted 3D structure of the 
NB-ARC domain of tomato NB-LRR I-2 protein modelled on the ADP-bound APAF-1 template. 
The sub-domains are depicted as coloured boxes, whereas conserved motifs are marked as lines. 
Consensus sequences are written next to the name of the motifs. In the 3D structure conserved 
motifs and N- and C-terminal are marked. ADP and Mg atoms are depicted as balls and sticks 
(Lukasik and Takken, 2009). 
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2007) and Arabidopsis RPS5 (Bostjan and Andrey, 2001), as amino acid substitution 

in the P-loop suppressed their activities. 

As mentioned in Par. 1.2, proteins carrying an NB-ARC domain belong to the 

STAND family of NTPases as this domain is characterized by NTPase activity and 

plays a crucial role as a molecular switch activating signal transduction (Lukasik and 

Takken, 2009). During the transduction changes in the conformation of the NB 

domain occur, depending whether it is combined with ATP or ADP, and lead to the 

activation/deactivation of the whole receptor (Tameling et al., 2006). 

The tomato mutants I-2 and Mi-2 carry alterations in the NB domain that generate an 

autoactivation of resistance response in the absence of the elicitor or an increased 

susceptibility to pathogens. In particular, mutations that suppress the ATP hydrolysis 

(in the RNBS-A subdomain) constitutively trigger resistance response, 

demonstrating that the binding with ATP rather than ADP seems necessary to 

activate the receptor. At the same time, mutations in the region responsible for 

nucleotide binding bring about a loss in receptor activity (Tameling et al., 2006). 

Autoactivation was also shown by mutations in the MHD motif of the flax L6 

protein, leading to spontaneous necroses (Howles et al., 2005), and in domain 

swapping between potato Rx proteins (which recognize the capsid protein of potato 

virus X) and GPA2 (which recognize the elicitors of pathogenic nematodes) 

(Moffett et al., 2002; Rairdan et al., 2008). On the other hand, loss-of-function 

mutants defective mainly in the NB and ARC1 subdomains as well as in the ARC2 

subdomain were identified (Takken et al., 2006). However, since the low stability of 

the ARC1 domain, it is possible that the cooperation of some additional factors is 

necessary for the process (Rairdan et al., 2006). Ueda et al. (2006) suggested that 

the active form of tobacco N protein binds ATP and the ATP hydrolysis is enhanced 

by the interaction with its elicitor, the tobacco mosaic virus p50 protein. By these 

observations, it is possible that different R proteins have different modes of 

activation (Rafiqi et al., 2009). 

 

1.2.1.3 Other domains 

Apart from the domains above, as described in Par. 1.2, there are additional 

domains, usually located at the amino-terminus, and more rarely at the carbossyl-
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terminus, in most NB-LRR proteins. The most common are the TIR and the CC 

domains.  

The TIR domain is widely spread among different organisms and was originally 

characterized due to homology with the intracellular regions of the mammalian IL-1 

receptor (IL1-R1) and the Drosophila protein Toll that are key mediators of the 

innate immune responses to bacterial and fungi (Liu et al., 2007). In general, the 

TIR domain seems to be crucial for the interactions with adaptor molecules 

mediating the initiation of signal transduction (Janssens and Beyaert, 2003). 

Interestingly, many factors interacting with animal TLRs also contain a TIR domain, 

and during these interactions, the TIR domains react with each other physically (Li 

et al., 2005). Furthermore, TIR domains condition the heterodimerization of some 

animal TLR receptors (Gautam et al., 2006). An analougous role of this domain has 

been proposed for plants, even if no adaptors with which it could interact have 

thusfar been discovered (Glowacki et al., 2010). However, in plants, it is likely to be 

involved in the recognition of Avr proteins. As proof, the above mentioned binding 

between tobacco N and p50 proteins accours through the TIR domain of N (Burch-

Smith et al., 2007; Mestre and Baulcombe, 2006). 

The CC (also called Leucine Zipper (LZ)) domain is usually attributed an analogous 

role to that of TIR domain as a mediator in interactions with other elements of the 

signaling pathways associated with innate immunity (Glowacki et al., 2010). It 

serves as oligomerization domain for a wide variety of proteins including structural 

and motor proteins and transcriptional factors (Nooren et al., 1999). A research has 

shown that the conservative motif EDIVD can be identified in the CC domain of all 

CC-NB-LRR proteins, except for Arabidopsis RPS2, RPS5 and Dm3. Mutations in 

this motif cause disturbances in the intramolecular interaction with the NB and LRR 

domains, resulting in a decreased resistance response to pathogen attack (Rairdan et 

al., 2008). Interestingly, the CC domain can bind target proteins for pathogen 

effectors; e.g., the CC domain of A. thaliana RPS5 protein is activated after the 

interaction with PBS1, which is a target of AvrPhB, the effector of Pseudomonas 

syringae (Ade et al., 2007). Examples of negative regulation do not lack; Belkhadir 

and co-workers (2004), showed that the CC domain of RPM1 interacts with 
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Arabidopsis RIN4, a plasma membrane localized and evolutionary conserved 

protein, to negatively regulate resistance to P. syringae. 

Given the presence of TIR or CC domain as well as their diversity, the amino-

termini of R proteins are though to be involved in protein-protein interactions, 

possibly with the proteins being guarded or with downstream signaling components 

(McHale et al., 2006); nevertheless, how the physically interaction occurs remains 

unclear (Liu et al., 2007).  

Plant WRKY transcription factors, identified by the WRKYGQK conservative motif 

located at the C-terminal of some NB-LRR proteins, along with a typical domain 

similar to the zinc finger motif, play a crucial role in regulating the expression of 

genes involved in plant resistance (Eulgem and Somssich, 2007; Ulker and 

Sommssich, 2004). Some NB-LRR proteins have the ability to affect WRKY 

transcription factors directly. Alleles of barley MLA proteins recognize the 

corresponding Blumeria graminis Avr, and deactivate HvWRKY1/2 transcription 

factor, which is a repressor of resistance genes (Liu and Coaker, 2008). As before 

(Tab. 1.1), there are also NB-LRR proteins containing a domain with the structure of 

a WRKY transcription factor at their C-terminal, which makes it possible to affect 

gene expression directly (Glowacki et al., 2010). An example is the RRS-1R 

receptor of A. thaliana, a TIR-NB-LRR protein that recognizes the Pop2 effector of 

Ralstonia solanacearum (Deslandes et al., 2002). WRKY domain is also present in 

transcription factors that regulate senescence, trichome development and response to 

abiotic stresses.  

 

1.2.2 The role of R proteins in plant innate immunity 

As mentioned before, the main role for resistance proteins is the activation of 

signaling transduction that leads to the defence responses, after the recognisement of 

pathogen effectors. The “gene-for-gene” model defines the direct specific interaction 

between a pathogen effector and the corresponding host R protein (Fig. 1.4A; Flor, 

1971). An example is the flax L locus alleles encoding NB-LRR proteins that 

interact with the AvrL proteins in a two-hybrid assay (Dodds et al., 2006). 

Neverthless, in most cases, the cooperation of some host’s additional proteins is 

necessary to initiate ETI. This phenomenon is explained by the so-called “guard” 
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model (Fig. 1.4B) which implies that a target protein of the pathogen effector 

(guardee) is “guarded” by a suitable guard protein, the NB-LRR receptor, and 

mediates the indirect recognition of the Avr (de Witt, 2007; Tameling and 

Baulcombe, 2007; Jones and Dangl, 2006). The Arabidopsis protein PBS1 is 

degradated by the P. syringae effector protein HopAR1 and the CC-NB-LRR 

protein RPS5 detects this degradation (Shao et al., 2003; Swiderski and Innes, 

2001).  

It is important to underline that direct and guard type recognitions probably 

represent two ends of a spectrum with many intermediates (Rafiqi et al., 2009). 

Caplan and co-workers (2008) showed that the tobacco N protein and the tobacco 

mosaic virus p50 helicase protein interact through a non-specific indirect mechanism 

mediated by the chloroplastic sulfurtransferase protein NRIP1. Interestly, although 

the Arabidopsis RRS1-R protein and its corresponding Avr factor PopP2 physically 

associate, RRS1-R/PopP2 recognition also requires another host protein, the 

cysteine protease Responsive to Dehydratation (RD19) (Bernoux et al., 2008). In 

addition, the Arabidopsis RIN4 protein, located in the plasma membrane, is 

influenced by three different P. syringae effectors, and associates in vivo with two 

NB-LRR proteins. Following the interaction with two effectors, AvrRpm1 and 

AvrB, RIN4 is phosphorylated and activates the RPM1 NB-LRR protein (Mackey et 

al., 2002). The third effector, AvrRpt2, is a cysteine protease activated inside the 

host cell, that eliminates RIN4 by cleaving it at two sites. This cleavage activates the 

RPS2 NB-LRR protein (Axtell et al., 2003; Mackey et al., 2003). RIN4 interacts 

also with the GPI-anchored NDR1 protein that is required for the functionality of 

both RPM1 and RPS2 plant desease resistance genes (Jones and Dangl, 2006).  

The recognition mechanism proposed by the guard model supports, therefore, the 

ability of a limited number of NB-LRR proteins to recongise a multitude of 

pathogen effectors, by focusing on the more limited number of potential host protein 

targets (Dangl and Jones, 2001). In some cases, a guardee does not play any 

important role in the absence of the receptor and its interaction with Avr is not 

associated with virulence and, consequently, its presence in the host cell does not 

enhance pathogen fitness. In order to explain this phenomenon, a new model of 

plant-pathogen interaction has recently been proposed with the name of “decoy” 
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model (Fig. 1.4C). According to it, after interacting with pathogens, plants generate 

specific proteins, similar to those targeted by pathogen effectors, that bind the 

effectors and mediate the recognisement by R proteins. Unlike the usual targets of 

effectors, the “operative target” in this model, these decoy proteins do not perform 

any function in a cell when R proteins are absent; however, through functional 

competition with the operative targets in binding pathogen effectors, they can 

reduce pathogen virulence and fitness (Glowacki et al., 2010; van der Hoorn and 

Kamoun, 2008). Two hypotheses for the evolution of the “decoy” proteins have 

been proposed: the first implies that they represent a result of a modification and 

loss of the previous function of operative targets; while, according to the second 

hypothesis, other molecules, unrelated to resistance mechanisms, underwent the 

process of specific molecular mimicry. These molecules might posses some 

structural resemblances to the operative targets. It was proved that resistance of S. 

lycopersicum to P. syringae results from the presence of Pto kinase and a NB-LRR 

protein called Prf. It seems that interactions between the AvrPto effector, Pto and Prf 

occur according the decoy or guard model. In the first case, Pto is the decoy target of 

the AvrPto and mimics the intracellular kinase domains of PRRs, which are the 

operative targets of AvrPto. The interaction between Pto and AvrPto activates Prf. 

According to the guard model, Pto is an inhibitor of Prf and the binding with AvrPto 

deactivates its kinase activity, leading to the activation of Prf (Rafiqi et al., 2009; 

Xing et al., 2007).  
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At this point, pathogen effector can be classified in two groups: MAMPs or PAMPs 

that are recognized by direct interactions with host receptors, whereas Microbe-

Induced Molecular Patterns (MIMPs) when they generate a disturbances in the 

structure or function of host cells recognized by other receptors (Caplan et al., 2008; 

Bittel and Robtzek, 2007; Mackey et al., 2006). 

NB-LRR proteins are found in a different cellular compartements. A well-studied 

example is the Arabidopsis TIR-NB-LRR RRS1-R protein that shows a NLS 

(Nuclear Localization Signal) motif; however its nuclear localization is dependent on 

the presence of its effector, which carries a functional NLS (Deslandes et al., 2003). 

Tobacco N and barley Mla10 proteins localize to the cytoplasm and nucleus. 

Nuclear localization of both this proteins is required for the induction of ETI (Burh-

Smith et al., 2007; Shen et al., 2007). Even the nuclear localisation of the 

Arabidopsis RPS4 protein, conferring resistance to P. syringae upon recognition of 

Fig. 1.4 Models of plant 
pathogens recognition 
(Glowacki et al., 2010). 
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AvrRps4, has been similarly found to be necessary for disease resistance 

(Wirthmueller et al., 2007). Neverthless, only a few plant NB-LRR proteins are 

localized in the nucleus and many cloned R proteins do not carry an obvious NLS 

motif, but can be driven in this cellular compartement thank to the interaction with 

other cellular proteins (Rafiqi et al., 2009).  

Besides nucleocytoplasmatic localization, some R proteins have been found 

connected with membranes. For example, Arabidopsis RPM1 protein is periphally 

associated with the plasma membrane (Boyes et al., 1998). Another Arabidopsis 

TIR-NB-LRR protein, RRP1A, conferring resistance to the oomycete 

Hyaloperonospora parasitica, is targeted to the ER and golgi membranes (Weaver 

et al., 2006).  

The diverse localizations of the NB-LRR proteins could reside in the different 

locations of pathogen effectors and their cellular targets. However, this is not always 

the rule. Flax resistance proteins L6 and M associate with golgi bodies and plasma 

membrane, respectively, while their corresponding Avr proteins, AvrL567 and 

AvrM are nucleocytoplasmatic (Rafiqi et al., 2009). Another explanation for the 

different localization patterns would be the complete loss of entire domains of the 

NB-LRR proteins that rapidly evolve under diversifying pressure (Meyers et al., 

2003). 

 

1.2.3 R proteins-mediated signalling pathways 

Considering that the activation of defence responses, particularly the HR, requires 

significant costs to the plant, resistance mechanisms must be tightly regulated to 

prevent inappropriate signaling. Neverthless, this must be balanced against the need 

to induce a rapid and strong response in presence of pathogens (Rafiqi et al., 2009).  

As described in Par. 1.2.1.2, in the absence of an elicitor, R proteins exist in an 

inactive conformation that can perceive pathogen signals. In some cases, this 

conformation depends on association with chaperone protein complexes that 

facilitate the intramolecular interactions and conformational changes associated with 

transitions between the active and inactive signaling states (Rafiqi et al., 2009). 

SGT1 (Suppressor of G2 allele of SKP1), HSP90 (Heat Shock Protein 90) and 

RAR1 (Required for MLA-dependent Resistance 1) are the major chaperones 
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associated with R proteins in plants as diverse as  Arabidopsis, barley and tobacco 

(Azevedo et al., 2007; Hofius et al. 2007; Boter et al., 2007; Schultze-Lefert, 2004) 

and  are thought to form a complex mediating the folding of R proteins and/or their 

incorporation in functional complexes (Shirasu and Schulze-Lefert, 2003). 

Interestingly, these requirements seem to be conserved across the phyla. The 

mammalian NOD-Like Receptors (NLRs) are NBS-LRR proteins involved in animal 

innate immunity and the functionality of many of them is associated to the formation 

of multiprotein complexes with SGT1, HSP90 and CHP-1, a mammalian CHORD-

I/CHORD-II homologue of RAR1 (Mayor et al., 2007; Staal and Dexelius, 2007).  

Interestingly, specific mutations in HSP90 suppress a loss-of-function mutation in 

Rar1 and restore the accumulation and activity of Arabidopsis R proteins (Hubert et 

al., 2009). It was observed that SGT1 interacts with a co-chaperone of HSP90, 

HSC70, and that the suppression of HSC70 is induced during plant-pathogen 

interactions, while its overexpression leads to a partial loss of resistance. Due to 

these observations, it has been suggested that SGT1 may be a bridge between 

HSP90 and HSP70 (Noel et al., 2007). 

R proteins signal transductions involves two partially independent signaling: the 

EDS1- and the NDR1-dependent pathways (Fig. 1.5; Glowacki et al., 2010). The 

EDS1 (Enhanced Disease Susceptibility 1) protein shows homology to eukaryotic 

lipases and is a mediator in the signaling transduction triggered by most TNL 

proteins (Fig. 1.5). It also plays a key role in the regulation of plant response to 

abiotic stresses (Hu et al., 2005; Wiermer et al., 2005; Falk et al., 1999). Null eds1 

mutants of A. thaliana are not able to generate defence responses even in presence of 

mutations auctoactivating TIR-NB-LRR proteins (Bartsh et al., 2006). Contrarly, 

most CNL trigger signaling pathways are mediated by the NDR1 (Non-race-specific 

Disease Resistance 1) (Fig. 1.5). In fact, mutations in the NDR1 gene suppress a 

subset of CC-NBS-LRR-dependent resistances (Aarts et al., 1998). Although the 

NDR1 mode of action is far from being well known, a few examples of direct 

interaction of this protein with “guardee” as well as indirect interactions with R 

proteins have been discovered. It was found that the cytosolic N-terminal domain of 

NDR1 interacts with RIN4 and is guarded by RPM1 and RPS2 (Day et al., 2006; 

2005).  
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The fact that some R proteins (e.g. RPP7, RPP8 and RPP13) act through both EDS1 

and NDR1 pathways suggests that these two signaling transductions are not 

completely independent to each other (Kuang et al., 2004). 

In addition to local resistances and HR, defence responses against biotroph 

pathogens can also lead to the long lasting Systemic Acquired Resistance (SAR), a 

form of systemic immunity that can potentiate tissues against subsequent attack by 

the same or other pathogens (Durrant and Dong, 2004). SAR is dependent on 

Salicilic Acid (SA) that influence the activity of NPR1 which, in turn, modulates the 

systemic responce interacting with the WRKY and TGA transcription factor families 

(Fig. 1.5, Johson et al., 2008).  

 

 

 

After R proteins activation, the first cell responses include a rapid burst of reactive 

oxygen species (ROS) that may function as signalling molecules and/or executioners 

of pathogens (Torres et al., 2006) and lead to an increase in oxidative reactions 

(other ROS and production of nitric oxide) and transmembrane ion flux (especially 

Ca2+, K+ and H+). This results in the induction of cross-linking of phenolics with cell 

wall components and reinforcement of the plant cell walls by depositing callose and 

lignin, as well as the activation of signal cascades mediated by proteins kinase such 

Fig. 1.5 Schematic representation of 
EDS1- and NDR1-dependent 
pathways. (Glowacki et al., 2010). 
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as MAPK (Mitogen Activate Protein Kinase-MAPK) and G protein, that determine a 

transcriptional reprogramming including the induction of genes encoding 

antimicrobial proteins (defensins), antimicrobial secondary metabolites 

(phytoalexins) or Pathogenesis Related (PR) proteins (e.g. chitinases and 

glucanases) that form a protective barrier against pathogens, and often genes 

encoding factors involved in the HR. Amplification of initial responses accours via 

signals including ROS, lipid peroxides, Benzoic Acid (BA), Jasmonic Acid (JA), 

EThylene (ET) and in particular SA which can lead to the SAR. A cross-talk 

between all the pathways coordinates the resistance response (Figure 1.6; Buchanan 

et al., 2000).  

 

        
 
 
 
 
 
 
 
 
 
 

 

Fig. 1.6 Signal transduction in plant defence responses. A green arrow indicates positive 
interactions, and a red block negative ones. ACC=1-aminocyclopropane-1-carboxylic acid; 
BAG=benzoic acid glucoside; BA-2H=benzoic acid-2 hydroxylase; CA=cinnamic synthase, 
EFE=ethylene-forming enzyme, GP=glutathione peroxidase, GST=glutathione S-transferase, 
HMGR=3_-hydroxy-3-methyl-glutaryl-CoA reductase; HPDase=hydroxyperoxide dehydrase; 
OGA and OGA-R=oligogalacturonide fragments and receptor; PAL=phenylalanine 
ammonia.lyase; PGases=polygalacturonases; PM=plasma membrane; SA•=salicylic acid radical, 
SAG=salicylic acid glucoside, SIPK=salicylic acid-induced protein kinase, WIPK=wound-induced 
protein kinase, MAP=mithogen associated pathogen (Buchanan et al., 2000). 
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At the end of defence responses, R protein signalings must be inactivated. Hofius 

and co-workers (2007) have proposed a role for the ubiquitin proteasome pathway as 

modulator of R gene-mediated resistance by eliminating R proteins and/or their 

interactors after the triggering of signal transductions. In Arabidopsis, the RING 

finger E3 ubiquitin ligases influence the RPM1- and RPS2-dependent HR and loss-

of-function alleles of Pub17, encoding for an U box E3 ligase, are impaired in RPS4 

mediated resistance (Yang et al., 2006).  

 

1.3 Barley leaf stripe disease  

Barley (Hordeum spontaneum) leaf stripe disease is caused by the seed-transmitted 

hemibiotrophic fungus Pyrenophora graminea (anamorph Drechslera graminea) 

that causes a monocyclic strictly seed borne disease, with a teleomorph that is rarely 

seen in nature. The fungus survives as mycelium in the pericarp, the hull and the 

seed coat, but not in the embryo. Infection starts during germination when the 

mycelium, living on the pericarp of infected seeds, penetrates the coleorhiza and, 

from there, colonizes the plant starting from the root tips. Fungal hyphae grow 

intercellularly from the coleorhiza to the scutellum and the roots, or to the scutellar 

node, where infection of the plantlet starts. During this first colonization phase P. 

graminea behaves as a biotroph, but without forming appressoria, and degrades host 

cell walls using hydrolytic enzymes without causing cellular necrosis (Haegi et al., 

2008; Hammounda et al., 1988; Platenkamp, 1976). Once infection spreads into the 

young leaves, growth switches to a necrotrophic phase with the production of a host-

specific glycosyl toxin (Bulgarelli et al., 2010; Haegi and Porta-Puglia, 1995) that 

causes initially small, chlorotic, elongate yellow spots which develop into 

longitudinal dark brown necrotic stripes that extend the full length of the leaf sheath 

and blade, between leaf veins. Lesions usually coalesce leading to leaf death 

followed by splitting and fraying of the leaves. Spores produced on the infected 

leaves spread to infect nearby plant spikes (Fig. 1.7; Biselli et al., 2010; Bulgarelli et 

al., 2010; Valè et al., 2003).  
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Infection of seeds can occur at any stage of development, from before head 

emergence through to soft dough stage, and symptoms may be visible at the first leaf 

stage, although more often they appear at the 4th-5th leaf stages. Infected plants are 

often stunted and head may become twisted, blighted or fail to emerge at all. Grain 

shrivelling and discolouration occurs where symptoms are severe (Valè et al., 2003).  

The disease is particularly acute in Nordic countries (spring sowing) and in the 

Mediterranean’s winter barley districts, because the establishment of plant infection 

is related to growing conditions of plantlets: plants kept at high temperatures 

(around 25°C) during germination frequently escape the infection by growing too 

fast; while plants kept at temperature below 12°C during germination allow more 

time for infection and the invading hyphae have better chances to growing through 

the coleorhiza and the scutellar node (Biselli et al., 2010; Platekamp, 1976).  

The yield losses due to P. graminea are correlated to degree of contamination of the 

seeds (Porta-Puglia et al., 1986) and although in conventional farming systems the 

disease is controlled by chemical seed dressing, it has been calculated that when the 

percentage of infected seeds is high (over 30%), seed treatment is not effective to 

obtain acceptable yield, unless the variety has a substantial level of resistance 

(Delogu et al., 1995). Moreover, the most severe yield losses are associated to 

organic farming systems which are important in many countries (Biselli et al., 2010; 

Mueller et al., 2003; Delogu et al., 1995). 

Fig. 1.7 Life cycle of Pyrenophora graminea (Cereal disease ancyclopedia-HGCA). 
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A variation in pathogenicity among different fungal isolates on the same genetic 

material has been reported, and the selective pressure by the pathogen strains on the 

host population may explain the existence of different resistance genes (Biselli et al., 

2010). Neverthless, at the moment only two Rdg (Resistance to Drechleslera 

graminea) genes, Rdg1a and Rdg2a, are known. These genes cause hyphal 

degeneration in the basal part of the coleorhizae and prevent stripe symptoms from 

appearing on leaves of young or old plants (Bulgarelli et al., 2004). Rdg1a confers 

resistance to P. graminea isolate Dg5 and has been mapped to the long arm of 

chromosome 2H, using a segregating population represented by 103 Recombinant 

Inbred Lines (RILs) of the cross L94 (susceptible) X Vada (resistant) and 194 RILs 

of the cross Arta (susceptible) X H. spontaneum 41-1 (resistant) (Biselli et al., 

2010). To date, this gene has not been cloned, but an Rdg1a syntenic interval with 

the rice chromosome arm 4L was identified. Although this region did not reveal any 

sequences strictly belonging to the Nbs-LRR genes, three genes coding for RLPK 

(Receptor-Like Protein Kinase) and a gene coding for a NB domain, were identified 

together with a homolog of the barley powdery mildew resistance gene Mlo. Three 

(out of five) homologs of these genes were mapped in the Rdg1a region in barley 

and the mlo homolog map position was tightly associated with the QTLs LOD score 

peak in both populations (Biselli et al., 2010).  

 

1.3.1 The barley Rdg2a locus 

The barley Rdg2a gene is a mono-mendelian dominat gene identified for the first 

time in the French winter six-rowed barley cultivar Thibaut and confers immunity to 

at least three different P. graminea monoconidian isolates, including the most 

widespread and virulent Italian isolate Dg2, but it is overcome by isolate Dg5 (Tab. 

1.2; Biselli et al., 2010; Bulgarelli et al., 2010; Gatti et al., 1992).  

 

 

 

 

 

 



1. Introduction 
 

30 
 

 
                Leaf stripe isolate 
 
               Dg1 Dg2 Dg4 Dg5 Dg10 Dg12 Dg19 Dg23 
            Barley genotype 
 

            NIL3876-Rdg2a 9a 0 68 95 40 8 0 60 
            Mirco-rdg2a          34 95 80 95 89 59 56 97  
        aPercentage of plants with leaf stripe symptoms 
 
 

 

Rdg2a is located distal on the short arm of barley chromosome 1 (7H) and is linked 

to the marker MWG2018 (Tacconi et al., 2001). To mine the Rdg2a diffusion 

among resistant barley genotypes, the allelic composition at the MWG2018 locus of 

19 resistant/susceptible barley cultivars and 150 barley accessions (originating from 

very different barley cultivation districts and belonging to the Barley Core 

Collection (BCC), http://barley.ipk-gatersleben.de) were analysed (Arru et al., 

2003b). Only in five resistant varieties the same MWG2018 allele of Thibaut was 

found; the observation that four of them (Rebelle, Haruna Nijo, Galleon and 

Acuario) showed the same pattern of resistance against isolates Dg2 and Dg5 of 

Thibaut raises the possibility that resistance to leaf stripe in these genotypes is 

governed by the same resistance gene. These cultivars represent very different 

barley genetic backgrounds: Thibaut and Rebelle are French six-rowed winter 

cultivars, while the two-rowed cvs. Acuario, Haruna Nijo and Galleon derived from 

Chile, Japan and Australia, respectively. These findings suggest that Rdg2a is 

widespread in different regions around the world and is carried by both six-rowed 

and two-rowed genotypes (Arru et al., 2003b). 

Due to the resistance conferred by Rdg2a to the isolate Dg2, this gene has been used 

since years to improve leaf stripe resistance in barley breeding programs of the 

Italian public institutions. Moreover, the availability of the linked marker 

MWG2018 allowed a successfully applications of MAS (Molecular markers-

Assisted Selection) for Rdg2a (Arru et al., 2003b; Francia et al., 2005; Valè et al., 

2005). 

Despite the importance of genetic resistance to leaf stripe, the molecular 

mechanisms underlying P.graminea-barley interactions are not completely 

Tab. 1.2 Effectiveness of the leaf stripe resistance gene Rdg2a. Near Isogenic Lines (NILs) with 
effective (Rdg2a) and non-effective (rdg2a) alleles at the Rdg2a locus were evaluated for 
resistance to nine different P. graminea monoconidial isolates (Bulgarelli at al., 2010). 
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understood. In young barley roots of Thibaut, a number of PR genes, encoding for 

thaumatin-like proteins, thionins, peroxidase, ß-(1,3)-glucanase as well as Ribosome 

Inactivating Proteins (RIPs) were found to have altered expression in response to 

infection. However, no clear differences were found in the induction kinetics of 

these PR genes comparing compatible (P.graminea-Dg5 vs. Thibaut-Rdg2a) and 

incompatible (P.graminea-Dg2 vs. Thibaut-Rdg2a) interactions. This suggests a 

generic defence role in the host response for these genes, most likely a 

PAMPs/MAMPs-mediated response, rather than an R gene-mediated resistance 

(Valè et al., 1994; 1995). 

P. graminea isolate Dg2 expressing the ß-glucuronidase (GUS) reporter was used to 

follow the penetration of the pathogen inside germinating barley seeds and the 

colonization of host tissues. Histochemical analysis showed that in susceptible 

cultivars the fungus invades the entire embryo and the coleoptiles (Fig. 1.8B), 

whereas in resistant cultivars it is restricted to the scutellar node and the basal region 

of provascular tissue (Fig. 1.8A; Haegi et al., 2008; Aragona and Porta-Puglia, 

1999). 

 

                

 

 

 

 

Interensingtly, Haegi and co-workers (2007) found that Rdg2a-immune response 

was associated with cell wall reinforcement through accumulation of phenolic 

compounds and enhanced transcription of genes involved in ROS production and 

detoxification/protection, without an apparent localized PCD.  

To investigate the molecular basis of the Rdg2a-based resistance, a high resolution 

genetic map of the Rdg2a locus was constructed using a F2 population of 1,400 

Fig. 1.8 Sections of barley embryos challenged by P.graminea Dg2-GUS observed under bright 
field illumination. A Resistant variety in which the colonization of the fungus (blue coloration) is 
restricted to the scutellar node. B Susceptible variety in which the fungus by-pass the scutellar 
node and diffuses in the scutellum. Sa=Shoot apex; Sc=scutellum; Sn=scutellar node. The 
sections were taken at the same time point after infection. 
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plants, derived from the cross between the varieties Thibaut-Rdg2a and Mirco-

rdg2a. This map comprised several markers developed by using sequences 

conserved among plant disease resistance genes (Resistance Gene Analogues-RGAs) 

(Leister et al., 1999) and molecular markers developed by using the sinteny 

relationship between barley and rice in the genomic region of the Rdg2a locus. The 

markers developed from rice sequences allowed delimitation of the Rdg2a syntenic 

interval to a contig of 115 kbp in rice chromosome 6 (Fig. 1.9; Bulgarelli et al., 

2004).  

 

         

 

 

 

 

 

 

 

 

 

 

 

 

Analysis of the rice sequence failed to reveal any gene with similarity to 

characterized resistance genes, supporting either the hypothesis that Rdg2a encodes 

Fig. 1.9 Consecutive stages of high-resolution mapping at the Rdg2a locus. A The first map was 
constructed using a population of 218 F2 plants. Markers ABG704 and ScOPQ9 were used to 
screen a population of 1,400 F2 plants, and the resulting 93 recombinants were utilized to generate 
the second map (B). The two barley genetic maps are not drawn to scale. RGAs in B are shown in 
bold. C Three CAPS markers derived from rice ESTs (BV078155, BV078153, BV078160) 
enabled alignment to a rice physical contig of 453,648 kb comprising three PAC clones and one 
BAC clone. Arrows between B and C indicate the position of homologues present in rice. 
Question marks indicate loci which mapped to positions unlinked to Rdg2a in barley. Genetic 
distances (cM) as well as number of recombinants observed for specific intervals on the high 
resolution map are shown. Physical scale in rice is indicated on the right in C. Distances for 
markers proximal of ScOPQ9 were obtained using the 93 recombinants, although the observed 
recombination frequency was halved to correct for expected positive interference arising from 
selected recombination in the ABG704-ScOPQ9 interval  (Bulgarelli et al., 2004). 
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for a novel type of resistance protein or that barley-rice synteny is disrupted in this 

region (Bulgarelli et al., 2004).  

To specifically identify the Rdg2a gene, more molecular markers at the Rdg2a locus 

were developed using an available Morex BAC library. Leaf stripe isolate Dg2 is 

virulent on cv. Morex, indicating that this variety does not carry a functional Rdg2a 

allele, but the isolation of recessive alleles of R genes and markers using a Morex 

BAC libraries was previously efficient for the isolation of functional alleles at the 

Mla locus in barley (Halterman et al., 2001; Zhou et al., 2001; Wei et al., 1999). 

Screening of the library with a probe derived from the CAPS marker MWG851, 

allowed the identification of BAC clones 146G20, 244G14 and 608H20 that were 

subjected to end sequencing. The 146G20 and 608H20 clones were also sequenced 

through a low-pass (0.3-fold) shotgun method and nine additional CAPS, dCAPS or 

RFLP markers were identified (Fig. 1.10A; Bulgarelli et al., 2010). Two of these 

(146.60-1-2 and 146.9-5-6) showed complete linkage with Rdg2a in the high-

resolution mapping population of 1,400 F2 plants and were tested on the three BAC 

clones, allowing the markers to be located to sections of the contig (Fig. 1.10B). The 

estimated size of the 146G20 insert was about 140 kbp. Markers 146.1F-1R and 

146.4F-3R mapped 0.32 cM apart, indicating a genetic to physical ratio of about 440 

kb per cM in this Rdg2a interval (Bulgarelli et al., 2010). 

To clone the region containing the Rdg2a gene, a cosmid library of Thibaut was 

constructed and screened using markers 146.9-5-6 and 608.32-3-4 (Fig. 1.10A), 

leading to the identification of the clones 95-3-3 and 17-1-1. Analyses of these two 

clones with other PCR markers from the region indicated that they spanned the 

Rdg2a interval bounded by the closest flanking genetic markers (Fig. 1.10C). The 

two cosmid inserts, overlapping for 5.9 kb, were sequenced, providing a contiguous 

sequence of 72,630 bp. BLASTX analyses showed that this region contains three 

genes similar to plant R genes encoding NB-LRR proteins (AC: HM124452). Auto 

Predgeneset tool of RICEGAAS software (http://ricegaas.dna.affrc.go.jp/; Sakata et 

al., 2002) was used to predict these genes that were named Nbs1-Rdg2a, Nbs2-

Rdg2a and Nbs3-Rdg2a (Fig. 1.10C; Bulgarelli et al., 2010).  
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Genomic DNAs of cvs. Thibaut, Morex, Golden Promise (a susceptible variety), 

Mirco and its resistant Near Isogenic Line NIL3876 were digested with BamHI. 

Following this, DNAs were screened with probes specific for each of the Rdg2a 

genes in Southern blot analyses. Only one fragment of about 50 kpb was detected in 

the resistant Thibaut and NIL3876 (Fig. 1.11), in agreement with the 52 kbp 

fragment size predicted from the sequence assembly (Fig. 1.10C). On the other 

hand, in susceptible genotypes, either three fragments (Mirco and Golden Promise) 

or a single fragment of about 20 kpb (Morex) were found (Fig. 1.11), suggesting the 

presence of significative rearrangements and in particular, one or more deletions at 

the Morex rdg2a locus (Bulgarelli et al., 2010). 

Fig. 1.10 Genetic and physical maps of the Rdg2a locus. A Genetic map of Rdg2a. Crossovers 
identified in the 1,400 F2 plants from a cross between Thibaut (resistant) and Mirco (susceptible) 
(Bulgarelli et al., 2004) cultivars are shown at the top (CO). Orientation is indicated by Tel (telomere) 
and Cen (centromere). B Contig of Morex BAC clones. C Thibaut cosmid contig and genes at the 
Rdg2a locus. Transcription direction of the genes are indicated by arrows (Bulgarelli et al., 2010).  
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In the present work, the identification and functional characterization of the Rdg2a 

gene were carried out. The analysis of the transcript structure of the three Rdg2a 

candidates allowed the exclusion of the Nbs3-Rdg2a gene, encoding for truncated 

proteins. The sequencing of Nbs1-rdg2a and Nbs2-rdg2a in the susceptible cv. 

Mirco revealed significative rearrangements in the putative promoter regions of 

these genes that, most likely, abolished their transcription. Rearrangements are also 

present in the hypothetic Rdg2a locus of cv. Morex, which showed two deletions 

that eliminated most of the Morex Nbs1-Rdg2a coding sequence and generated an 

hybrid gene between the Nbs1-Rdg2a putative promoter region plus 5’ end of the 

gene with the Nbs2-Rdg2a coding sequence. Real-time PCRs showed that Nbs1-

Rdg2a expression does not vary in presence of P. graminea isolate Dg2, while 

Nbs2-Rdg2a transcript level increased in the first stages of the infection; however 

the aboundance of the mRNA of this gene is lower than that of the Nbs1-Rdg2a 

transcript. Most interestingly, when the susceptible variety Golden Promise was 

transformed with the two candidates, under the control of their native promoters, 

only transgenic plants carrying Nbs1-Rdg2a were completely resistant to isolate 

Dg2, thus confirming that this gene is Rdg2a. TUNEL hystological analyses, 

conducting on section of barley embryos, demonstrated that the Rdg2a-mediated 

resistance does not involve HR at the level of infected cells. 

Fig. 1.11 Southern blot analyses of the Rdg2a genes using specific probes for the three genes 
(Nbs1-Rdg2a (a), Nbs2-Rdg2a (b) and Nbs3-Rdg2a (c)) and BamHI digested genomic DNA from 
cvs. Thihbaut (resistant), Morex (susceptible), Golden Promise (susceptible), Mirco (susceptible) 
and its resistant NIL, NIL3876.  
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2. Materials and methods 

 

2.1 Barley leaf stripe causal agent Pyrenophora graminea 
In this study, two highly virulent isolates of the barley leaf stripe causal agent 

Pyrenophora graminea, Dg2 and Dg5, were used. In particular, Dg2 is the most 

virulent isolate of a previously described collection of monoconidial isolates (Gatti 

et al., 1992). Fungi were grown on Petri dishes on PDA (Potato Dextrose Agar) 

medium (Liofilchem, Teramo, Italy) at 19°C for 10 days in the dark, then stored at 

4°C. 

 

2.2 Plant materials 

cv. Thibaut: barley variety carrying the resistance gene Rdg2a and fully resistant to 

Pyrenophora graminea isolate Dg2, but susceptible to isolate Dg5 (Arru et al., 

2003). 

cvs. Mirco and Golden Promise: barley varieties without a functional allele of the 

Rdg2a gene and fully susceptible to P. graminea isolates Dg2 and Dg5 (Arru et al., 

2003). 

cv. Morex: barley variety partially susceptible to P. graminea isolates Dg2 and fully 

susceptible to isolate Dg5 (Arru et al., 2003). 

NIL 3876: near isogenic line in Mirco genetic background generated by an initial 

cross between Thibaut and Mirco followed by six backcrosses with cv. Mirco and 

simultaneous selection for leaf stripe resistance (Tacconi et al., 2001); this line 

contains a functional allele of the Rdg2a gene and is fully resistant to P. graminea 

isolate Dg2, but susceptible to Dg5. 

Transgenic lines: transgenic barley lines carrying Nbs1-Rdg2a (lines T6) or Nbs2-

Rdg2a (lines T7) from cv. Thibaut. These plants were generated by Agrobacterium 

tumefaciens–mediated transformation of immature embryos derived from Hordeum 

vulgare ssp. vulgare (barley) cv. Golden Promise as described by Bieri et al. (2004). 

The presence of the transformed DNA fragments in T0 plants was checked by PCR 

with gene-specific primer pairs. T1 progenies were bred through self-pollination of 
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T0 plants. The transgene copy number was evaluated by Southern hybridization 

analysis (Bulgarelli et al., 2010). 

cvs. Rebelle, Proctor, Alf and Onice: barley varieties resistant to Pyrenophora 

graminea isolates Dg2 and Dg5 (Arru et al., 2003). 

cv. Diadem: barley variety fully resistant to Pyrenophora graminea isolate Dg2 

(Arru et al., 2003). 

cvs. Nudinka and Jaidor: barley varieties highly susceptible to both the Pyrenophora 

graminea isolates (Arru et al., 2003). 

cvs. Haruna Nijo, Galleon and Acuario: barley varieties carrying the resistance gene 

Rdg2a and fully resistant to Pyrenophora graminea isolate Dg2, but susceptible to 

isolate Dg5 (Arru et al., 2003). 

cvs. Rika, Bulbul, Triumph, Imber, Optic, Ansis, Gitane, Bonus, Ketos, Grete, 

Franka, Marado and Federal: barley varieties whose resistance level towards 

Pyrenophora graminea is unknown. 

 

2.3 Infection of the seeds with the leaf stripe isolates 

Seeds were surface-sterilized in 70% ethanol for 30s and then in 5% sodium 

hypochlorite for 20min; seeds were then extensively rinsed in distilled water prior to 

inoculation with different leaf stripe isolates using the ‘sandwich’ technique 

(Pecchioni et al., 1996). 

 

2.4 Analysis of the Rdg2a candidates 

Using a map-based cloning approach, three Nucleotide-Binding, Leucine-Rich 

Repeat (NB-LRR) encoding genes were identified at the Rdg2a locus; these genes 

were named as Nbs1-Rdg2a, Nbs2-Rdg2a and Nbs3-Rdg2a. The first two genes 

were characterized during a previous PhD thesis (Par. 1.3.1, Introduction; Bulgarelli 

et al., 2010). In the present work, a structural characterization of the third member 

(Nbs3-Rdg2a) of the gene family and a functional characterization of the other two 

genes were performed. 

 

 



2. Materials and methods 
 

38 
 

2.4.1 Sequencing of Nbs3-Rdg2a cDNA from NIL3876 

 
2.4.1.1 Reverse Transcription-PCR and Rapid Amplification of cDNA Ends 

(RACE)  

Rapid Amplification of cDNA Ends (RACE) was performed using the GeneRacer kit 

(Invitrogen, Carlsbad, CA USA) using 250ng of DNaseI (DNA-freeTM Kit, Ambion) 

treated poly(A)RNA extracted from NIL3876 embryos inoculated for 7 days with 

leaf stripe isolate Dg2 and from embryos grown for 7 days on sterile moist filter 

paper (control), according to Baldi et al. (1999). To obtain the 5’ and 3’ ends of 

Nbs3-Rdg2a cDNA, 2 rounds of PCR were performed using the specific primers 

(Gene Racer 5’ primer, GeneRacer 5’ nested primer, GeneRacer 3’ primer, 

GeneRacer 3’ nested primer) supplied by the kit, and specific primers for the gene 

(Tab. 2.1).  

cDNA sequences internal to RACE products were obtained by amplification of 

overlapping  fragments, executing nested PCRs with gene specific primers (Tab. 

2.1) and Platinum® Pfx DNA Polymerase (Invitrogen). 

 

Fragment  Primers combination Sequence 
5’ fragment GeneRacer 5’ primer 

Nbs3_11 
CGACTGGAGCACGAGGACACCTGA 
TCAGGCATGTCACATCTTCCACTTAC 

GeneRacer 5’ nested primer 
 
Nbs3_12 

GGACACTGACATGGACTGAAGGAGT
A 
CTTCTGTTCTTGCTGGTCCAACAGTTT 

Internal fragment I Nbs3_33 
 
Nbs3_21 

GCTGAGGAGATGAGCGAGAAGAAGT
C 
TGCAACTGTCGGCAGTCTATGAGC 

Nbs3_33 
 
Nbs3_35 

GCTGAGGAGATGAGCGAGAAGAAGT
C 
CCAAGATACCTAGCAGACCTCACTGA
C 

Internal fragment II Nbs3_36 
 
Nbs3_25 

AAGAGAGAACAATGGATTTAACACG
GAA 
GTTGTCAGGTTATCCATCCTCTGTAAG
AG 

Nbs3_36 
 
Nbs3_26 

AAGAGAGAACAATGGATTTAACACG
GAA 
GAGATGCCGAGAGCCATATTACAGG
GAT 

Internal fragment III Nbs3_44 
 
Nbs3_2 

GTCTGATAGCCCGAAATGCAAGAGTA
TCCC 
GCATCGTCTTACCAACTCCGGGCAAT
ATTT 

Nbs3_30 
 

CTCTTACAGAGGATGGATAACCTGAC
AAC 
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Nbs3_4 TTCAGGCTCCTGCAGTGCAGCA 
Internal fragment IV Nbs3_1 

Nbs3_45 
TGGATCGCCTCCGCGTTCTGTATG 
GGCTTCTTTTGCATTCTCCCCACTCT 

Nbs3_37 
Nbs3_23 

AGGGGTCTCCGTGTGCTGCACTGC 
CGCAACTTCTGGCAATCCATGAGC 

Internal fragment V Nbs3_39 
Nbs3_40 

GCTCATGGATTGCCAGAAGTTGCG 
GGGTTTCCTCCTCCTCCTCATATGATG
AAG 

Nbs3_39 
Nbs3_41 

GCTCATGGATTGCCAGAAGTTGCG 
CCCTTCAGGTAGTCACAATTTCTGAT 

Internal fragment VI Nbs3_32 
 
Nbs3_13 

GTTACCAAGCCTGGAGATGTGGGCAG
AA 
CCTAATGCGTTTACGTGGAACAGAGG
AGA 

Nbs3_43 
 
Nbs3_13 

GATGTGGGCAGAAAATAGTATGGGA
GAG 
CCTAATGCGTTTACGTGGAACAGAGG
AGA 

Internal fragment VII Nbs4_2 
 
Nbs4_3 

CACTTCATCATATGAGGAGGAGGAGG
A 
CAACTCCGGGCACTCACTTATGCTT 

Nbs4_1 
Nbs4_3 

CTCTGAGGGAATTATGGATTTGGAA 
CAACTCCGGGCACTCACTTATGCTT 

3’ fragment Nbs3_43 
 
GeneRacer 3’ primer 

GATGTGGGCAGAAAATAGTATGGGA
GAG 
GCTGTCAACGATACGCTACGTAACG 

Nbs3_42 
 
GeneRacer 3’ nested primer 

AGCATAGTTGGAGCTCACAGTACTGC
AGTC 
CGCTACGTAACGGCATGACAGTG 

 

The conditions for the first and the second rounds of PCR were: 

Platinum® Pfx DNA Polymerase         1U 

Pfx Amplification Buffer                     1X 

Pfx Enhancer Buffer                            1.5X 

dNTP mixture                                     0.3 mM each 

MgSO4                                                1 mM 

Primer mix                                          0.3 µM each  

Template DNA                                    4 ng 

Autoclaved, distilled water                  to 50 µl 

 

 

 

 

 

Tab. 2.1 Primers used to obtain 5’ end, internal fragments and 3’ end of the Nbs3-Rdg2a cDNA. 
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The program of the touchdown PCR was: 

94°C                2’ 

94°C                30’’ 

60°C                35’’              6 cycles 

68°C                1’ per kb 

94°C                30’’ 

58°C                35’’             6 cycles 

68°C                1’ per kb 

94°C                30’’ 

55°C                35’’             26 cycles 

68°C                1’ per kb 

68°C                10’ 

4°C                    ∞                  

RACE products were purified from 1% agarose gel using the Wizard® SV Gel and 

PCR Clean-Up System (Promega) and cloned into the Zero Blunt TOPO PCR vector 

(Invitrogen). After the transformation of One Shot® TOP10 Chemically Competent 

E. coli (Invitrogen) cells, the selection with Ampicillin and plasmid purification by 

the Wizard® Plus SV Minipreps DNA Purification System (Promega), at least two 

independent clones for each PCR product were sequenced. 

 

2.4.1.2 Sequencing procedures 

Clones were sequenced using the Big Dye Terminator v3.1 Kit (Applied Biosystem, 

Foster City, CA USA) and ABI3130 Sequencer (Applied Biosystem, Foster City, 

CA USA). 250ng of Miniprep were utilized for each reaction. Each clone was 

sequenced by the use of M13 for (TGTAAAACGACGGCCAGT) and M13 rev (-29) 

(CAGGAAACAGCTATGACC) primers and, for the longest internal fragments, primers 

overlapping internal sequences of the PCR product (Tab. 2.2). 

 

Fragment Primer Sequence 
Internal fragment II Nbs3_33 GCTGAGGAGATGAGCGAGAAGAAGTC 
Internal fragment IV Nbs3_4 TTCAGGCTCCTGCAGTGCAGCA 
Internal fragment V Nbs3_55 ATGCGTCGGCGAGCACCTTGCCG 

Cos 189 ACTCGGACGTACTTATTTATGTCT 
Internal fragment VII Nbs4_1 CTCTGAGGGAATTATGGATTTGGAA 

 Tab. 2.2 Primers used to sequence the longest internal fragments of Nbs3-Rdg2a cDNA. 
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Sequencing outputs were analyzed by the Sequencing Analysis Software v5.2 with 

KB Basecaller Software v1.2 (Applied Biosystem, Foster City, CA USA). 

To assemble the sequences Vector NTI 9 software (Invitrogen, Carlsbad, CA USA) 

was used.  

 

2.4.2 Sequencing of Nbs1-rdg2a and Nbs2-rdg2a alleles in the 

susceptible cultivar Mirco 

Fragments of Nbs1-rdg2a and Nbs2-rdg2a were amplified from cv. Mirco genomic 

DNA, using Nbs1 and Nbs2-specific primers, designed from cv. Thibaut genomic 

sequences of the two genes (Tab. 2.3). 

 

Gene Fragment Primer 
combination 

Sequence 

Nbs1-rdg2a Fragment I Nbs1_17 CACCGCATCATGAAGAGAACTGATACAGGA 
D2_19 CCTTGCCGGCCACGCCGCGCACTAG 

Fragment II D2_16 CTGTTCTTGTACATGCTGCAGCTTCC 
D2_17 TCGCAACTTCCGGCAATCCATTAG 

Fragment III D2_13 GTTGCTACAGGTATCGGCATCACTAAGAGC 
D2_15 GGAACAGAGGAGAGCAAGTGGAAGTAC 

Fragment IV Nbs1_15 CAGAACTGCCGCAGTGTAGTAGC 
Nbs1_19 GGTACCATCGATTCATGACGTTAGCAT 

Nbs2-rdg2a Fragment I Nbs2_6 CACCGCAGAAGAATGCCTACAAAACCCTGA
GTCC 

Nbs2_29 CAAGGTAAGGATTGAGGAGAGC 
Fragment II Nbs2_34 GGGCGGCGACGAACAAGCAGCAGTAT 

Nbs2_16 TTCAACTTGTAACAGTCTATGAGC 
Fragment III Nbs2_15 GCATTGCATTGCTCCCGCTCCCCTTCTCCAA 

Nbs2_22 GTGATCCGGACGATCCGGAGCTTCCG 
Fragment IV Nbs2_23 TGTTGCCTCTGGACGCCCAGCAAACC 

Nbs2_5 CGGGCAGCCACGTATGCTAAAGG 
Fragment V Nbs2_2 GGAGATTCAGGTCTGCCGCAGAGTG 

Nbs2_33 CAAGCAAGAGTCTAGCGCGTGAGG 

 

 

PCR reactions were conducted using the following protocol: 

Genomic DNA from Mirco leaves                            40 ng 

GoTaq®Flexi Buffer                                                 1X 

MgCl2                                                                       2 mM 

DMSO                                                                      5% 

dNTP                                                                        0.2 mM each 

Primer mix                                                                0.3 mM each 

Tab. 2.3 Primers used to amplify subsequent fragments of Nbs1-rdg2a and Nbs2-rdg2a in cv. 
Mirco. 
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GoTaq® DNA Polymerase                                       0.5 U 

Sterile distilled H2O                                                 to 20 µl 

and the following programme: 

94°C                   2’ 

94°C                   40’’ 

60°C                   50’’              35 cycles 

72°C                   1’ per kb 

72°C                   10’ 

4°C                     ∞ 

After purification from 1% agarose gel using the Wizard® SV Gel and PCR Clean-

Up System (Promega), PCR products were directly sequenced using 2,5 ng each 100 

bp of DNA. The same primers utilized for PCR reactions (Tab. 2.3) and primers 

overlapping internal sequences (Tab. 2.4) were used for sequencing.  

 

Gene Fragment Primer Sequence 
Nbs1-rdg2a Fragment I Nbs1_1 CTTCACCGCGCTTACACAGTGCCA 

D2_11 CCTTACCAACGCCCAAATTTGTCG 
D2_20 CGATGAAGAGCAAAACCAGAGG 
Nbs1_11_1_17 GTGCTATTTCTGGTTTTCAA 
Nbs1_12_1_17 GGGGTACAGTTGCAAATAAA 
Nbs1_13_1_17 GAGAGGCTACATCTCAGATCTT 
Mirco1_22 GAAAGTAAGTAAATAGAAGGGG 
Mirco1_18 AGGAAGATAACAAGGTTGTT 
Mirco1_19 GCAAAAATGCCACCTGGCTC 
Mirco1_20 TTCCTTTTGCTTTTCCATTTACGTG 
Mirco1_21 ACTAGACTGCCCCTGTTCGTG 
Nbs1_14_1_17 GAACACGAGAAAATTGGATA 

Fragment II Nbs1_9 ATTGGTCACATGTCGAAGCAAGCAAGTCG
C 

Nbs1_11 GTAACATCGGGGATAAAGATGGAGGC 
Nbs1_20 CACCCTGTTCTTGTACATGCTGCAGCTTCC 
Nbs1_20Davide TTCCCTTCCAAAGATCTGGGTAGTT 
Nbs1_21 CTATTACACGTGGCAATGCGG 
Nbs1_3 CAAATAAACCAAGTTGCAGGGGCC 
Nbs1_2 GGCCAACACAATGCTCTTAGTGATGCCGA

T 
D2_5 GGAAATGACAACTGAATAAGAGGGCC 
Nbs1_4 CAGGCGACAGGTGTTTGTAGCTTA 
Nbs1_2 GGCCAACACAATGCTCTTAGTGATGCCGA

T 
Fragment III Cos189 AGCTTTACAAACCGACGGTT 

Nbs1_12 TCATCAGATCTCGCACGAACCGA 
D2_8s2 AGAAATATCACAATGGATGAGAA 
Nbs1_7 CCTCGGATGTTTAGCAGTTTGGA 
D2_2 CACCTTCTCTGCATCGTCTTTGC 
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Fragment IV D2_2 CACCTTCTCTGCATCGTCTTTGC 
D2_15 GGAACAGAGGAGAGCAAGTGGAAGTAC 
Nbs1_8 AGACTCACGCGTATGCCGATTCA 
Nbs1_6 GTCAGGTAAGGAGACTCACGCGT 
D2_9 CCATTGGTTATCACCTAATTTGTAT 

Nbs2-rdg2a Fragment I Nbs2_30 TGAGGGTAGGCACACTGCACAC 
Nbs2_31 GAGATAATCAAAGGTGCGCCTCC 

Fragment II Nbs2_36 CAACTTTGGGGCTTCGTTGAGGTG 
Nbs2_14 CACCTGTTTCCTGGCTCAATAGGAAGAC 
Nbs2_35 TCGACGAGTGCTTCTGCGGCCT 
Nbs2_19 CGGCCTCTATAATGCAGACCCTTGGAA 
Nbs2_12 GGCTTCGACTTGTGACAACAATGACG 
Nbs2_11 GCTAGCTTATGGGTTCCAAGGGTCTG 
Nbs2_18 CATATAGCAATGGTAAAGAGCAGG 

Fragment III Nbs2_25 GTAATGTGGAAGAAGTGCTTCAATAT 
Nbs2_26 CGAAAAGTTGGAGATATGTGGGTATAT 

Fragment IV Nbs2_24 CAGCTTGATCGGAAGCTCCGGATCG 
Fragment V Nbs2_5 CGGGCAGCCACGTATGCTAAAGG 

Nbs2_10 TCTAACAGTCTTTACGTGGGACAGA 
Nbs2_32 AGTTTAGCAACTGCTCCTTGTAACCGCC 

 

 

The accession number assigned to Nbs1-rdg2a and Nbs2-rdg2a are HM124453 and 

HM124454, respectively. 

 

2.4.3 Screening by PCR-based molecular markers to verify co-

segregation of promoter rearrangements with the Rdg2a locus 

To verify whether the differences between the promoter regions of Thibaut Nbs1-

Rdg2a versus Mirco nbs1-rdg2a and Thibaut Nbs2-Rdg2a versus Mirco Nbs2-rdg2a 

cosegregated with the resistant phenotype, a screening using PCR-based molecular 

markers was performed on genomic DNA extracted from cvs. Thibaut and Mirco 

and from rare recombinants (231, 355, 407, 581, 604, 618, 741, 765, 844, 923, 1155 

and 1845) identified in a high resolution mapping population, represented by 2.800 

gametes and derived from a cross between the two genotypes. Primers overlapping 

sequences in the promoter regions of Nbs1-Rdg2a and Nbs2-Rdg2a were utilized 

(Tab. 2.5). 

 

 

 

 

Tab. 2.4 Primers used for the sequencing of Mirco Nbs1-rdg2a and Nbs2-rdg2a. 
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Gene Primer Sequence 
Nbs1-Rdg2a Nbs1_8 AGACTCACGCGTATGCCGATTCA 

Nbs1_15 CAGAACTGCCGCAGTGTAGTAGC 
Nbs2-Rdg2a Nbs2_6 CACCGCAGAAGAATGCCTACAAAACCCTGAGTCC 

Nbs2_29 CAAGGTAAGGATTGAGGAGAGC 

 

 

 

PCRs were performed as described in Par. 2.4.2 and the amplicons were loaded on 

1% agarose gel. 

 

2.4.4 Expression analysis of the Rdg2a candidates 

 
2.4.4.1 Semiquantitative RT-PCR 

The assessment of Nbs1-Rdg2a and Nbs2-Rdg2a gene expression level was obtained 

in a two-step Reverse Transcription PCR (RT-PCR) process. Total RNA was 

extracted using TRIZOL® Reagent (Life Technologies), according to manifacturer’s 

instructions, from barley embryos of Mirco and NIL3876 at 7 and 14 dai (days after 

infection) with Pyrenophora graminea isolate Dg2 and after growth on sterile moist 

filter paper (control) at the same time points. Total RNA was also axtracted from 

non-inoculated leaves of 7 days old barley seedlings of cv. Mirco and NIL3876. 

After the analysis of the RNAs with the 2100 Bioanalyzer (Agilent), the 

quantification using spectrophotometer and treatment with DNaseI (DNA-freeTM 

Kit, Ambion), 400 ng of each RNA were used for the initial RT reaction with the 

Superscript II reverse trascriptase kit (Invitrogen, Carlsbad, CA USA). For the 

second PCR reaction, 4 ng of first strand cDNAs, quantified by using fluorometer 

Qubit (Invitrogen, Carlsbad, CA USA), were used as templates. Each experiment 

was performed in triplicate. To enable the discrimination between the two Rdg2a 

candidates and other NB-LRR encoding genes, the RT-PCR primers were designed 

on two different regions of the LRR domains where several mismatches among the 

two genes allowed gene-specific amplification for the two genotypes. To confirm 

specific amplification, the amplicons were then sequenced using the same primers 

utilized in PCR reactions (Tab. 2.6) and following the protocol described in Par. 

2.4.2. Barley Actin (AY145451.1) was used as positive RT-PCR control (barley 

Tab. 2.5 Primers used for the screening using PCR-based molecular markers of the population 
derived from a cross between Thibaut and Mirco, to verify co-segregation of promoter 
rearrangements with the Rdg2a locus. 
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Actin primer fw: ATGTGGCCATCCAGGCAGTGCTTT, barley Actin primer rev: 

TGGTCTCATGGATTCCAGCAGCTTCC). PCRs were performed with: 

MgCl2                                                        2 mM 

dNTP                                                         0.2 mM each 

Primer mix                                                 0.3 mM each  

DMSO                                                       5% 

Go Taq® DNA Polymerase (Promega)       0.5 U 

Go Taq® DNA Polymerase Buffer             1X 

cDNA template                                          4 ng 

Sterile, distilled water                                 to 20 µl 

The PCR program was: 

94°C           2’ 

94°C           40’’      24 cycles for Actin and 30   

60°C           50’’      cycles for the other two genes 

72°C           2’ 

72°C           10’ 

4°C             ∞ 

Primers used are listed in Tab. 2.6. 

 

Line Gene Primers Sequence 
NIL3876 Nbs1-Rdg2a Nbs1_25 

Nbs1_26 
GATGAGCCTACAGATGTGGAAGAAGTGC 
GCTAAACATCCGAGGCTCTCCTACACTA 

Nbs1_27 
Nbs1_28 

TTTCATCATCCGAGGAGAAAACCCTTCCGC 
GCCGATTCACTTTGGGATGCCTATTCTCTC 

Nbs2-Rdg2a Nbs2_3 
Nbs2_4 

TTTGTTATCTCCTTCAGAATCATGGGAG 
GAAGCACTTCTTCCACATTACAGGCC 

Nbs2_2 
Nbs2_5 

GGAGATTCAGGTCTGCCGCAGAGTG 
CGGGCAGCCACGTATGCTAAAGG 

Mirco Nbs1-Rdg2a Nbs1_3_m 
D2_7 

TGATTTGGGGCTGCCGAAGTCTGGT 
TTTGTCAGGTAAGGAGACTCACGC 

Nbs1_3_m 
Nbs1_6 

TGATTTGGGGCTGCCGAAGTCTGGT 
GTCAGGTAAGGAGACTCACGCGT 

Nbs2-Rdg2a Nbs2_2_m 
Nbs2_5 

GACGATTGATAACTGCCGCAGTGTA 
CGGGCAGCCACGTATGCTAAAGG 

Nbs2_7_m 
Nbs2_5 

TGGGTGGAGGACTGCATGAGCCTAA 
CGGGCAGCCACGTATGCTAAAGG 

 

 

PCR products were loaded on 1% agarose gel. 

Tab. 2.6 Primers used for the semiquantitative RT-PCRs for Nbs1-Rdg2a and Nbs2-Rdg2a in the cv. 
Mirco and in NIL3876. 
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2.4.4.2 quantitative RT-PCR (qRT-PCR) 

To examine whether the Nbs1-Rdg2a and Nbs2-Rdg2a transcription levels change 

during the infection, a two-step quantitative (q)RT-PCR was performed. Total RNA 

was extracted by the use of TRIZOL® Reagent (Life Technologies) from barley 

embryos of NIL3876 at 7, 14, 18, 22 and 28 dai with Pyrenophora graminea isolate 

Dg2 and from embryos grown on sterile moist filter paper (control) at the same time 

points. cDNAs were synthesized as described in Par. 2.4.4.1.  

qRT-PCRs were performed in a real time PCR thermal cycler (7300 Real Time PCR 

System, Applied Biosystem) with: 

cDNA                                                                                                1 ng 

Sybr GreenER qPCR SuperMix for ABI PRISM (Invitrogen)          10 µl 

Primers mix                                                                                       0.2 µM each 

Sterile, distilled water                                                                        to 25 µl 

Cycling conditions were: 

50°C                               2’ 

95°C                               10’ 

95°C                               15’’     40 cycles 

60°C                               1’ 

The primers utilized were as for semiquantitative RT-PCR (Tab. 2.6). Barley Actin 

(AY145451.1) was used as the housekeeping normalizator (barley Actin primer fw: 

ATGTGGCCATCCAGGCAGTGCTTT, barley Actin primer rev: 

TGGTCTCATGGATTCCAGCAGCTTCC). Two biological replicates with eight technical 

replicates each were performed. Melting curve analysis was done after PCR to 

evaluate the presence of non-specific PCR products and/or primer dimers. qRT-PCR 

data were plotted as ∆Rn fluorescence signal versus cycle number. The SDS 7300 

absolute quantification software (Applied Biosystem) calculates the ∆Rn using the 

equation ∆Rn = (Rn+) – (Rn-), where Rn+ is the fluorescence signal of the baseline 

emission during cycles 6 to 13. An arbitrary threshold was set at midpoint of the log 

∆Rn versus the cycle number at wich the ∆Rn crosses the threshold (Ct). The Ct was 

used to calculate the Fold Change (FC) in each infected sample with respect to the 
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expression level detected in corresponding sample in control conditions at the same 

time point (baseline) with the following formula: 

FC = 2-∆∆Ct 

∆∆Ct = (Ct target – Ct actin)infected sample – (Ct target – Ctactin)uninfected sample. 

 

2.5 Analysis of transgenic plants 

 
2.5.1 Production of transgenic plants 

To generate constructs for transformation, DNA fragments of about 6 Kbp 

containing the coding sequence of the candidate genes with their native 5’ and 3’ 

regulatory sequences, were PCR amplified using Phusion HF Taq DNA Polymerase 

(New England Biolabs) from cosmid 95-9-3 (Nbs1-Rdg2a) and cosmid 17-1-1 

(Nbs2-Rdg2a), derived from the cv. Thibaut. Amplification products were subcloned 

in pDONR201 (Invitrogen) and then transfer in the gateway Agrobacterium 

tumefaciens binary vector pWBVec8 (Invitrogen). These constructs were validated 

by comparing the insert sequences with those of the corresponding regions in the 

cosmid clones. Transgenic barley lines were generated by A. tumefaciens-mediated 

transformation of immature embryos derived from the cv. Golden Promise as 

described by Bieri et al. (2004). The presence of the transformed DNA fragments in 

the T0 plants was checked by PCR assay with gene specific primer pairs (Tab. 2.6). 

T1 progenies were bred through self-pollination of the T0 plants. A total of 30 

independent lines were generated for each of the two transgenes. 10 indepent lines 

for each transgene (1/S1-T6, 4/S1-T6, 7/S1-T6, 8/S1-T6, 16/S1-T6, 17/S1-T6, 

19/S1-T6, 25/S1-T6, 31/S1-T6 and 32/S1-T6 for Nbs1-Rdg2a and 41/S1-T7, 42/S1-

T7, 46/S1-T7, 54/S1-T7, 56/S1-T7, 57/S1-T7, 60/S1-T7, 62/S1-T7, 64/S1-T7 and 

71/S1-T7 for Nbs2-Rdg2a), Thibaut, Golden Promise, Mirco, NIL3876 and the line 

15/S1-T6 (with the empty vector) were infected with P. graminea isolates Dg2 and 

Dg5 using the ‘sandwich’ technique (Pecchioni et al., 1996; Par. 2.3). 
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2.5.2 Analysis of T1 progenies of transgenic plants 

After infection with Dg2, DNA from leaves of 197 resistant and 10 susceptible 

transgenic plants for Nbs1-Rdg2a and 84 susceptible transgenic plants for Nbs2-

Rdg2a was extracted by the Wizard Magnetic 96 DNA Plant System (Promega). The 

presence or the absence of the transgenes was tested by PCR with the same protocol 

described in Par. 2.4.3. PCR products were size fractionated on 1% agarose gel. 

 

2.5.3 Expression analysis of the transgenes in T1 progenies 

To verify whether the transgenes are transcribed in resistant or susceptible plants, 

semi-quantitative RT-PCRs were performed. Total RNA from leaves of resistant and 

susceptible plants was extracted by the use of TRIZOL® Reagent (Life 

Technologies). RT-PCRs were conducted as described in Par. 2.4.4.1. The primer 

pairs were the same utilized to observe the presence or the absence of the genes in 

transformed genomes (Tab. 2.5). Moreover, to verify the presence of the fungus in 

infected tissues, specific primers for P. graminea Ubiquitin (FC555903 – primer 

forward: GACAGCACGTCTCATCTTCG, primer reverse: TCATATCCTCGTCCACGACA) 

and P. graminea GTPase activator (FC555890 – primer forward: 

CTCATAAGCCCGAGCACTTC, primer reverse: ATACCAAGGTACGGCTGCTG) were also 

used. PCR products were loaded on 1% agarose gel. 

 

2.5.4 Southern blot analysis 

Genomic DNA was extracted from leaves of the transgenic lines 8/S1-T6, 7/S1-T6, 

4/S1-T6, 16/S1-T6, 25/S1-T6, 32/S1-T6 and from cvs. Thibaut and Golden Promise 

using the CTAB (Cetyl trimethyl ammonium bromide) method (Doyle and Doyle, 

1990). 

8 µg of DNA were digested for 8 hours by 4 U/µg of EcoRI (Fermentas) and further 

8 µg were digested by 4 U/µg of KpnI (Promega). The two sets of digested DNAs 

were loaded on 0.8% agarose gel, transferred to positively charge nylon filters using 

SSC 20X (Sambrook et al., 1989) and fixed at 80°C for 2 hours. 

A specific probe was obtained by PCR from the LRR region of  Nbs1-Rdg2a, using 

primers D2_13 (GTTGCTACAGGTATCGGCATCACTAAGAGC) and Nbs1_10 
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(GCTGCAACCATCAATCATCAGATCTCGC) 

(GTTGCTACAGGTATCGGCATCACTAAGAGCATTGTGTTGGCCCTCTTATTCAGTTGTCAT

TTCCAAGGCCATAAATGCAAAACATTTACGGTATCTTGACCTCTCTGGGTCAGACATTGT

TAGATTGCCAGATTCAATATGGGTGTTGTATAACCTGCAAACACTGAGGCTAATGGATT

GCCGGAAGTTGCGACAGTTACCAGAAGACATGGCAAGATTAAGAAAGCTCATCCATCTT

TACCTTTCTGGCTGTGAGAGTCTCAAAAGTATGTCTCCAAACTTTGGTCTGCTGAACAAC

CTTCACATATTAACAACATTTGTTGTGGGTTCCGGAGATGGCCTTGGAATAGAGCAGCTC

AAAGATTTGCAAAACCTTAGCAATAGGTTGGAAATATTGAATATGGACAAG ATAAAGAG

TGGGGAGAATGCAAAAGAAGCCAATCTCAGTCAGAAGCAAAATCTAAGTGAGTTGTTGT

TCTCTTGGGGCCAAAAAATAGATGATGAGCCTACAGATGTGGAAGAAGTGCTTCAGGGC

TTAGAACCTCATAGTAATATCCAAAAACTGGAGATACGTGGATATCATGGCCTAGAAAT

ATCACAATGGATGAGAAAGCCTCAGATGTTTGACTGCTTGAGAGAACTCGAAATGTTTG

GCTGCCCAAAATGCAAGAGTATCCCTGTAATATGGTTCTCGGTCTCTCTAGAGATTTTGG

TCTTACAGAGCATGGATAACCTGACAACATTATGTAGTAACCTTGGTGTGGAAGCTGGA

GGAAGCATTACCCCTCTGCAACTTTTCCCAAATTTGAAGAAGTTGTGTTTGATTAAGTTA

CCAAGCCTGGAGATATGGGCAGAAAATAGTGTAGGAGAGCCTCGGATGTTTAGCAGTTT

GGAAAAACTCGAAATTTCCGACTGCCCAAGATGCAAGAGTATACCTGCAGTATGGTTTT

CGGTCTCTCTTGAGTTTTTGGTCTTACGGAAAATGGATAACCTGACAACATTATGTAATA

ACCTTGATGTGGAAGCTGGAGGATGCATTACCCCTATGCAGATTTTCCCAAGGTTGAAG

AAGATGAGGTTGATTGAGTTACCAAGCCTGGAGATGTGGGCAGAAAATAGTATGGGAG

AGCCTAGTTGTGATAACCTGGTAACATTCCCGATGCTTGAAGAGCTAGAGATCAAAAAT

TGCCCCAAGCTTGCAAGTATTCCAGCGATTCCCGTTGTCAGCGAGTTGAGAATAGTTGGA

GTTCACAGTACTGCAGTCGGTTCAGTTTTTATGAGCATCCGTTTGGGCTCCTGGCCATTTC

TCGTCAGGTTAAGTCTTGGGTCTCTAGAAGACATACCCATGTTGCCTCTAGACGCCCAGC

AAAACCAAAGTGAAAGACCTCTTGAAAAGCTTGAGAGTTTGACTCTGGAAGGGCCCAAC

AGCTTGATCAGAAGCTCTGGATTGTCCGGATCACAACTTATGGTTTGGAAATGTTTTCGG

TTCGTGCGAGATCTGATGATTGATGGTTGCAGC). 80 ng of the probe were labelled 

with α-32P-dCTP using the DNA Polymerase Large (Klenow) Fragment (Promega). 

Marked probe was then purified on Sephadex columns (Sambrook et al., 1989). 

The filter was pre-hybridized over night at 65°C in 15 ml of Hybridization Buffer 

(0.5 M Sodium phosphate, pH 7.2, 7% SDS, 1 mM EDTA, 10 mg/ml denatured  

Harring sperm DNA). Hybridization was performed incubating over night at 65°C 

the filter in 15 ml of new Hybridization Buffer with the denatured α-32P-dCTP 

labelled probe. The filter was washed to medium stringency (Sambrook et al., 1989) 

and subjected to autoradiography using the Biomax MS (Kodak) system. 
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2.6 In situ analyses 

 
2.6.1 Sectioning of the embryos 

Embryos of NIL3876 grown at 14, 22 and 26 dai in presence of Pyrenophora 

graminea isolate Dg2 and, at the same time points, on sterile moist filter paper 

(control), were extracted from grains and immediately fixed by incubation in freshly 

prepared FAE (50% ethanol, 5% acetic acid and 3.7% formaldehyde in Phosphate 

Buffer Saline (PBS) (130 mM NaCl, 7 mM Na2HPO4 and 3 mM NaH2PO4)) with 

vacuum for 20 minutes and then were incubated in new FAE for 12 hours. The fixed 

material was placed in 70% ethanol and stored at 4°C. 

After dehydratation using increasing concentration of ethanol, embryos were 

embedded in Paraplast Plus (Sigma Aldrich) and orientated to obtain longitudinal 

sections. The embedded embryos were stored at 4°C. 

10 µm thick longitudinal sections, obtained using a microtome LEITZ 1512, were 

put on PolysineTM Microscope Slides (Biooptica) and store at 4°C. 

Paraplast was removed from sections by the use of Histochoice Clearing Agent 

(Sigma Aldrich) and sections were rehydratated with decreasing concentration of 

ethanol in 0.85% NaCl. 

 

2.6.2 Terminal deoxynucleotidil tranferase-mediated dUTP Nick 

and Labelling (TUNEL) and Autofluorescence assays 

Sections of the embryos were permeabilized by treatment in 100 mM Tris/HCl, 50 

mM EDTA, pH 8 with 20 µg/µl of recombinant Proteinase K PCR grade (Roche) for 

45 min at 37°C. 

After washing twice in PBS (Par. 2.6.1) for 1 min, sections were incubated with the 

TUNEL reaction mix (Label Solution with fluorescein-coniugated dUTP and 

Enzyme Solution with Terminal transferase) for 1 h and 30 min at 37°C, according 

to the In Situ Cell Death Detection Kit, Fluorescein (Roche). 

Two negative controls were performed without Terminal transferase and two 

positive controls (one with an inoculated embryo and one with a control embryo) 

were carried out by incubation in 20 mM Tris/HCl, 2 mM MgCl2, pH 8 with 5 U/ml 
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DNaseI (Sigma), for 3 min at 25°C before the treatment with the TUNEL reaction 

mix. 

After the washing in PBS, samples were observed with an Olympus BX51 

microscope fitted with the following configuration: excitation at 451-490 nm and 

emission at 491-540 nm for fluorescein and excitation at 335-380 nm and emission 

at >420 nm for autofluorescence. Images were recorded by an Olympus DP50 

microscope digital camera system. 

 

2.6.3 4’,6-Diamidino-2-phelindole clorihydrate (DAPI) staining 

To verify the presence of the nuclei in the cells that did not show a positive TUNEL 

signal, sections were incubated in 1% (w/v) 4’,6-Diamidino-2-phelindole 

clorihydrate (DAPI) in PBS pH 7 (Par. 2.6.1) for 20 min at room temperature in the 

dark and were observed with an Olympus BX51 microscope fitted with excitation at 

335-380 nm and emission at >420 nm. Images were recorded by an Olympus DP50 

microscope digital camera system. 

 

2.6.4 Calcofluor staining 

To visualize Pyrenophora graminea in the infected tissues, sections were incubated 

in 0.01% Calcofluor (Sigma Aldrich) in PBS pH 7 (Par. 2.6.1) for 30 min at room 

temperature and were observed with an Olympus BX51 microscope fitted with 

excitation at 335-380 nm and emission at >420 nm. Images were recorded by an 

Olympus DP50 microscope digital camera system. 

 

2.7 Analysis of the hypothetical Rdg2a locus in cultivar 

Morex 

 
2.7.1 Screening by PCR-based molecular markers 

Steuernagel et al. (2009) sequenced 91 barcoded, pooled, gene containing Morex 

BACs using the 454-GS-FLX sequencer and assembled the sequences under 

interative change of parameters using the Newbler software (Roche). In particular, 

they obtained, from BAC HVVMRXALLhA425O23_c2, a 26,223 bp contig that, 
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when compared to Thibaut Rdg2a locus by the use of Vector NTI 9 (Invitrogen), 

showed a hypothetical gene homolog to Nbs1/Nbs2-Rdg2a. The comparative 

analyses revealed also that some regions of Thibaut Rdg2a locus are quite conserved 

in Morex, even if in the last cultivar several deletions were observed with respect to 

the resistant haplotype. Based on these observations, to verify the assembling, PCR-

based molecular markers were developed with several primers that annealed at 

sequences within or flanking the deleted regions (Tab. 2.7; Fig. 3.18(a); Par. 3.7, 

Results).  

 

Primer 
combination 

Sequence Expected amplicon dimensions 
Thibaut                             Morex 

CR1 
CR2 

TCTGAACGGGCGGGCTTATCTGAG 5360bp                              1064bp 
CAGGAGGAGAAGCTGGAGAACAAG 

NCR1 
CR2 

GAAGACGGCGCAGGAAGGATCGG 471bp                                     / 
CAGGAGGAGAAGCTGGAGAACAAG 

CR3 
CR4 

GCTTACACAGTGCCAATGCTAAGC 14872bp                            1179bp 
ATGGGCAATACCTGCACCTTCTTC 

CR3 
NCR2 

GCTTACACAGTGCCAATGCTAAGC 1183bp                                  / 
TGATGGGCAGCACCTGCACCCTCCG 

Nbs2_30 
CR5 

TGAGGGTAGGCACACTGCACAC 1927bp                                  / 
AGCTTATGGGTTCCAAGGGACTGC 

 
 

 

 

Furthermore, primers specific for Morex sequence were utilized (Tab. 2.8). 

 

Primer combination Sequence 
Morex5fw 
Morex7rev 

TCACCGGGCTTACACAGTGC 
AAGTCGTCGAGCACGTTGTCAGC 

Morex9fw 
Morex11rev 

TTCTCTGAGGGAATTATGGATTTGG 
TGATGATTACTTGTGGACAACAG 

Morex13fw 
Morex18rev 

AAACTTAGAATCCGGACAGGC 
ATGTATGATTGCACTCTTTTCCC 

 

 

PCRs were performed on Thibaut genomic DNA and on the Morex BAC 146G20, 

belonging to the Morex BAC library utilized for the Rdg2a positional cloning (Par. 

1.3.1, Introduction). This BAC, on the basis of PCR and sequence analyses, 

demonstrated to overlap to the BAC 425O23 processed by Steuernagel et al. (2009). 

PCR conditions were the same described in Par. 2.4.2 with the exclusion of the 

Tab. 2.7 Primer combinations used for the PCR-based molecular markers screening of Morex 
hypothetical Rdg2a locus and designed on the base of Thibaut sequence. The dimensions of the 
corrispective PCR amplicons in the two genotypes are also reported (Fig. 3.18(a); Par. 3.7, Results). 

Tab. 2.8 Primer combinations used for the PCR-based molecular markers screening of Morex 
hypothetical Rdg2a locus and specific for Morex sequence. 
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annealing time that was of 2’ in these last experiments. PCR products were loaded 

on a 1% agarose gel. 

Finally, to determine whether a homolog gene of Thibaut Nbs3-Rdg2a is present in 

the Morex Rdg2a locus, several PCRs, using primer combinations specific for this 

gene (Tab. 2.9), were performed as described in Par. 2.4.2 (3’ annealing) with both 

Thibaut genomic DNA (control) and Morex BAC 146G20.  

 

Primer combination Sequence 
Nbs3_47 
Nbs3_12 

GCAGCCTTGACGCGCGAGAGACCAT 
CTTCTGTTCTTGCTGGTCCAACAGTTT 

Nbs3_46 
Nbs3_11 

CTTCTCTCCATTTTCCCAACAACCGC 
TCAGGCATGTCACATCTTCCACTTAC 

Nbs3_33 
Nbs3_11 

GCTGAGGAGATGAGCGAGAAGAAGTC 
TCAGGCATGTCACATCTTCCACTTAC 

Nbs3_36 
Nbs3_27 

AAGAGAGAACAATGGATTTAACACGGAA 
CGGGCTATCAGACATTTTGAGTTCTC 

Nbs3_29 
Nbs3_49 

AGAGATGTGGAAGAAGTGCTTCAGTGCT 
CTGATCAAGCCGTTGAGCCCTTT 

 

  

Amplified PCR products (Nbs3_29+Nbs3_49 and Nbs3_46+Nbs3_11) from Morex 

were purified from 1% agarose gel by the Wizard® SV Gel and PCR Clean-Up 

System (Promega) and directly sequenced using 2.5 ng each 100 bp of DNA and the 

same primers utilized for PCR reactions (Tab. 2.9). Sequencing outputs were 

analyzed by the Sequencing Analysis Software v5.2 with KB Basecaller Software 

v1.2 (Applied Biosystem, Foster City, CA USA) and were compared to Thibaut 

Nbs1-Rdg2a, Nbs2-Rdg2a, Nbs3-Rdg2a and to Morex contig by the use of Vector 

NTI 9 software (Invitrogen, Carlsbad, CA USA). 

 

2.7.2 Sequencing of Morex BAC146G20 

The region comprised between the Morex 26,223 bp-long contig and the amplicon 

obtained by the primer combination morex13fw+Nbs3_11 was sequenced by primer 

walking on the amplicons and directly on the Morex BAC using 1 µg of BAC 

146G20 as template. The protocol is described in Par. 2.4.2. Primers used for 

sequencing are reported in Tab. 2.10. 

 

 

Tab. 2.9 Primer combinations used to verify whether Morex carries a homolog gene of Thibaut 
Nbs3-Rdg2a. 
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Primer Sequence 
Morexwalkingfw1 CACGATGCAGAGAAGGTGGG 
Morexwalkingfw2 TGGGGAGTATTTCCACTTGCTC 
Morexwalkingrev1 CGTCAAGGCTGCTTGGTTTG 
Morexwalkingrev2 TGCAGATCTCTCACGCGTCAAGG 
Morexwalkingfwbac5 TGACAAAGGGGTCCAGCAACA 
Morexwalkingfwbac6 ATTTCCAGTTGAAGATGTGGCACT 
Morexwalkingrev5 TGCAAGGAAGCATTCGCTCA 
Morexwalkingrev6 CCACAATAATAAACCAAGCC 
Morexwalkingfwbac7 GCCTGTGGTGTCCCGCCAA 
Morexwalkingfwbac8 AGCACGTTAGGCTACGGCTCA 

 

 

2.7.3 Expression analysis in cultivar Morex 

A two-step RT-PCR was performed to analyze the expression of the Rdg2a homolog 

gene in cv. Morex. RNA was extracted by the use of TRIZOL® from barley embryos 

grown at 7, 14 and 22 dai with Pyrenophora graminea isolate Dg2 and at the same 

time points after growth on sterile moist filter paper (control). RNA was also 

extracted from leaves of 14 days old seedlings infected with the fungus and from 

control leaves. RT-PCRs were conducted as described in Par. 2.4.4.1. Primers used 

were specific for the Morex gene (nbs1-1-mo: GGTTCCTGGCCATTTCTTGCTGAG and 

nbs1-2-mo: CTGCATCGTGTTCCCAACTCCGG). 

To complete the expression analysis, a quantitative RT-PCR was performed using 

the same RNA utilized for the RT-PCRs and following the protocol described in Par. 

2.4.4.2. Primers, specific for the Morex gene, were projected by Primer Express 

software (Applied Biosystem) and were: 

rtmorexfw5                                CAAATGTCAAAGGCTGAATTCG 

rtmorexrev5                               CAAAGTGCGGAGGTATGTTCTG 

 

2.8 Analysis of different barley varieties 

 
2.8.1 PCR-based molecular markers analysis of different barley             

varieties 

Different barley cultivars (Rika, Bulbul, Triumph, Imber, Optic, Ansis, Gitane, 

Bonus, Ketos, Grete, Franka, Marado and Federal) were tested for their 

susceptibility/resistance to P. graminea isolates Dg2 or Dg5 by the use of the 

Tab. 2.10 Primer used for the primer walking on Morex BAC 146G20. 
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sandwich technique (Pecchioni et al., 1996; Par. 2.3). Cvs. Thibaut, Mirco and 

Golden Promise were also tested as controls. An analysis of the haplotype (Thibaut, 

Morex and other un-identified haplotypes) was performed throught a PCR-based 

molecular markers screening in the above mentioned cultivars and in other varieties 

already characterized for their response to leaf stripe infection with isolates Dg2 and 

Dg5 (Rebelle, Onice, Proctor, Alf, Diadem, Haruna Nijo, Galleon, Jaidor, Nudinka, 

Passport and Acuario) (Arru et al., 2003; Par. 2.2). The Wizard Magnetic 96 DNA 

Plant System (Promega) was utilized for the extraction of genomic DNA from the 

leaves of these cultivars and from Thibaut and Morex leaves (controls). PCRs were 

performed as described in Par. 2.7.1, using the same primer combinations utilized to 

verify the assembling of the Morex 26,223 bp-long contig (Tab. 2.7). 

 

2.8.2 Sequencing of Rdg2a in cultivars Rebelle, Haruna Nijo and 

Galleon  

Rdg2a alleles were amplified by PCR using the genomic DNA of cvs. Rebelle, 

Haruna Nijo and Galleon. Nbs1-specific primers obtained from Thibaut Nbs1-Rdg2a 

genomic sequence (Tab. 2.11) and Go Taq® DNA Polymerase (Promega) were 

utilized following the protocol described in Par. 2.4.2. 

 

Fragment Primer 
combination 

Sequence 

Fragment I Nbs1_17 CACCGCATCATGAAGAGAACTGATACAGGA 
D2_19 CCTTGCCGGCCACGCCGCGCACTAG 

Fragment II Nbs1_14 TACTTGGTTTGGAGCTAGGAGACG 
Nbs1_10 GCTGCAACCATCAATCATCAGATCTCGC 

Fragment III D2_10 GTGTAGGAGAGCCTCGGATGTTT 
Nbs1_19 GGTACCATCGATTCATGACGTTAGCAT 

 

 

Primers used to sequence the fragments in the three cultivars are listed in Tab. 2.12. 

 

Barley variety Fragment Primer Sequence 
Rebelle I Nbs1_1 CTTCACCGCGCTTACACAGTGCCA 

D2_12 ATTGAGAGGCCGCCAGTAGGTACC 
D2_1 CGCCAGTAGGTACCTACCAGTCAATAT 

II 
 

Nbs1_9 ATTGGTCACATGTCGAAGCAAGCAAGTCG 
Nbs1_4 CAGGCGACAGGTGTTTGTAGCTTA 
Nbs1_21 GGCGTAACGGTGCACATTATC 

Tab. 2.11 Primers used to amplify subsequent fragments of Rdg2a in cvs. Rebelle, Haruna Nijo and 
Galleon.  
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Nbs1_20 CACCCTGTTCTTGTACATGCTGCAGCTTCC 
D2_6 GACGTGCTTTGGAAGATAACAAGG 
D2_8s2 AGAAATATCACAATGGATGAGAA 
Nbs1_7 CCTCGGATGTTTAGCAGTTTGGA 
Nbs1_12 TCATCAGATCTCGCACGAACCGA 
UTR_R1 TTGCTTGCTTCGACATGTGACC 
UTR_R2 GATGTTGCCGCTCCTCCCTACG 
Nbs1_11 GTAACATCGGGGATAAAGATGGAGGC 
D2_16s3 GCACATACTGAAGTTAAGCT 
Nbs1_34 AAATCCTTGTGTGATCCTGAAGGAA 
Nbs1_2 GGCCAACACAATGCTCTTAGTGATGCCGAT 
Nbs1_26 GCTAAACATCCGAGGCTCTCCTACACTA 
D2_17 TCGCAACTTCCGGCAATCCATTAG 
D2_8s1 AAACCTTAGCAATAGGTTGGA 
Nbs1_25 GATGAGCCTACAGATGTGGAAGAAGTGC 

III Nbs1_15 CAGAACTGCCGCAGTGTAGTAGC 
D2_14 TATGCCGATTCACTTTGGGATGCCTATTC 
D2_15 GGAACAGAGGAGAGCAAGTGGAAGTAC 
D2_2 CACCTTCTCTGCATCGTCTTTGC 
Nbs1_12 TCATCAGATCTCGCACGAACCGA 
D2_13 GTTGCTACAGGTATCGGCATCACTAAGAGC 
D2_8s1 AAACCTTAGCAATAGGTTGGA 
D2_8s2 AGAAATATCACAATGGATGAGAA 
Nbs1_25 GATGAGCCTACAGATGTGGAAGAAGTGC 
Nbs1_5 TAGTGTAGGAGAGCCTCGGATGTT 
Nbs1_7 CCTCGGATGTTTAGCAGTTTGGA 
Nbs1_35 GGCAGTCGGAAATTTCGAGTTTTTCC 
Nbs1_36 GGAAAAACTCGAAATTTCCGACTGCC 
Nbs1_10 GCTGCAACCATCAATCATCAGATCTCGC 

Haruna Nijo 
 
 

I D2_11 CCTTACCAACGCCCAAATTTGTCG 
D2_1 CGCCAGTAGGTACCTACCAGTCAATAT 
D2_18 TTTCCCATACCAAGCAGAGCCTTCGA 

II Nbs1_4 CAGGCGACAGGTGTTTGTAGCTTA 
Nbs1_11 GTAACATCGGGGATAAAGATGGAGGC 
Nbs1_21 GGCGTAACGGTGCACATTATC 
D2_13 GTTGCTACAGGTATCGGCATCACTAAGAGC 
D2_16s3 GCACATACTGAAGTTAAGCT 
Nbs1_34 AAATCCTTGTGTGATCCTGAAGGAA 
Nbs1_2 GGCCAACACAATGCTCTTAGTGATGCCGAT 
D2_5 GGAAATGACAACTGAATAAGAGGGCC 
D2_17 TCGCAACTTCCGGCAATCCATTAG 
UTR_R2 GATGTTGCCGCTCCTCCCTACG 
Nbs1_20 CACCCTGTTCTTGTACATGCTGCAGCTTCC 
D2_8s2 AGAAATATCACAATGGATGAGAA 

  Cos179 TTGGGCAGCCAAACATTTCGA 
Nbs1_5 TAGTGTAGGAGAGCCTCGGATGTT 
D2_10 GTGTAGGAGAGCCTCGGATGTTT 
Nbs1_7 CCTCGGATGTTTAGCAGTTTGGA 
Nbs1_25 GATGAGCCTACAGATGTGGAAGAAGTGC 
Nbs1_26 GCTAAACATCCGAGGCTCTCCTACACTA 
Nbs1_35 GGCAGTCGGAAATTTCGAGTTTTTCC 
Nbs1_12 TCATCAGATCTCGCACGAACCGA 
D2_6 GACGTGCTTTGGAAGATAACAAGG 
D2_16 CTGTTCTTGTACATGCTGCAGCTTCC 
D2_19 CCTTGCCGGCCACGCCGCGCACTAG 
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III Nbs1_15 CAGAACTGCCGCAGTGTAGTAGC 
Nbs1_16 AGCTGAGGAGTCTCTATGTGAGCG 
D2_9 CCATTGGTTATCACCTAATTTGTAT 
D2_7 TTTGTCAGGTAAGGAGACTCACGC 
D2_14 TATGCCGATTCACTTTGGGATGCCTATTC 
D2_15 GGAACAGAGGAGAGCAAGTGGAAGTAC 

Galleon 
 
 

I Nbs1_1 CTTCACCGCGCTTACACAGTGCCA 
D2_6 GACGTGCTTTGGAAGATAACAAGG 
D2_11 CCTTACCAACGCCCAAATTTGTCG 
D2_3 TTTCTTAGCTGTGCAAAACATCC 
Nbs1_14 TACTTGGTTTGGAGCTAGGAGACG 

II D2_6 GACGTGCTTTGGAAGATAACAAGG 
D2_16 CTGTTCTTGTACATGCTGCAGCTTCC 
D2_19 CCTTGCCGGCCACGCCGCGCACTAG 
UTR_R2 GATGTTGCCGCTCCTCCCTACG 
Nbs1_20 CACCCTGTTCTTGTACATGCTGCAGCTTCC 
Nbs1_23 CTTATCATCTTCCCTTCCAA 
Nbs1_31 CCGCTGATCCTGCTGGTCCAGCAGCAA 
D2_16s2 CGAACTATTGCAAAAGAAAC 
Nbs1_9 ATTGGTCACATGTCGAAGCAAGCAAGTCGC 
UTR_R1 TTGCTTGCTTCGACATGTGACC 
Nbs1_21 GGCGTAACGGTGCACATTATC 
Nbs1_22 CGGTGCACATTATCGAGGCG 
Nbs1_11 GTAACATCGGGGATAAAGATGGAGGC 
Nbs1_4 CAGGCGACAGGTGTTTGTAGCTTA 
Nbs1_34 AAATCCTTGTGTGATCCTGAAGGAA 
Nbs1_2 GGCCAACACAATGCTCTTAGTGATGCCGAT 
D2_13 GTTGCTACAGGTATCGGCATCACTAAGAGC 
D2_17 TCGCAACTTCCGGCAATCCATTAG 
Nbs1_25 GATGAGCCTACAGATGTGGAAGAAGTGC 
D2_8s2 AGAAATATCACAATGGATGAGAA 
Cos179 TTGGGCAGCCAAACATTTCGA 
D2_10 GTGTAGGAGAGCCTCGGATGTTT 
Nbs1_26 GCTAAACATCCGAGGCTCTCCTACACTA 
Nbs1_7 CCTCGGATGTTTAGCAGTTTGGA 
Nbs1_36 GGAAAAACTCGAAATTTCCGACTGCC 
Nbs1_35 GGCAGTCGGAAATTTCGAGTTTTTCC 
Nbs1_12 TCATCAGATCTCGCACGAACCGA 

III Nbs1_15 GATGAGCCTACAGATGTGGAAGAAGTGC 
Nbs1_16 AGCTGAGGAGTCTCTATGTGAGCG 

 

 

2.8.3 Expression analysis of Rdg2a in cultivars Rebelle, Haruna Nijo 

and Galleon  

Total RNA was extracted from leaves of cvs. Rebelle, Haruna Nijo and Galleon by 

the use of TRIZOL® Reagent (Life Technologies) and was treated by DNaseI 

(Ambion). cDNAs were synthesized, as described in Par. 2.4.4.1, and RT-PCRs 

were performed with the same primer combinations utilized for Thibaut Nbs1-Rdg2a 

(Tab. 2.6).  

Tab. 2.12 Primers used for the sequencing of Rdg2a in cvs. Rebelle, Haruna Nijo and Galleon.  
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3. Results 

 

3.1 Sequencing of Nbs3-Rdg2a cDNA from NIL3876 

A previous RiceGAAS (http://ricegaas.dna.affrc.go.jp/, Sakata et al., 2002) analysis 

of the Nbs3-Rgd2a genomic sequence in the resistant cv. Thibaut (Bulgarelli et al., 

2010) predicted that this gene consists of four exons and three introns of 167 bp, 792 

bp and 56 bp, positioned 2,075 bp, 3,442 bp and 4,706 bp downstream the start 

codon, respectively. To investigate whether these introns were subjected to splicing 

or to alternative splicing during infection, a RACE (Rapid Amplification of cDNA 

Ends) analysis and semiquantitative RT-PCRs were performed to obtain full length 

cDNA of Nbs3-Rdg2a. Poly(A)RNA extracted from NIL3876 (Par. 2.2; Marials and 

methods) embryos inoculated for 7 days with leaf stripe isolate Dg2 and from 7 days 

old embryos grown in absence of the fungus (control) and primer pairs generating 

overlapping fragments along the entire coding sequence of Nbs3-Rdg2a were 

utilized. Amplification products were then cloned into the Zero Blunt TOPO PCR 

vector (Invitrogen) for sequencing. Amplicons that did not show any difference with 

respect to the genomic sequence were processed and assembled by Vector NTI10 

software (Invitrogen, Carlsbad, CA USA). 

None of the predicted introns was found to be spliced in both control and inoculated 

embryo tissues, leading to the introduction of stop codons in the mRNA sequence. 

This analysis revealed instead the presence of three introns: the first is 305 bp long, 

located within the 5’UTR, 332 bp upstream the start codon and subjected to splicing; 

the second is a 44 bp-long intron spliced out in only a third (4/12) of the RACE 

clones analyzed and located at 105 bp after the ATG; the third is positionated within 

the 3’UTR, at 6,416 bp after the ATG, just after the stop codon; it is 70 bp long and 

is subjected to splicing. In particular, splicing of the 44 bp intron results in the 

generation of a stop codon after the splicing site, while retaining of this intron, due 

to alternative splicing pattern, generates a stop codon in the first not spliced 

predicted intron at position 2,388 bp with respect to the start codon (Fig. 3.1), thus 

producing a truncated protein with only three LRR units. 
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Based on these results, Nbs3-Rdg2a was excluded form the Rdg2a candidates 

because it probably encodes severely truncated non-functional proteins. 

 

3.2 Sequencing of Nbs1-rdg2a and Nbs2-rdg2a in cultivar 

Mirco 

To highlight differences between Thibaut and Mirco alleles for the Nbs1-Rdg2a and 

Nbs2-Rdg2a genes, sequencing of Mirco alleles was carried out. Overlapping 

fragments belonging to the coding region, 5’ and 3’UTR and putative upstream 

regulatory regions of the two genes were amplified, directly sequenced and 

assembled using Vector NTI10 software (Invitrogen, Carlsbad, CA USA). 

Mirco Nbs1-rdg2a coding region (accession number HM124453) showed 85% of 

sequence identity with respect to Thibaut Nbs1-Rdg2a (accession number 

HM124452). Several frameshift sites resulting in stop codons together with 

nonsense mutations were identified. Moreover, the putative promoter showed 

different rearrangements and, in particular, two main insertions of 436 bp and 854 

bp, respectively (Fig. 3.2A). The first insertion is positioned 459 bp upstream the 

start codon and 96 bp upstream the transcription start site, after a putative TATA-

box element (this last is located 494 bp upstream the ATG); while the second 

insertion is within the putative transcribed region, 65 bp upstream the start codon. 

No homologies with repeat sequences were identified in the two insertions, but in 

the longer, flanking sequences represented by two inverted repeats of 138 bp each 

were found 

Fig. 3.1 Schematic diagram of the two transcript types resulting from alternative splicing pattern of 
Thibaut Nbs3-Rdg2a. Solid bars indicate the transcribed regions, lines angled upwards indicate the 
positions of spliced introns and lines under the solid bar indicate the positions of not spliced 
predicted introns. Sizes of the real and predicted introns, the positions of ATG, TGA and stop codon 
TAA are indicated in brackets (Bulgarelli et al., 2010).  
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(GAGAAAATTGGATATTTGCCACTTTAAACATCTGGTTTCGCAGAACTGCCA CTCTC

AAGATGGGCTTCGCAAAAATGCCACCTGGCTCGTGGACACCTTGATTACCA TGCCA

TTTTCCCTCTTTTATTGATTTTCCTT TTGCTTTTCCATTTACGTGCACCTAAAAGGACTA

GACTGCCCCTGTTCGTGCCGAAGCCCCTTCTTGCCTGCTCGTCACTCTCACCTTCTCACCG

CCGCAACTCGCCCTTGCATGCTCGCCGTCACAGCTCACCTCTGCTCCGCTCGCCCACACT

TGCGCTCGCTGCTGCAGCTCGTCAGGCGACGTGCTGAAGGAGTGGCGGAGGCAGGCACG

AACACAGGCATCAGTGATGCAACAACGGCAATAGCTGGACCCTGTTGTACGTTCTTGGA

GGAAGGAGAACAATGTACGTGCAGGTAGTGAAGATAGATTTTGGCAGCGTCGAGGCGG

TCGACGGCGATGGCGCCCGGGGAATCGGCAGCGCAGCGGAGTTCAGGAGTTTACAGTG

GCCACGTACAGGAGATCAGATTCGGCGATGTCTAGGCGATCCTAGGCAATTAGTGACTG

CGCGGTGTTCTTTGTTGTTGTTGTATTGGCTAGCTACCCGTGCGTCTGTACAATTAGATCA

GGTACGTGTACACATCCAAGGGTAGTGTGGTCTATTCAGGTGCATCTAAATGCAAAAGC

AAGGAAAATCAATAAAAGAGGAAAAATGGCATGGTAATCAAGGTGTCCACA AGCCA

GGTGGCATTTTTGTGAAGCCCATCTTGAGAGTGGCATTTCTGCGAAGCCAG ATGTT

TAAAATGGCAAATATCCAATTTTCTC (inverted repeats are in bold)). 

Mirco Nbs2-rdg2a coding region (accession number HM124454) showed 94% of 

sequence identity with the Nbs2-Rdg2a allele (accession number HM124452) and no 

stop codons were identified within the coding sequence. Interestingly, sequencing of 

the putative promoter region revealed a 347 bp deletion in the Mirco haplotype with 

respect to Thibaut at 145 bp upstream the transcription start site (Fig. 3.2B). BLAST 

search of the deleted sequence in the Triticeae Repeat Sequence (TREP) database 

(http://wheat.pw.usda.gov/ITMI/Repeats/) revealed 88% of sequence identity to the 

Stowaway type of Miniature Inverted Transposable Element (MITE) sequence. 

MITE elements are often associated with genes in crop species (Choulet et al., 2010; 

Wicket et al., 2006; Sabot et al., 2005; Wesser et al.. 1995).  Two direct repeats of 

41 bp each 

(CATTTTCCCAACAACCGCACAAACCCAAACCAAGCAGCCTT CACACGAGAGAGATC

ATTTTCCCAACAACCGCACAAACCCAAACCAAGCAGCCTT; inverted repeats are in 

bold) were additionally found in Mirco, while only one of these repeats is 

maintained in Thibaut and terminates just upstream the transcription start site at 470 

bp from the ATG (Fig. 3.2B). 
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To verify whether the Mirco sequences are true alleles, primers were chosen 

overlapping flanking regions of the insertions, for Nbs1-rdg2a, and the deletion, for 

Nbs2-rdg2a, and the obtained markers were used to verify co-segregation of the 

insertion/deletion polymorphisms with the Rdg2a locus in selected rare 

recombinants identified from a high resolution genetic mapping population (2,800 

F1 gametes). The In/Del markers (Nbs1_14+Nbs1_19 and Nbs2_6+Nbs2_29; Fig. 

3.3A) co-segregated with the Rdg2a locus (Fig. 3.3B and C), demonstrating that the 

Mirco sequences represent true alleles of Nbs1-Rdg2a and Nbs2-Rdg2a. 

A 

B 

Fig. 3.2 Structural differences between Thibaut and Mirco alleles of Nbs1-Rdg2a and Nbs2-Rdg2a 
in the putative promoter regions. Positions of insertion/deletions relative to the start codon are 
shown. Filled sections indicate inverted repeats present in an insertion in the Mirco Nbs1-rdg2a 
gene (A). The Nbs2-Rdg2a allele comparison illustrates variation for a MITE insertion and a 41 bp 
direct repeat (open sections) (B). The Transcription Start Sites (TSS) for the two genes in the 
resistant genotype are indicated (Bulgarelli et al., 2010). 
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Fig. 3.4 summarizes the DNA sequence homologies between paralogs and alleles at 

the Rdg2a locus in cvs. Thibaut and Mirco. 

Fig. 3.3 Demonstration that the sequenced Mirco Nbs1-rdg2a and Nbs2-rdg2a genes represent 
alleles of the respective Thibaut genes. Markers Nbs1_14+Nbs1_19 and Nbs2_6+Nbs2_29, 
developed using insertion/deletion polymorphisms in the putative regulatory regions (A), 
cosegregated with the Rdg2a locus in 12 rare recombinants for the Rdg2a region that had been 
identified in the high resolution mapping population (B). Recombination points are illustrated in 
C (Bulgarelli et al., 2010). 
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3.3 Expression analysis of the Rdg2a candidates 

To examine the genotype- and tissue-dependent expression patterns of the Nbs1-

Rdg2a and Nbs2-Rdg2a genes, gene-specific semiquantitative RT-PCRs were 

carried out using two different primer combinations for each candidate. cDNA were 

synthesized starting from DNaseI treated RNA isolated from NIL3876 and Mirco 

embryos grown in the presence of P. graminea isolate Dg2 at 7 and 14 days after 

inoculation (dai) and in control conditions (non-inoculated) at the same time-points, 

Fig. 3.4 DNA sequence homologies between paralogs and alleles at the Rdg2a leaf stripe resistance 
locus. Diagrams above define the domains compared. Percent identities were determined once 
major insertions/deletion differences had been removed (Bulgarelli et al., 2010). 
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as well as from non-inoculated NIL3876 and Mirco leaves. Since Nbs-LRR genes 

are quite conserved, the two different primer pairs, specific for the different genes in 

the two genotypes, were designed in the more specific and less conserved LRR 

encoding domain (Fig. 3.4(a)). Barley Actin gene was used as the reference gene. 

After amplification the identity of the amplicons was checked by sequencing.  

The two genes were found to be transcribed only in the embryos tissues and leaves 

of the resistant cultivar (Fig. 3.4(b)). 

 

                  

                 

 

 

 

 

 

Furthermore, quantitative RT-PCRs in control and inoculated embryos at five time-

points (7, 14, 18, 22 and 26 dai) were conducted. One primer combination for each 

gene was chosen for the analysis (Nbs1_27+Nbs1_28 for Nbs1-Rdg2a and 

Nbs2_2+Nbs2_5 for Nbs2-Rdg2a) (Fig. 3.4(a)); these primer combinations were 

Fig. 3.4 (a) Schematic representation of the Nbs1-Rdg2a and Nbs2-Rdg2a transcripts. Solid bars 
indicate the transcribed regions and lines angled upwards indicate the positions of introns, 
whose sizes are shown. Open reading frames are indicated by start and stop codons. Arrows and 
numbers in branckets represent the positions of the primers used for semiquantitative and 
quantitative RT-PCRs, referring to Thibaut haplotype. (b) RT-PCR analysis of the Rdg2a 
candidates in cv. Mirco and NIL3876 embryos under control conditions and after inoculation 
with P. graminea isolate Dg2 at two time-points (7 and 14 dai) and in leave tissues. Barley Actin 
gene was used as an internal control. (Bulgarelli et al., 2010) 
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located close to the putative poly-A site of the mRNAs and generated amplicon 

lengths of about 100 bp. The analysis was carried out using plant materials of two 

independent biological replicates and eight technical replicates for each of them. The 

results were expressed as relative transcription of each gene, normalized to the 

expression of barley Actin, compared to the expression of the same gene in 

unchallenged conditions.  

Following leaf stripe inoculation, the expression of Nbs2-Rdg2a increased 2.6-3.4 

times from 7 to 18 dai and then declined toward the level of uninoculated embryos 

by 22 dai. In contrast, no substantial changes in gene expression as a response to leaf 

stripe infection were observed for Nbs1-Rdg2a (Fig. 3.5).    

                      

           

 

 

 

A comparison between the expression levels of the two genes was also performed 

and it was verified that the Nbs2-Rdg2a transcript was found to be 2 to 16 times less 

abundant than that of Nbs1-Rdg2a, depending on the time-point and inoculation 

treatment (data not shown).  

 

3.4 Identification of the Rdg2a gene 

Genomic clones of the coding sequences under the control of their native promoters 

and terminators were generated for the two Rdg2a candidates (Nbs1-Rdg2a and 

Nbs2-Rdg2a) and used to transform the leaf stripe susceptible barley cv. Golden 

Promise. A total of 30 independent lines were generated for each transgene and T1 

Fig. 3.5 Quantitative RT-PCR at 7, 14, 18, 22 and 26 dai for the two candidates in NIL3876 
embryos. Values are expressed as log2 Fold Changes (FC) of transcript levels in the inoculated 
samples with respect to the transcript levels in uninoculated barley embryos. Error bars represent 
SD (Standard Deviation) across all RT-PCR replicates (eight for each of two independent 
inoculations) (Bulgarelli et al., 2010). 
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seeds, derived from T0 plants examinated by PCR for the presence of the transgene 

(Bulgarelli et al., 2010), were tested for resistance against the isolates Dg2 and Dg5 

in triplicate experiments, using the sandwich technique (Pecchioni et al., 1996).  

Transgenic lines for the Nbs1-Rdg2a gene were segregating for resistance to isolate 

Dg2 and were fully susceptible to isolate Dg5, towards which the Rdg2a gene is 

ineffective (Tab. 3.1). Moreover, to verify whether the resistance co-segregates with 

the Thibaut Nbs1-Rdg2a allele, PCR analyses were performed on genomic DNA of 

resistant and susceptible plants belonging to the transgenic line 16/S1-T6. Primer 

pairs generating amplicons of different sizes in the resistant cv. Thibaut and in the 

susceptible cv. Golden Promise genomic backgrounds were used. All the resistant 

transgenic plants showed the presence of the Thibaut allele (in addition to the 

Golden Promise allele), while susceptible plants amplified the Golden Promise allele 

only (Fig. 3.6(a)). Moreover, the expression of Thibaut Nbs1-Rdg2a for resistant 

plants was verified by RT-PCR using gene-specific primers and cDNAs derived 

from DNaseI-treated RNAs extracted from the leaves of these plants (Fig. 3.6(a)). 

The same analysis was conducted on T1 lines transformed with Nbs2-Rdg2a and all 

of them were fully susceptible to both the leaf stripe isolates (Tab. 3.1). The overall 

escape rate of 5% among the null segregants was similar to the value observed in the 

susceptible control varieties (data not shown). RT-PCRs showed that this gene is 

also transcribed in these plants (Fig. 3.6(b)).  

These results led to the conclusion that Nbs1-Rdg2a is the Rdg2a gene as it confers 

the same resistance specificity. 
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Tab 3.1 Complementation test of leaf stripe susceptibility in the barley cv. Golden Promise (Bulgarelli 
et al., 2010). 
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Fig. 3.7 shows a Southern blot analysis carried out using genomic DNAs extracted 

from several Dg2-resistant S1-T6 lines, carrying the Nbs1-Rdg2a transgene, and 

hybridized with a probe specific for Thibaut Nbs1-Rdg2a. Thibaut and Golden 

Promise genomic DNAs were used as references. All the transgenic lines showed 

Fig. 3.6 (a) Segregating T1 seeds of the transgenic line 16/S1-T6, carrying the Nbs1-Rdg2a 
transgene, were inoculated with P. graminea isolate Dg2 and the plants were analyzed for 
resistant/susceptible phenotype and by an Rdg2a STS marker allele. The same lines were also 
analyzed for transgene expression using RT-PCRs. The resistant cv. Thibaut and the susceptible cv. 
Golden Promise are shown as controls (Bulgarelli et al., 2010). (b) The same analysis conducted on 
T1 seeds of the transgenic line 60/S1-T7 in which the Nbs2-Rdg2a gene was introducted. 

S 



3. Results 
 

69 
 

the Golden Promise pattern with an addition of the Thibaut hybridizing fragment, 

thus confirming the presence of the transgene. In particular, line 8 showed more 

intense signals with respect to Thibaut and lines 16 and 32 had signals about three 

times stronger than Thibaut. Probably these lines have a higher copy number of the 

transgene with respect to Thibaut, but more accurate analyses are necessary to 

evaluate the exact copy-number. 

 

                         

 

 

 

The Rdg2a gene confers resistance by arresting fungal growth at the scutellar node 

and basal region of the provascular tissues of barley embryos (Haegi et al., 2006). 

RT-PCR analyses using RNA extracted from the leaves of some resistant and 

susceptible 16/S1-T6 plants grown in the absence of P. graminea (control) and 

inoculated with isolate Dg2 and Dg5 were performed. Primer pairs were specific for 

fungal Ubiquitin and GTPase activator and Thibaut Nbs1-Rdg2a. Barley Actin was 

used as the reference gene. 16/S1-T6-Rdg2a plants infected with Dg2 (16/S1-T6-P5-

Rdg2a-Dg2) showed no leaf stripe symptoms and no fungal mycelium in the leaves, 

as demonstrated by the absence of transcripts for fungal Ubiquitin and GTPase 

activator genes. Typical leaf stripe symptoms and fungal transcripts were instead 

Fig. 3.7 Southern blot analyses of several resistant S1/T6 plants carrying the Nbs1-Rdg2a 
transgene. Genomic DNAs were digested by EcoRI and KpnI. The probe was specific for the gene 
and was obtained from Thibaut Nbs1-Rdg2a by PCR. The corrispective numbers of the lines are 
reported. Thibaut (T) and Golden Promise (GP) were used as reference controls. 
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present in leaves of compatible interactions (16/S1-T6-rdg2a plants infected with 

isolates Dg2 and Dg5 (16/S1-T6-P2-rdg2a-Dg2 and 16/S1-T6-P3-rdg2a-Dg5) and 

16/S1-T6-Rdg2a plants infected with Dg5 (16/S1-T6-P6-Rdg2a-Dg5)) (Fig. 3.8).  

 

 

 

These findings further confirm that Nbs1-Rdg2a represents the Rdg2a gene. 

 

3.5 The RDG2A protein  

The predicted RDG2A protein consists of 1,232 amino acids and has an estimated 

molecular weight of 139.73 KDa. It contains all the conserved NB domain motifs of 

the NB-LRR proteins defined by Meyers et al. (1999; 2003), including the P-loop, 

RNBS-A, GLPL, RNBS-D and MHD domains, the latter of which is duplicated 

(Fig. 3.9). A COILS analysis revealed the presence of a potential Coiled-Coil (CC) 

domain between amino acids 25 and 60, indicating that RDG2A belongs to the 

group of the CC-NB-LRR protein family (Meyers et al., 1999). The LRR region 

contains 22 imperfect repeats with a few repeats showing good agreements with the 

consensus motif LxxLxLxx(C/N/T)/xxLxxLxxLP for cytoplasmic LRRs (Fig. 3.9) 

(Jones and Jones, 1997). 

Fig. 3.8 RT-PCR analyses of the fungal 
Ubiquitin and GTPase activator genes 
and of the Thibaut Rdg2a gene in six 
different 16/S1-T6 plants (P1 to P6) 
segregating for the Rg2a transgene. 
Barley Actin gene was used as an internal 
control. The DNA extracted from the 
same plants was tested for the presence 
of the Rdg2a allele at an Rdg2a STS 
marker (Bulgarelli et al., 2010). 
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Fig. 3.10 illustrates a phylogenetic tree obtained using RDG2A and the most similar 

sequences present in the National Center for Biotechnology Information (NCBI) 

database. Searching was conducted using BLASTp, the sequences were aligned by 

ClustalX and the alignment was visualized by GeneDoc. The tree was created using 

Fig. 3.9 The RDG2A protein domains. The predicted CC domain is underlined. Motifs conserved 
in the NB region of the NB-LRR proteins are in blue, and are (in order): P-loop, RNBS-A, Kinase 
2, RNBS-C, GLPL, RNBS-D and MHD. Amino acids conforming to the cytoplasmic LRR 
consensus LxxLxLxx(C/N/T)/xxLxxLxxLP are in red. CT denotes the RDG2A C-terminal region 
(Bulgarelli et al., 2010). 
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the Phylip software with the Neighbor-joining algorithm and visualized by 

Treeview. RDG2A was most similar (47-52%) over its whole length to five rice 

resistance-like proteins (BAD08990, EEE69085, EEC83970, BAD0894, and 

BAF24312) encoded by genes clustered in a 2.97 Mbp region of rice chromosome 8 

(nt. 25,872,241 to 28,845,527 of AP008214), which is not collinear with the barley 

Rdg2a interval (Bulgarelli et al., 2004). Similarities with known barley resistance 

proteins (MLA1, MLA6 and MLA12 powdery mildew resistance proteins) are  

restricted to the conserved motifs of the NB domain (low level of identity, 

approximately 16%) (Fig. 3.10). 

 

 

 

 

 

 

 

 

Comparison of the RDG2A (protein ID ADK47521) and NB2-RDG2A (protein ID 

ADK47522) sequences using ClustalW, showed that the two proteins are 73.5% 

Fig. 3.10 Neighbor-joining phylogenetic tree including RDG2A, similar resistance proteins and 
resistance gene analog products. Numbers on branches indicate bootstrap percentages; while 
prefixes indicate species origin. The A. thaliana RPM1 protein (Q39214) was used as outgroup. 
Shown are the rice (Oryza sativa) disease resistance-like proteins BAF24312, BAD08984, 
BAD08990, EEC83970 and EEE69085, the PM3 wheat powdery mildew resistance protein, 
products of the S. Bulbocastaneum blight resistance gene Rpi-blb1 and its paralogues Rga3-blb, 
and Rpi-blb1, predicted products of the RGA_B149.blb, RGA_T118-tar (S. tarijense), RGA_SH10-
tub (S. tuberosum) and Rpi-pta1 (S. papita), the I2 and I2C-1 proteins encoded by the tomato 
(Lycopersicon esculentum) I2 resistance locus to Fusarium wilt, the soybean (Glycine max) 
Phytophthora root rot resistance protein RPS-L-K-1, and the barley (H. vulgare) powdery mildew 
resistance proteins MLA1, MLA6 and MLA12 (Bulgarelli et al., 2010). 
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identical, and differences include a deletion of three consecutive LRRs in NB2-

RDG2A (Fig. 3.11). Similarity is higher in the CC region than in the NB and LRR 

domains (92.6% versus 73-74%), and the proportion of non-conservative amino 

acids substitutions is lower in the NB domain (75/104=72%) than in the LRR 

domain (57/71=80%). Similarly, the ratio of non-synonymous (Ka) to synonymous 

(Ks) nucleotide substitutions between Rdg2a, Nbs2-Rdg2a and Nbs3-Rdg2a (longest 

ORF) is 0.99, 2.13 and 2.63 for the CC, NB and LRR regions, respectively. Within 

the LRR domain, non-conservative substitutions are about twice as frequent in the β-

strand/β-turn xxLxLxx motifs (solvent-exposed residues framed by aliphatic 

residues (Jones and Jones, 1997)) (boxed Fig. 3.11) than elsewhere (25/133=18.8% 

versus 32/373=8.5%).  

These comparisons indicate that Rdg2a and its paralogues have been subjected to 

diversifying selection in the LRR-coding region, consisting with the fact that the 

LRR domain is an important determinant for resistance specificity (Bulgarelli et al., 

2010; DeYoung, 2006).    
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Fig. 3.11 Alignment of the deduced LRR domain sequences of RDG2A and NB2-RDG2A. 
Substitution differences are boxed; those in grey and green represent conservative and non-
conservative substitutions (as defined by ClustalW), respectively. The regions of the LRRs 
that correspond to the β-strand/β-turn motif xxLxLxx are framed and the Leucine (or other 
aliphatic) residues that form the structural backbone of the LRR units in RDG2A are in red 
(Bulgarelli et al., 2010). 
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Transiently expression in barley cv. Golden Promise leaf epidermal cells of RDG2A 

and NB2-RDG2A fused with the Yellow Fluorescent Protein (YFP) at their N-

terminal showed that the two proteins are localized in the nucleus and in the 

cytoplasmatic strands, even if they don’t have any predicted transmembrane domain 

or any signal peptide sequence (Fig. 3.12) (Bulgarelli et al., 2010). 

 

  

 

 

 

 

 

 

3.6 Rdg2a-mediated resistance does not involved 

programmed cell death 
Redg2a-mediated resistance terminates fungal growth, in inoculated embryos, 

through the reinforcement of cell wall by the accumulation of phenolic compounds 

with the appearance of cell wall-associated host-cell autofluorescence at the junction 

of the scutellum and the scutellar node (Haegi et al., 2008). Whole-cell 

autofluorescence is regarded as an indicator of Hypersensitive Response (HR) in 

race-specific resistance of barley leaf epidermal cells to powdery mildew 

(Huckelhoven et al., 1999; Gorg et al., 1993) but it was only occasionally (one or 

two cells per embryo section) observed in barley embryos expressing Rdg2a 

resistance. To analyse whether this resistance involves HR and so Programmed Cell 

Death (PCD), we conducted a TUNEL (Terminal Deoxynuclotidyl Transferase-

mediated dUTP Nick and Labelling) test on serial sections of NIL3876-Rdg2a barley 

Fig. 3.12 Sub-cellular localization of the RDG2A and NB2-RDG2A proteins. Barley cv. Golden 
Promise epidermal cells were transiently transformed with constructs expressing RDG2A:YFP 
and NB2-RDG2A:YFP fusion proteins ((a) and (d) respectively), driven by the maize 
Polyubiquitin gene promoter. (g) control construct expressing YFP alone with the same promoter. 
Fluorescence signals were visualized using confocal laser scanning microscopy ((a), (d) and (g)). 
Bright field images ((b), (e) and (h)) and merged images ((c), (f) and (i)) are shown. Scale bar 
represent 50 µm (Bulgarelli et al., 2010). 
 



3. Results 
 

76 
 

embryos. This method enables the detection of free 3’-OH groups generated by 

DNA strand breaks occurring at the first stage of programmed cell death. Embryos 

inoculated with P. graminea isolate Dg2 for 14, 22 and 26 days and control 

embryos, grown in the absence of the fungus at the same time-points, were treated 

with TUNEL reaction and examined under UV light. Autofluorescence was also 

investigated using a different epifluorescence filter. To verify the presence of the 

fungus in inoculated embryos, sections were incubated in Calcofluor staining.  

In non-inoculated embryos, no autofluorescence was observed (Fig. 3.13(a) to (c)), 

while inoculated embryos showed autofluorescence at the scutellar node and 

provascular tissues (Fig. 3.13(g) to (i)).  

Clalcofluor staining and bright field observations revealed the presence of fungal 

mycelium in the autofluorescent regions (Fig. 3.13(s) and (t), respectively), 

indicating that autofluorescence is a genuine defence-associated marker.  

The TUNEL analysis revealed some nuclear DNA fragmentation (bright green 

fluorescent nuclei) in the coleoptiles and in a few cells at the scutellar node of both 

control (Fig. 3.13(d) to (f)) and inoculated (Fig. 3.13(j) to (l) and (m) to (o)) 

embryos. There was no difference in TUNEL signals at the junction of the scutellum 

and scutellar node between inoculated and control embryos and the presence of 

positive nuclei was only occasionally (one/two nuclei over 500 cells) (Fig. 3.13(d) to 

(f), (j) to (l) and (m) to (o)). Following the treatment of control and inoculated 

embryos with DNaseI (positive control), all nuclei in all embryo tissues showed 

positive signals both in the presence and absence of the fungus (Fig. 3.13(p) to (r)). 

As expected, no signals were observed in sections in which 

deoxynucleotidyltransferase enzyme was omitted (negative control; data not shown). 

This observations suggested that the analysis worked effectively. 
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Staining with 4’6-diamino-2-phenylindole dihydrochloride (DAPI), indicated the 

presence of undamaged nuclei in all the sections and in particular in autofluorescent 

regions (Fig. 3.14), confirming that the absence of TUNEL signal was not due to the 

absence of the nucleus in cells.  

 

    

Fig. 3.13 Histological analyses of NIL3876-Rdg2a barley embryos. (a) to (c) Autofluorescence of 
sections of control embryos grown for 14 (a), 22 (b) and 26 (c) days in the absence of P. 
graminea. (d) to (f) TUNEL analysis of sections in (a) to (c). (g) to (i) Autofluorescence of 
sections of embryos inoculated with leaf stripe isolate Dg2 for 14 (g), 22 (h) and 26 (i) days. (j) to 
(l) TUNEL test of sections in (g) to (i). (m) to (o) Magnified views of the red boxes in (j) to (l) 
and (g) to (i). (s) and (t) Magnified views of the small red box in (i) stained with calcofluor 
observed under UV light (s) or under bright field (t); arrows indicate the intercellularly growing P. 
graminea mycelium. (u) and (v) Magnified views of the small red box in (c) stained with 
calcofluor observerved under UV light (u) or under bright field (v). (p) and (q) Respectively, 
sections of control and inoculated embryos at 26 dai, treated with DNaseI and subjected to 
TUNEL analysis. (r)  Magnified view of the red box in (q). Scale bars represent 200 µm (a) to (l), 
50 µm (m) to (o) and 25 µm (s) to (t). co=coleoptiles, pt=provascular tissue, sa=shoot apex, 
sn=scutellar node (Bulgarelli et al., 2010). 
 

Fig. 3.14 DAPI 
staining of embryo 
sections analyzed for 
autofluorescence and 
by TUNEL test in Fig. 
3.13. (a) to (f) 
correspond to section in 
Fig. 3.13(a) and (d), (b) 
and (e), (c) and (f), (g) 
and (j), (h) and (k), (i) 
and (l), respectively 
(Bulgarelli et al., 
2010). 
 



3. Results 
 

79 
 

The observation that there were no significant differences in TUNEL signals 

between inoculated and control embryos demonstates that the Rdg2a-mediated 

resistance does not involve PCD.  

 

3.7 Analysis of the rdg2a locus in barley cultivar 

Morex 
Steuernagel et al. (2009) conducted a de novo 454 sequencing of 91 barcoded, 

pooled BACs from barley cv. Morex and assembled a 26,223 bp-long contig 

belonging to the HVVMRXALLhA425O23_c2 BAC (mwg7_ 

HVVMRXALLhA425O23_c2 contig; supplementary materials). Fig. 3.15(a) shows 

the comparison between this contig and the Thibaut 72,645 bp-long contig 

(accession number HM124452), performed using the BLAST (blast2seq) algorithm 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). In the two genotypes several regions 

showed a high level of sequence similarity but also rearrangements consisting in 

deletions at the level of Morex sequence (Fig. 3.15(a)).  

The correct assembly of the mwg7_HVVMRXALLhA425O23_c2 contig was 

verified using a PCR-based molecular markers analysis with different primers that 

annealed to sequences within the deleted regions or flanking them (Fig. 3.15(a)) 

(primer combinations and expected amplicon dimensions are listed in Tab. 2.7, Par. 

2.7.1, Materials and methods) and comparing the results obtained from Thibaut 

genomic DNA with the a Morex BAC (146G20).  On the basis of PCR analyses, the 

Morex BAC 146G20 was demonstrated to overlap within the 

mwg7_HVVMRAXALLhA425o23_c2 BAC sequence (data not shown). All the 

primer combinations gave the expected results in terms of size and sequence of the 

amplicons (Fig. 3.15(b)), thus confirming that the assembling of the Morex contig 

was correct. This analysis was also carried out on Morex genomic DNA and 

provided the same results as those obtained for the BAC 146G20 (data not shown). 
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Fig. 3.15 (a) Comparison between the Morex 26,223 bp contig (mwg7_HVVMRXALLhA425O23_c2) and the Thibaut 72,645 bp contig. All genes are indicated and 
the percentages of identity among Morex and Thibaut synthenic regions are reported. Arrows represent the positions of the primers used for the PCR-based 
molecular markers analyses. (b) PCR-base molecular markers analysis carried out on Thibaut genomic DNA (T) and Morex BAC 146G20 (M). Primers 
combinations utilized are reported above the gel.  
 

(b) 
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By considering the highest level of similarity and informative polymorphisms 

highlighted from multiple alignement of the coding sequences (Fig. 3.16), Morex 

sequence for the Rdg2a allele is apparently derived from a Rdg2a-homolog 

sequence, for the putative regulatory region and the first 555 bp of the coding 

sequence (a region that encompass the CC domain and 108 bp encoding for the NB 

domain); while from the base 562 until the end of the transcribed region (including 

the rest of the NB domain and the LRR domain encoding sequences) the derivation 

is from a Nbs2-Rdg2a-homolog sequence (Fig. 3.17). In Nbs2-Rdg2a, a deletion of 

201 bp with respect to Rdg2a is observed from position 2,397 bp to position 2,598 

bp of Rdg2a. This resulted in the lacking of three LRR units at the level of the 

encoded protein. Such deletion is also present in Morex Rdg2a allele.   

          
                    1                                               50                                        95 
Rdg2a           (1) ATGGCAGAGTCACTCCTTCTCCCTCTAGTGCGCGGCGTGGCCGGCAAGGCTGCAGATGCACTTGTCGAGACGGTGACCCGCATGTGTGGCCT 
Morex-Rdg2a     (1) ATGGCAGAGTCACTCCTTCTCCCTCTAGTGCGCGGCGTGGCTGGCAAGGCTGCAGATGCACTTGTCGAGACGGTGACCCGCATGTGTGGCCT 
Nbs2-Rdg2a      (1) ATGGCAGAGTCACTCCTTCTCCCTCTAGTGCGCGGCGTGGCTCGCAAGGCCGCAGAAGCACTCGTCGAGACGGTGACCCGCATGTGTGGCCT 
                    96                                             146                                       191 
Rdg2a          (96) CGACGACGACCGTCAAACGCTCGAACGGCATCTACTAGCCGTCGAGTGCAAGCTGGTCAACGCTGAGGAGATGAGCGAGACAAATCGCTATG 
Morex-Rdg2a    (96) CGACGACGACCGTCAAACGCTCGAACGGCATCTACTAGCCGTCGAGTGCAAGCTGGTCAACGCTGAGGAGATGAGCGAGACAAATCGCTATG 
Nbs2-Rdg2a     (96) CGACGACGACCGCCAAACGCTCGAACGGCATCTACTAGCCGTCGAGTGCAAGCTGGCCAACGCTGAGGAGATGAGCGAGACAAATCGCTATG 
                    192                                            242                                       287 
Rdg2a         (192) TCAAGAGCTGGATGAAGGAGCTCAAGTCCGTCGCCTACCTGGCCGACGACGTGCTCGACGACTTCCAGTATGAGGCACTGCGCCGTGAGTCA 
Morex-Rdg2a   (188) TCAAGAGCTGGATGAAGGAGCTCAAGTCCGTCGCCTACCAGGCTGACAACGTGCTCGACGACTTCCAGTATGAGGCACTGCGCCGCGAATCA 
Nbs2-Rdg2a    (188) TCAAGAGGTGGATGAAGGAACTCAAGTCCGTCGCCTACCAGGCCGACGACGTGCTCGACGACTTCCAGTATGAGGCGCTGCGCCGCCAGTCT 
                    288                                            338                                       383 
Rdg2a         (288) AAGATTGGCAAGTCCACTACCCGAAAGGCACTCAGCTACATCACGCGCCACAGCCCGCTGCTCTTCCGTTTTGAAATGAGCAGGAAACTCAA 
Morex-Rdg2a   (288) AAGATTGGCAAGTCCACTACCCGAAAGGCACTCAGCTACATCACGCGCCACAGCCCGCTGCTCTTCCGTTTTGAAATGAGCAGGAAACTCAA 
Nbs2-Rdg2a    (288) AAGATTGGCAAGTCCACTACCCGAAAGGCACTCAGCTACATCACGCGCCACAGCCCGCTGCTCTTCCGTTTTGAAATGAGCAGGAAACTCAA 
                    384                                            434                                       479 
Rdg2a         (384) GAACGTCCTTAAGAAGATCAATAAGTTGGTTAAGGAGATGAACACGTTTGGCCTGGAGAGTTCTGTCCGTAGGGAGGAGCGGCAACATCCTT 
Morex-Rdg2a   (384) GAGCGTCCTCAAGAAGATCAGTAAGTTGGTTGAAGAGATGAACAGGTTTGGCCTGGAGAGTTCTGTCCGTAGGGAGGAGCAACAACATCCTT 
Nbs2-Rdg2a    (384) GAACGTCCTTAAGAAGATCAATAAGTTGGTTGAGGAGATGAACAAGTTTGGCCTGGAGAATTCTGTCCATAGGGAGAAGCAACAACATCCTT 
                    480                                            530                                       595 
Rdg2a         (480) GGCGGCAGACGCACTCAAAACTGGACGAAACTACCCAGATCTTTGGAAGGGAAGATGATAAGGAAGTGGTGGTGAAGTTGCTGCTGGACCAG 
Morex-Rdg2a   (480) GCCGGCAGACGCACTCAAAACTGGACGAGACTACCCAGATCTTTGGAAGGGAAGATGATAAGGAGGTGGTGGTGAAGTTGCTGCTGGACCAG 
Nbs2-Rdg2a    (480) GCCGGCAGACGCACTCAAAACTGGACGACTGTACCAAAATCTTTGGAAGAGATGATGATAAGACGGTGGTGGTGAAGCAACTGCTGGACCAG 
                    551                                            601                                       646 
Rdg2a         (596) CAGGATCAGCGGAGGGTGCAGGTGCTGCCCATCATTGGGATGGGAGGTCTTGGCAAGACGACTCTTGCTAAGATGGTCTATAATGACCAAGG 
Morex-Rdg2a   (596) CAGGATCAGAAGAAGGTGCAGGTATTGCCCATATTTGGGATGGGTGGTCTTGGCAAGACGACTCTTGCAAAGATGGTGTATAATGACCAAGA 
Nbs2-Rdg2a    (596) CAAGATCAGAAGAAGGTGCAGGTATTGCCCATCTTTGGGATGGGTGGTCTTGGCAAGACGACTCTTGCAAAGATGGTGTATAATGACCAAGA 
                    647                                            697                                       742 
Rdg2a         (647) GGTCGAGCAACATTTCGAGTTGAAGATGTGGCACTGCGTGTCAGACAACTTTGATGCCATTGCTCTTTTGAAATCCATCATTGAGTTGGCTA 
Morex-Rdg2a   (647) GGTCCAGCAACATTTCGAGTTGAAGTTGTGGCACTGCGTGTCAGACAACTTTGATGCCATTCCTCTTTTGAAATCCATCATTGAGTTGGCTG 
Nbs2-Rdg2a    (647) GGTCCAGCAACATTTCCAGTTGAAGATGTGGCACTGCGTGTCAGACAACTTTGATGCCATTCCTATTTTGAAATCCATCATTGAGTTGGCTA 
                    743                                            793                                       838 
Rdg2a         (743) CAAATGGAAGTTGTGACCTGCCTGGCAGCATCGAACTATTGCAAAAGAAACTTGAGCAAGTCATTGGCCAAAAAAGGTTCATGCTCGTGCTT 
Morex-Rdg2a   (743) CAAATGGAAGTTGTAACATGCCTGACACGATTGAGCTGTTGCAAAAGCGACTTGAGCAAGTCATTGGCCAAAACAGGTTTATGCTCGTGCTT 
Nbs2-Rdg2a    (743) CAAATGGAAGTTGTAACATGCCTGACACGATTGAGCTGTTGCAAAAGCGACTTGAGCAAGTCATTGGCCAAAACAGGTTTATGCTCGTGCTT 
                    839                                            889                                       934 
Rdg2a         (839) GATGATGTATGGAATGAAGATGAGAGGAAGTGGGGGGATGTCCTGAAGCCACTATTGTGTTCTGTTGGTGGACCAGGAAGTGTTATATTGGT 
Morex-Rdg2a   (839) GATGATGTATGGAATGAAGATGAGAGGAAGTGGGAGGATGTCCTGAAGCCTCTTCTGTGTTCTGTTGGTGGACCAGGAAGCGTCATTGTTGT 
Nbs2-Rdg2a    (839) GATGATGTATGGAATGAAGATGAGAGGAAGTGGGAGGATGTCCTGAAGCCTCTTTTGTGTTCTGTTGGTGGACCAGGAAGCGTCATTGTTGT 
                    935                                            985                                      1030 
Rdg2a         (935) CACATGTCGAAGCAAGCAAGTCGCCTCGATAATGTGCACCGTTACGCCCCATGAGCTAGTATTTCTGAATGAGGAAGATTCATGGGAATTGT 
Morex-Rdg2a   (935) CACAACTCGAAGCCAGAAAGTGGCCTCTATAATGCAGACCCTTGGAACCCATAAGCTAGCATGTCTGAATGAACAAGATTCATGGCAATTGT 
Nbs2-Rdg2a    (935) CACAAGTCGAAGCCAGAAAGCGGCCTCTATAATGCAGACCCTTGGAACCCATAAGCTAGCATGTCTGAATGAACAAGATTCATGGCAATTGT 
                    1031                                          1081                                      1126 
Rdg2a        (1031) TTTCAGACAAAGCGTTTAGCAATGGTGTAGAG---GAGCAAGCAGAGTTGGTCAGCATCGGAAGGCGTATTGTCAACAAATGCGGGGGGTTG 
Morex-Rdg2a  (1031) TTGCACAGAAAGCATATAGCAATGGTAAAGAGCAGGAGCAAGCAGAGTTGGTCAGCATTGGCAAACGTATTATCAACAAATGCAGGGGGTTG 
Nbs2-Rdg2a   (1031) TTGCACAGAAAGCATATAGCAATGGTAAAGAGCAGGAGCAAGCAGAGTTGGTCAGCATTGGCAAACGTATTATCAACAAATGCAGGGGGTTG 
                    1127                                          1177                                      1222 
Rdg2a        (1125) CCTCTTGCTCTCAAGACAATGGGTGGATTGCTGAGTTCAAAGCAAAAGGTACAGGAATGGAAGGCCATCGAAGAAAGTAACATCGGGGATAA 
Morex-Rdg2a  (1127) CCTCTTGCTCTCAAGACAATGGGCGGATTGCTAAGTTCATATCAGCAAGTACAAGAATGGAAGGCCATCGAAGAAAGTAATATAAGGGATAC 
Nbs2-Rdg2a   (1127) CCTCTTGCTCTCAAGACAATGAGCGGATTGCTAAGTTCATATCAGCAAGTACAAGAATGGAAGGCCATCGAAGAAAGTAATATAAGGGATAC 
                    1223                                          1273                                      1318 
Rdg2a        (1221) AGATGGAGGCAAATATGAGGTCATGCACATACTGAAGTTAAGCTACAAACACCTGTCGCCTGAAATGAAGCAATGTTTTGCATTCTGTGCAG 
Morex-Rdg2a  (1223) TGTTAGAGGGAAAGATGAGATCATGTCTATTCTAAAGTTGAGCTATACACACCTATCATCTGAAATGAAGCAATGTTTTGCATTCTTAGCAG 
Nbs2-Rdg2a   (1223) TGTTAGAGGGAAAGATGAGATCATGTCTATTCTGAAGTTGAGCTATACACACCTATCATCTGAAATGAAGCAATGTTTTGCATTCTTAGCAG 
                    1319                                          1369                                      1414 
Rdg2a        (1317) TTTTTCCCAAGGATTATGAGATGGAGAAGGATAGGTTGATCCAACTATGGATGGCAAATGGCTTTATTCAACACAAGGGAACAATGGATTTA 
Morex-Rdg2a  (1319) TTTTCCCCAAGGACTATGTGATGGACAAGGACAAGTTGATCCAACTATGGATGGCAAATGGTTTTATTCAAGAGAAGGGAACGATGGATTTG 
 Nbs2-Rdg2a  (1319) TTTTCCCCAAGGACTATGTGATGGACAAGGACAAGTTGATCCAACTATGGATGGCAAATGGTTTTATTCAAGAGAAGGGAACGATGGATTTG 
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                    1415                                          1465                                      1510 
Rdg2a        (1413) GTACAGAAAGGAGAATTAATTTTTGATGAGTTGGTTTGGAGGTCCTTCCTCCAAGATAAGAAAGTGGCAGTCAGATTTACTAGCTATCGTGG 
Morex-Rdg2a  (1415) ATACTCAGAGGAGAATTCATTTTTGATGAGTTGGTTTGGAGGTCCTTCCTCCAAGATGAGAAAGTGGTAGTAAAATATGCTGGCAAGTTTGG 
Nbs2-Rdg2a   (1415) ATACTCAGAGGAGAATTCATTTTTGATGAGTTGGTTTGGAGGTCCTTCCTCCAAGATGAGAAAGTGGTAGTAAAATATGCTGGCAAGTTTGG           
                    1510                                          1560                                      1605 
Rdg2a        (1508) TAACAAAATATATGAGACAATTGTATGTAAAATGCATGATTTAATGCATGATCTAGCAAAAGATGTCACAGATGAATGTGCAAGTATAGAAG 
Morex-Rdg2a  (1510) TAACACAAAATATGAGACAGTTCTATGTAAAATGCATGACTTAATGCATGATCTTGCAAAAGATGTCACAGATGAATGCGCAAGTATAGAAG 
Nbs2-Rdg2a   (1510) TAACACAAAATATGAGACAGTTCTATGTAAAATGCATGACTTAATGCATGATCTTGCAAAAGATGTCACAGATGAATGTGCAAGTATAGAAG 
                    1605                                          1655                                      1700 
Rdg2a        (1603) AAGTGACTCAGCAGAAAACATTGTTAAAAGATGTTTGTCACATGCAAGTGTCAAAGACTGAATTGGAACAAATCAGTGGGTTATGCAAAGGC 
Morex-Rdg2a  (1605) AATTGTCTCAGCATAAAGCATTATCAAAAGGTATTTGTCACATGCAAATGTCAAAGGCTGAATTCGAACGAATCAGTGGGTTATGCAAAGGC 
Nbs2-Rdg2a   (1605) AATTGTCTCAGCATAAAGCATTATCAAAAGGTATTTGTCACATGCAAATGTCAAAGGCTGAATTCGAACGAATCAGTGGGTTATGCAAAGGC 
                    1701                                          1751                                      1796 
Rdg2a        (1698) AGAACAATCCTACGCACTTTGTTAGTTCCTTCAG------------------------------------GATCACACAAGGATTTTAAAGA 
Morex-Rdg2a  (1701) AGAACATACCTCCGCACTTTGTTATCTCCTTCAGAATCATGGGAGGATTTTAACTATGAGTTTCCAAGCAGATCACACAAGGATATTAAGGA 
Nbs2-Rdg2a   (1701) AGAACATACCTCCGCACTTTGTTATCTCCTTCAGAATCATGGGAGGATTTTAACTATGAGTTTCCAAGCAGATCACACAAGGATATTAAGGA 
                    1797                                          1847                                      1892 
Rdg2a        (1759) GTTGCTACAGGTATCGGCATCACTAAGAGCATTGTGTTG-----GC-CCTCTTATTCAGTTGTCATTTCCAAGGCCATAAATGCAAAACATT 
Morex-Rdg2a  (1797) GTTGCAACATGTATTTGCGTCAGTAAGAGCATTGCATTGCTCCCGCTCCCCTTCTCCAATTGTCATTTGCAAGGCCATAAATGCAAAACATT 
Nbs2-Rdg2a   (1797) GTTGCAACATGTATTTGCGTCAGTAAGAGCATTGCATTGCTCCCGCTCCCCTTCTCCAATTGTCATTTGCAAGGCCATAAATGCAAAACATT 
                    1893                                          1943                                      1988 
Rdg2a        (1849) TACGGTATCTTGACCTCTCTGGGTCAGACATTGTTAGATTGCCAGATTCAATATGGGTGTTGTATAACCTGCAAACACTGAGGCTAATGGAT 
Morex-Rdg2a  (1893) TACGGTATCTTGACCTCTCAAAGTCTGACATCGTTAGGTTGCCAGATTCAATATGTATGTTGTATAACCTGCAAACACTGAGGCTCATAGAC 
Nbs2-Rdg2a   (1893) TACGGTATCTTGACCTCTCAAATTCTGACATCGTTAGGTTGCCAGATTCAATATGTATGTTGTATAACCTGCAAACACTGAGGCTCATAGAC                  
                    1989                                          2039                                      2084 
Rdg2a        (1945) TGCCGGAAGTTGCGACAGTTACCAGAAGACATGGCAAGATTAAGAAAGCTCATCCATCTTTACCTTTCTGGCTGTGAGAGTCTCAAAAGTAT 
Morex-Rdg2a  (1989) TGCCATGACTTGCAACAGTTACCACAAGACATGGCAAGATTGACAAAGCTCATCCATCTTTACCTTTCTGGTTGTGAGAGTCTCAAAAGTAT 
Nbs2-Rdg2a   (1989) TGTTACAAGTTGAAACAGTTACCAAAAGACATGGCAAGACTGAGAAAGCTCATCTATCTTTACCTTTCTGGTTGTGAGAGTCTCAAAAGTAT                    
                    2085                                          2135                                      2180 
Rdg2a        (2041) GTCTCCAAACTTTGGTCTGCTGAACAACCTTCACATATTAACAACATTTGTTGTGGGTACCGGAGATGGCCTTGGAATAGAGCAGCTCAAAG 
Morex-Rdg2a  (2085) GTCTCCAAACTTTGGTCTGCTGAACAACCTTCACATATTAACAACATTTGTTGTGGGTACCGGAGATGGCCTTGGAATAGAGCAGCTCAAAG 
Nbs2-Rdg2a   (2085) GTCTCCAAACTTTGGTCTGCTGAACAACCTTCACATATTAACAACATTTGTTGTGGGTTCCGGAGATGGCCTTGGAATAGAGCAGCTCAAAG                     
                    2181                                          2231                                      2276 
Rdg2a        (2137) ATTTGCAAAACCTTAGCAATAGGTTGGAAATATTGAATATGGACAAGATAAAGAGTGGGGAGAATGCAAAAGAAGCCAATCTCAGTCAGAAG 
Morex-Rdg2a  (2181) ACTTGCAAAACCTTAGCAATAGGTTGGAACTATTGAACTTGGACAAGATAAAGAGTGGGGAGAGTGCAAAAGAAGCCAATCTCAGCCAGAAG 
Nbs2-Rdg2a   (2181) ATTTGCAAAACCTTAGCAACAGGTTAGAACTACTGAATTTGAGCAAGATAAAGAGTGGCGAGAATGCAAAAGAAGCCAACCTCAATCAGAAG                     
                    2277                                          2327                                      2372 
Rdg2a        (2233) CAAAATCTAAGTGAGTTGTTGTTCTCTTGGGGCCAAAAAATAGATGATGAGCCTACAGA------------TGTGGAAGAAGTGCTTCAGGG 
Morex-Rdg2a  (2277) AAAAATCTAAGTGACTTGTTGTTCTCTTGGGGCCAAGAAATAGATGATGAGCCTAGAGA------------TGTGGAAGAAGTGCTTCAGTG 
Nbs2-Rdg2a   (2277) CAAAATCTAAGTGAGTTGTTTTTCTCTTGGGACCAAGAAATAGATAATGAGCCTAGAGAAATGGCCTGTAATGTGGAAGAAGTGCTTCAATA                    
                    2373                                          2423                                      2468 
Rdg2a        (2317) CTTAGAACCTCATAGTAATATCCAAAAACTGGAGATACGTGGATATCATGGCCTAGAAATATCACAATGGATGAGAAAGCCTCAGATGTTTG 
Morex-Rdg2a  (2361) TTTAGAACCTCACAGTAATATCCAAAAACTGGCGATATGCGGATATGTTGGCTAGAAATAACACAACTGGATGAGAAAGCCTCAGATGTTTG 
Nbs2-Rdg2a   (2373) TTTAGAACCTCCTAGTAATATCGAAAAGTTGGAGATATGTGGGTATATTGGCCTAGAAATGTCACAATGGATGAGAAAGCCACAGTTGTTTA 
                    2469                                          2519                                      2564 
Rdg2a        (2413) ACTGCTTGAGAGAACTCGAAATGTTTGGCTGCCCAAAATGCAAGAGTATCCCTGTAATATGGTTCTCGGTCTCTCTAGAGATTTTGGTCTTA 
Morex-Rdg2a  (2457) ATTGC--------------------------------------------------------------------------------------- 
Nbs2-Rdg2a   (2469) ACTGC---------------------------------------------------------------------------------------                     
                    2565                                          2615                                      2660 
Rdg2a        (2509) CAGAGCATGGATAACCTGACAACATTATGTAGTAACCTTGGTGTGGAAGCTGGAGGAAGCATTACCCCTCTGCAACTTTTCCCAAATTTGAA 
Morex-Rdg2a  (2462) -------------------------------------------------------------------------------------------- 
Nbs2-Rdg2a   (2474) --------------------------------------------------------------------------------------------                    
                    2661                                          2711                                      2756 
Rdg2a        (2605) GAAGTTGTGTTTGATTAAGTTACCAAGCCTGGAGATATGGGCAGAAAATAGTGTAGGAGAGCCTCGGATGTTTAGCAGTTTGGAAAAACTCG 
Morex-Rdg2a  (2462) -------------------------------------------------------------------------------TTGAGAGAACTCA 
Nbs2-Rdg2a   (2474) -------------------------------------------------------------------------------TTGAGAGAAGTCA 
                    2757                                          2807                                      2852 
Rdg2a        (2701) AAATTTCCGACTGCCCAAGATGCAAGAGTATACCTGCAGTATGGTTTTCGGTCTCTCTTGAGTTTTTGGTCTTACGGAAAATGGATAACCTG 
Morex-Rdg2a  (2475) AAATGTTTGGCTGCCCAAAATGCAAGAGTATCCCTCTAATATGGTTCTCGGTCTCTCTAGAGATTTTGGTCTTACAGTGGATGAATAACCTG 
Nbs2-Rdg2a   (2487) AAATATCCAACTGCCCAAGATGCAAGAGTATACCTGCAGTATGGTTTTCGGTCTCTCTTGAGTTTTTGTCCTTACGAAACATGGATAACCTG 
                    2853                                          2903                                      2948     
Rdg2a        (2797) ACAACATTATGTAATAACCTTGATGTGGAAGCTGGAGGATGCATTACCCCTATGCAGATTTTCCCAAGGTTGAAGAAGATGAGGTTGATTGA 
Morex-Rdg2a  (2571) ACTACATTATGCAATAACCTTGATGCGGAAGCCGGAGGATGCATCACCCCTCTGCGGATTTTCCCAAGGTTGAAGAACATGAGGTTGATTGA 
Nbs2-Rdg2a   (2583) ACCACATTATGTAATAACCTTGATGCGGAAGTTGGAGGATGCATTACCCCTATGCAGATTTTCCCAAGGTTGAAGAAGATGAGGTTGATTGA 
                    2949                                          2999                                      3044 
Rdg2a        (2893) GTTACCAAGCCTGGAGATGTGGGCAGAAAATAGTATGGGAGAGCCTAGTTGTGATAACCTGGTAACATTCCCGATGCTTGAAGAGCTAGAGA 
Morex-Rdg2a  (2667) GTTAGCAAGCCTGGAGATGTGGGCAGAAAATAGTATGGGAGAGCCTAGTTGTGATAACCTGGTAACATTTCCAATGCTTGAAGAGCTAAGGA 
Nbs2-Rdg2a   (2679) GTTACCAAGTCTGGAGGTGTGGGCAGAAAATGGTATGGGAGAGCCTAGTTGTGATAACCTGGTAACATTCCCGATGCTTGAAGAGCTAGAGA 
                    3045                                          3095                                      3140 
Rdg2a        (2989) TCAAAAATTGCCCCAAGCTTGCAAGTATTCCAGCGATTCCCGTTGTCAGCGAGTTGAGAATAGTTGGAGTTCACAGTACTGCAGTCGGTTCA 
Morex-Rdg2a  (2763) TCATAGATTGCCCCAAGCTTGCAAGTATTCCAGCGATCCCCGTTGTCAGCAAGTTGAGCATAGTTGGAGTTCACGGTTGTGCAGTCGGTTCA 
Nbs2-Rdg2a   (2775) TCAAAAATTGCCCCAAGCTTGCAAGTATTCCAGCGATTCCCGTTGTCAGCGAGTTGAGAATAGTTGGAGTTCACAGTACTGCAGTCGGTTCA                      
                    3141                                          3191                                      3236 
Rdg2a        (3085) GTTTTTATGAGCATCCGTTTGGGCTCCTGGCCATTTCTCGTCAGGTTAAGTCTTGGGTCTCTAGAAGACATACCCATGTTGCCTCTAGACGC 
Morex-Rdg2a  (2859) GTTTTTATGTGTATCCGTTTGGGTTCCTGGCCATTTCTTGCTGAGTTAACTCTTGGGTCTCTAAAAGACATACCCATGTTGCCTCTAGACCC 
Nbs2-Rdg2a   (2871) GTTTTTATGAGCATCCGTTTGGGTTCCTGGCCATTTCTCGTCAGGTTAACTCTTGGGTCTCTAGAAGACATACCCATGTTGCCTCTGGACGC                       
                    3237                                          3287                                      3332 
Rdg2a        (3181) CCAGCAAAACCAAAGTGAAAGACCTCTTGAAAAGCTTGAGAGTTTGACTCTGGAAGGGCCCAACAGCTTGATCAGAAGCTCTGGATTGTCCG 
Morex-Rdg2a  (2955) CCAGCAAAGCCAAAGTCAAAGACCTCTTGAAAAGCTTGAGAGTTTGACTCTGATAGGGCCCAACAGCTTGATCAGAAGCTTCGGATTGTCCG 
Nbs2-Rdg2a   (2967) CCAGCAAACCCAAAGTCAAAGACCTCTTGAAAAGCTTGAGAGTTTGATCCTAAAAGGGCCCAACAGCTTGATCGGAAGCTCCGGATCGTCCG                      
                    3333                                          3383                                      3433 
Rdg2a        (3277) GATCACAACTTATGGTTTGGAAATGTTTTCGGTTCGTGCGAGATCTGATGATTGATGGTTGCAGCAATCTTGTCCGCTGGCCAACAGTGGAG 
Morex-Rdg2a  (3051) AATCACAACTTATGGTTTGGAAATGTTTTCGGTTCGTGAGAAATCTGAAGATATATGGTTGCAGCAATCTTGTCCGCTGGCCAACAGAGGAG 
Nbs2-Rdg2a   (3063) GATCACAACTTATTGTTTGGAAATGTTTTCGGTTCGTGAGAAATCTGAAGATATATGGCTGCAGCAATCTTGTCCGCTGGCCAACAGAGGAG                        
                    3434                                          3484                                      3529 
Rdg2a        (3373) CTCTGGTGCATGGATCGCCTCTGCATTCTGTGTATCACAAATTGTGACTACCTGAAGGGGAACATTTCATCATCCGAGGAGAAAACCCTTCC 
Morex-Rdg2a  (3147) CTCCGGTGCATGGATCGCCTCCGCTTTCTGAGTATCACAAATTGTGACAACCTGGAGGGGAAAAATTCATCGTCTGAGGAGGAAACCCTTCC 
Nbs2-Rdg2a   (3159) CTCCGGTGCATGGATCGCCTCCGCGTTCTGCGTATCAGGAATTGTGACAACCTGGAGGGGAACACTTCATCGTCTGAGGAGGAAACCCTTCC                         
                    3530                                          3580                                      3625 
Rdg2a        (3469) GCTGTCCCTGGAGCATTTGACGATTCAGAACTGCCGCAGTGTAGTAGCACTGCCTTCGAACCTTGGGAAACTGGCCAAGCTGAGGAGTCTCT 
Morex-Rdg2a  (3243) GCTGTCCCTGGAGGGTTTGACGATCGGAAACTGCCGCAGTGTAGTAGCACTGCCTTGGAACCTTGGAAATCTTGCCAAGCTGAGGCGTCTCA 
Nbs2-Rdg2a   (3255) GCTGTCCCTGGAGCATTTGGAGATTCAGGTCTGCCGCAGAGTGGTAGCACTGCCTTGGAACCTTGGAAATCTTGCCAAGCTGAGGCGTCTCG 
                    3626                                          3676                                      3721     
Rdg2a        (3565) ATGTGAGCGACTGCAGGAGCCTGAAAGTGCTGCCTGATGGGATGTGTGGCCTCACTTCTCTGAGGGAATTGGAGATTTGGGGTTGTCCAGGT 
Morex-Rdg2a  (3339) ATGTGAGTTACTGCAGGAGCCTGAAAGTGCTGCCTGATGGGATGTGTGGCCTCACTTCTCTGAGGGAATTATGGATTTGGAATTGTCCAAGT 
Nbs2-Rdg2a   (3351) GTGTGAGCTGCTGCAGGAGCCTGAAAGCGCTGCCTGATGGGATGTGTGGCCTCACTTCTCTGAGGGAATTATGGATTCATGGTTGTTCAGGT 
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                    3722                                          3772                                      3817 
Rdg2a        (3661) ATGGAGGAATTCCCGCATGGTCTCCTGGAGCGGTTGCCAGCCCTCGAATACTGTAGCATCCATCTCTGCCCGGAGTTGCAAAGACGATGCAG 
Morex-Rdg2a  (3435) ATGAAGAAATTCCCGCATGGTCTCCTAGAGCGGTTGCCAGCTCTCGAACACTTGAGCATACATGACTGCCCGGAGTTGGGAACACGATGCAG 
Nbs2-Rdg2a   (3447) ATGGAGGAATTCCCGCATGGTCTCCTGGAGCGGTTGCCAGCCCTCGAATCCTTTAGCATACGTGGCTGCCCGGAGTTGGGAAGACGATGCGG 
                    3818                                          3868                      3897 
Rdg2a        (3757) AGAAGGTGGGGAGTACTTCCACTTGCTCTCCTCTGTTCCACGTAAATACTTTGAGAGAATAGGCATCCCAAAGTGA 
Morex-Rdg2a  (3531) AGAAGGTGGGGAGTATTTCCACTTGCTCTCCTCTGTCCCACGTAAAGACATTTCGCGATGA--------------- 
Nbs2-Rdg2a   (3543) AGAAGGTGGGGAGTATTTCCACTTGCTCTCCTCTGTCCCACGTAAAGACTGTTAG--------------------- 
                          

 

 

 

 

                       

 

Genes   Rdg2a Nbs2-Rdg2a 
 Domain sections  A B C D A B C D 

Morex rdg2a  A  97    nd    

B   96    95   

C    86    99  

D     78    90 

 

 

 

 

These results support the possibility that Morex Rdg2a allele is derived from 

unequal crossing-over between ancestral Rdg2a and Nbs2-Rdg2a members of the 

gene family. This crossover led to the elimination of part of the Rdg2a, the Copia-

like retrotransposone and a portion of the 5’end of Nbs2-Rdg2a, the reduction of the 

members of the gene family and and the generation of to the Morex allele, whose 

Fig. 3.17 DNA sequence similarities between Morex rdg2a and Thibaut Rdg2a and Nbs2-Rdg2a. 
Diagrams above define the domains compared. Percentages of identity are reported. nd=not 
determined. 

Fig. 3.16 Alignment between the three genes: Thibaut Rdg2a, Thibaut Nbs2-Rdg2a and Morex 
rdg2a. Regions conserved in all genes are highlighted in yellow; regions conserved in only two 
genes are highlighted in light blue. 
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coding sequence is derived only partially from Rdg2a, while for the remaining 

coding sequence is originated from Nbs2-Rdg2a-like sequence.  

The third member of the gene family (as identified in the Thibaut genomic 

sequence), namely as Nbs3-Rdg2a, did not match within the available Morex contig 

with a significant homology; but because only about 26 Kb of the Morex contig 

were available in the BAC contig mwg7_HVVMRAXALLhA425o23_c2, it was not 

possible to exclude the presence of this gene in Morex genomic background. 

PCRs using primer combinations specific for Nbs3-Rdg2a were therefore carried out 

on Morex BAC 146G20 and an amplicon of about 3 Kbp was obtained using a 

forward primer designed at the end of the mwg7_HVVMRAXALLhA425o23_c2 

BAC contig and a reverse primer designed at the 5’end of Nbs3-Rdg2a. The 

comparison of the amplicon sequence with Thibaut Nbs3-Rdg2a showed 90% of 

sequence identity in the overlapping regions, demonstrating the presence of an 

Nbs3-Rdg2a allele in the cv. Morex. The complete sequencing of this member of the 

gene family in Morex is still in progress. 

To analyze the expression of Morex rdg2a, a two-step reversetranscription PCR was 

performed, using gene-specific primer, on DNaseI treated RNA extracted from 

Morex control embryos and from P. graminea isolate Dg2 inoculated embryos at 7, 

14 and 22 dai. RNA was also axtracted from leaves of 14 days old Morex seedlings 

infected with the fungus and from control leaves. Barley Actin gene was used as the 

reference gene. After amplification the identity of the amplicons was checked by 

sequencing. The gene was found to be transcribed in both embryos tissues and 

leaves (Fig. 3.18(a)).  

To complete the expression analysis, a quantitative RT-PCR was performed using 

RNAs obtained from Morex embryos as above. The experiment was carried out with 

three technical replicates for each RNA sample. As described in Par. 3.3, results 

were expressed as relative transcription of each gene, normalized to the expression 

of barley Actin, compared to the expression of the same gene in unchallenged 

conditions. Standard deviation was considered to define if the differences of 

expression among the different conditions were statistically significant. Following 

leaf stripe inoculation, in embryo tissues, the expression of Morex-rdg2a did not 

change until 22 dai; after this time-point the transcription rate in the inoculated 
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samples increased approximatively 1.8 times with respect to control samples (Fig. 

3.18(b)). In leaves, the Morex-rdg2a mRNAs accumulation was not pathogen-

responsive (data not shown).  

 

                          

 

 

 

 

Preliminary tests to determine whether Morex-rdg2a confers resistance to any 

Pyrenophora graminea isolates were carried out by infecting cv. Morex with seven 

different pathogen isolates (Dg1, Dg2, Dg4, Dg10, Dg12, Dg19 and Dg29). Morex 

resulted to be fully resistant (0% of infected plants) to Dg19 and Dg29. 

Nevertheless, it is not possible to ascribe a certain role to Morex-rdg2a in resistance 

to these isolates without performing complementation analyses transforming 

susceptible plants with this gene. 

Fig. 3.19 (a) RT-PCR analysis of Morex-rdg2a under control and P. graminea isolate Dg2 
inoculation at three time-points (7, 14 and 22 dai) in embryo and in leaf tissues. Barley Actin 
gene was used as an internal control. (b) Quantitative RT-PCR at 7, 14 and 22 dai for Morex-
rdg2a. Values are expressed as Fold Changes (FC) of transcript levels in the inoculated samples 
with respect to the transcript levels in uninoculated barley embryos. Error bars represent Standard 
Deviation (SD) across all RT-PCR replicates (three for each sample). 
Preliminary tests to determine whether Morex-rdg2a confers resistance to any 
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3.8 Haplotype analysis of the Rdg2a locus in different 

barley varieties 

Different barley cultivars (Rika, Bulbul, Triumph, Imber, Optic, Ansis, Gitane, 

Bonus, Ketos, Grete, Franka, Marado and Federal) were tested for their resistance to 

P. graminea isolates Dg2 or Dg5. Morex, Mirco, Golden Promise and Thibaut were 

also tested as controls (Tab. 3.2).  

 

 Isolates 

 Dg2 Dg5 

Cultivars % infected plants % infected plants 

Morex 100 100 

Mirco 100 100 

Golden Promise 73 100 

Thibaut 0 100 

Ketos 100 100 

Gitane 56 87 

Triumph 0 92 

Rika 28 0 

Franka 62,5 100 

Grete 100 100 

Federal 39 8 

Imber 0 0 

Ansis 23 21 

Bul Bul 25 0 

Bonus 73 47 

Optic 17 86 

Marado 95 58 

Jaidor 100 50 

 

To analyze the frequency of Thibaut or Morex haplotypes for the Rdg2a locus in 

different susceptible and resistant barley genetic backgrounds, the above mentioned 

and other cultivars, whose restance to the two isolates was known (Rebelle, Onice, 

Proctor, Alf, Diadem, Haruna Nijo, Galleon, Jaidor, Nudinka, Passport and 

Acuario), were subjected to a PCR-based molecular markers screening using the 

same primer combinations as those described in Fig. 3.15(a) (Par. 3.7). Tab. 3.3 

Tab 3.2 Infection tests 
conducted on different barley 
cultivars with P. graminea 
isolates Dg2 and Dg5. 
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summarizes the P. graminea response for all the barley varieties considered (Arru et 

al., 2003; Paragraph 2.2, Materials and methods). 

 

 Resistance or susceptibility 

Cultivars Dg2 Dg5 

Morex S S 

Mirco S S 

Golden Promise S S 

Thibaut R S 

Ketos S S 

Gitane partially S S 

Triumph R S 

Rika partially R R 

Franka partially S S 

Grete S S 

Federal partially R R 

Imber R R 

Ansis R R 

Bul Bul R R 

Bonus partially S R 

Optic R S 

Rebelle R R 

Onice R partially R 

Proctor partially R R 

Alf R partially R 

Diadem R nd 

Haruna Nijo R S 

Galleon R S 

Nudinka S S 

Passport R nd 

Jaidor S partially S 

Acuario R partially S 

Marado S partially S 

 

Data are shown in Tab. 3.4.  

 

 

Tab 3.3 Summary of the responses to P. 
graminea isolates Dg2 and Dg5 of the barley 
cultivars analyzed for the haplotype analysis of 
Rdg2a locus. nd=not determined. 
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  Primer combinations 
Cultivars Haplotype CR1+

CR2 
NCR1+

CR2 
CR3+
CR4 

CR3+
NCR2 

Nbs2_30+
CR5 

Thibaut  / 471bp / 1183bp 1927bp 
Morex  1064bp / 1179bp / / 
Rika 1 T 200bp T T M 
Bulbul 1 T 200bp T T M 
Ansis 1 T 200bp T T M 
Gitane 1 T 200bp T T M 
Bonus 1 T 200bp T T M 
Ketos 1 T 200bp T T M 
Grete 1 T 200bp T T M 
Franka 1 T 200bp T T M 
Marado 1 T 200bp T T M 
Federal 1 T 200bp T T M 
Jaidor 1 T 200bp T T M 
Alf 1 T 200bp T T M 
Diadem 1 T 200bp T T M 
Mirco 1 T 200bp T T M 
Nudinka 1 T 200bp T T M 
Proctor 1 T 200bp T T M 
Golden Promise 1 T 200bp T T M 
Passport 1 T 200bp T T M 
Triumph 1 T 200bp T T M 
Optic 2 T T T 900bp T 
Acuario 2 T T T 900bp T 
Galleon 2 T T T 900bp T 
Rebelle 2 T T T 900bp T 
Haruna Nijo 2 T T T 900bp T 
Onice 3 T M T 900bp M 
Imber 4 M M M M M 
 

 

 

 

 

In the regions amplified by CR1+CR2 and CR3+CR4 primer combinations, Thibaut 

haplotype is conserved in almost all the varieties, regardless of their phenotype for 

reaction to leaf stripe. For the NCR1+CR2 genetic interval, most cultivars showed a 

shorter amplicon with respect to Thibaut and in only two cultivars (Imber and 

Onice) Morex amplicon was present. Also CR3 and NCR2 primers generated, in 

some genotypes, a shorter amplicon than Thibaut and, for this marker, only Triumph 

conserved Morex haplotype. The last primer combination (Nbs2_30+CR5) provided 

Morex haplotype for almost all the cultivars (except for Optic, Acuario, Galleon, 

Rebelle and Haruna Nijo), regardless of their resistant or susceptible behaviour to 

Tab 3.4 Haplotype analysis for the Rdg2a locus in different barley cultivars using polymorphic 
PCR-based molecular markers. Sizes of the amplicons are reported; /=no amplification; 
T=Thibaut haplotype; M=Morex haplotype; green=varieties resistant to both Dg2 and Dg5 
isolates; red=varieties susceptible to both the isolates; light blue=varieties resistant to Dg2 but 
susceptible to Dg5; yellow=varieties susceptible to Dg2 but resistant to Dg5; blu=variety resistant 
to Dg2, while response to Dg5 is not known. 
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isolates Dg2 or Dg5, thus confirming that probably this gene is not involved in the 

resistant response to P. graminea isolate Dg2.  

Considering the test performed at all the five loci, it was possible to identify four 

different haplotypes. Interentingly, four genotypes resistant to isolate Dg2 but 

susceptible to isolate Dg5 (Optic, Galleon, Haruna Nijo and Acuario) showed a 

haplotype highly similar to Thibaut haplotype with the exclusion of a slightly shorter 

amplification yielded by the primer combination CR3+NCR2. Also Rebelle 

genotype demonstrated to belong to this haplotype group. The Rdg2a alleles present 

in Rebelle, Galleon and Haruna Nijo were actually chosen for the re-sequencing 

(Supplementary materials). PCRs were performed on genomic DNAs of these 

varieties using Rdg2a specific primers that amplified overlapping fragments of the 

gene and designed on Thibaut sequence. Amplicons were directely sequenced using 

the same primers as those used for the amplification and with additional primers for 

sequence walking. The Rdg2a alleles derived from the three genotypes showed a 

99% of nucleotide identity compared to the Thibaut Rdg2a in multiple alignments. 

Rebelle and Thibaut Rdg2a coding sequences are 100% identical. Haruna Nijo allele 

showed nucleotide changes (from AGGA to GGAC) at the position +402 from the start 

codon. Galleon Rdg2a revealed to contain two SNPs: G to A at +1915 and +1931 

from the ATG and a sequence change (from ATGGT to TTAGG) at position +3175. 

These nucleotide variations resulted in differences at the protein level. Galleon 

RDG2A shows an Asparagine, instead of an Aspartic acid, and a Lysine, instead of 

an Arginine, at positions 639 and 644, respectively, within the fourth LRR unit. 

Moreover, in the fourtheen LRR the Tyrosine-1058 and the Cysteine-1059 have 

changed in Methionine and Valine. Despite these changes are in the LRR units, they 

do not belong to the region β-strand/β-turn. In Haruna Nijo RDG2A the Lysine-134 

and the Glutamic-135 acid have changed in two Arginines. These amino acids are 

located between the CC and the NB domains at about 50 residues before the 

beginning of the NB domain. Since the conserved CC and NB domains and the 

variable LRR domain are those mainly implicated in the protein function, also 

considering that all the changes involve hydrophilic amino acids, it is possible that 

the observed changes does not affect the RDG2A activity.  
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RT-PCR, conducted on cDNA synthesized using DNaseI treated RNA extracted 

from the leaves of these three barley varieties, showed that the Rdg2a alleles are 

transcribed in all of them (Fig. 3.20).  

Fig. 3.20 RT-PCR analysis of Rdg2a in the three cvs. 
Rebelle, Galleon and Haruna Nijo resistant to isolate Dg2. 
The same primer combinations utilized for the RT-PCR in 
NIL3876 (Par. 3.3) were used. Barley Actin gene was the 
internal control. 
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4. Discussion 

 

4.1 Identification of the Rdg2a resistance gene and 

evolution at the Rdg2a locus 

 

4.1.1 The Rdg2a function is encoded by Nbs1-Rdg2a 

As described in Introduction (Par. 1.3.1), the Rdg2a locus in the resistant cv. Thibaut 

was cloned and its sequencing led to the identification of three genes coding for CC-

NB-LRR proteins (Accession number HM124452). These genes were called as 

Nbs1-Rdg2a, Nbs2-Rdg2a and Nbs3-Rdg2a (Bulgarelli et al., 2010).  

Based on these findings, the main question to be addressed was: “Which is the 

Rdg2a gene?”. 

To provide an answer, a comparison between the structures of the three candidates 

was first performed. Nbs1-Rdg2a and Nbs2-Rdg2a showed similar features: both 

were predicted as intronless genes and had coding sequences ranging from 3,477 bp 

(Nbs2-Rdg2a) to 3,699 bp (Nbs1-Rdg2a) that shared 82.1% of nucleotide identity 

(Bulgarelli et al., 2010). Nbs3-Rdg2a differed significantly from the previous two: 

the coding sequences was 5,397 bp long and was predicted to be organized in four 

exons of 2,065 bp, 1,209 bp, 471 bp and 1,652 bp, from start codon to stop codon, 

separated from three introns of 167 bp, 792 bp and 56 bp, respectively. A RACE 

analysis of the Nbs3-Rdg2a mRNAs showed that these putative introns were not 

spliced and that this gene carries other three introns: one of 305 bp located in the 5’ 

UTR, one 70 bp-long in the 3’ UTR and another intron of 44 bp located immediately 

after the start codon and subjected to alternative splicing. This last intron was very 

interesting because its splicing causes a frame-shift, resulting in termination after the 

first 37 aminoacids, while retention leads to termination after the first four and a half 

LRR units (Bulgarelli et al., 2010). In both cases, however, it is highly probable that 

Nbs3-Rdg2a encodes for not functional truncated proteins and was therefore 

excluded as an Rdg2a candidate.   
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Horvath and co-workers (2002) were not able to amplify the barley Rpg1 gene (a 

non-NB-LRR gene that confers resistance to rust) sequence on a susceptible variety, 

using several primer combinations designed on the genomic sequence. In this case, 

the susceptible cultivar did not carry the Rpg1 locus. Nevertheless, it is possible that 

the locus is rearranged in the susceptible genotypes (insertion/deletion; duplication, 

inversion… could be occured), as observed when resistant and susceptible 

haplotypes for barley resistance loci Mla (Shen et al., 2003) and Rph7 (Scherrer et 

al., 2005) were compared. Thus, to asses whether the susceptible cv. Mirco carries 

the Rdg2a locus and to analyze the differences between the resistant and susceptible 

loci, the two Mirco genes were sequenced using primers designed on Nbs1-Rdg2a 

and Nbs2-Rdg2a genomic sequences. Both the genes were present in the susceptible 

variety, demonstrating that Mirco carries the Rdg2a locus. The main differences 

were in the promoter regions: two insertions of 436 bp (next to a putative TATA-

box element) and 854 bp, respectively, for Mirco Nbs1-rdg2a and a deletion for 

Nbs2-rdg2a, at the level of a trasponson MITE (Miniature Inverted Transposable 

Element)-like element. The Nbs2-Rdg2a and Nbs2-rdg2a alleles gave 93.1% of 

identity when compared, apart for the MITE insertion in Thibaut. Interestingly, the 

PromH programme for prediction of plant promoters 

(http://www.softberry.ru/berry.phtml?group=programs&subgroup=promoter&topic=

tssp; Solovyev and Shahmuradov, 2003) identified potential binding sites for 

transcription factors, a TATA-box element and a likely promoter whithin the MITE 

(Bulgarelli et al., 2010). Moreover, this insertion/deletion polymorphism pattern was 

found to co-segregate with the Rdg2a locus in the high resolution mapping 

population, thus demonstrating that Nbs2-rdg2a represents the Mirco allele.  

These results prompted the investigation of the expression of the two genes in the 

susceptible genotype. RT-PCR analyses revealed that Nbs1-Rdg2a and Nbs2-Rdg2a 

are expressed in resistant NIL4876 embryo tissues and leaves, both in challenged 

and unchallenged conditions at 7 and 14 dai, while the susceptible cv. Mirco did not 

show transcription of the genes (Bulgarelli et al., 2010). Since expression analysis 

was carried out with a pair of near isogenic lines, in which the Rdg2a locus is the 

only difference, these data evidentiate and confirm that this locus is involved in the 

resistance response to P. graminea isolate Dg2 but again did not allow the exclusion 
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of any of the two candidates. A possible explanation for the lack of transcription in 

Mirco is that the expression of R genes imposes high fitness costs in the absence of 

the disease (Tian et al., 2003), thus unnecessary R genes may become rapidily 

inactivated (Michelmore et al., 1998). The rearramgements in the promoter regions 

of Mirco genes may be the cause of this inactivation in Mirco. The MITE-like 

element may have contributed to the functionalization of the Thibaut Nbs2-Rdg2a 

allele, owing to the presence of potential binding sites for transcription factors, like 

TATA-box element. This effect is similar to that of the Renovator retrotransposon 

insertion for the rice blast resistance gene Pit. Indeed, the 3’ LTR of Renovator, 

located just upstream the Pit gene in the resistant cv. K59, contains a promoter 

region that activates Pit transcription (Hyashi and Yoshida, 2009). These 

observations are in agreement with first described by McClintock (1956) and others 

(Chuck et al., 2007; Kashkush et al. 2003; Martienssen et al., 1990; Masson et al., 

1987; Errede et al., 1980), Transposable Elements (TEs) have the ability to affect the 

expression of neighboring genes.  

 

qRT-PCR data revealed that the Nbs1-Rdg2a transcription is not pathogen 

responsive, while the Nbs2-Rdg2a transcripts level increased significantly during the 

first stages of infection and was unresponsive by 22 dai. Neverthless, Nbs2-Rdg2a 

mRNA was 2 to 16 times less abundant than Nbs1-Rdg2a transcript, depending on 

time-point and inoculation treatment (Bulgarelli et al., 2010). It was therefore not 

possible to trace back the fungal-unresponsiveness of Nbs1-Rdg2a transcription to a 

lack of a role in resistance. Actually, most of the race-specific plant disease 

resistance genes are constitutively expressed. For example, The Ag15 gene, located 

in the Lr19 locus that confers resistance to leaf rust in wheat, showed no significant 

variations in transcript level detected between inoculated and mock-inoculated 

leaves (Gennaro et al., 2009). Even the mRNA level of the flax rust resistance gene 

L6 did not vary during incompatible host-pathogen interactions (Ayliffe et al., 1999) 

and similarly, rice bacterial blight resistance gene Xa21, rice blast resistance gene 

Pi36 and tomato resistance gene Pto were not induced by infection with the 

incompatible pathogens (Liu et al., 2007; Century et al., 1999; Martin et al., 1993). 

The constitutive expression of R genes is consistent with the need for a rapid 
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response to pathogen attack to which NB-LRR proteins must respond (McHale et 

al., 2006; Michelmore, 2000). It should be noted, however, that our experimental 

protocol would not allow the detection of small or localized changes in the 

expression of candidates after infection because RNA from whole embryo was 

analyzed. 

Given the absence of indirect evidences complementation experiments of a 

susceptible genotype were carried out to validate the candidates. The successful 

barley Agrobacterium-mediated transformation is still linked to the variety Golden 

Promise (Shrawat et al., 2007). Fortunately, it was possible to utilize the 

Agroinfiltration method because Golden Promise is susceptible to P. graminea-Dg2. 

Golden Promise was transformed with Nbs1-Rdg2a and Nbs2-Rdg2a genes under 

control of their native 5’ and 3’ regulatory sequences and T1 plants, derived from the 

self-pollination of transformed T0 lines, were tested for resistance to isolates Dg2 

and Dg5. Transgenic expression of Nbs1-Rdg2a conferred a complete resistance to 

isolate Dg2 but was ineffective towards isolate Dg5 (Bulgarelli et al., 2010). 

Moreover, in presence of the Nbs1-Rdg2a transgene the fungal Ubiquitin and 

GTPase activator genes were not expressed in leaves, thus indicating that this gene 

arrested fungal growth at the embryo level, like Rdg2a (Haegi et al., 2008). On the 

other hand, T1 Nbs2-Rdg2a transgenic plants were completely susceptible to both 

isolates. Based on these observations and by the fact that Nbs1-Rdg2a could confer 

the same resistance specificity as Rdg2a, we concluded that Nbs1-Rdg2a is the 

Rdg2a gene and most importantly, Rdg2a is the first seed-borne resistance genes to 

be cloned and characterized. Analysis of near-isogenic lines indicated that the Rdg2a 

locus controls partial to strong resistance to at least four others isolates of leaf stripe 

pathogen (Tab. 1.2, Par. 1.3.1, Introduction; Bulgarelli et al., 2010), therefore 

transgenic plants homoziguos for Rdg2a are being tested with different isolates of P. 

graminea and the same analysis will be performed on transgenic plants expressing 

this gene constitutively, under control of the maize Polyubiquitin promoter (plants 

are in preparation). These analyses will help to confirm whether really Nbs1-Rdg2a 

gives the same resistance pattern as Rdg2a.  
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At this point the question was: is Nbs2-Rdg2a involved in resistance against 

Pyrenophora graminea too? Both Nbs1-Rdg2a and Nbs2-Rdg2a encode for very 

similar CC-NB-LRR proteins and showed no differences in the motifs recognised as 

being conserved across this class of resistance proteins, except for a conservative 

amino acid substitution in the CC motif. The most significative variations are 

limited in the LRR domain because NB2-RDG2A presented a deletion of three LRR 

units and the comparison of the two proteins showed 77.9% of identity for this 

domain with respect the 83.8% for the NB domain. Variations between R gene 

alleles or paralogues reported to abolish resistance function include both single 

amino acid substitutions (Bryan et al., 2000, Dinesh-Kumar et al., 2000) and the 

absence or substitution of a section of the LRR domain encompassing one to several 

repeat units (Feulliet et al., 2003; Anderson et al., 1997). Feulliet et al. (2003) 

demonstrated that a non-functional mutant for the Lr10 gene (resistance to Puccinia 

triticina in wheat) did not carry 5 LRR repeats (EMSlr10). Similar loss of resistance 

has been observed in mutants of the flax rust resistance M gene lacking 426 bp 

encoding part of the LRR domain (Anderson et al., 1997). It should therefore be 

considered as a highly probable hypothesis that the rearrangements in NB2-RDG2A 

LRR domain may have determined the suppression of its function. Another finding 

that supports the view that this protein does not take part in resistance is the 

observation that the Nbs2-Rdg2a transcript was 2 to 16 times less abundant that that 

of Rdg2a, depending on time-point and inoculation treatment. This lower expression 

may contribute to the inactivity of the protein, as observed for the potato Nbs-LRR 

late blight resistance gene RB (Kramer et al., 2009) and rice receptor kinase-like 

bacterial blight resistance gene Xa3 (Cao et al., 2007), whose transcript aboundance 

correlates with their resistance activity. To investigate this possibility, cv. Golden 

Promise will be transformed with Nbs2-Rdg2a under the control of the maize 

Polyubiquitin promoter, to overexpress the gene. However, since Nbs2-Rdg2a 

contains a complete open reading frame and is expressed in embryo tissues, we 

could not exclude a role in resistance to P. graminea. In order to detect whether 

Nbs2-Rdg2a is affective against the fungus, transgenic plants homozygous for this 

gene will be screened for resistance to different isolates. 
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In addition, the idea that the adaptive evolution of LRR domains allows for a rapid 

generation of altered recognition specificities has been confirmed by much 

evidences (Lehman, 2002). In particular, the highest rates of amino acids 

replacement changes are shown in the solvent-exposed residues of the LRR domain 

(Stahl and Bishop, 2000). This is consistent with the fact that this domain governs 

race-specific pathogen recognition and an adaptive evolution is in agreement with an 

evolutionary arm race in this respect that pathogens should impose selection to 

continually alter recognition specificity (Lehman, 2002). Moreoever, the 

modification of the number of the LRR repeats, mainly due to recombination 

followed by gene conversion, appears to be an important contributor to R gene 

diversification because the reduction/expansion events could change the spatial 

distribution of ligand contact point and adjust either affinity or specificity for 

different ligands (Ellis et al., 2000). Considering these observations, we could not 

exclude that Nbs2-Rdg2a plays a role in resistance to Pyrenophora graminea just 

because it shows the deletion of three LRR repeats. 

 

4.1.2 Evolution at the Rdg2a locus 

Rdg2a resides in a gene cluster, as does many other NB-LRR-encoding genes. 

(Meyers et al., 2003). This organization might facilitate sequence exchanges 

between paralogues and generating new resistance specificities (Mondragon-

Palomino et al., 2002; Kuang et al., 2004), as well as expansion and contraction of 

gene copy number in the gene family (Leister, 2004). At the Rdg2a locus, paralogs 

appear to be the result of relatively recent gene duplications as demonstrated by the 

strong DNA sequence identity between the three family members that, in the case of 

Nbs2-Rdg2a and Nbs3-Rdg2a, extends into the 5’ untrascribed region (Bulgarelli et 

al., 2010). This is consistent with the observation that R genes, in particular NB-

LRR-encoding genes, have high-levels of inter- and intraspecific variation and also 

high rates of mutation and recombination (McHale et al., 2006; Kuang et al., 2004). 

Molecular analysis of the Cf-2/Cf-5 and Cf-4/Cf-9 loci demonstrated that unequal 

crossing-over and/or gene conversion have played a fundamental role in their 

evolution (Parniske et al., 1997). The presence of two similar copies of Cf-2 is most 

likely the result of a recent sequence duplication, due probably to an unequal 
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crossing-over (Dixon et al., 1996). Also Cf-9 and Cf-4 differ by one nucleotide at 

their 3’ends and are identical for a further 5.3 kb downstream (Thomas et al., 1997). 

The noted variable sequence patches could be generated either by successive rounds 

of reciprocal recombination or by gene conversion events (Lehmann, 2002). The 

unusual structure of Nbs3-Rdg2a, in which sequences encoding part of the NB and 

LRR regions are duplicated, together with the deletion of the region containing three 

complete LRR units in NB2-RDG2A, provide further examples of variation in the 

Rdg2a locus generated by recombination. Several examples are available in which 

diversifying selection contributes to sequence diversity at R gene loci (Ellis et al., 

2000), but they are limited for R genes that encode receptors that directly interact 

with pathogen effectors. In the case of the Cf9 locus of Cladosporium fulvum 

resistance in Lycopersicum species, a functional 9DC gene was found in 

Lycopersicum pimpinellifolium resulting from an unequal crossing-over between the 

Cf9 resistance gene and its paralogue, the 9D gene (Kruijt et al., 2004). 

Recombination between R alleles has been described in the flax rust-resistance L 

alleles with a mosaic pattern of conserved sequences among alleles (Ellis et al., 

1999). Moreover, Kuang et al. (2004) proposed also gene conversion as one of the 

major mechanism of R genes evolution. In contrast to the barley Mla alleles, which 

were shown to evolve by accumulation of small in/dels and point mutations 

(Halterman and Wise, 2004; Wei et al., 2002), the wheat Pm3 alleles and their up- 

and downstream regions evolved either by gene conversion/recombination or by 

single point mutations (Wicker et al., 2007; Yahiaoui et al., 2006). The comparison 

of the genomic sequences of RPW8 loci in three species (Arabidopsis thaliana, 

Arabidopsis lyrata and Brassica rapa) revealed that RPW8 has evolved from recent 

gene duplication and subsequent functional diversification favoured by diversifying 

selection (Xiao et al., 2004). In contrast to these observations, R gene encoding R 

proteins that detect the presence of the pathogen effectors without a direct contact 

are conserved through evolution (Bent and Mackey, 2007; Dangl and McDowell, 

2006). This is the case of the Arabidopsis Rpm1, Rps2 and Rps5 loci that act by 

indirect guard mechanisms and are characterized by low levels of genetic diversity 

and the presence of ancient polymorphisms. This suggests that simple balanced 

polymorphisms for functional and non-functional alleles have been maintained over 
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long evolutionary time scales and the proteins that act by an indirect guard 

mechanism are under conservative selection (Van der Hoorn et al., 2002; Bergelson 

et al., 2001; Stahl et al., 1999). 

The fact that the Rdg2a is subjected to diversifying selection is consinstent with a 

coevolutionary arms race between R and the corresponding Avr genes (Bergelson et 

al., 2001; Stahl and Bishop, 2000). According to this model, it may be possible that 

small conformational changes in the RDG2A protein restore the interaction with 

variant version of the avirulence gene product that would also be under diversifying 

selection, similar to what Dodds et al. (2004) observed for the flax rust AvrL567 

gene and to what happens for the downy mildew ATR1NdWsB protein, recognized by 

the Arabidopsis RRP1 protein (Rehmany et al., 2005). Both genes, indeed, are 

characterized by strong positive selection for amino acid variation.  

Diversifying selection at the Rdg2a locus is also supported by the observation that in 

two leaf stripe susceptible genotypes analyzed, Mirco and Morex, Rdg2a homolog 

sequences are present in syntenic positions. In particular, in cv. Morex, sequences 

sharing more than 93% of identity to Rdg2a were identified both in coding and non-

coding regions and deletions of intergenic regions and of members of the gene 

family are most likely responsible for the rearrangements suggested by Sounthern 

blot analyses (Fig. 1.11, Par. 1.3.1, Introduction). It is possible that unequal 

crossing-overs generated deletions in Morex producing a hybrid gene between 

Rdg2a and Nbs2-Rdg2a ancestors. Whether this gene has a function against any 

isolate of Pyrenophora graminea is under investigation. However, the lack of a 

complete allele of Nbs1-Rdg2a in this Dg2-susceptible genotype further proves that 

Nbs1-Rdg2a is the Rdg2a gene. The sequencing of the Morex Nbs3-Rdg2a allele is 

currently in progress.  

 

4.1.3 Haplotype analysis at the Rdg2a locus 

PCR-based molecular marker analyses of different barley varieties showed that 

Thibaut Rdg2a locus is largely conserved in both Dg2-resistant and susceptible 

plants. Main differences are limited in the region of the Pro locus, encoding for a 

protease, that seems to be re-arranged, with respect to Thibaut, in most genotypes. 

Moreover, for a few varieties, a small deletion is also present at the level of the 
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Rdg2a promoter. The tests performed at five loci within the Rdg2a locus identified 

four different haplotypes. Interestinlgy, four genotypes resistant to isolate Dg2 but 

susceptible to isolate Dg5 (Optic, Galleon, Haruna Nijo and Acuario) showed 

Thibaut haplotype with the exclusion of a slightly shorter amplification yielded by 

the primer combination CR3 plus NCR2. Also Rebelle genotype demonstrated to 

belong to this haplotype group. The sequencing of the Rdg2a gene in three Dg2-

resistant cultivars (Rebelle, Galleon and Haruna Nijo) was carried out and revealed a 

strong sequence conservation that led to the synthesis of very similar proteins. In the 

LRR domain of Galleon RDG2A there are only four amino acid substitutions that 

are located in the fourth and the fourtheenth LRR units but do not belong to the β-

strand/β-turn. Moreover, Haruna Nijo RDG2A shows two amino acids changes 

between the CC and NB domains. As the two varieties are fully resistant to isolate 

Dg2, these changes may have not influenced the RDG2A function. One possible 

explanation is that the amino acids that result from the nucleotide substitutions have 

the same chemical characteristic of those present in Thibaut RDG2A. By the fact 

that the CC, NB and LRR domains are the most important for protein activity, it is 

also plausible that the substitutions occurred in positions that do not have any 

functional role in the protein; also, the observed changes in Galleon could indicate 

that this allele was subjected to diversifying selection. The cloning of Rdg2a is 

therefore facilitating allele sequencing from different barley genotypes (allele 

mining) and expression analyses of homologues from both wild and cultivated 

barley (Bulgarelli et al., 2010). A similar approach was carried out for functional 

Pm3 alleles from both wild tetraploid and landraces of bread wheat, allowing a 

significant expansion of wheat R genes available against powdery mildew (Bhullar 

et al., 2009; Yahiaoui et al., 2009). It would be interesting to performe an high-

throughput allele mining analysis using the Genome Capture Sure Select Target 

Enrichment System (Agilent; Gnirke et al., 2009) associated with the Next 

Generation Sequencing (NGS), to compare Rdg2a alleles in different (wild and 

cultivated) genetic backgrounds; the approach would allow the identification of new 

alleles, perhaps with different resistance specificities, that could be deployed in the 

barley resistance breeding. Another important consideration is that Rebelle, Galleon 

and Haruna Nijo come from far area of the world and the deep conservation in 
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Rdg2a sequence strongly demonstrates that this gene is widespread and conserved 

by both in six-rowed (Thibaut and Rebelle) and two-rowed (Haruna Nijo and 

Galleon) genotypes. 

 

4.2 RDG2A localizes in nucleus and cytoplasm and 

confers resistance without programmed cell death 

 
4.2.1 Sub-cellular localization of the RDG2A protein 

Fluorescence from transientely expressed RDG2A-YFP fusion protein was abundant 

in the nucleus, despite the fact that it lacks of a NLS motif, and was also present in 

the cytoplasm, suggesting that resistance functions of RDG2A might relate to one or 

both of these locations. In barley, intracellular mildew A (MLA) R proteins function 

in the nucleus to confer resistance against the powdery mildew fungus. After the 

recognition of the fungal avirulence A10 effector by MLA10, this protein induces 

nuclear associations between receptor and the repressor of PAMP-triggered basal 

defense WRKY1 transcription factor, leading to a de-repression of basal defence 

mechanisms and effective immunity (Shen et al., 2007). WRKY38, a WRKY1 allele, 

is up-regulated upon P. graminea isolate Dg2 infection (Haegi et al., 2008). It would 

be interesting to investigate whether RDG2A interacts with this transcription factor 

and whether this interaction has a role in resistance to the fungus. However, it 

should be noted that RDG2A localization was determined in leaves of uninfected 

plants, and that the location of resistance protein might be different in embryo 

tissues and during the infection (Bulgarelli et al., 2010). Localisation studies have 

showed, in fact, that NB-LRR proteins were found to be localized in a variety of 

sub-cellular compartements (Rafiqi et al., 2009). Nevertheless, nuclear localisation 

has so far been shown only for a few plant NB-LRR proteins and many cloned R 

genes, like RDG2A, do not carry an obvious NLS motif. The large size of these 

proteins would preclude passive diffusion through the nuclear pores complexes, 

although interaction with other cellular proteins capable of actively entering the 

nucleus could results in nuclear localization (Rafiqi et al., 2009). For example, the 

Arabidopsis TIR-NB-LRR RRS1-R protein nuclear localization depends on the 
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presence of the bacterial PopP2 effector, which carries a functional NLS (Mangelsen 

et al., 2008).  

To mine the mechanism of action of RDG2A we should answer to several questions: 

how can the avirulence factor enter into contact with the cytoplasmatic RDG2A? 

Why should the pathogen “send” an Avr factor inside the plant cell and risk being 

detected? What happens after the recognition of the avirulence factors? 

It has been suggested that R genes directely or indirectely recognize the Avr factors 

of pathogens (Dangl and Jones, 2001). Galli et al. (2010) hypothesized that the 

recognition of the Avr factor by the RVI15(VR2) protein, confering resistance 

against apple scab and located in the cytosol, can acts in two ways: recognizing a 

product from the cuticle degradation, which passes the cell wall; or recognizing a 

product from the degradation of the cell wall observed after infection at the point of 

pathogen penetration. In the case of Pyrenophora graminea, the fungus grows only 

intercellurly, whitouth forming austoria (Haegi et al., 2008; Platenkamp, 1976) and 

whithout penetrating the cell wall, thus it is likely that the avirulance factors are 

transported into the host cell across the plasma membrane and RDG2A recognizes 

them inside the host cell (Bulgarelli et al., 2010). Prediction analyses of protein 

domains did not reveal any extracellular LRR repeats for RDG2A, but an interaction 

between this protein and a transmembrane receptor can not be excluded. 

 

4.2.2 RDG2A confers resistance in the absence of programmed cell 

death 

Most of the R genes function involves the induction of a Hypersensible Responce 

(HR) through Programmed Cell Death (PCD) restricted to infected cells (Jones, 

2001). For example, the Arabidopsis RPS4 gene belongs to the Toll/interleukin-1 

receptor/Nucleotide-Binding site/Leucine-Rich Repeat (TIR-NB-LRR) class of plant 

resistance genes and confers resistance to Pseudomonas syringae triggering HR in 

leaves through its TIR domain (Swiderski et al., 2009; Zhang et al., 2004). The Cyst 

Nematode SPRYSEC protein RBP-1 triggers cell death in Arabidopsis by eliciting 

Gpa2 and RanGAP2 NB-LRR proteins (Sacco et al., 2009). To find out whether also 

Rdg2a induces HR, a TUNEL (Terminal deoxynucleotidyl transferase dUTP Nick 

and Labelled) analysis was carried out on longitudinal sections of infected and 
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control embryos of NIL3876 at three different time-points (14, 22 and 26 dai). The 

TUNEL method enables detection of free 3’-OH groups generating by DNA breaks 

that occur at the first stage of Programmed Cell Death. The use of this technique in 

plants is largely reported (Demidchik et al., 2010; Koroleva et al., 2010; Ma et al., 

2010; Serrano et al., 2010; Souza et al., 2010; Casani et al., 2009; Bozhkov et al., 

2005; Coffen and Wolpert, 2004; Deuschle et al., 2004; Dominguez et al., 2002; 

Brodersen et al., 2002; Balk and Leaver, 2001; Dickman et al., 2001; Fath et al., 

2001; 1999; Schopfer et al., 2001; Asai et al., 2000; Gomès et al., 2000; Koch et al., 

2000; Sasabe et al., 2000; Xu and Roossinck et al., 2000; Groover and Jones, 1999; 

Schmid et al., 1999; Tamagnone et al., 1998), but there are only two examples of 

TUNEL reaction conducted on longitudinal sections of embryos (Giuliani et al., 

2002; Fath et al., 2000).  

Interestingly, no significative TUNEL differences between infected and controls 

embryos were found at the junction of the scutellum and scutellar node, where 

resistance against P. graminea takes place (Haegi et al., 2008). Furthermore, in 

these tissues the number of cells showing cell death was transcurable, even where 

the presence of the fungus was identified by Calcofluor staining. This finding was 

also supported by the fact that no necrotic tissues or cell collapse were observed 

under bright views for the embryo regions showing autofluorescence, a marker for 

infection (Haegi et al., 2008). Autofluorescence, in fact, was detected at the junction 

of the scutellum and scutellar node tissues in the resistance response to leaf stripe, 

but was confined to the cell walls (Bulgarelli et al., 2010; Haegi et al., 2008). Taken 

together, these observations demonstrate that Rdg2a induces resistance withouth 

triggering PCD. There are few other examples of NB-LRR mediated resistance that 

does not involve Programmed Cell Death. The barley Mla1 powdery mildew 

resistance gene does not induce HR (Bieri et al., 2004), although the Mla12 allele 

exhibits necrotic reactions (Freialdenhoven et al., 1994). Even the Arabidopsis RPS4 

and RPS6 genes confer bacterial resistance in a HR-indipendent manner (Gassman et 

al., 2005). The same happens for the Rx gene in potato and it has been proposed that 

the lack of HR is probably due to the fact that the resistance mechanism is so rapid 

that prevents the accumulation of the avirulance factor to levels that would 

otherwise trigger a more extensive host response (Bendahmane et al., 1999). In our 
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case, HR-associated resistance response would be too damaging to the embryo, and 

therefore unviable evolutionarly. In addition, HR deprives obligate pathogens of 

living host cells required for successfull colonization, but may be favourable to the 

hemibiotrophic Pyrenophora graminea, which obtains nutrients by hydrolytic 

degradation of host cell walls (Bulgarelli et al., 2010).  

Thus, how does the Rdg2a resistance take place? It has been observed that Rdg2a 

resistance is associated with accumulation of compounds (most likely phenolic 

compounds) determing cell wall localized autofluorescence at the scutellar node and 

at the basal regions of provascular tissues in infected embryos (Bulgarelli et al., 

2010; Haegi et al., 2008). Heagi and co-workers (2008) performed microarray 

analyses and a pathogen-induced up-regulation for several genes related to cell wall 

modification was observed in the resistant NIL3876 but not in the susceptible Mirco. 

Among these genes they identified those coding for xylose isomerase and 

arabinoxylan arabinofuranohydrolase (AXAH) that are involved in the hydrolysis of 

the complex heteroxylan polysaccharides of the primary cell wall. Furthermore, 

Callose Synthase and Peroxidase genes were induced in infected NIL3876 only. 

Callose forms a major component of papillae deposited on the inner face of the cell 

wall in response to pathogen challenge (Schulze-Lefert, 2004) and peroxidases are 

involved in lignifications and cross-linking of phenolics, proteins and carbohydrates 

(Moerchbacher, 1992). Also potentially related to cell-wall reinforcement is the 

production of ROS (Reactive Oxygen Species). The authors found that genes 

encoding H2O2-generating enzymes (germin F and oxalate oxidase) are induced at a 

high level in the resistant NIL3876-Dg2. These enzymes are both located in the cell 

wall (Cona et al., 2006; Zhou et al., 1998) and can contribute to a local generation of 

H2O2 for both cross-linking of cell-wall components and defense signalling. 

Consisting with a higher production of H2O2 in infected NIL3876 some genes 

involved in ROS detoxification protection are expressed at higher level with respect 

to susceptible and non-infected resistant plants. Belonging to this class of genes is 

the ascorbate peroxidase and cyclopropane fatty acid synthase genes whose products 

uses S-adenosylmethionine to generate a methylene bridge across the double bonds 

in unsaturated fatty acids, contributing to the protection of membranes and other 

cellular components from damage by ROS (Anthony et al., 2005). Hence, Rdg2a 
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probably mediates resistance to leaf stripe inducing secretory immune responses, 

leading to physical and chemical barriers to infection in the cell walls and 

intercellular spaces of embryo tissues, without triggering Programmed Cell Death. 
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5. Conclusions and perspectives 
 
In this study we were able to clone and characterize the first seed-borne disease 

resistance gene: the Rdg2a gene that confers resistance to the hemi-biotrophic 

fungus Pyrenophora graminea (the causal agent of barley leaf stripe) isolate Dg2. In 

a previous analysis, a map-based molecular cloning of the Rdg2a locus identified 

three putative homologous CC-NB-LRR encoding genes: two intronless, Nbs1-

Rdg2a and Nbs2-Rdg2a and one carrying five introns, Nbs3-Rdg2a. RACE analyses 

revealed that four of these introns were unprocessed and one was subjected to 

alternative splicing, leading to the productions of truncated proteins. Thus, Nbs3-

Rdg2a was excluded from acting in the resistance against isolate Dg2.  

Neither Nbs1-Rdg2a nor Nbs2-Rdg2a are expressed in the susceptible cv. Mirco, but 

are transcribed in the embryo and leaf tissues of its resistant Near Isogenic Line, 

NIL3876. Rearrangements in the promoter region caused by insertion/deletion of 

transposable elements may explain the lack of expression of these genes in Mirco. 

Complementation analyses using the two genes independently, under the control of 

their native promoter, revealed that only Nbs1-Rdg2a leads to the rescue of 

resistance, suggesting that this gene is the Rdg2a gene.  

By the fact that Nbs2-Rdg2a encodes for a protein lacking of three leucine rich 

repeats, with respect to RDG2A, and that is significatively less transcribed than 

Rdg2a, we could think that it is not involved in Dg2-resistance. However, as it 

contains a complete open reading frame and is expressed in resistant embryos, it 

might be involve in resistance against other P. graminea isolates.  

Moreover, transgenic plants homozygous for Nbs1-Rdg2a and Nbs2-Rdg2a are 

under investigation for resistance to different isolates of the fungus to confirm if the 

first gene confers the same resistance pattern of Rdg2a and whether Nbs2-Rdg2a is 

effective against any other isolate. To better validate our findings and to identify 

whether there is a correlation between Nbs2-Rdg2a transcription level and its 

activity, we will performe phenotypic test, using several P. graminea isolates, on 

transgenic plants overexpressing the two genes, under the control of the maize Poly-

Ubiquitin promoter region. 
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Rdg2a resides in a gene cluster, as does many other resistance genes and this 

organization can promote unequal recombination, resulting in sequence exchange 

between paralogs and generation of recombinant genes with new resistance 

specificities, as well as expansion/contraction of gene copy number. Cv. Morex, for 

example, carries two deletions that reduced the number of genes to two and 

generated a hybrid gene between Rdg2 and Nbs2-Rdg2a. The strong DNA sequence 

identity of the three genes at the Rdg2a locus, demonstrates that they are the result 

of a recent gene duplication. This locus is also subject to diversifying selection, 

consinsting with the model in which R genes co-evolve with pathogen effectors, due 

to direct interaction of the gene products. Importantly, Rdg2a is highly conserved in 

different genetic backgrounds coming from far areas of the world, underling the 

importance and the wide spread of this gene. 

The majoirity of resistance genes induce programmed cell death at the lvevel of 

infected cells for contrasting pathogens. Rdg2a, like a small number of R genes, is 

an exception because it does not triggers a hypersensitive responce to the fungus; it 

activates instead the expression of genes involved in the strengthening of physical 

and chemical barriers to infection in the cell walls and intercellular spaces of the 

embryo tissues.  

Several questions about the mechanisms through which RDG2A triggers the 

resistance responses need to be answered: what are the immediate downstream 

targets that this protein modulates in order to activate the defense response? 

What are the pathogen effectors and the host processes that effectors target? 

How can knowledge of elicitors, effectors and R genes be translated into practical 

disease control measures that confer durable disease resistance? 

It is widely demonstrated that the functionality of R protein is associated to 

chaperone complexes and conformational changes upon Avr detection that initiates 

the signal transductions. It would be interesting to check, by protein-protein 

interaction assays, which proteins are also involved in the Rdg2a-mediated 

resistance.  

In molecular studies of plant-microbe interactions most of the work is carried out on 

the host, while little is understood about the pathogen, especially for fungi (Jones 

and Dangl; 2006). Thus, the identification of the AvrRDG2A and also of the host 
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processes that are corrupted by this protein and where this protein is secreted and/or 

delivered would be done. Moreover, the possibility to perform a stable 

transformation of P. graminea will give the opportunity to test in vivo any putative 

gene involved in disease establishment/pathogen recognition.  

To date, only Thibaut Rdg2a and Vada Rdg1a resistant alleles are used in breeding 

and provides useful resistance against leaf stripe, but they are not effective towards 

all isolates (Biselli et al., 2010; Bulgarelli et al., 2010; Gatti et al., 1992). The 

completely elucidation of the whole barley-P. graminea interactions could sustain 

the crop improvement by taking in consideration the main factors (e.g. genes 

encoding for downstream signalling molecules, transcription factors; regulatory 

sequences/promoter of genes up-regulated in disease resistance, pathogen 

effectors…) that act in this pathosysitem in order to obtain new practical 

applications useful to contrast other P. graminea isolates or other seed-borne 

diseases. Furthermore, the new rapid and cheap methods of sequencing based on the 

Next Generation Sequencing (NGS) represent a powerfull tool to extensively 

analyze the genomes of crop species. In this view, the Rdg2a sequence could be 

used as probe in allele mining experiments, through genome capture associated to 

NGS, on wild and cultivated barley varieties to better understand the mechanisms at 

the base of the evolution of the Rdg2a locus and, mainly, to identify further alleles 

with different specificity to P. graminea isolates. Thus, it will be possible to amplify 

the range of resistance genes available to breeders and better contrast the spread of 

virulent isolates. 
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Morex mwg7_HVVMRXALLhA425O23_c2 contig (28037 bp long) 
ACACGACGACGAAGAAGAAGACGCGTCGTCGTCGTTTAGTTTAGTTAGGTAGTATATATATATATATATATATATATATATATATATGGGA

GATTCCCTTTTGGCACGTCTTCTAGACATCGTGGCCCTCTTATGAACAGGGATGCTGACGAGAAGCTAAGCCATGTGGCGCATGTATCAGC

TTGCCCTCTCTTAAAAGGCCAGAACCTGTGGATAGACAGGCCAAAATAACGGCCCATACGTATCAGCCTGTCCTATCGATACGTATACTGA

CCATTACACCTATCTCTCTGCATCCAAGCTGTGGCCTGTGTGTGACCCGAAGTCTTGCGTTTATTGCGTTGCCTTGCTGCCAAGCATTTAGAA

TTTCAAGTCCGGTTTGCATAGACTAGCAAAAAGACCCATGCGTTGCAACGGAAGAAAAAAAATACCACACGTTTTTAATTTTTTTATAATCA

TTTTGATTATTAAAATAATAAGCTAACTAACTAATGTAGTCAGTCCTATCATATTTTGTTGAGAAATCAACCCGTCCATTGTTAATTCCATCAT

GATGAGAAATTGAGCGAGACAAACAAAGCAAAACAAAGAGGCTACGTGAATTGATCAATGGACTATTATCTTATTTCACTCATGAGGTAG

AGAATGTGGGATCAGATGACAAACTGAAGGTGGTGTTCCATTCTTTCTTTCTACAACAATGCAATCTTACATTCAATACATTCATTCATCAGC

AAACAAATTTCCACAAAACAAAATTTCTTGCCGGTGCTTGGCACACGGTTGGAGGCATGGGGAGGGGATCTCACCAGATGATGAGTTCCT

GCCGGAAGAGGGGATACGATGAGGGGAGCAAGGGTTAGACGCCTCTATCTGGCCATAAGGAGTCGCCGTTGCCGCGCCATAACCTCGGA

GTTCCCCGTGTGAGGCATGGAGGCCCGCCTCCACCTGCAAGTACTTCGCTCCGTCGCGCCTTATCCGCGCGCCGCCGCCGTTCTGCATCGA

GCAGACGCATCATCCCAAGTCGCTGTAGCTGTCGGGTTGATTTGATCCAGAAGCTGTGCTCGAGCGCCGAAACGGGGGCAGCAAGCGGG

CAAAGGTACGACCACGGAGGCGGGTGGGTTGAGATCGACAGCAGTGGTGGTTGAGGTCGGCCGCGGCGGCGACTGGTGTGGCAGTGGC

CTGGGCACAGACCAGGGTGGACCAGAGTCGACACGATGCGCTCGAGCGCCGCAACGGGGGCATTGAGCGGGGAGAGGTACAGCCGCG

GAGGCGGGTGGGTTGAGATCGGCACCGATGGCGGTTGAGGTCGGCCGCGGCGGCGAGTGGTGTGGCGGCGGCCTGGGCACAGGCCAG

GGTAGCCCAGGGTCGACGGGAGGAGACGATGCGTACGAGTATAATTTTTGCAGCGAATCTTTTTTTCCTTTTACGTTGCAGATAAATGATG

GAGCGCAGGTTGAATAACAAAAATTACAGGTTTTTTTTATAAAAATGTCGTGGTGGGTTTTCCGACGGAAGCAATAGCCGCTTTATTATTA

GGTATAGATATAGAAGAGTTTGGTCGACAACAGATGAATGGATCTGCTTCGTATGCACTCTGTAGTCTCTATTATTAAAGGAGGATCTGTC

GTCGTGCTGGTACGACCTCCCTTCTCACTCCCTCCTATCGCCGGAAAAATAGCCACGATCGAACAACCCATGATAGAAAAAAAACGAGGTG

AACACTATCGAAACAACACATGATTGGAAGAAAAAAAAAGAGGTGAACTCAACTCTCCGCATGCAGACCCCCTTGTGATGCTTCCCACTTC

CCCCGATGATAGCCCCCGGACCCGACGGCCTCCACCTCCCAAGCCGCGCCCTCGTCCGTCCTTGAGCCCTGCACCGCTGACATTGCTCGATG

TCGTCTAGGCGTCGCGACGATGAGCGCCACCGCTGGAGCTCCCCGGTCCGTGTCCACCTCTCTCTCTCTCTCTCTCATGCATCTCTTCCTCTT

CTGAACCCTCACGCTCTCTCTTCCCGTGCACTGGAAACGAGAGGACCACACCATGGCCTCGCCCGACCTGCTCCAACCCATGTCGTCCATGG

AGCTTTGCGCCCGGATCTGATCCCCTGCCTCGTCGGATATCTCCCCTTCTGACCGGATCCGGCCAGACCGCCGTTCCTTGTCCCCGACGCGT

CGCCCGTCGCGGATGGTGCCGGGCCTCGTGGGCGTTGCGAAGGGGCACAATTAATTGAGGGTGGGACCACGGGCCGCCGCCAGTCCTCT

CCGGCCTCCTCCGACGTAACATTCTCAATCTCTGCATACTACTCCCGTGTCTGATTTGGATAGAATTGCAGACTCCTCGTCCAACACAAATTA

ATTTGAATGGATTGCAGACCGTGTCAATGGAGTTGCCCACCCAGATTATTGTTGGCTGCTATAAGAAGGGAGGGTCCTCGGCTCGAATCTC

ATCAGGTCAAGTTTGGACGAAAATCCAATGTCGCCACCGAGTTCGTCATGAGTTTAGTCTACTCGTCTTTAACCATATACATTGAGTGGGAT

ATTTTCTACCATGATATTTTCTACGGCATTAGAAACTAGCTATTATAGGTTCATACGTCATATTAGTTGTCAATTTACCAGGCTACACAATAA

TGCTTGAGAGTACTTGAAATAAGTTTTGATAAAAAAAAGAATTCTTTTACTAGGCGTACTTGTCATACGCTACGAGATCTATTGATTCAATG

TCCAGTTGGGGTTGCTGGATGTGCAGACCGCACAGGTTGGGATGGATGTGCTCTCTTTTTGGCACGCCTCCTAAACAATTTGTGGCTCTTTT

GAATTGGAGTGCTTACATGAAGCTAAGCCATGTGGGACAAAAAAAATCTTCTCTGTTGTTTGTTCGTTCGGTTGACATGTGGCATGTGTGT

GGGCTTGCCCTCTCTTAAATATCCAGAACGCTTATACCGTAAGGCTGCCCGTAATGGGAGTATCATAGATAGTATCATGCATGTCAACTAGT

CAATTTCGATGAGGTGTCATAGAATTAAATTTAAAAAAAAGATGGTTGATTATCATATCATAATATCGTATCATATTAAATGTTGTGTTACTA

TGTGTCTTGCATGTCAATAAATAAGCTACTCTACGATACTAACATATGATATTATGCATTACGGATGTGGTATCATACATTAGTATCATATGC

ATGATACTAGTATTTGATACTATCCATTACAACCAGCCTAGTAATGGCTCATACGTGAGTCTAGGACCACATCTTGTTATTACCAGAGCAAA

ACTCATTCGTCGTGTACTAACCAATACACGTATTTGGCTATATATTGTCTACGTATGCGAGTTTAGTCGCCTCTCGATCTCTGAACGGGCGG

GCTTATCTGAGTAGTACGTAATTACTATTTATAATTTTATTTTATATATTAACATCATTTGTGTTGAGTTTTATTCATGTCGGCTAGGGTTCAG

TCTATGGCGTATTAGAAATATATAGGTTTGTCGCCTGCGTAGGAGGAAAACCCCCTTAGAGCATGGTTAATAGTATAGCCAAATGCTGGCT

ATAAGGAGTGCGGACGTTTGGAGCTCGGCCTCCATGGAGGCCGAAATTTTTGAATAATTCAAAATTCAAACTTTTCGGTTTCAAAAAAATC

TGAAAAAAATATGGAAGTAAAGAAGGATGTTATGCGTATGTGTGCAAAAATTTAGGATGAAATACCTTAAAATACGATCTACACAAAAAA

GACAAATTCATGACCTGAAATGATGAATAGTGTCATGTGTAAAAAAGCCTCAGATTTGTCTTTTTTGCACAGCCCTCATTTCAATGTATTTTT

TTCTGAAAATTTACACACATGTGTGTTACACATTCACTTATCCCTGTATTTTTTTTCAGAATTTTTTGAAATGTAAAAATATGAATTTTCATGA

AATTTGAGTTTCAAATTTAAAGGGCTCCATGGAGCTCGGCCTCCAAAAGCAATTTTCGGGCTATAAGCCATCTTATAGCCCACCTTATAGCT

AGCTTGTACAATAGTTAGCTACAAAAGAGTACTACTTTTATCATATATGGCCCACCTTTCATTCTCACAAAGCACCTAGGAGCACGTGTTAG

AGCTGGCTCTTCACGAAGAGTCCGCTTCCCTTTTGTCTCCTCTTCTCTCTCATCCAACTCAGCAAAAATATAGTATTTTAATCCTTACAGTCTG

CTGACTGTATTTTATTATACTTGCTCTTATCATCAAATATCCACCGCAAAGGAGAGTGACTTGGCACCTATATATGTGTGTGTATGTATTTCA

GCAGACAAGCTAGCTATTCATTGTACGTAACTACAGAAAATATGGCTCGCCCTGCTGCAAGCACTGATGGCAGTGCGTTGGCCGTCACGCT

TGTAGGTTGGCTCCTTGTTCTCCAGCTTCTCCTCCTGGCGCCGGCGCCTACCGCCGCGAGGAGGGCGACGAGCGTCAACCAGACGCCCAAC

TTTCTGTCCAGAAAGCCGCCAAGGTCGGGCACCAACGCCCTGCTCAAAAAGGCGCGTCGTCGCAACCGCAACACGGACCTGCTGGGCAGC

GCCGCGGCGGACGACGCCGGCTACGTCGTCCTCTACAACGTCTCCATCGGCGCCACGCCGAACGACGTCTCCGGCGTGGTGGACGTCCTC

AATGATTTCGTCTGGACAACGCAGTGCGTGGCCGCGCCGGTGCGGGTCCAATGCGCCAGCCAGACGTGCCGGAGCCTCCTGGCCAACGAC

ACCATGGACGCCTGCGGCGGCAACCCCAGCGGCGACGATACCTGCAGCTACGTCAACGTGTACGCGCCTGGGAGCAACACCACCGGCTTT

CTCGCCAACGAGACGGTCGCCGTGGGGAGCTTCGTGGGAGCAGCGATATTGGGGTGCAGCGCCGCCAACAGCACGGGACCCCTCGTCGG

CGAGGTCGGCAGCTTCGGCTTCAACAGGGGGGCGCTCTCCCTTGTGTCGCAGCTAAGCGTCAGCAAGTTCTCCTACTACCTCGCCCCCGAC

GAAGCAGGCAGCTCCGACTCCGAGAGCGTTGTGTTACTCGGCGACGCCGCCGTGCCGCAGACCAGGGGCGGCGGCCGCTCAACGCTGCT

GCTCAGGAGCACGGCATTCCCAGACGTCTACTACGTCAAGCTATCCTCCATACAGGTTGATGGACAGGCCCTGAGCGGCATCCCCACTGGG

GCGTTCGACCTTGCTGCCGACGGCAGCTCCGGTGGCGTGGTCATGGGCACGCTGTCCCCCGTCACCCGCCTCCAAGTGGACGCCTACAAC

GCCTTGAGACAAGCACTGGTGAGCAAGATCAACGCGCAAGAGGTGAACGGATCAGCGTTCGCCGGCGGCGTCTTCGACCTGTGCTACGA

CGCGCAGTCCGTGGCGACACTGACGTTCCCAAAGATTACGCTGGTGTTCGACGGCGGGAACGCGCCGGCTACGTTGGAGCTCACGACGGT

GCACTACTTCTTCAAGGACAACGTCACCGGGCTGCAGTGCTTCACCATGCTGCCGATGCCAGTGGGCACACCGTTCGGCTCTGTCCTCGGA
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AGCATGGTGCAGGCTGGCACCAACATGATCTACGACGTCGGCGGCGAGACGCTGACGCTCGAGGAGGGCGCAGCGGCTCCGCCCCCCTC

ACAGGTGGTGTCGCTCATGGCGATAGCCTCCCTGCTCCTTGCTTGGGTGCTACTCTTCTAGCTAGATGATCATCTCCATCGGGTGTACTGTT

CCATCTTGTTCCGTTGTTTTGCCAAAAGAAATATTTCAGCATTGTGGTGTATTCAATATGTCATGTAACTGTGTCTGTAAGATGCTTGTACCT

TTTCTGAAATATATTGCCCCTTTGTAAAATGTTTGCCAATTGGCAAAGGTTCTGAAATTTCATAAATTTTACACAAATTAATAAATCTTCGTCA

ATCTCTAAAAGTATTCCCTGAGTTGCGAAAAAAGGTCCACATTTTTTCATGAATTTAAAAAATGTTTGCGAATTGGCCGTAAAATTTTAAAT

ATGTTTGCAGATTTAATAAAATAAACCGTAATTTTAGAATGTCTTCTCCGATTTCAAAATGTGTTCTTGAAATTGGAAAATTGTTCCCAAATT

ATAAAAATATTCTAATATTCCAAAAAACATGATCATCAATTCAAAAAATTACAAGAACAGCAAATAAAAACTGTGAAACAGGAAAAACACA

CAAAATGAAAAGAAAAAGGTCCAGAAAAGGTTCTAGAACCTTCGCAAAGCAGGTGGCACATGCGAACTCCTCGGGTGTGTGTGTCTGGTC

TTCCATCCCCATGGCTAGGGCATATCCAATAGTTGTAAGATACTTCCTCATCGCTGATTTCTGATCATTACACCTAATATCTCAGATGAAGTG

ACATAAGTAGAATAAATGAGAGAGCAATGTTATATCTTCACTAACCATACTGTTCAATGCCTCTTGCTGACAATATATTGGCTTTGCAAATT

GGGTCGCGCAAAATTATCTCTTGTCAAGATCACCTCGCCGCACAAAAACAGAGAAAGATCTTAATGCTTAGAGGCATTGAACATCCAATTG

TGATGTAACTTCCACTGAAACTCATAAGACCTTGTGAATGCTAGACGAGGCCCAACTCTGTCCATTTGGAAATAACCCTGAAGAAGGTTGC

AGACCGTAAGTAGAACACTCTCTAGTATGATGTTCTTCTTTTACTCGCATTATCTGCTCTACCTTACCGCATTTATAACTTACACAATGCTTCT

TAAGTTTCCTCCAGCTATACTTTTGTGCTGCAGCCATTTATCTTACTCAAGTCTGATCTCTGGTTTCAATTAGTCTTCGAGTTGTAGCCAACAG

AGAAAGAAAAGTTAAGTATGAAAGAAAATATGTTGTACATATGGCAAAACAAAAATATGATACGGATTACCAGGTCAGCATGCCACGCCT

CCCATCTAGTACGCCATAGAATGGGTGACTGATCGAAAACAATGTCTTCAGCTCTTGACTATTCCTTCCGAACCATTAGTGACCCAAATGAG

AACAAGTCTTCGCAGTAGGAAAATGATGTCCTATCTACAAGCTGGAAAATGATGCATGCGGCCTAGGGTTCAACATTATTTGGTTGGAGTC

ATTTGTGATGATGGTATATGCAACTGTTTGTGTGATCAAGTTGTCACATAAACTTAAAGCTCAACTTCGATATTGATGACTCAATATTTATTG

AGTGAGAAGGAAGTGTTGTCGACCTATGCGACATTTCCACACGAATATACCAAACCTCAGTTTTTCCATGTTTTTTTCTTCCACTATCTTCTTC

TCCAAGCAAAATGTCTCCTTTCACAATTATTTGGAGTAAGTGAATAATGAGACACCATCTACACTTGATGCTCTAAAGATGGTTATTAAACA

TAGAAAAATATACTTCACCGCATGCTATGATGACTGAAAAGAATAGTTACATATGTAGGTAAAACAGAGAATTTGGAAGTATACGGAATCA

TGAAATTATAAGAATATTCAACAACAGAGAAACACCATAGACAAATTCCTATAACGAATGATGAAGTACCCGTGTCCTGAGGGGGCTTCAA

GGGCGAATTTATTCGCCAACTCGCAAAGCTCATGAACTGTTGCGGGGTTACCCACACTGTGACGGTTCTAATAGAGAAAAGTCATTGTGCC

CTGTGGAGCCTGAGTTGGGGTCCGCCAAGGGCGTATGTTGTTGATGTCCCTCTGATTTTTCTTGAGATCTGCCTCTCCACAGTCGCAACAAC

AGTCCAACTTCATTCTTTTCAAAATATAAGTCATTTTAGATATTTCAATATGGACTACATACGGAACAAAATGGCTGAATCTACATTTTAAAA

TACGTTCATACATATTCGTATGTAATTCATATTAAAATCTCTAAAAAGACTTATATTAAAAACAGAGGAAGTAGTTCTCTTTTGGTCTTGTTT

AGAAAATGTGCAAGGAGGAACCAACTGTTGTGCAGGGCTGATGCCTCGATAGTTGCACTTGACTAAAATGAAGCATATAGTTCAGAGTGG

TTCATGGTAGCTTCTTTTTTTTGCAGGTGGTAGACTAATAGATTGAGGTATTTTTGTTGTCCAAAATCTAGAGGAAGATCTTGTCCAAATGA

TCAGAACGTAATGTGCTAACTACCGTAAATCAAATGAATCTGGTGCTATATTTCTAGAGATCGACCCTTGATCCAATCCCATGACATGAATG

TGGCTGCCAGGTTCCTGATGGCTATCTTTTCACTGGAAATTGTTAGAGTTATATTGATGTTGGCCTTTGATTTTTTGTATTCTTGACTTTTAAC

ATGAGCATGTACATCATATATATGGTGGCATTGGCCTTCTAGTAATACAAGTTGTTTTTCTAACATGGCATTAGAGCATTAGGTTTTTTTCCG

CATGCACAACTCATGCTACAATCCACTCACGGCGTCGCATTTCTTCTCATGCCGTCTACGTTGATGGTAGAGGTGACTTGGTTACGATGGCT

ACTGAAGGATTTTATTGTTTCTGTTACTACAGCTACCACCCTCTTGTCTAATAGTACATGTGCTATCAGTATTACATGGGACCCTGTGAAGCA

TGAGCATAGCAACCATATTGAAGTTGATGTTTATTGTGTGTGCGCTGCTGTGCAGGATCATGTTATTGCTCTTCAGTATGTGTCTTTCGAGT

TGCAGCTAGCGATTTTTTCACGAAGGCATAAACTAGAGCAAAACATAGATTTCGCCTCTCCAGACTCAATGTAGTGGATCTATTGGCCTTTG

GCCTTTTGTATTCTTGCCTTTTGACATTCTCATGTACATCATATATATAGTGGCATTGGCCTCCTAGAAATACAAGTTGCTTTCATAACAACAA

CATCCAGAGCAAGCACGGGCAGATAGGGAACGTTGTGCCACCTCCCCTCGCCTACGCGCTAGGGGGGAAGCTCAAGCAAGCCATTGATG

CAAACCTAGGGTGATAAAAGTCCCATTTTTTTGTTTGACCCCTATATGTATGTTGGAGCAATCGACTCAAGTTATCAGAGGCCAGTCATCTA

AACTATTTTTTGTGCATATCCAATGTACTCTTTGAACACTTTTTTCCGATACAACCCCTAAATACATTGACGGACCAGACCTGTTCATACCCCT

TCATAAAAACAGTACACAATCGAGAGCAGTAAATTGGGCTGACCCAGCAACTAACGATCTCTATATTGGTCTTGTAGTGCAAGAGTGGAA

GATAATAAAAGATAATGCATCCACTATGTATCGAACAAAAGAAATCCTAATATGCAGCACCGTATTTTCAGAACTATATTTCCAGTGCTAAT

TTTCAGAACTAAAAGATGACACAACCACTAGAATGAGCCAGCTATCTTGCTAATATGCAGCACCGTACTTTCAGAACTATATGACAGCGAC

ATATTTGAACATTTTTTCGGAAATTTGAACATTATTTTTTTTAACGCAAACATTTTTCCGAGTTGTAATTTTTTTTAGAAAATGCAAAAAAATC

CGAAAAGTGGAACATATTTTAAACGTCAAACAGATTTTAGAATGAGACTTTTTAAAATTCTGAACGGTTTTTGAAAACATACACAATTCTGA

AACTCTGAACTTTTGAGAAAACACGACCGATTTTTCATTAATTCAAACTTTTTTGAAAATTTTGAATAAATTAATAAATAAATATGATGAACA

ATTTTTGGCTTTGTGATTTTCGAAAAGAAAAAAGAAACATAAAACGATTCGTGGAACTATTTAGAAGGTTCCCAAATGGGTTGGCCCATGT

TCACTCGTATCGAATGGATCTGTGCACAACACCTACTGTTTCATGTAATAAACGTCAAATAGGATTTCCCCCCATCAGGCGCCTGATGGGAT

CGATGCCATCTCCTAATTAGGCCGGCCGCTAAGCTTAAGCTTTTTCTTCTATCTTTTTGTTTTCTATTTTTTTCTTCATTAATTTTTCCTTTTTGA

GCGTCATTATTTTTTGAAACTTGTTCAAAAAATTGCAAAATTGTTTGGAGTACCTTAAAATGTTCTTCTTTTCAAATATTTCCTAGAATTTTAT

AAAATATTCTGGAATTTTAAAAATCCTCGCGCTTTCGAATATTTTGTTCACAAATTTAAGAAATGTTTGTATTTCAAAAAAGGTTGATAATAT

TTTAAAATGGTACGTTGTTTCCAATTTGTGTTCAAGATTTTCATCAGTTGTTGGGAATTTGTTTAGGAATTTTTAAAAAGGTGTTTAAACTTG

TAAAATTTTCAAAGACAATTTGAAATTCCAAAATTGTTGACAAATTTCAAGAAATAGTTAGTGCATAACAAAATGTTCCTGTTGATTGATAG

TGATAGAAATTACAAATAACAGAAACATCAAAATTAGGAAAAACTACATGCTCACGGAGGCACCCGTGTGACCTAGTCTAGCACACCCATC

TCAACTAGTGGTTTTTTAGACTATGGATAAATGACCCCAACTTATTTTAGCAGCCTGGTATGGACATATGAGGCATCCATGCCAGGTTTGGT

TGAATTCTGACACTATTTGCATGTTGCGACATGTTCGACCATTTATCAGCCATTTTCATTGAAAAAACTCCAGAAAATGCAAAATCTGTCGG

AAACTCAAGCAACTTGGCATGGTATCTTGAATTGGCCATATACGGTCATGGAATAAATTTGGGTCATGTGACGGATGCCAAAAAAACATGG

TCTCAAACGGACCCTTCTCGCCTACCTGAACACTCTTCGTCGAATATGGTCTATTTTTAGACATGAAGGAAATGACCTAACTTTTGCTAGTAG

GCGGGCAAGACCATCATATTCATCAATGCCACGTTTCAATGAATTCCAACAGCGCATGCAAGTTGCATCACGTTCAGCCATGTGTTTGACAA

TTTTTTCAGTGAGAAAACTCTAGAACATGCAAGAATTGTCAAAAAATGATTTTTTTTTGACATGGTGCTTTGAATTGGCTGTACAAAGCTAT

GAACAAACGCGGGCTCTCAAACAGACTGTATTAGCCTAATCAAACTCCTTTCATTGAACATGGTCTATGTTTGGATATGCATCAACTGAACA

CAACTTTTGCAAGCCAGTGGACATGCCCATGGTAGGCATTTATGCCGACTTTGAACGAATTTCTACACCATGTGCAAGTTGCGTCACGTCCG

ACCATTTTTCATCGAGAAAACTTCAAACAATACAAAAATTGTCAAAAACTGAAGCAATTTGGCATGGTGTTTTGAATTGGTCATCCAAGACC

AAGAGAAAAGAATTTGAGCCATTTTAAGGATGTCAAGAAACGAAGTGCTCCCAGACATACCCTTCTCGCCTGCCCAAACACACTCCGTTGC

ACGCAGTCTATTTTTTGACATGTATGAAATGGATATTTTCTCAATTTTTTGTTTTCTTTCTGATTTTTTAATTCCAAATTTGTTAGTGTTTTTTCT

TTTCTTTTTTTGACCATGGAAACTGTAGGAGAGGCTCCTACTGCAAATGTATCAATAAGGGTATAAGTTACATATTGCATCTATACATGGGG

CATCAAACACCACTCTGGGTGTGGTAGAGACTAAGCAAGTCCTTCTAGGAAGGAGCTAACAAAAGCTTTATTCTCCTCAGATGTTCTATATC

CAAGGTTGCTAAAATCAAACGTAAATCTGTTTTTCCAAGAAGCAACCGTGGGAGCAATGTGTCTGAAGTAGTTATTGTTCCTTTCTTTCCAT

AAGCTCCAAGCTGTCACCAGGAAAACATCAGTGAACAACGATGGCAGCAATGTTAGTGTTTTTTCAATAAATGTTCAGAAATTTAAAAGTG
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TTCATGTTCAAAATTTAGGTTTCTCTTTTTTCAAAGTATGTATTTTGACATTCTGAGTGATTTTGAAAGACATGAATATTTTTTTCAAATTTCTG

TACAAATTTTTTAATTACAAATATTTGTAAATTTTGAAAAAAATAAAAAAACAAATATTTTGAAAATTATGAACAAATGTTAAAAGCGCAAA

CTGGTTTGTGGACCTTCTAGAAGGTTCATGAATCTTTTTTTTGTTCTTTTATCTTCTTTTCTGTTACTTTTTTCTTCTTTTTTCTTTTTACAAATTG

CAAAGTTCGCAAAATGTTAAACATATTTAATGTTTTCATTTTTCTCAAAAGTACTCGAAAATATCTAATTTTGTTCACAATTTCAGAAAAATC

GTGTTTTTCAAATTCATTCAAATTCCCAATTAATTCATGGATTTAAAGAAATGTTTGGAGTTTCAAAATTCTCTTCATGTTTTCAGAAATTGTT

CTCTCTTTCAAAATAGTTCGGAGCTTCAAATTTTTCGTGTTGTCATTGTTCTAGTTTTCCAAATTCTTTGAAATTTCAAATTTTGTTCTCATTTTT

AAAAAATTCTCAGAATTCAGAATTGGTCAAAGATTGTCCGTGTTTTCGAAAAAATTGTTCGCTATTTCAGAAATGTTCAGACTTATTTTGCTC

GTCTTCTAAAAAAATGTTCGTAATTTGAGCTTTTTTCTCATTTTTCAAAATTTGCTCATAATTGCAAAATGTGTTCCATTTTTTCATAAAATTGT

TCGCATTTTAAATTGTCAGAATGTTGAATAATGTTCACGTTAAAAAAACTGTGTTAAGATTTTTGAAAAAAATCATTCAAATCTGCTGCTTTG

TATTTTTTAAATATACCACAGTGCTAAAACATCAAGAAAGGTTGTTCAGTCTAGTGGTTTGGATTTTTGCTATCAGCACAGGAGGTCCTGTG

TTCAAGTATTTTTTACATGAGATGATTAGTATTTACAGAGACTCCCCCACCCCACCCCTCGCGTCGTCCTCCCTAGGGTAACCGCGTTTGGTG

CCTCGCGTTTGTGGAGTCCCTTTGGCGTTTTCTGTGCAGGTTTCAGATCCAGCCACGCGTTGGTCTCCGGTGGTGTTTTGGCAGTCCCGGCG

GGTTGGCGTCCTCGAGCCTGGGCGAAAGCGGATTGGGTTCTCCTTCCCGACTACACCAGCGCGTTGGTGCCAACTACGGCTAGTTCATGTG

CACCTCGGTCCTAATCTGCGCCACGTGGCTCGGCAGCTTCTTCCTTTTGGCAACTCTCCCGGCTGCTTACCCTCTTTCATCTCTCTCCTTTGGT

GCCCGCGGTGCAGGTGGCTTCTATGTGTTCCGGCATGTTGTTGGTTGTTTTTAATGGTTGGCCCGAACTCGAGCCCAACCTCTCGAGTGAG

CATCTCTACACTTCAAGGTACGGCGTCTTCGAGCCTAGGCAAGGGGAAAGGACACCCTTCGGTGTTAAAGAAGGCATTTCTTGTGTCATCT

CTAGTTCCTGGTTCAGTCATGTGTCCGACCTGTGCAGGCGGTTGCATTACCTCGTAGCTTCTTTCGTAGTCGTTTCAGGGGCCTAGGTGTAG

GGGGCTTATCCTCAATCAGCTGCATTTTATTATAATTTTCTGTTTACTGGTTGTAGGTGTAGTGTTGTAAGTTGTTCTTATTTCTCTCTTGTAT

CTTTTAGCCGTTGCTTTGTTGGTGGCCTTGGTCTTGTACTTCTGGCCGGTTGATGGCTTTATTAATTTAAAATTAGGCTCCTTTTTAAGCTTCG

TTCCAAAAAAATAATATCTTTTACATTGTGAGGGGGTTGAACTGAAGTTTTTTTTCTTTTCTAAAACCATACCCCCGCAAGCATACGTTACTT

GTATTTATATGAGTAAGAAAACCGTACATACGACATAGATAGCAAATGTACAAATACAAAAATACAGGAAAGATACAAGCCATAGAGCTG

GCCCCGCCATACATTCCTGCAGAACCATTAGTGACACAGGTGAGAGAAGTCTTCACACCAGATGCATGCATGTGATGCTTCTCTCTTCAATT

ATTGTCCTATCAACAAGTTGGAAAGTGGTGCATGCTGTCCACATTATTTGGTTGGAATCATTTGTAGTAACTGACCATTTAGACACCATCTA

CACTGGATTGTCGAAAGAAGATTATTAAACACAGAAGAATAAACTTCACCGCACTTCCACAGCGGGAATGCTAAAACGATCTCCATTTGCC

GTTGATAGAACCGATATTTTTTGGTGATCTAAGCTCTAGAGGGTTGAGAATTGAGTTTTCACTTGGGCCGCTGCATCATGAAGAGAACTGA

TACAGGAGCACCTCTTCAGAATTTTCTTGCAATAACATAGGTGATACATTCCACACATAGGTGCCCGGTTTCTGGTTTTCAATTTGTCCAAAA

TATGAAACTGAAGTAGTAATGGAATACAATTGCAAATAAATGAGGAGCATCAGTAGCTCTGGATTCCTGCAGAACCATTTGTGAGAAAAG

CCTTCAGAGCAGATGCATGCATGCCATGCTTCTCTCTTCAATTATTGTAAGTTGGAAAGTGGTGCACTCTGTTCACATTATTTGGTTAGAATC

ATTTGTAGTAACTGAACAATTAGACACCATCTACAGTGGATTGGATGGTCTAAAGAAGATTATTAAACACAGAAAAATAAACTTCACCGGG

CTTACACAGTGCCAATGCTAAGCGATCTTAAGAACATTCAGTTGTAGGTAAAACAGAGTATCTGGCCACATATAGAATTATGAAATCATAA

AAATATACTCACAATAGTGATGTATGATTGCAAATAAAACAAGTTGCAGGGGCCACCCATCGACAGTCCTTCTCTCCAACAACCGCACAGG

GGAACAGAGCACACGCCATATTTGTCTCCAAATAATTGAGAGGCCGCCAGTAGGTACCTGCCAGTCAATATACATCTCAGATCTGAATTTG

CTTGCATCCTCTCTCCAGCAACCTCACTTTCCCATACCAAGCAGAGCCTTCGACGCGTGAGAGATCTGCACAAGGCCGGCGACAAATTTGG

GCGTTGGTAAGGTGAATGCTCTCCTCCATCCTTACCTCTGGTTTTGCTCTTCATCGGTTGTTCATCTTCTTTTTTCTTAGCTGTGCAAAACATC

CATATCTAAGAAAGTAAGTAAATAGAAGGGGGATTACTTGGTTTGGAGCTAGGAGACGTGCTTTGGAAGATAACAAGGTTGTTCAGTGTT

CTGTCAGTGCCTAATTGCTTTTCTGTTCTTTCATATGCTGCAGTTTCCTATTCCTCCGATCTGCAAGACCATGGCAGAGTCACTCCTTCTCCCT

CTAGTGCGCGGCGTGGCTGGCAAGGCTGCAGATGCACTTGTCGAGACGGTGACCCGCATGTGTGGCCTCGACGACGACCGTCAAACGCTC

GAACGGCATCTACTAGCCGTCGAGTGCAAGCTGGTCAACGCTGAGGAGATGAGCGAGACAAATCGCTATGTCAAGAGCTGGATGAAGGA

GCTCAAGTCCGTCGCCTACCAGGCTGACAACGTGCTCGACGACTTCCAGTATGAGGCACTGCGCCGCGAATCAAAGATTGGCAAGTCCACT

ACCCGAAAGGCACTCAGCTACATCACGCGCCACAGCCCGCTGCTCTTCCGTTTTGAAATGAGCAGGAAACTCAAGAGCGTCCTCAAGAAGA

TCAGTAAGTTGGTTGAAGAGATGAACAGGTTTGGCCTGGAGAGTTCTGTCCGTAGGGAGGAGCAACAACATCCTTGCCGGCAGACGCACT

CAAAACTGGACGAGACTACCCAGATCTTTGGAAGGGAAGATGATAAGGAGGTGGTGGTGAAGTTGCTGCTGGACCAGCAGGATCAGAAG

AAGGTGCAGGTATTGCCCATATTTGGGATGGGTGGTCTTGGCAAGACGACTCTTGCAAAGATGGTGTATAATGACCAAGAGGTCCAGCAA

CATTTCGAGTTGAAGTTGTGGCACTGCGTGTCAGACAACTTTGATGCCATTCCTCTTTTGAAATCCATCATTGAGTTGGCTGCAAATGGAAG

TTGTAACATGCCTGACACGATTGAGCTGTTGCAAAAGCGACTTGAGCAAGTCATTGGCCAAAACAGGTTTATGCTCGTGCTTGATGATGTA

TGGAATGAAGATGAGAGGAAGTGGGAGGATGTCCTGAAGCCTCTTCTGTGTTCTGTTGGTGGACCAGGAAGCGTCATTGTTGTCACAACT

CGAAGCCAGAAAGTGGCCTCTATAATGCAGACCCTTGGAACCCATAAGCTAGCATGTCTGAATGAACAAGATTCATGGCAATTGTTTGCAC

AGAAAGCATATAGCAATGGTAAAGAGCAGGAGCAAGCAGAGTTGGTCAGCATTGGCAAACGTATTATCAACAAATGCAGGGGGTTGCCT

CTTGCTCTCAAGACAATGGGCGGATTGCTAAGTTCATATCAGCAAGTACAAGAATGGAAGGCCATCGAAGAAAGTAATATAAGGGATACT

GTTAGAGGGAAAGATGAGATCATGTCTATTCTAAAGTTGAGCTATACACACCTATCATCTGAAATGAAGCAATGTTTTGCATTCTTAGCAGT

TTTCCCCAAGGACTATGTGATGGACAAGGACAAGTTGATCCAACTATGGATGGCAAATGGTTTTATTCAAGAGAAGGGAACGATGGATTT

GATACTCAGAGGAGAATTCATTTTTGATGAGTTGGTTTGGAGGTCCTTCCTCCAAGATGAGAAAGTGGTAGTAAAATATGCTGGCAAGTTT

GGTAACACAAAATATGAGACAGTTCTATGTAAAATGCATGACTTAATGCATGATCTTGCAAAAGATGTCACAGATGAATGCGCAAGTATAG

AAGAATTGTCTCAGCATAAAGCATTATCAAAAGGTATTTGTCACATGCAAATGTCAAAGGCTGAATTCGAACGAATCAGTGGGTTATGCAA

AGGCAGAACATACCTCCGCACTTTGTTATCTCCTTCAGAATCATGGGAGGATTTTAACTATGAGTTTCCAAGCAGATCACACAAGGATATTA

AGGAGTTGCAACATGTATTTGCGTCAGTAAGAGCATTGCATTGCTCCCGCTCCCCTTCTCCAATTGTCATTTGCAAGGCCATAAATGCAAAA

CATTTACGGTATCTTGACCTCTCAAAGTCTGACATCGTTAGGTTGCCAGATTCAATATGTATGTTGTATAACCTGCAAACACTGAGGCTCAT

AGACTGCCATGACTTGCAACAGTTACCACAAGACATGGCAAGATTGACAAAGCTCATCCATCTTTACCTTTCTGGTTGTGAGAGTCTCAAAA

GTATGTCTCCAAACTTTGGTCTGCTGAACAACCTTCACATATTAACAACATTTGTTGTGGGTACCGGAGATGGCCTTGGAATAGAGCAGCTC

AAAGACTTGCAAAACCTTAGCAATAGGTTGGAACTATTGAACTTGGACAAGATAAAGAGTGGGGAGAGTGCAAAAGAAGCCAATCTCAG

CCAGAAGAAAAATCTAAGTGACTTGTTGTTCTCTTGGGGCCAAGAAATAGATGATGAGCCTAGAGATGTGGAAGAAGTGCTTCAGTGTTT

AGAACCTCACAGTAATATCCAAAAACTGGCGATATGCGGATATGTTGGCCTAGAAATAACACAATGGATGAGAAAGCCTCAGATGTTTGA

TTGCTTGAGAGAACTCAAAATGTTTGGCTGCCCAAAATGCAAGAGTATCCCTCTAATATGGTTCTCGGTCTCTCTAGAGATTTTGGTCTTAC

AGTGGATGAATAACCTGACTACATTATGCAATAACCTTGATGCGGAAGCCGGAGGATGCATCACCCCTCTGCGGATTTTCCCAAGGTTGAA

GAACATGAGGTTGATTGAGTTAGCAAGCCTGGAGATGTGGGCAGAAAATAGTATGGGAGAGCCTAGTTGTGATAACCTGGTAACATTTCC

AATGCTTGAAGAGCTAAGGATCATAGATTGCCCCAAGCTTGCAAGTATTCCAGCGATCCCCGTTGTCAGCAAGTTGAGCATAGTTGGAGTT

CACGGTTGTGCAGTCGGTTCAGTTTTTATGTGTATCCGTTTGGGTTCCTGGCCATTTCTTGCTGAGTTAACTCTTGGGTCTCTAAAAGACATA

CCCATGTTGCCTCTAGACCCCCAGCAAAGCCAAAGTCAAAGACCTCTTGAAAAGCTTGAGAGTTTGACTCTGATAGGGCCCAACAGCTTGA
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TCAGAAGCTTCGGATTGTCCGAATCACAACTTATGGTTTGGAAATGTTTTCGGTTCGTGAGAAATCTGAAGATATATGGTTGCAGCAATCTT

GTCCGCTGGCCAACAGAGGAGCTCCGGTGCATGGATCGCCTCCGCTTTCTGAGTATCACAAATTGTGACAACCTGGAGGGGAAAAATTCA

TCGTCTGAGGAGGAAACCCTTCCGCTGTCCCTGGAGGGTTTGACGATCGGAAACTGCCGCAGTGTAGTAGCACTGCCTTGGAACCTTGGA

AATCTTGCCAAGCTGAGGCGTCTCAATGTGAGTTACTGCAGGAGCCTGAAAGTGCTGCCTGATGGGATGTGTGGCCTCACTTCTCTGAGG

GAATTATGGATTTGGAATTGTCCAAGTATGAAGAAATTCCCGCATGGTCTCCTAGAGCGGTTGCCAGCTCTCGAACACTTGAGCATACATG

ACTGCCCGGAGTTGGGAACACGATGCAGAGAAGGTGGGGAGTATTTCCACTTGCTCTCCTCTGTCCCACGTAAAGACATTTCGCGATGAC

GGCGCCATGGAAATCCAGAATAATAGCTGTGAAGTAAATGGGCATACGCGTGAGTCCCCTCCCCTGATAAATAATCAGTCTCCGTTGTGTG

TAAATAAAATAAATGTTAATCGATGGTACCTGCAACTGCAGGTATGAATCTCTGAAAGCCTCCGCATTATCAAAAGGTATTTGTCACATGCA

AATGTCAAAGGCTGAATTCGAACGAATCAGTGGGTTATGCAAAGGCAGAACATACCTCCGCACTTTGTTATCTCCTTCAGAATCATGGGAG

GATCATCTTTATAAGTTTCCAAGCAGATCACACAAGGAAATTAAGGAGTTGCAACATGTATTTGCGTCAGTAAGGGCATTGCATTGCTCCG

GATCCCCTTCTCCAATTGTCATTTGCAAGGCCATAAATGCAAAACATTTACGTTATCTTGACCTCTCAGGGTCTGACATCGTTAGGTTGCCAG

ATACAATATGTATGTTGTATAACCTGCAAACACTGAGGCTCATAGACTGCCGGCAGTTGCAACAGTTACCAGATTGACAAAGCTCATCCATC

TTTACCTTTCTGGTTGTGTGAGTCTCAAAAATATGTCTCCAAACTTCCGTCTGCTGAACAACCTTCACATATTAACAACATTTGTTGTGGGTA

CCGGAGATGGCCTTGGAATAGAGCAGCTCAAAGACTTGCAAAACCTTAGCAATAAGTTGGAACTGTTGAACTTGGACAAGATAAAGGGTG

GGGAGAATGCAAAAGAAGCCAATCTCAGTCAGAAGCAAAATCTAAGTGAGTTGTTGTTCACTTGGGACCAGAAAATAGATGATGATCCTA

GAGATGTGGAAGAAGTGCTTCAGTGCTTAGAACCTCATAGCAATATCCAAAAACTGGAGATACGTGGATATCATGGCCTAGAAATATCAC

AATGGATGAGAAAGCCTCAGATGTTTGACTGCTTGAGAGAACTCAAAATGTTTGGCTGCCCAAAATGCAAGAGTATCCCTGTAATATGGTT

CTCGGTCTCTCTAGAGATTTTGGTCTTAGAGAGGATGGATAACCTGATCACATTATGTAATAACCTTGATGCGGAAGCCGGAGGATGCATC

ACCCCTCTGCGGATTTTCCCAGGGTTGAAGAAGATGAGGTTAATTCAGTTACCAAGCCTGGAGATGTGGGCAGAAAATAGTATGGGAGAG

CCTAGTTGTGATAACCTGGTAACATTTCCGATGCTTGAAGAGCTAAAGATCAAAAATTGCCCCAAGCTTGCAAGTACTGCAGCGATCCCCG

TTGTCAGCAAGTTGAGCATAGTTGGAGCTCACAGTACTGCAGTCGGTTCAGTTTTTACAAGCATCCGTTTGGGTTCCTGGCCATTTCTCGTT

AGCTTAACTCTTGGGTCTCTAGAAGACATACCCATGTTGCCTCTGGACGCCCAGCAAAGCCAAAGTGAAAGACCTCTTGAAAAGCTTGAGA

GTTTGACTCTGAAAGGGCCCAACAGCTTGATCGGAAGCTCCGGATTGTCCTGCCAATATCAATGCGTTTGAGAGTCACGAGCCATTGCAAA

GAATTTATTTTTGCCTTCCTCCACGGAGATTCTTATGAACTGCTTCCGATTCCAATCTTTGTGTACGTCACTGTTTTTGTGTGTGTGTGTGTAG

ACAACCAGTCTGTGTTATAACAGTAAATATTCTTTTCAGGTAGATAATAAATAAACTTCTTCCACACAATGGCGATATCATACATACTGGTG

ATGGGATTGTTCCAATTTCCTACAATGCACATAAGATAAGAATGGGAGTAATAATCTGACCTCAATCGTGATTGCGCCTTCCTTGAGTTGGT

GCCTTTGGGAGCCTGACATGAACAATCCTGATACTACTAGTAAAGAGCAGAGACTAGAGCAGATTTATTCATCTGTTGTCCACAAGTAATC

ATCACCCACCAAATTAACTCTTGCATGGAATTAAGGATAGCTAGTATTTATTCAGTGACCACTTGTAATCCGGCAACCAAAGCATGGTGATG

TATGCGTCCATGCCGAGCCGGGCTCCTTCCTCACCACATCCAGGCGCTGACGAAGCAGAGATGCACGCCGTGGGCAGCAGAGTCTCTTCCT

TTTTCAAATATGGATTCCACAACTCTTTTGCATTGCTACGATTCCCCTAAAGTAAATATTGTTGCTTCATCTCTACTGGAGTACTTCCTGTAAC

TGTTAAGTGGGAGTTGTGAACATTTGGTACTAACTGACGCCAAGCACATCCAATTTTGGTTTCAACTTGCCAATGATTTCAGGTTTGGGAGA

GTTAGAAACTTAGAATCCGGACAGGCTTTCAAGACCATGAGCAAAGGCAGAGGAACCTGAATTCTGATGCCACCGTCTCATACAGCAGAT

CCATTAGAGACCATGAATGGCTTCAGTTAAAAAATCTGACCACAAACTTGGACTTTCCTCTTGCCTTAGAATCAAATTGATGGAGGCAAATC

AACTGAGCCTGCATGGATAAATACAGAGATCGCTTAAACGAGACTGCTGCTTAATCTGATGCCACTAAAGAAAAGAAATGGTTCTGCGGA

TAATAACATGGATTGCTCACACGATGGCTCGATGTACGTACCTGCAGCTGCCTGCCTACCGGGGTCCGGATTTCTGCAAGCCGACCGACCT

ACCGGCCAGAGCGCACGCTACAGCGACGAGCGGCGGTGGTTCATCTCGATTCTCGAGGGTGGAGCTAGCGAGATGCGGAGTGGGGGAG

AGCTAGCCACAAAGATGCAGCGTCAGTACAACCACTATGGTCAGGATCTGGATGGATTGATGGACCCAATGGACACTAGCAGAGGGCTG

GGCTGGGCTGGGCTGGGCTTCATTGGGTCGCTGGAGAAGGATTTTAGAGATAAATAAAGCCACTACGTCGACGATAAAATAAACTTCTAT

TGTACTTGTATAAAGTAAAATCCACGAAGGAGAAGCCCCTGATGACTTCTGGGCAAAAAGTTCATAATATAAAGTCAAATTGGTGTGAACA

GCAAGTTGTACCTCTATAGCAATAATTGGTGTAAATTGATCATGTGCCTGTTGCCTAGTTGAAAACCCTTTATAGTCGGTATTAGTGTAACC

GTTCACCTGTTCACGACATTCCTTTCATGAATCGTATACTCCAGGAGACCATTGGGACCACACGTCAGGTAAGAAAATGTTTACGTGACGTG

TTTTTACCGAGGATGATGTAGCTGCTCTCGGTATAGTTAAACCGAGTGACGGCACCGTCAGTTCCCGATGGCAATGCCACATGGCTTCTCTT

TGCCGAGAGTAACGCTCGACGTTTGCTCCGTTTGCTGTTCGGCTCATGTTCGCGGTGAGCCACTGTCGACAAAGGGACGTAGTTTTCGTGA

ACACTTGTTTGCCGAGGGGGGCTCTCGGCATATATTTGTTTGCCGAGAGCCCGTGATTTGGTTCTCAACGAAGAGCCTTACACTCGGCGTA

TAAAAAAAATTCAGTAATGACCCCATATAAATAAGGCAAAAATGAACCTCTGGTTTTATATGCTTTTGGCTACTCCCTTTATAAAGAAAATA

AAAAATATTTAGATCATTATTTTAATGATCTAAATGCTTTTATATTTTTTTATGAAGGGAATACATGATTCTGTTGTGTGTCGGGTACAGCAG

CGAGAACAATAGATAGTATGATATAGGCATATAGCGATTGTGTAACCTTTCTTGGTTCATAAACTTTCTTTTTCCAAAATAGTTCAGAAACTT

TTCCGAAATAGCTTAGAAACGTCAGACTATTGTTTCACTACAAAATTAATGATGTTTTACAATCATTCTCATCCCTACGTTTGCAACCTAACG

GTTAATAATGGTCGTGTCATCTGTTTTTACTCATGGAGGTGTGCCCAGTTTCTCAATTATTTATTTTTCGACGATCATAACAGCAGAAATTTA

ACAATTTATACTGTTGGTATGAAGAAAGCTGGTGCAAAAATCCTTTCCATGCATCGTGCATAATCTAACTTCTCTCAAATTGAACAATCTATT

TACCTCTTAACTCTTGACGTCACTGAACTAATTCACCAAAATATGAAATTTTGTTATATAATCTAGAATTTTATTGATATATAGCAAAAAGAA

GGGGTTGCCAGGTCTCGTCTAGCTAGTACGCCATGGAACAAGTGACAGTCTCGCCTATTGCTGCAGAACCGTTAGCTACACAAGTGAGAA

CAAGTCTTCAGTCTTCACAGTAGATGCATACATGTCTCTCGCTTATATATTGTCCCATCTGACAAGTTGGAAAAATAATGCATGCTCAAAGTT

GGTTATTGTTGTGCAATAGTTGGTTGGAGTCACTTGGCATGACGGTACAGAAAATTTCCACACGAATAGTTGGTTGGAGTTGTTTGAAGTA

GAAAGTAAAGAACGAGAGAGATGGATGAAAGATGATTCATTAGTCTTTATTAATGATAGAAGTGGGTATTTATATCCGGGCGGAAGTATA

CATGTTACTTGAGAATTAAGTAACTTGAGGTTAACTAAGGACAAAGTTATTACATAGTTTCCTTGAGAGTCAAGGAAGTGTATGGTTGCTT

AAGGACTAAGTAACCTATCTAAGAATTAACTTTATCCTAACCAACTTAATTAATAAGCAGCTATTCTATTCTTAACACTCCCCCTTGTACAAC

GCCTCTTCTTGGGTATATCCATCATCTTGACAAATTCTTTGAGTAATGTTGAAAATCTCCTCGAAAAACCCTGTGGAAAAAATATGAGGAGA

ATTGTGCACATATGTTGCTAAAACTCCTTTAAACCCAGTGGGAAAAATAATAAGGAGAAAGTAATGCAACATATAATGATTATTGTgttgcat

gctaggcagagaccggcccgagcgagccggggaacagctgcggtcccgacgtcgggttggggagcgagaccaccggcgagagctccgccacgtctccggggaaggggagcggga

gcgtctgggatggcccctctcggtccgaggggagcggagggggggggggggggggagcaatgctccaggcggggacgcgagcggcgctcccgggaggagagctgacaacgaag

gtcatcttcgcagcgcatggtgtcgggagaggggcgaggaggatcgcgccgatcatccagcggacgcttgttgcagtcctcgtcgtccccccatttgtgcggcatcggaggccggggg

agcgccggagcaggggggaggtgcggcgacgacgggacggctagggacgggagtagggcagcgggagctgggggaaatgaggagtcgggaggtgggggaagccggcaggcg

ggcagatcggccgaggaatcggccaagcaaggagggaccgcgccggcccaagccccaaggagggggcgttggccacggcctgtcggtgtcccgccaagtggcccatgtcggcccg

gtagcacgttaggctacggctcagcccgcgggtcacgggaagcagcgagggtctcccgccttaccacagctgtcaccgcgccaggagctaacaccgacgaagggagcacggcggg

acggggctgaccgcacagacgtctcgaggtgcatcgcagcgtcaaggagccgaacgcaacgatgaaggggcggaacggggaccggttgccggcgaggagagcaggagccagga

agggaaacgggccatgcggtggggaagcttgccagccgccagcgactgaggtgggcggagaccgccaccaacgagtgaaaagggagtgatgtcagcctgtacaacatttccacaa

taataaaccaagcctcacacgctttccgactgcctttttttctgagcgaatgcttccttgcacaattattggtagtaactgaacgattagacaccatcaccacatgagagatctgcacttc
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accacagtaaagaaggttaaatggaacaggatacacttcaccacagtaacacgatggcaaatgctaaaatgatctaaaaacagttgcgtacaggtataagagtatttggaagtattt

gaattaaggaaattgtagaaatatccaacaatagtgataccatatatagctataaataagtgaggggccacccgtacgtacacatattgttcataggtgatacattccacagataaat

tccttcctgagtgtgggatttctggttttcaatttgtcctggagcagtggccaacagaattattttaagttacaaagcaaatgaaccaaaatatgatactgaagtggtaacgttaggtac

atgtatcagtcgcttttggattcctttccaacaaccgcaccgcaccgcaccttgattatctccacataaattaaggggccaggcaatattacaactcagctattggattccttgagcttat

aactctcattcccaaaccaagcagccttgacgcgtgagagatctgcactgtgccggcgacgaacgaacaacagtatcgctctttcaccaaccatcaaatttgggcgttgctgaggtga

atgctctcctcaatctttaccttgtttttctctcctttggttcttcatcttctgtttgtttagctgtacaaaacatgaagtttttatgtatatgtatttaaaagtatgtacaacatctatacaagc

taagctactgtcgaactatagaagacataaagtaaaatagatgggggattacaaggtggtaagccatgctttgaatctaggagcacaatgtttcctggctcaataggaagataacaa

ggttgtttggtgttctcttagtgcttaatggcttttatatgttctttcatgtgctgcagttgcctattcttctgatctgcaatatcatggcggagtcactgcttctccctatagtgcgcggtgtg

gctggcaaggccacagacgcactcgtcgagacggtgacccgcatgtgtggcctcgacgacgaccgccaaacactcgagcggcatctactagccgtcgagtgcaagctggcaaatgc

tgaggagatgagcgagaaaaattcctatgtcaagagatggatgaaggagctcaagtccgtcgcctacgaggccgacgacgtgctcgacgacttccaatacgaggcgctgcgtcgcg

agtctaagattggcaagtccactaccagaaaggcattcagctacatcacgcgccacagcccgctgctcttccgctttgaaatgagcaggaaactcaagaacgtcctcaagaagatca

ataagttggttatggagatgaacatgtttggcctggagagttctgtccgtagggaggagcgccaacatctttggcggcagacacactcgaaactggacgagactacccagatctttgg

aagatatgatgataaggagaagttgttgcttatttccacatcttcaactgcacactcgaaactggaagatatgatgatatgtgaagttgttgctggaccagcaggatcagcggagggt

gcaggtgctgcccatcattgggatgggaggtcttggcaagacgactcttgctaagatggtctataatgacaaaggggtccagcaacatttccagttgaagatgtggcactgcgtgtcc

gacaactttgatc 

 

The 1814 bp long fragment is in cursive.  

 

Rebelle Rdg2a 
tcttgcaataacataggtgatacattccacacataggtgcccggtttctggttttcaatttgtccaaaatatgaaactgaagtattaatggaatacagttgcgaataaatgaggagctct

ggattcctgcagaaccatttgtgagaaaagccttcagagcagatgcatgcatgccatgcttctctcttcaattattgtaagttggaaagtggtgcactctgttcacattatttggttagaa

tcatttgtagtaactgaacaattagacaccatctacagtggattggatggtctaaagaagattattaaacacagaaaaataaacttcaccgcgcttacacagtgccaatgctaagcga

tcttaagaacattcagttgtaggtaaaacagagtatctggccacatatagaattatgaaatcataaaaatatactcacaatagtgatgtgtgattgcaaataaaacaagttgcagggg

ccacccatcggcagtccaacaaccgcacaggggaacagagcacacgccataattgtctccaaataattgagaggccgccagtaggtacctaccagtcaatatacatctcagatctga

atttgcttgcatcctcactttcccataccaagcagagccttcgacgcgtgagagatctgcacaaggccggcgacaaatttgggcgttggtaaggtgaacgctctcctccatccttacctc

tggttttgctcttcatcggttgttcatcttctttttttcttagctgtgcaaaacatccatatctaagaaagtaagtaaatagaagggggattacttggtttggagctaggagacgtgctttg

gaagataacaaggttgttcagtgttctgtcagtgcctaattgcttttctgttcttgtacatgctgcagcttcctattcctccgatctgcaagaccatggcagagtcactccttctccctctag

tgcgcggcgtggccggcaaggctgcagatgcacttgtcgagacggtgacccgcatgtgtggcctcgacgacgaccgtcaaacgctcgaacggcatctactagccgtcgagtgcaagc

tggtcaacgctgaggagatgagcgagacaaatcgctatgtcaagagctggatgaaggagctcaagtccgtcgcctacctggccgacgacgtgctcgacgacttccagtatgaggca

ctgcgccgtgagtcaaagattggcaagtccactacccgaaaggcactcagctacatcacgcgccacagcccgctgctcttccgttttgaaatgagcaggaaactcaagaacgtcctta

agaagatcaataagttggttaaggagatgaacacgtttggcctggagagttctgtccgtagggaggagcggcaacatccttggcggcagacgcactcaaaactggacgaaactacc

cagatctttggaagggaagatgataaggaagtggtggtgaagttgctgctggaccagcaggatcagcggagggtgcaggtgctgcccatcattgggatgggaggtcttggcaagac

gactcttgctaagatggtctataatgaccaaggggtcgagcaacatttcgagttgaagatgtggcactgcgtgtcagacaactttgatgccattgctcttttgaaatccatcattgagtt

ggctacaaatggaagttgtgacctgcctggcagcatcgaactattgcaaaagaaacttgagcaagtcattggccaaaaaaggttcatgctcgtgcttgatgatgtatggaatgaagat

gagaggaagtggggggatgtcctgaagccactattgtgttctgttggtggaccaggaagtgttatattggtcacatgtcgaagcaagcaagtcgcctcgataatgtgcaccgttacgc

cccatgagctagtatttctgaatgaggaagattcatgggaattgttttcagacaaagcgtttagcaatggtgtagaggagcaagcagagttggtcagcatcggaaggcgtattgtcaa

caaatgcggggggttgcctcttgctctcaagacaatgggtggattgctgagttcaaagcaaaaggtacaggaatggaaggccatcgaagaaagtaacatcggggataaagatgga

ggcaaatatgaggtcatgcacatactgaagttaagctacaaacacctgtcgcctgaaatgaagcaatgttttgcattctgtgcagtttttcccaaggattatgagatggagaaggata

ggttgatccaactatggatggcaaatggctttattcaacacaagggaacaatggatttagtacagaaaggagaattaatttttgatgagttggtttggaggtccttcctccaagataag

aaagtggcagtcagatttactagctatcgtggtaacaaaatatatgagacaattgtatgtaaaatgcatgatttaatgcatgatctagcaaaagatgtcacagatgaatgtgcaagta

tagaagaagtgactcagcagaaaacattgttaaaagatgtttgtcacatgcaagtgtcaaagactgaattggaacaaatcagtgggttatgcaaaggcagaacaatcctacgcactt

tgttagttccttcaggatcacacaaggattttaaagagttgctacaggtatcggcatcactaagagcattgtgttggccctcttattcagttgtcatttccaaggccataaatgcaaaac

atttacggtatcttgacctctctgggtcagacattgttagattgccagattcaatatgggtgttgtataacctgcaaacactgaggctaatggattgccggaagttgcgacagttaccag

aagacatggcaagattaagaaagctcatccatctttacctttctggctgtgagagtctcaaaagtatgtctccaaactttggtctgctgaacaaccttcacatattaacaacatttgttgt

gggtaccggagatggccttggaatagagcagctcaaagatttgcaaaaccttagcaataggttggaaatattgaatatggacaagataaagagtggggagaatgcaaaagaagcc

aatctcagtcagaagcaaaatctaagtgagttgttgttctcttggggccaaaaaatagatgatgagcctacagatgtggaagaagtgcttcagggcttagaacctcatagtaatatcc

aaaaactggagatacgtggatatcatggcctagaaatatcacaatggatgagaaagcctcagatgtttgactgcttgagagaactcgaaatgtttggctgcccaaaatgcaagagta

tccctgtaatatggttctcggtctctctagagattttggtcttacagagcatggataacctgacaacattatgtagtaaccttggtgtggaagctggaggaagcattacccctctgcaact

tttcccaaatttgaagaagttgtgtttgattaagttaccaagcctggagatatgggcagaaaatagtgtaggagagcctcggatgtttagcagtttggaaaaactcgaaatttccgact

gcccaagatgcaagagtatacctgcagtatggttttcggtctctcttgagtttttggtcttacggaaaatggataacctgacaacattatgtaataaccttgatgtggaagctggaggat

gcattacccctatgcagattttcccaaggttgaagaagatgaggttgattgagttaccaagcctggagatgtgggcagaaaatagtatgggagagcctagttgtgataacctggtaac

attcccgatgcttgaagagctagagatcaaaaattgccccaagcttgcaagtattccagcgattcccgttgtcagcgagttgagaatagttggagttcacagtactgcagtcggttcag

tttttatgagcatccgtttgggctcctggccatttctcgtcaggttaagtcttgggtctctagaagacatacccatgttgcctctagacgcccagcaaaaccaaagtgaaagacctcttga

aaagcttgagagtttgactctggaagggcccaacagcttgatcagaagctctggattgtccggatcacaacttatggtttggaaatgttttcggttcgtgcgagatctgatgattgatgg

ttgcagcaatcttgtccgctggccaacagtggagctctggtgcatggatcgcctctgcattctgtgtatcacaaattgtgactacctgaaggggaacatttcatcatccgaggagaaaa

cccttccgctgtccctggagcatttgacgattcagaactgccgcagtgtagtagcactgccttcgaaccttgggaaactggccaagctgaggagtctctatgtgagcgactgcaggagc

ctgaaagtgctgcctgatgggatgtgtggcctcacttctctgagggaattggagatttggggttgtccaggtatggaggaattcccgcatggtctcctggagcggttgccagccctcga

atactgtagcatccatctctgcccggagttgcaaagacgatgcagagaaggtggggagtacttccacttgctctcctctgttccacgtaaatactttgagagaataggcatcccaaagt

gaatcggcatacgcgtgagtctccttacctgacaaataatcagtttccgttgtgtgtaaataaaataaatgtttgtcacatacaaattaggtgataaccaatgggaatggatgctaacg

tcatgaatc 
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Galleon Rdg2a 
ttttcaatttgtccaaaatatgaaactgaagtattaatggaatacagttgcgaataaatgaggagctctggattcctgcagaaccatttgtgagaaaagccttcagagcagatgcatgc

atgccatgcttctctcttcaattattgtaagttggaaagtggtgcactctgttcacattatttggttagaatcatttgtagtaactgaacaattagacaccatctacagtggattggatggt

ctaaagaagattattaaacacagaaaaataaacttcaccgcgcttacacagtgccaatgctaagcgatcttaagaacattcagttgtaggtaaaacagagtatctggccacatatag

aattatgaaatcataaaaatatactcacaatagtgatgtgtgattgcaaataaaacaagttgcaggggccacccatcggcagtccaacaaccgcacaggggaacagagcacacgcc

ataattgtctccaaataattgagaggccgccagtaggtacctaccagtcaatatacatctcagatctgaatttgcttgcatcctcactttcccataccaagcagagccttcgacgcgtga

gagatctgcacaaggccggcgacaaatttgggcgttggtaaggtgaacgctctcctccatccttacctctggttttgctcttcatcggttgttcatcttctttttttcttagctgtgcaaaac

atccatatctaagaaagtaagtaaatagaagggggattacttggtttggagctaggagacgtgctttggaagataacaaggttgttcagtgttctgtcagtgcctaattgcttttctgtt

cttgtacatgctgcagcttcctattcctccgatctgcaagaccatggcagagtcactccttctccctctagtgcgcggcgtggccggcaaggctgcagatgcacttgtcgagacggtgac

ccgcatgtgtggcctcgacgacgaccgtcaaacgctcgaacggcatctactagccgtcgagtgcaagctggtcaacgctgaggagatgagcgagacaaatcgctatgtcaagagct

ggatgaaggagctcaagtccgtcgcctacctggccgacgacgtgctcgacgacttccagtatgaggcactgcgccgtgagtcaaagattggcaagtccactacccgaaaggcactca

gctacatcacgcgccacagcccgctgctcttccgttttgaaatgagcaggaaactcaagaacgtccttaagaagatcaataagttggttaaggagatgaacacgtttggcctggagag

ttctgtccgtagggaggagcggcaacatccttggcggcagacgcactcaaaactggacgaaactacccagatctttggaagggaagatgataaggaagtggtggtgaagttgctgct

ggaccagcaggatcagcggagggtgcaggtgctgcccatcattgggatgggaggtcttggcaagacgactcttgctaagatggtctataatgaccaaggggtcgagcaacatttcga

gttgaagatgtggcactgcgtgtcagacaactttgatgccattgctcttttgaaatccatcattgagttggctacaaatggaagttgtgacctgcctggcagcatcgaactattgcaaaa

gaaacttgagcaagtcattggccaaaaaaggttcatgctcgtgcttgatgatgtatggaatgaagatgagaggaagtggggggatgtcctgaagccactattgtgttctgttggtgga

ccaggaagtgttatattggtcacatgtcgaagcaagcaagtcgcctcgataatgtgcaccgttacgccccatgagctagtatttctgaatgaggaagattcatgggaattgttttcaga

caaagcgtttagcaatggtgtagaggagcaagcagagttggtcagcatcggaaggcgtattgtcaacaaatgcggggggttgcctcttgctctcaagacaatgggtggattgctgag

ttcaaagcaaaaggtacaggaatggaaggccatcgaagaaagtaacatcggggataaagatggaggcaaatatgaggtcatgcacatactgaagttaagctacaaacacctgtcg

cctgaaatgaagcaatgttttgcattctgtgcagtttttcccaaggattatgagatggagaaggataggttgatccaactatggatggcaaatggctttattcaacacaagggaacaat

ggatttagtacagaaaggagaattaatttttgatgagttggtttggaggtccttcctccaagataagaaagtggcagtcagatttactagctatcgtggtaacaaaatatatgagacaa

ttgtatgtaaaatgcatgatttaatgcatgatctagcaaaagatgtcacagatgaatgtgcaagtatagaagaagtgactcagcagaaaacattgttaaaagatgtttgtcacatgca

agtgtcaaagactgaattggaacaaatcagtgggttatgcaaaggcagaacaatcctacgcactttgttagttccttcaggatcacacaaggattttaaagagttgctacaggtatcg

gcatcactaagagcattgtgttggccctcttattcagttgtcatttccaaggccataaatgcaaaacatttacggtatcttgacctctctgggtcagacattgttagattgccagattcaat

atgggtgttgtataacctgcaaacactgaggctaatggattgccggaagttgcgacagttaccagaaaacatggcaagattaaaaaagctcatccatctttacctttctggctgtgaga

gtctcaaaagtatgtctccaaactttggtctgctgaacaaccttcacatattaacaacatttgttgtgggtaccggagatggccttggaatagagcagctcaaagatttgcaaaacctta

gcaataggttggaaatattgaatatggacaagataaagagtggggagaatgcaaaagaagccaatctcagtcagaagcaaaatctaagtgagttgttgttctcttggggccaaaaa

atagatgatgagcctacagatgtggaagaagtgcttcagggcttagaacctcatagtaatatccaaaaactggagatacgtggatatcatggcctagaaatatcacaatggatgaga

aagcctcagatgtttgactgcttgagagaactcgaaatgtttggctgcccaaaatgcaagagtatccctgtaatatggttctcggtctctctagagattttggtcttacagagcatggat

aacctgacaacattatgtagtaaccttggtgtggaagctggaggaagcattacccctctgcaacttttcccaaatttgaagaagttgtgtttgattaagttaccaagcctggagatatgg

gcagaaaatagtgtaggagagcctcggatgtttagcagtttggaaaaactcgaaatttccgactgcccaagatgcaagagtatacctgcagtatggttttcggtctctcttgagtttttg

gtcttacggaaaatggataacctgacaacattatgtaataaccttgatgtggaagctggaggatgcattacccctatgcagattttcccaaggttgaagaagatgaggttgattgagtt

accaagcctggagatgtgggcagaaaatagtatgggagagcctagttgtgataacctggtaacattcccgatgcttgaagagctagagatcaaaaattgccccaagcttgcaagtat

tccagcgattcccgttgtcagcgagttgagaatagttggagttcacagtactgcagtcggttcagtttttatgagcatccgtttgggctcctggccatttctcgtcaggttaagtcttgggt

ctctagaagacatacccatgttgcctctagacgcccagcaaaaccaaagtgaaagacctcttgaaaagcttgagagtttgactctggaagggcccaacagcttgatcagaagctctg

gattgtccggatcacaactttatggttggaaatgttttcggttcgtgcgagatctgatgattgatggttgcagcaatcttgtccgctggccaacagtggagctctggtgcatggatcgcct

ctgcattctgtgtatcacaaattgtgactacctgaaggggaacatttcatcatccgaggagaaaacccttccgctgtccctggagcatttgacgattcagaactgccgcagtgtagtag

cactgccttcgaaccttgggaaactggccaagctgaggagtctctatgtgagcgactgcaggagcctgaaagtgctgcctgatgggatgtgtggcctcacttctctgagggaattgga

gatttggggttgtccaggtatggaggaattcccgcatggtctcctggagcggttgccagccctcgaatactgtagcatccatctctgcccggagttgcaaagacgatgcagagaaggt

ggggagtacttccacttgctctcctctgttccacgtaaatactttgagagaataggcatcccaaagtgaatcggcatacgcgtgagtctccttacctgacaaataatcagtttccgttgtg

tgtaaataaaataaatgtttgtcacatacaaattaggtgataaccaatgggaatggatgctaacgtcatgaatcgatggtac 

 

Haruna Nijo Rdg2a 
tttcaattattgtaagttggaaagtggtgcactctgttcacattatttggttagaatcatttgtagtaactgaacaattagacaccatctacagtggattggatggtctaaagaagattat

taaacacagaaaaataaacttcaccgcgcttacacagtgccaatgctaagcgatcttaagaacattcagttgtaggtaaaacagagtatctggccacatatagaattatgaaatcat

aaaaatatactcacaatagtgatgtgtgattgcaaataaaacaagttgcaggggccacccatcggcagtccaacaaccgcacaggggaacagagcacacgccataattgtctccaa

ataattgagaggccgccagtaggtacctaccagtcaatatacatctcagatctgaatttgcttgcatcctcactttcccataccaagcagagccttcgacgcgtgagagatctgcacaa

ggccggcgacaaatttgggcgttggtaaggtgaacgctctcctccatccttacctctggttttgctcttcatcggttgttcatcttctttttttcttagctgtgcaaaacatccatatctaaga

aagtaagtaaatagaagggggattacttggtttggagctaggagacgtgctttggaagataacaaggttgttcagtgttctgtcagtgcctaattgcttttctgttcttgtacatgctgca

gcttcctattcctccgatctgcaagaccatggcagagtcactccttctccctctagtgcgcggcgtggccggcaaggctgcagatgcacttgtcgagacggtgacccgcatgtgtggcct

cgacgacgaccgtcaaacgctcgaacggcatctactagccgtcgagtgcaagctggtcaacgctgaggagatgagcgagacaaatcgctatgtcaagagctggatgaaggagctc

aagtccgtcgcctacctggccgacgacgtgctcgacgacttccagtatgaggcactgcgccgtgagtcaaagattggcaagtccactacccgaaaggcactcagctacatcacgcgc

cacagcccgctgctcttccgttttgaaatgagcaggaaactcaagaacgtccttaagaagatcaataagttggttaggaggatgaacacgtttggcctggagagttctgtccgtaggg

aggagcggcaacatccttggcggcagacgcactcaaaactggacgaaactacccagatctttggaagggaagatgataaggaagtggtggtgaagttgctgctggaccagcagga

tcagcggagggtgcaggtgctgcccatcattgggatgggaggtcttggcaagacgactcttgctaagatggtctataatgaccaaggggtcgagcaacatttcgagttgaagatgtgg

cactgcgtgtcagacaactttgatgccattgctcttttgaaatccatcattgagttggctacaaatggaagttgtgacctgcctggcagcatcgaactattgcaaaagaaacttgagca

agtcattggccaaaaaaggttcatgctcgtgcttgatgatgtatggaatgaagatgagaggaagtggggggatgtcctgaagccactattgtgttctgttggtggaccaggaagtgtt

atattggtcacatgtcgaagcaagcaagtcgcctcgataatgtgcaccgttacgccccatgagctagtatttctgaatgaggaagattcatgggaattgttttcagacaaagcgtttag

caatggtgtagaggagcaagcagagttggtcagcatcggaaggcgtattgtcaacaaatgcggggggttgcctcttgctctcaagacaatgggtggattgctgagttcaaagcaaaa

ggtacaggaatggaaggccatcgaagaaagtaacatcggggataaagatggaggcaaatatgaggtcatgcacatactgaagttaagctacaaacacctgtcgcctgaaatgaag

caatgttttgcattctgtgcagtttttcccaaggattatgagatggagaaggataggttgatccaactatggatggcaaatggctttattcaacacaagggaacaatggatttagtaca

gaaaggagaattaatttttgatgagttggtttggaggtccttcctccaagataagaaagtggcagtcagatttactagctatcgtggtaacaaaatatatgagacaattgtatgtaaaa

tgcatgatttaatgcatgatctagcaaaagatgtcacagatgaatgtgcaagtatagaagaagtgactcagcagaaaacattgttaaaagatgtttgtcacatgcaagtgtcaaaga

ctgaattggaacaaatcagtgggttatgcaaaggcagaacaatcctacgcactttgttagttccttcaggatcacacaaggattttaaagagttgctacaggtatcggcatcactaag

agcattgtgttggccctcttattcagttgtcatttccaaggccataaatgcaaaacatttacggtatcttgacctctctgggtcagacattgttagattgccagattcaatatgggtgttgt
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ataacctgcaaacactgaggctaatggattgccggaagttgcgacagttaccagaagacatggcaagattaagaaagctcatccatctttacctttctggctgtgagagtctcaaaag

tatgtctccaaactttggtctgctgaacaaccttcacatattaacaacatttgttgtgggtaccggagatggccttggaatagagcagctcaaagatttgcaaaaccttagcaataggtt

ggaaatattgaatatggacaagataaagagtggggagaatgcaaaagaagccaatctcagtcagaagcaaaatctaagtgagttgttgttctcttggggccaaaaaatagatgatg

agcctacagatgtggaagaagtgcttcagggcttagaacctcatagtaatatccaaaaactggagatacgtggatatcatggcctagaaatatcacaatggatgagaaagcctcag

atgtttgactgcttgagagaactcgaaatgtttggctgcccaaaatgcaagagtatccctgtaatatggttctcggtctctctagagattttggtcttacagagcatggataacctgaca

acattatgtagtaaccttggtgtggaagctggaggaagcattacccctctgcaacttttcccaaatttgaagaagttgtgtttgattaagttaccaagcctggagatatgggcagaaaa

tagtgtaggagagcctcggatgtttagcagtttggaaaaactcgaaatttccgactgcccaagatgcaagagtatacctgcagtatggttttcggtctctcttgagtttttggtcttacgg

aaaatggataacctgacaacattatgtaataaccttgatgtggaagctggaggatgcattacccctatgcagattttcccaaggttgaagaagatgaggttgattgagttaccaagcc

tggagatgtgggcagaaaatagtatgggagagcctagttgtgataacctggtaacattcccgatgcttgaagagctagagatcaaaaattgccccaagcttgcaagtattccagcga

ttcccgttgtcagcgagttgagaatagttggagttcacagtactgcagtcggttcagtttttatgagcatccgtttgggctcctggccatttctcgtcaggttaagtcttgggtctctagaa

gacatacccatgttgcctctagacgcccagcaaaaccaaagtgaaagacctcttgaaaagcttgagagtttgactctggaagggcccaacagcttgatcagaagctctggattgtccg

gatcacaacttatggtttggaaatgttttcggttcgtgcgagatctgatgattgatggttgcagcaatcttgtccgctggccaacagtggagctctggtgcatggatcgcctctgcattct

gtgtatcacaaattgtgactacctgaaggggaacatttcatcatccgaggagaaaacccttccgctgtccctggagcatttgacgattcagaactgccgcagtgtagtagcactgcctt

cgaaccttgggaaactggccaagctgaggagtctctatgtgagcgactgcaggagcctgaaagtgctgcctgatgggatgtgtggcctcacttctctgagggaattggagatttgggg

ttgtccaggtatggaggaattcccgcatggtctcctggagcggttgccagccctcgaatactgtagcatccatctctgcccggagttgcaaagacgatgcagagaaggtggggagtac

ttccacttgctctcctctgttccacgtaaatactttgagagaataggcatcccaaagtgaatcggcatacgcgtgagtctccttacctgacaaataatcagtttccgttgtgtgtaaataa

aataaatgtttgtcacatacaaattaggtgataaccaatgggaatggatgct 

  
Rebelle RDG2A hypothetical protein 
maeslllplvrgvagkaadalvetvtrmcgldddrqtlerhllavecklvnaeemsetnryvkswmkelksvayladdvlddfqyealrreskigksttrkalsyitrhspllfrfems

rklknvlkkinklvkemntfglessvrreerqhpwrqthskldettqifgreddkevvvkllldqqdqrrvqvlpiigmgglgkttlakmvyndqgveqhfelkmwhcvsdnfdai

allksiielatngscdlpgsiellqkkleqvigqkrfmlvlddvwnederkwgdvlkpllcsvggpgsvilvtcrskqvasimctvtphelvflneedswelfsdkafsngveeqaelvs

igrrivnkcgglplalktmggllsskqkvqewkaieesnigdkdggkyevmhilklsykhlspemkqcfafcavfpkdyemekdrliqlwmangfiqhkgtmdlvqkgelifdelv

wrsflqdkkvavrftsyrgnkiyetivckmhdlmhdlakdvtdecasieevtqqktllkdvchmqvskteleqisglckgrtilrtllvpsgshkdfkellqvsaslralcwpsysvvisk

ainakhlryldlsgsdivrlpdsiwvlynlqtlrlmdcrklrqlpedmarlrklihlylsgceslksmspnfgllnnlhilttfvvgtgdglgieqlkdlqnlsnrleilnmdkiksgenakea

nlsqkqnlsellfswgqkiddeptdveevlqglephsniqkleirgyhgleisqwmrkpqmfdclrelemfgcpkcksipviwfsvsleilvlqsmdnlttlcsnlgveaggsitplqlf

pnlkklcliklpsleiwaensvgeprmfsslekleisdcprcksipavwfsvsleflvlrkmdnlttlcnnldveaggcitpmqifprlkkmrlielpslemwaensmgepscdnlvtf

pmleeleikncpklasipaipvvselrivgvhstavgsvfmsirlgswpflvrlslgsledipmlpldaqqnqserpleklesltlegpnslirssglsgsqlmvwkcfrfvrdlmidgcs

nlvrwptvelwcmdrlcilcitncdylkgnissseektlplslehltiqncrsvvalpsnlgklaklrslyvsdcrslkvlpdgmcgltslreleiwgcpgmeefphgllerlpaleycsihlc

pelqrrcreggeyfhllssvprkyferigipk 

 

Galleon RDG2A hypothetical protein 
maeslllplvrgvagkaadalvetvtrmcgldddrqtlerhllavecklvnaeemsetnryvkswmkelksvayladdvlddfqyealrreskigksttrkalsyitrhspllfrfems

rklknvlkkinklvkemntfglessvrreerqhpwrqthskldettqifgreddkevvvkllldqqdqrrvqvlpiigmgglgkttlakmvyndqgveqhfelkmwhcvsdnfdai

allksiielatngscdlpgsiellqkkleqvigqkrfmlvlddvwnederkwgdvlkpllcsvggpgsvilvtcrskqvasimctvtphelvflneedswelfsdkafsngveeqaelvs

igrrivnkcgglplalktmggllsskqkvqewkaieesnigdkdggkyevmhilklsykhlspemkqcfafcavfpkdyemekdrliqlwmangfiqhkgtmdlvqkgelifdelv

wrsflqdkkvavrftsyrgnkiyetivckmhdlmhdlakdvtdecasieevtqqktllkdvchmqvskteleqisglckgrtilrtllvpsgshkdfkellqvsaslralcwpsysvvisk

ainakhlryldlsgsdivrlpdsiwvlynlqtlrlmdcrklrqlpenmarlkklihlylsgceslksmspnfgllnnlhilttfvvgtgdglgieqlkdlqnlsnrleilnmdkiksgenakea

nlsqkqnlsellfswgqkiddeptdveevlqglephsniqkleirgyhgleisqwmrkpqmfdclrelemfgcpkcksipviwfsvsleilvlqsmdnlttlcsnlgveaggsitplqlf

pnlkklcliklpsleiwaensvgeprmfsslekleisdcprcksipavwfsvsleflvlrkmdnlttlcnnldveaggcitpmqifprlkkmrlielpslemwaensmgepscdnlvtf

pmleeleikncpklasipaipvvselrivgvhstavgsvfmsirlgswpflvrlslgsledipmlpldaqqnqserpleklesltlegpnslirssglsgsqlygwkcfrfvrdlmidgcsnl

vrwptvelwcmdrlcilcitncdylkgnissseektlplslehltiqncrsvvalpsnlgklaklrslyvsdcrslkvlpdgmcgltslreleiwgcpgmeefphgllerlpaleycsihlcp

elqrrcreggeyfhllssvprkyferigipk 

 

Haruna Nijo RDG2A hypothetical protein 
maeslllplvrgvagkaadalvetvtrmcgldddrqtlerhllavecklvnaeemsetnryvkswmkelksvayladdvlddfqyealrreskigksttrkalsyitrhspllfrfems

rklknvlkkinklvrrmntfglessvrreerqhpwrqthskldettqifgreddkevvvkllldqqdqrrvqvlpiigmgglgkttlakmvyndqgveqhfelkmwhcvsdnfdai

allksiielatngscdlpgsiellqkkleqvigqkrfmlvlddvwnederkwgdvlkpllcsvggpgsvilvtcrskqvasimctvtphelvflneedswelfsdkafsngveeqaelvs

igrrivnkcgglplalktmggllsskqkvqewkaieesnigdkdggkyevmhilklsykhlspemkqcfafcavfpkdyemekdrliqlwmangfiqhkgtmdlvqkgelifdelv

wrsflqdkkvavrftsyrgnkiyetivckmhdlmhdlakdvtdecasieevtqqktllkdvchmqvskteleqisglckgrtilrtllvpsgshkdfkellqvsaslralcwpsysvvisk

ainakhlryldlsgsdivrlpdsiwvlynlqtlrlmdcrklrqlpedmarlrklihlylsgceslksmspnfgllnnlhilttfvvgtgdglgieqlkdlqnlsnrleilnmdkiksgenakea

nlsqkqnlsellfswgqkiddeptdveevlqglephsniqkleirgyhgleisqwmrkpqmfdclrelemfgcpkcksipviwfsvsleilvlqsmdnlttlcsnlgveaggsitplqlf

pnlkklcliklpsleiwaensvgeprmfsslekleisdcprcksipavwfsvsleflvlrkmdnlttlcnnldveaggcitpmqifprlkkmrlielpslemwaensmgepscdnlvtf

pmleeleikncpklasipaipvvselrivgvhstavgsvfmsirlgswpflvrlslgsledipmlpldaqqnqserpleklesltlegpnslirssglsgsqlmvwkcfrfvrdlmidgcs

nlvrwptvelwcmdrlcilcitncdylkgnissseektlplslehltiqncrsvvalpsnlgklaklrslyvsdcrslkvlpdgmcgltslreleiwgcpgmeefphgllerlpaleycsihlc

pelqrrcreggeyfhllssvprkyferigipk 
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Betty, Flavio, Gianni, Martina, Andrea, Moreno, Alice, Chiara, Katia, Barbara, 

Lorenzo, Camilla, Federica, Luigi, Vania, Paolo, Annalisa, Szandra, Lenka, Caterina 

(se non ho nominato qualcuno è puramente casuale). Grazie per aver reso ogni 

giorno di lavoro divertente e per tutte le splendite uscite in compagnia. Non ci sono 

parole per descrivervi, se non ci foste bisognerebbe inventarvi.  

Simona non mi sono dimenticata di te! Penso che dopo aver condiviso ufficio, 

scrivania, cassettiera, bancone, gioie e dolori (soprattutto tutte le morsicate di 

zanzara), meriti un ringraziamento particolare. Grazie per essere sempre pronta ad 

ascoltare e consigliare, per essere sempre disponibile e per tutte le ore di lavoro e le 

uscite passate insieme. 

Un grande grazie va mio padre che non mi ha mai fatto mancare niente, mi ha 

sempre sostenuto in tutte le scelte e soprattutto mi ha insegnato a superare tutte le 

difficoltà che ho dovuto affrontare. 

Grazie al resto della mia famiglia (zio Stefano, zia Marina, zia Germana e i miei 

cugini Barbara, Gabriele e Carlotta e in particolare alla mia super nonna!) per 

essermi sempre vicini. 
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Grazie a tutti gli amici: Elisa, Simone, Manuelona, Silvio, Manu, Fabio, Sonia, 

Fede, Bozzo e Mattia su cui potrò sempre contare. 

Grazie ad Alice e alla sua famiglia. Dopo più di 25 anni di amicizia, dopo aver 

condiviso tutti i momenti felici e tristi e dopo aver sempre ascoltato i miei problemi, 

anche quando non erano gravi, per me sei come una sorella. 

So che ti meriteresti dieci pagine ma purtroppo ho solo poche righe. Grazie 

Francesco per essere sempre al mio fianco, per farmi sempre sorridere anche nei 
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L’ultimo ringraziamento va a una persona speciale che purtroppo non è più con me 

ma che sono sicura mi guarda da lassù e mi sorride. Grazie per la tua gentilezza, il 

tuo amore e per avermi insegnato a sorridere sempre anche di fronte alle difficoltà. 

Ti porto sempre nel mio cuore e per me sarai sempre la stella più bella che brilla in 

cielo. Ti voglio bene mamma. 
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