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ATHEROSCLEROSIS: AN OVERVIEW 
 

Atherosclerosis (athero = soft gruel-like deposit, and sclerosis=hardness) is 

complex pathology that involve deposition of cholesterol, fats, cellular 

metabolites, calcium and various other substances on the inner lining of 

the artery1.  This disease of the large arteries is the primary cause of heart 

disease and stroke, and is the underlying cause of about 50% of all 

deaths in westernized societies2.  In 2002, the most recent year for which 

worldwide data from the World Health Organization3 are available, 

global mortality due to CVD was estimated at 16.7 million deaths. Of 

these, CHD was the single most important cause identified, accounting 

for 7.2 million (43%) deaths. Stroke accounted for an additional 5.5 million 

(33%) annual deaths. The remaining cardiovascular deaths were due to 

hypertensive, inflammatory, or rheumatic heart diseases, or other forms, 

such as tumors of the heart, vascular tumors of the brain, disorders of 

heart muscle/cardiomyopathy, heart valve disorders, and disorders of 

the lining of the heart3. The incidence of CHD mortality has increased 

since 1990 as life expectancies have risen.  Although CHD death rates 

have declined in western countries in response to improvements in 

disease management, rates are expected to increase in developing 

countries in the future3. 

Under a very precise and literary point of view, arteriosclerosis can be 

defined as a chronic disease characterized by abnormal thickening and 

hardening of the arterial walls with resulting loss of elasticity, whereas 

atherosclerosis is characterized by atheromatous deposits in and fibrosis 

of the inner layer of arteries. Hence atherosclerosis can be considered as 

an advanced stage of arteriosclerosis, since plaque formation comes at 

later stages of the disease1. Atherosclerosis initiating event may be 

different under different condition, but it is suggested that endothelial 

dysfunction is one of the major event. Such a dysfunction may occur 
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due to many factors (e.g. vessel injuries and collagen exposure, 

metabolite deposition in the vessel wall, change in vascular reactivity 

due to change in the rate or the force of blood flow) 1. 

Atherosclerotic lesions begin as fatty streaks underlying the endothelium 

of large arteries. In humans, fatty streaks can be found in the aorta in the 

first decade of life, the coronary arteries in the second decade, and the 

cerebral arteries in the third or fourth decades2.  They consist of smooth 

muscle cells (SMCs), lymphocytes and mainly of macrophages4. The 

formation of fatty streaks is initiated by adherence of circulating 

monocytes to activated endothelial cells at lesion-prone sites within the 

arteries.  Adherent monocytes subsequently migrate into the 

subendothelial space in response to locally produced chemo-attractant 

molecules, where they further differentiate into macrophages and start 

to accumulate lipids (mainly cholesterol esters) by the interaction with 

modified low density lipoprotein (LDL)4. When macrophages take up 

more lipoprotein cholesterol than they can excrete, the cholesterol is 

stored in the cytoplasm by means of cholesteryl esters droplets. These 

droplets give the cytoplasm a foamy appearance at electron 

microscope observation, thus accounting for the term of foam cells5. 

Then, fatty streaks could progress and develop into advanced 

atherosclerotic plaques. The American Heart Association (AHA) 

Committee on Vascular lesion provided a pathobiological nomenclature 

and classification of human atherosclerotic lesions, dividing them in 6 

stage of development (from type I to type VI)6, 7. Lesions type I, II and III 

are the silent precursors of types IV, V and VI, advanced plaques 

associated with clinical events (see FIGURE 1 and TABLE I).  

The development of atherosclerotic plaques occurs after LDL 

accumulation within the sub-endothelial matrix of artery wall, leukocyte 

extravasation, foam cell formation, smooth muscle cell proliferation and 

connective tissue production8. With the secretion of fibrous elements by 
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SMCs, occlusive fibrous plaques develop and increase in size2. Low 

density lipoproteins represent the main source of cholesterol not only for 

peripheral tissues but also for arterial wall.  Moreover it has been 

demonstrated that accumulation of LDL in blood vessels is greater when 

level of circulating LDL are raised, and both transport and retention of 

LDL are increased in the preferred sites for lesion formation2.  

 

 

 
 

FIGURE 1 - Different stages in progression of atherosclerosis (from9) 

 

LDL diffuse passively through endothelial cell (EC) junction and their 

retention in the arterial wall seems to involve interaction between the 

extracellular matrix and the apolipoprotein B (apoB), which is the major 

protein component of low density lipoprotein. An ionic interaction of 

positively charged regions of apolipoprotein (apo) B with matrix proteins, 
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including proteoglycans, collagen, and fibronectin, is thought to initiate 

the LDL retention process10.  In addition, other apoB-containing particle 

(i.e. lipoprotein (a) and remnants), can accumulate in the intima and 

promote atherosclerosis2.  It has been shown that native LDL is not able 

to load macrophages so rapidly to transform them into foam cells, and 

so it was proposed that LDL, trapped within vessel wall, does undergo 

modification, including oxidation, lipolysis, proteolysis and aggregation. 

Such modifications contribute to inflammation as well as foam cell 

formation2.  Macrophages within atheroma show a substantial 

upregulation of the scavenger receptor that normally function in the 

recognition and internalization of pathogens and apoptotic cells. Brown, 

Goldstein and co-workers gave it the name of “scavenger receptor” (SR) 

to distinguish the uptake of modified LDL by macrophages from LDL 

uptake via the classical LDL receptor (LDLr) which, in contrast with SR, is 

feedback inhibited by cellular cholesterol accumulation5, 11. The most 

frequently studied modification of low density lipoprotein is the oxidation, 

that in-vivo seems to occur by the action of several enzymes, such as 

NAD(P)H oxidase, xanthine oxidase, mieloperoxidase, nitric oxide 

synthase (NOS), lipoxygenase and mitochondrial electron transport 

chain12. In vivo it has been shown that products derived from oxygen, 

chlorine, nitrogen and lipid peroxidation induced free radicals are the 

major oxidants involved in oxidized LDL (oxLDL) formation. Consistently 

with the demonstrated role of oxidative stress and oxLDLs in 

atherosclerosis, it has been shown that variable levels of oxLDL are 

detectable in human plasma and F2-isoprostanes (IsoPs) can be 

measured in human body fluids such as plasma and urine using highly 

precise methods. The F2-IsoPs represent, in 2005, the most established 

index of oxidative stress status in vivo in humans13. Both these factors are 

proposed and considered as strong and independent risk factors for 

coronary heart disease (CHD) 14, 15. It has been proposed that OxLDLs 
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exert their atherogenic activity not only inducing foam cells formation, 

but also by means of a proinflammatory, immunogenic, cytotoxic and 

apoptotic activity. They are shown to stimulate adhesion molecule 

expression in endothelial cells, resulting in increased monocyte 

recruitment. Moreover OxLDLs seem to promote monocyte 

differentiation, to stimulate in macrophages the production and 

secretion of proinflammatory cytokines and chemokines, and to inhibit 

macrophage migration ability2, 16. As mentioned above, low density 

lipoproteins, trapped inside atheroma, undergo several modification 

reactions leading to atherogenic compounds: it has been demonstrated 

that LDL glycation is at least as important as oxidation in atherogenesis 

(for review see17). It has been shown that both glycated LDL (glycLDL) 

and oxLDL were localized in macrophage-derived foam cells in the 

atherosclerotic lesions with the native LDL confined to the extracellular 

matrices. Glycation and oxidation of LDL probably take place 

simultaneously in vivo, leading to additional modification of LDL (i.e. 

Glycoxidated LDL)17. Post-secretory glycation of proteins is a process of 

non-enzymatic condensation of glucose with proteins to form stable 

covalent adducts leading to structural alterations and, consequently, to 

functional abnormalities. 
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TTAABBLLEE  II  ––  CCllaassssiiffiiccaattiioonn  ooff  hhuummaann  aatthheerroosscclleerroottiicc  lleessiioonnss  

Type I The inner lining of the normal coronary artery is smooth 
and free of blockages or obstructions 

Type II With increasing age, lipids or fatty substances 
(cholesterol and triglycerides) are deposited as fatty 
streaks which are only minimally raised and do not 
produce any obstruction or symptoms. This is just the 
beginning of atheroma. 

Type III Further increase in builtup of fatty layers, atheroma, 
begins to encroach the inner channel which starts 
interfering with the free blood flow through coronary 
artery, thereby exposing the person to more risk of 
coronary artery disease 

Type IV With fibers beginning to grow in the fatty layers of the 
atheroma, the blockages harden into plaques, which 
increase the encroachment in the inner channels of 
the coronary artery. This encroachment may be up to 
50% or more of its diameter and leads to obstruction 
sufficient to decrease the blood flow of heart muscle, 
even in the time of its increased need (exercise, 
emotional stress). This leads to elevation in blood 
pressure and heart rate. 

Type V In some cases, plaques within the inner lining of the 
coronary artery may develop a slight crack or rupture, 
which stimulates the production of blood clots. The 
clots also get into the crack and cause it to rise and 
further obstruct the channel of the artery. The supply of 
the blood flow to the heart muscle is substantially 
reduced and the patient begins to have severe and 
prolonged chest pain that occurs at rest. This is known 
as unstable angina. 

Type VI In case the clot does not fully close the channel of the 
artery and sufficient blood flow is maintained to the 
heart muscle, a heart attack may not develop, 
provided appropriate and prompt treatment is 
effected. However, the clot may continue to grow in 
many cases. This can completely fill the open channel 
of the artery and cutoff blood flow to the part of the 
heart muscle to which it is supplying. 

Created and adapted by using classification from9 
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The non-enzymatic glycation of LDL takes place principally in apoB. 

Lysine is the major amino acid that undergoes glycation with 2–17% of 

LDL–lysine residues being glycated. Because of their glycemic status, 

diabetic patients showed higher serum levels of glycated apoB and 

glycLDL compared to non diabetic subjects, but high levels of serum 

glycLDL were also found in hyperlipidemic non diabetic patients17.  

Ischemia, a restriction in blood supply, is one of the most frequent clinical 

manifestations associated to atherosclerosis, and the loss of luminal 

diameter secondary to plaque growth seems to not be the major 

determinant for ischemic event. In fact, it has been known for 20 years 

that there is a compensatory adaptive enlargement or "positive 

remodeling" of atherosclerotic human coronary arteries, with 

preservation of the cross-sectional area of the lumen in the early stages 

of the disease process. This knowledge is based on the findings of 

autopsy studies that demonstrated that the coronary lumen did not 

decrease in size until the atheroma occupied >40% of the area 

encompassed by the outside wall of the artery18. Pathological studies 

suggest that the development of acute coronary events depends 

principally on the composition and vulnerability of the plaque rather 

than severity of stenosis. Hence, the fibrous cap weakening seems to be 

a key role player in ischemic attack genesis. Several evidences have 

supported the concept that the protective fibrous cap, far from being 

fixed and static, actually can undergo continuous and dynamic 

remodeling and displays considerable metabolic activity. The 

progressive erosion of this element could cause the partial or the total 

rupture of atherosclerotic plaque, leading to the activation of 

coagulation cascade and thrombus formations.  Thrombosis represents 

the final stage of atherosclerosis and leads to clinical manifestations and 

adverse events in the coronary, cerebro-vascular and vascular 

disctrict19. 
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COMPLEX AETIOLOGY: INFLAMMATION AND DYSLIPIDEMIA  
 

Over the past 50 years, epidemiological studies have shown what kind of 

complexity is behind atherosclerosis, revealing a very large number of risk 

factors involved2. These can be divided into factors with an important 

genetic component, and those that are largely environmental. The 

relative abundance of the different plasma lipoproteins appears to be of 

primary importance, since raised levels of atherogenic lipoproteins are a 

prerequisite for most forms of the disease2. Each of the genetic risk 

factors involves multiple genes. Experimental studies with genetic crosses 

in animals maintained under similar environmental conditions could 

clearly show this complexity. Such studies in rodents have revealed 

dozens of genetic loci that contribute to lipoprotein levels, body fat and 

other risk factors. Moreover, the interactions between risk factors 

increase the complex aetiology. Frequently, these are not simply 

additive (e.g. the effects of hypertension on coronary heart disease 

(CHD) are considerably amplified if cholesterol levels are high).2 The 

importance of genetics and environment in human CHD has been 

examined in many family and twin studies, and it has been shown that 

the common forms of CHD result from the combination of an unhealthy 

environment, genetic susceptibility and our increased lifespan2. The 

concept that atherosclerosis is a chronic inflammatory disease, initiated 

by monocytes adhesion to activated endothelial cells,  is widely 

accepted and has been confirmed  by several clinical and experimental 

observation2, 4, 20, 21. “Inflammation is a complex set of interactions 

among soluble factors and cells that can arise in any tissue in response to 

traumatic, infectious, post-ischaemic, toxic or autoimmune injury”22 and 

seems to be involved in every stage of atherosclerosis. During fatty 

streaks formation, endothelium activation results in secretion of 

chemokines (e.g. MPC-1 and IL-8), adhesion molecules (e.g. ICAM-1, 
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VCAM-1, E-selectin, P-selectin). These molecules enhance monocyte 

and lymphocyte recruitment and infiltration in the sub-endothelial 

space21. Inflammation seems to play an important role also in the final 

stage of the pathology, when clinical events occur. Cells inside plaque 

secrete matrix metal proteases (MMPs), which degrade the cellular 

matrix protein leading to fibrous cap weakening23. Moreover every cell 

types involved in atherogenesis (i.e. endothelial cells, SMC, 

monocytes/macrophages, lymphocytes (T, B, NKT), dendritic cells, and 

mast-cells) secrete or are stimulated by peptides, glycoproteins, 

protease and cytokines. 

Though inflammation allows understanding several mechanisms involved 

in atherosclerosis, it must be reminded that lipid accumulation is an 

essential factor for the development of this disease. Moreover, as 

mention above, raised levels of atherogenic lipoproteins appears to be 

of primary importance. Dyslipidemia can be defined as the disorder of 

lipid metabolism leading to an increase (hyperlipoproteinemia) or a 

decrease (hypolipoproteinemia) of plasma lipoprotein, often associated 

with their qualitative alteration. The role of plasma lipoproteins in 

atherosclerosis came under study more than 50 years ago, at the same 

time as epidemiologic data linking cholesterol and heart disease were 

becoming available24. The lipid hypothesis, which described the role of 

dietary saturated fat in raising serum cholesterol and the risk of CHD, 

could not be adequately tested because the treatment options of the 

time—fibrates, anion-exchange resins, and nicotinic acid—were limited 

in efficacy and poorly tolerated24, 25. Key discoveries in the 1970s, 

including the identification of the hepatic LDL-C receptor and 

characterization of hepatic hydroxymethyl glutaryl coenzyme A (HMG-

CoA reductase), the enzyme that controls the rate of cholesterol 

biosynthesis, led to development of HMG-CoA reductase inhibitors, 

beginning with lovastatin and simvastatin in the 1980s24, 26-30. Clinical trials 
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in the 1990s confirmed the lipid hypothesis and established LDL-C as the 

primary treatment target24, 25, 31. A publication from the Reduction of 

Atherothrombosis for Continued Health (REACH) Registry of patients 

(N=67,888) with stable atherosclerotic clinical syndromes highlights that 

hypercholesterolemia is prevalent, yet undertreated, and correlated 

generally with cardiovascular event rates around the world32, 33. It was 

shown that substantial proportions of these patients had total cholesterol 

levels above 5.18 mmol/L (200 mg/dL), with a high of 64.4% in Eastern 

Europe.  Such high rates of hypercholesterolemia are remarkable 

because more than 75% of these patients were receiving lipid-lowering 

therapy, predominantly statins. Since 1994, 8 placebo-controlled trials 

that enrolled 67,462 patients with dyslipidemia have evaluated the 

efficacy of statin therapy for the primary or secondary prevention of 

CHD events. In these trials, LDL-C reductions ranging from 25% to 35% 

corresponded with relative risk reductions of 24% to 40% for CHD death or 

nonfatal myocardial infarction25, 34-41, suggesting that, despite the good 

improvement, a substantial risk of CHD events remains. 

Substantial epidemiologic evidence suggests a negative linear 

correlation between HDL-C levels and the incidence of CHD. An inverse 

relationship between HDL-C and coronary artery disease (CAD) was 

established in the Framingham study in the 1970s. This analysis of 2815 

men and women aged 49–82 years identified HDL-C as a powerful risk 

factor inversely associated with the incidence of CAD42. Similarly, in the 

early 1980s, the Prospective Cardiovascular Munster (PROCAM)study43 

evaluated 4559 male participants aged 40–64 years and found a strong 

negative linear correlation between the incidence of CAD and HDL-C 

levels (CHD risk ratio of 4.0 for HDL-C <25 mg/dL versus 1.0 for HDL-C >65 

mg/dL, p < 0.001). Different prospective studies has estimated a 2% 

(men) and  3 % (women) increase in cardiovascular risk for every 1 

mg/dL reduction in serum HDL-C44. A post hoc analysis45 of the Treating 
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to New Targets (TNT) study46 was conducted to evaluate the predictive 

value of HDL-C for the 5-year risk of major CV events. It was showed that 

HDL-C was a significant predictor of major CV events (P=0.05) across the 

population of statin-treated patients with CHD, and high levels of HDL-C 

significantly reduced the 5-year risk of major CV events (P=0.03), even in 

patients with low LDL-C (<70 mg/dL) 45. The finding that HDL-C remained 

a significant predictor of major CV events in patients with very-low LDL-C 

supports the clinical relevance of HDL-C as a therapeutic target. Statin-

treated patients who achieve a low LDL-C goal still have a substantial 

residual risk that can perhaps be reduced by increasing the HDL-C 

concentration45. In 2006, the phase III clinical trial ILLUMINATE 

(Investigation of Lipid Level Management to Understand its Impact in 

Atherosclerotic Events) was prematurely terminated because of an 

increased risk of death and cardiac events in patients receiving 

torcetrapib47, a novel drug targeted to cholesterol ester transfer protein 

(CETP) inhibition to increase HDLc. The CETP inhibition approach is still 

widely debated, and the particular concern is if the deleterious effect of 

torcetrapib resides in its intrinsic properties (failure of the molecule) or the 

whole concept of CETP inhibition is erroneous (failure of the 

mechanism)48-51. One interesting concept that has also been highlighted 

is  the complexity of the relationship between HDL and protection from 

cardiovascular disease. Functionality has become an important factor 

for consideration in the development of new agents that raise HDL-

cholesterol. The most important function of HDL is its ability to facilitate 

cholesterol efflux from peripheral cells, particularly macrophages and 

foam cells, and enhancing reverse cholesterol transport (RCT). Recently 

it has been demonstrated by in-vitro cellular cholesterol efflux assay that 

in murine peritoneal macrophages foam cells the ABCA1-mediated 

efflux to human serum contributes 80% of the stimulated component of 

total cholesterol efflux, with ABCG1-mediated efflux responsible for the 
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remaining 20% of the stimulation of efflux52. Very similar results were also 

obtained using in vivo mouse RCT assays53. Thus apolipoprotein A-I 

(apoA-I), the apolipoprotein of nascent HDL and the preferred acceptor 

for ABCA1 mediated efflux (see below), seems to play a central role in 

cholesterol efflux, consistent with their value in predicting cardiovascular 

risk (for review see54).  
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LIPOPROTEIN METABOLISM 
 

Cholesterol, triglycerides (TG, known also as triacylglycerols) and 

phospholipids (PL) are the major plasma lipid compounds, whereas 

fewer amount of other lipophilic compounds, such as lipophilic vitamins 

and hormones, are detectable. Since their lipophilic nature, they are 

internalized and carried through blood stream by macromolecular 

complexes called lipoprotein, resulting from lipid binding to specific 

protein called apolipoprotein. Liver and intestine are the main organs 

responsible for lipoprotein synthesis and secretion. Lipoproteins are 

globular particles characterized by high mass. They consist of a central 

non-polar nucleus (mainly rich in TG and cholesteryl esters (CE)) which is 

enveloped by a polar membrane made up of PL, proteins and free 

cholesterol (FC). Lipoprotein differs one from each other because of 

density, apolipoprotein and lipid composition. The apolipoprotein 

content is an extremely important factor for lipoprotein metabolism. 

Apolipoproteins act indeed not only as structural component, but as 

enzymatic cofactors and receptor binding element. Lipoproteins can be 

isolated from plasma by density ultracentrifugation and be classified as 

follow to: 

• Chylomicrons and remnants 

• Very Low density lipoprotein (VLDL) 

• Intermediate density lipoprotein (IDL) 

• Low density lipoprotein (LDL) 

• High density lipoprotein (HDL) 

 

The handling of lipoproteins in the body is referred to as lipoprotein 

metabolism, and in physiological condition it contributes to maintain 

body lipid homeostasis. It is divided into two pathways, exogenous and 

endogenous, depending in large part on whether the lipoproteins in 
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question are composed chiefly of dietary (exogenous) lipids or whether 

they originated in the liver (endogenous). 

 

ENDOGENOUS PATHWAY 

In order for the body to make use of dietary lipids, they must first be 

absorbed from the small intestine. Since these molecules are oils, they 

are essentially insoluble in the aqueous environment of the intestine. The 

solubilization (or emulsification) of dietary lipids is therefore accomplished 

by means of bile salts, which are synthesized from cholesterol in the liver 

and then stored in the gallbladder; they are secreted following the 

ingestion of fat. The emulsification of dietary fats renders them accessible 

to pancreatic lipases (primarily lipase and phospholipase A2 (PLA2). These 

enzymes, secreted into the intestine from the pancreas, generate free 

fatty acids and mixtures of mono- and diacylglycerols from dietary 

triglycerides. Pancreatic lipase degrades triglycerides at the 1 and 3 

positions sequentially to generate 1,2-diacylglycerols and 2-

acylglycerols. Phospholipids are degraded at the 2 position by 

pancreatic PLA2 releasing a free fatty acid and the lysophospholipid. The 

products of pancreatic lipases then diffuse into the intestinal epithelial 

cells, where the re-synthesis of triglycerides occurs. Dietary 

triacylglycerols and cholesterol are conjugated with several 

apolipoprotein (e.g. apoB-48, apoC-I, apo-CIII) and incorporated into 

nascent chylomicrons. These are synthesized by intestinal epithelial cells 

and then secreted into the blood through lymphatic system. In the 

bloodstream, HDL particles transfer apoC-II and apoE to the nascent 

chylomicrons. ApoE, interacting with plasma membrane heparan sulfate 

proteoglycans, binds chylomicron with endothelial cells and  by  apoC-II, 

chylomicrons activate lipoprotein lipase (LPL). LPL catalyzes a hydrolysis 

reaction that ultimately releases glycerol and fatty acids from the 

chylomicrons. Glycerol and fatty acids can be absorbed in peripheral 
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tissues, especially adipose and muscle, for energy and storage. After 

removal TG removal from the non polar nucleus of chylomicrons, by the 

action of apoC-I and apoC-III particles leave endothelial cells and start 

to exchange apolipoprotein with the other lipoprotein present in the 

blood stream. This phase results in the formation of a new lipoprotein 

called remnant chilomicron enriched in CE, apoB-48 and apoE. Through 

apoE binding to specific receptors (about 50% LDLr) on hepatocytes, 

remnants are taken up by the liver by endocytosis and then degradated 

in lysosomes. Experimental studies by electronic microscopy have shown 

a new possible pathway (LDLr independent) for hepatic uptake of 

remnants55. Remnants pass through endothelial cell-fenestrae to the 

space of Disse where they bind initially to proteoglycan-bound apo E 

and hepatic lipase as well as LDLR, all of which are anchored to the 

microvillar membrane. Proteoglycan-bound hepatic lipase binds and 

hydrolyzes remnant-lipids, increasing exposure of the endocytic 

receptor-binding domain of apo E. Additional proteoglycan-bound apo 

E on microvilli acquired by the remnants increases the affinity of the 

remnant particles for LDL receptor related protein (LRP)55.  

 

ENDOGENOUS PATHWAY 

Newly synthesized hepatic triacylglycerols and cholesterol, as well as 

dietary triacylglycerols and cholesterol, are assembled with apoB in the 

liver to form VLDL. The synthesis of VLDL has been extensively studied in 

cultured hepatic cell system56-59. By the results of these studies, a two-step 

models of VLDL assembly has been proposed60.  1. In the first step, pre-

VLDL is synthesized in the presence of lipids. In this step APOB is 

cotranslationally lipidated with the assistance of the microsomal 

triglyceride transfer protein (MTTP) that acts both as a lipid transporter 

and as a chaperon61-63. This process takes place in the endoplasmic 

reticulum. During the second step, mature VLDL is formed by bulk lipid 
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addition via fusion of pre-VLDL with large TG droplets. The confinement 

of the second step is under debate and both Golgi apparatus64 and 

smooth ER64, 65  have been implicated. Finally, in the absence of lipids the 

nascent APOB is degraded (III). The two-step model is compatible with 

the idea that the availability of lipids determines the stability of APOB. In 

agreement with this hypothesis, it was shown that unlipidated or 

underlipidated APOB is the subject of presecretory proteasomal 

degradation66-68. VLDLs secreted by human hepatocytes ranges from 

350 Å to 700 Å depending on the amount of TG in the lipid core. There 

are two secretion-competent subclasses of VLDL particles: large buoyant 

TG-rich VLDL 1 and smaller, denser and cholesteryl ester rich VLDL2.  The 

VLDL particles secreted by the liver pass through a number of 

remodeling steps in the circulation involving lipolysis and protein transfer 

through LPL and HL, giving rise to IDLs and ultimately LDL.  Remaining 

VLDL can be removed from the circulation by the hepatic uptake 

mediated by LRP and the VLDL receptor (VLDLr). LDL lipoproteins, mainly 

cholesterol enriched, interact with LDLr that is expressed in every 

mammalian cells and bind to apoB-100 and apo-E present in LDL. After 

binding to LDLr, LDL undergo endocytosis and then are internalized into 

lysosoms, where the acid lipases hydrolyze CE. Thus, free cholesterol is 

available for membrane needs, steroid hormone synthesis and storage 

(after re-esterification by the ACAT enzyme (for details see below)). 

Before the interaction with LDL receptor, low density lipoproteins can be 

modified by the action of cholesterol ester transfer protein (CETP) that 

transfer cholesterol ester (CE)  
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TABLE II - LIPOPROTEIN CLASSIFICATION AND FEATURES 

CCLLAASSSS  DDeennssiittyy  
(

 

 

 

from HDL to LDL (only when hypertriglyceridemia is present, to VLDL69) in 

exchange for triglyceride (TG), and viceversa70. LDLr mediated cellular 

cholesterol influx results in a reduction of cellular cholesterol synthesis, 

reduction in LDLr expression and increase of CE synthesis. The intracellular 

and membrane amounts of fatty acids and cholesterol are constantly 

coordinated with de novo lipid synthesis which is controlled by the 

transmembrane sterol regulatory element binding proteins (SREBPs) 71. In 

the presence of cholesterol or oxysterols, SREBP, SCAP (SREBP cleavage 

activating protein) and INSIG (insulin inducible gene) form a complex 

which is retained in the ER. When the concentration of cellular sterols is 

low, INSIG is released from SREBP-SCAP which is  transported to the Golgi 

apparatus where SREBP undergo two sequential proteolytic cleavages 

by Site-1 and Site-2 proteases72. SREBP-1a, SREBP-1c and SREBP-2 proteins 

are encoded by 2 unique genes (i.e. SREPBF-1 and SREPBF-2) and belong 

to the SREBP family of basic-helix-loop-helix-leucine zipper transcription 

factors. The SREBPs differ in their tissue-specific expression, their target 

gene specificity and the relative potencies of their trans-activation 

domain. Though SREBP-1a and -1c proteins regulate gene involved in the 

(gg//mmll))  
DDiiaammeetteerr  

((nnmm))  
%%    

pprrootteeiinn  
%%    

cchhoolleesstteerrooll  
%%  

pphhoosspphhoolliippiidd  
%%  

ttrriiaaccyyllggllyycceerrooll  
  

HHDDLL  >1.063 5-15 33 30 29 8 

LLDDLL  1.019-1.063 18-28 25 50 21 4 

IIDDLL  1.006-1.019 25-50 18 29 22 31 
VVLLDDLL  0.95-1.006 30-80 10 22 18 50 
CCHHIILLOOMMIICCRROONN  <0.95 100-1000 <2 8 7 84 
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synthesis of mono- and poly-saturated fatty acids (PUFA) and their 

incorporation into triglycerides and phospholipids, SREBP-1a is more 

potent transcription factor. The expression of SREBP-1c predominates in 

mouse liver in the fed state. Conversely SREBP-1a and SREBP-2 are 

expressed ubiquitously. SREBP-2 preferentially activates gene involved in 

the uptake and biosynthesis of cholesterol71. 
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REVERSE CHOLESTEROL TRANSPORT 

The concept of "reverse cholesterol transport" (RCT) was first introduced 

in 1968 by Glomset to describe the process by which extrahepatic 

(peripheral) cholesterol is returned to the liver for excretion in the bile and 

ultimately the feces73. The return of this "peripheral" cholesterol to the liver 

is necessary to balance cholesterol intake and de novo synthesis and 

thus to maintain whole-body cholesterol homeostasis74. The inverse 

relationship between RCT and atherosclerosis was suggested by Ross and 

Glomset75, who hypothesized that atherosclerotic lesions develop when 

an imbalance occurs between the deposition and removal of arterial 

cholesterol after endothelial injury. Some years later it was suggested that 

on the basis of the inverse relation between HDL cholesterol (HDL-C) and 

cardiovascular disease, increasing HDL should be considered as a way 

to increase clearance of cholesterol from the arterial wall to prevent 

cardiovascular disease76. In humans, approximately two-thirds of 

cholesterol is transported by low-density lipoproteins (LDLs) and ~20% by 

high-density lipoproteins (HDLs); the remaining cholesterol is carried by 

very low density lipoprotein (VLDL) particles. The risk of premature 

cardiovascular disease is positively correlated with LDL levels and 

negatively correlated with HDL levels. Cholesterol is an essential 

component of eukaryotic membrane and a fundamental precursor of 

steroid hormones and bile acids. It has been demonstrated that a 

physiological free cholesterol (FC)/phospholipid ratio in cellular 

membranes is necessary to maintain proper membrane fluidity, or more 

precisely, a proper range of membrane fluidities. Cholesterol is, in fact, 

able to reduce membrane fluidity, contrasting the effect of unsatured 

fatty acids contained in membrane phospholipids. It is abundant in the 

cellular plasma membrane and in the membrane of Golgi apparatus77, 

especially in lipid rafts, which are areas of the plasma membrane 
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enriched in proteins that participate in signal transduction78. Non-hepatic 

cells acquire cholesterol through uptake of lipoproteins and de novo 

synthesis and yet (apart from steroidogenic tissues that convert 

cholesterol to steroid hormones) are unable to catabolize it, and this 

seems to explain the physiological needs for RCT process74. Several 

studies have been demonstrated that excess unesterified cholesterol 

(FC) is toxic to cells (for review see79), and many mechanisms have been 

proposed to explain this cytotoxicity (i.e. loss of membrane fluidity, 

disruption of membrane domain, induction of apoptosis, Intracellular 

cholesterol crystallization, formation of toxic oxysterols, alteration of gene 

expression)79. Therefore, cells have developed several ways to protect 

themselves against free-cholesterol induced toxicity. One possible 

proposed mechanism is indentified in the activity of acyl-conzyme 

A:cholesterol acyltransferase, and specifically ACAT1, that transform free 

cholesterol in cholesterol ester (CE), subsequently stored in cytoplasmic 

lipid droplets, to be available for later on cell needs (for more details see 

review80 and below).  

It has been well established and clearly demonstrated that one key 

pathway, in preventing cellular cholesterol accumulation, is the efflux of 

cholesterol to extracellular "acceptors" (physiological represented by 

high density liprotein (HDL)). Cellular cholesterol efflux is the first step of 

RCT pathway, and is also considered critical and rate limiting stage for 

the entire process. Physiologically, RCT clearly occurs from all peripheral 

tissues, it has often been measured and discussed as a general 

peripheral process. More recently it has been suggested and strongly 

supported the concept to the more specific term “macrophage RCT” 

when discussing this process as it relates to atherosclerosis74. As 

explained, in atherosclerotic lesions, the primary cell type that is 

overloaded with cholesterol is the macrophage, and therefore, it makes 

more sense to conceptualize and measure RCT as a macrophage-
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specific phenomenon when the aim is to focus on its antiatherosclerotic 

characteristics74. 

The entire process of RCT can be summarized in 3 fundamentals steps:  

 

 uptake of cholesterol from cells by specific acceptors (cholesterol 

efflux)  

 HDL remodeling 

 hepatic cholesterol re-uptake through lipoprotein receptors 

 

 

 
FIGURE 2 – Schematic representation of Reverse Cholesterol Transport (from81) 
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CHOLESTEROL EFFLUX PATHWAY:  

MECHANISMS AND TRANSPORTERS INVOLVED 
 

Cellular cholesterol efflux is the transfer of FC molecule from intracellular 

compartment towards an extracellular acceptor82. There are 3 known 

mechanisms of FC flux: the aqueous passive diffusion, the accelerated 

and bidirectional SR-BI-mediated FC flux, and the unidirectional active 

transport mediated by the ATP binding cassette (ABC) transporters83.  

 

Aqueous passive diffusion occurs thanks to the sufficient hydrophilic 

properties of FC molecule. Cholesterol molecules are desorbed at the 

lipid/water interface, they diffuse through aqueous phase, and 

subsequently they are absorbed by the acceptor84. Water phase around 

the cell has been shown to represent a barrier to passive diffusion85, and 

this kind of mechanism is facilitate when the ratio FC/phospholipids is 

elevated in the cellular membrane and reduced in the cholesterol 

acceptor82. It has been demonstrated that the rate of aqueous diffusion 

can be increase by several factors able to reduce the membrane lipid-

bilayer density (i.e. high curve radius in cellular plasma membrane, low 

ratio sphingomyelin/phosphatidyl choline and levels of unsaturated 

phospholipids)85. Cholesterol efflux by aqueous diffusion occurs in every 

cell type, it is generally slow, not saturable, and inefficient in depleting 

cells from cholesterol excess. The transfer is bidirectional and regulated 

by the concentration gradient between cell and acceptor86. The rate of 

this pathway is strongly related to the structure and size of the acceptor. 

The particle size seems to have a key role, because it affects the collision 

with cholesterol molecule within aqueous phase (big size acceptor 

seems to be less efficient)84.  
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Cholesterol efflux by passive diffusion can be facilitate by plasma 

membrane proteins such as the scavenger receptor type BI (SR-BI) 83. 

Initially identified as receptor for LDL and modified LDL (i.e. AcLDL and 

OxLDL) 87, 88, it has been demonstrated that not only SR-BI is able to bind 

HDL with high affinity leading to the selective uptake of CE contained in 

these lipoprotein89, but it can also mediate cellular FC efflux towards 

phospholipid-rich acceptors like HDL90.  It is a 82-kDa membrane 

glycoprotein (509 amino acids) containing a large extracellular domain 

and two transmembrane domains with short cytoplasmic amino- and 

carboxy-terminal domains88. Major sites of SR-BI expression are the liver 

and steroidogenic glands. SR-BI is also present in other tissues and cells 

including the brain, the intestine, macrophages, endothelial cells, and 

astrocytes and it is clustered in specialized plasma membrane domains 

including caveolae, microvillar channels, and microvillar extensions91. It 

has been demonstrated that SR-BII (also called SR-BI.2) can be 

generated by the alternative splicing of SR-BI mRNA: this protein shows a 

cytoplasmic carboxy-terminal domain completely different. SR-BII has 

been shown to be strongly less efficient than SR-BI both in CE uptake 

from HDL and in cholesterol efflux to HDL. This observation suggested the 

importance of carboxy-domain for SR-BI activity92. SR-BI mediated 

cellular cholesterol efflux occurs preferentially to mature HDL, and is 

bidirectional and dependent on concentration gradient83. Several 

studies demonstrated that inhibition of HDL binding to SR-BI, by means of 

specific antibody, leaded to a big reduction of cholesterol efflux, 

suggesting that HLD-binding could be a key-role player for SR-BI 

mediated FC efflux93. It has been clearly established that SR-BI - 

mediated efflux occurs only if the phospholipids are present in the 

structure of cholesterol acceptor. Several data indicated that 

phospholipids-enrichment of HDL or total serum increased cholesterol 

efflux by SR-BI. Conversely,  efflux decreased when HDL were depleted in 
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phospholipid by the treatment with phospholipase A2 (PLA2). No cellular 

FC efflux occurs in presence of lipid-free apolipoproteins94, 95. Not only 

the quantity of phospholipids seems to affect this process, nut also the 

quality. It has been demonstrated that phosphatidyl choline-enrichment 

of HDL leaded to an higher extent increased SR-BI efflux than 

sphingomyelin-enrichment94. Nowadays, the real mechanism of action 

of this protein in mediating cellular FC efflux still remains unclear83. 

 

The ATP-binding cassette (ABC) protein ABCA1 was first cloned in 1994 

and is member of a large family of protein including 49 mammalian 

transmembrane transporters (of whom 13 are sub-classified as ABCA) 

that transport a wide diversity of substrates across the lipid bilayers in an 

energy-dependent manner96. The special role of ABCA1 in cholesterol 

efflux became apparent when it was identified as the gene that is 

mutated in Tangier disease (in its homozygous or compound 

heterozygous form)97-100. Previous study showed that cholesterol-enriched 

fibroblasts and macrophages from patients with Tangier disease lacked 

the ability to release both phospholipid and FC to lipid-free 

apolipoproteins but that efflux to mature HDL was normal101, 102. Clinical 

studies demonstrated that individuals with this pathology have almost no 

HDL cholesterol, and their apo A-I remains poorly lipidated and is rapidly 

catabolized. Thus it has been suggested and demonstrated that, in 

mediating the efflux of FC and phospholipid from cells, ABCA1 also 

mediates the lipidation of apo AI and the formation of nascent HDL (for 

review see 83, 103, 104). Pre-ß HDL generally contain 2 copies of apoA-I per 

particle and 10% by mass of lipid (free cholesterol and phospholipids). In 

contrast with passive diffusion and SR-BI mediated efflux, ABCA1 

mediates unidirectional transport of cellular phospholipid and FC using 

ATP as an energy source, and the preferred acceptor is lipid poor 

apolipoproteins such as apolipoprotein A-I (apoA-I)103. ABCs transporters 
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have been structurally classified into 2 groups: 1) whole, transporters 

having two similar structural units joined covalently; and 2) half, 

transporters of single structural units that form active heterodimers or 

homodimers105. ABCA1 (whole) is a 2,261-amino-acid integral membrane 

protein with two halves of similar structure. Each half has a 

transmembrane domain containing six helices and a nucleotide binding 

domain (NBD) containing two conserved peptide motifs known as 

Walker A and Walker B, which are present in many proteins that utilize 

ATP, and a Walker C signature unique to ABC transporters. It has been 

predicted that ABCA1 shows NH2 terminus oriented into the cytosol and 

two large extracellular loops that are highly glycosylated and linked by 

one or more cysteine bonds105. Several models have been proposed to 

explain how ABC proteins, and ABCA1 because of structure homology, 

transport amphipathic lipids out of cells 106. The flippase model seems to 

be the most correct. It involves two conformations for the transporter: (a) 

the transporter is accessible to the cytoplasmic leaflet of the plasma 

membrane where the substrate binds and (b) the substrate is released 

into the outer leaflet and thus accessible to fluid-phase acceptors106. 

Another model suggests a hydrated channel for the lipid to travel. 

However, this seems thermodynamically unlikely in the case of 

phospholipids. It has been also suggested a variation of the flippase 

model. This proposes that the substrate is transferred to the outer leaflet 

but its release is conditional on interaction of the transporter with an 

acceptor106. By means of the crystal structure obtained for the  bacterial 

Sav1866 ABC transporter a (the first of one full ABC transporter)107 it has 

been shown  an intimate interaction between transmembrane helices 

and the formation of a cavity, that is shielded from the cytoplasm and 

inner leaflet of the membrane bilayer, but accessible to the outer leaflet 

and extracellular environment. Since the cavity is lined with polar amino 

acid residues, it was suggested that transport could occur through an 
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‘extrusion’ mechanism. ATP hydrolysis could enable the transporter to 

adopt a conformation binding to the substrate on the cytoplasmic side 

of the membrane. This could occur through structural changes 

transmitted through intracellular loops that connect the transmembrane 

helices107. It has been demonstrated that many of the human mutations 

in ABCA1 are in such connecting loops, several of these loops interact 

closely with the NBD108. ABCA1 is localized both in the plasma membrane 

and intracellular compartments and it appears to target specific 

membrane domains for lipid secretion. These regions seem to be sensitive 

to accumulation of cholesterol and other lipophilic compounds that 

could feed into intracellular compartments and become substrate for 

ACAT104. ABCA1 removes cholesterol that would otherwise accumulate 

as cytosolic cholesteryl ester lipid droplets. One possibility for the link 

between ABCA1 and ACAT is that both proteins function to protect cells 

from incorporating excess free cholesterol into the endoplasmic 

reticulum where it may disrupt the peptide biosynthetic machinery104. It 

has been demonstrated that when cholesterol esterification is blocked in 

sterol-loaded macrophages, the potentially cytotoxic free cholesterol 

that accumulates is a preferred substrate for the ABCA1 pathway109. 

Regarding these observations, two models have been proposed to 

account for the ability of ABCA1 to target specific lipid domains and 

mediate cholesterol efflux. The exocytosis model implies that excess 

intracellular cholesterol is packaged into transport vesicles or rafts, 

perhaps in the Golgi apparatus, which translocate to domains in the 

plasma membrane containing ABCA1. The retroendocytosis model 

suggests that ABCA1- and apolipoprotein-containing vesicles 

endocytose to intracellular lipid deposits, where ABCA1 pumps lipids into 

the vesicle lumen for release by exocytosis104. Cross-linking experiments 

has showed that apo-AI can bind to ABCA1110, and it has been 

suggested that binding of apo-AI might be necessary but not sufficient 
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to promote cholesterol efflux104. Recent findings have suggested that 

both plasma membrane and intracellular cholesterol pool are mobilized 

by ABCA1 during apoA-I lipidation. Though the highest level of 

cholesterol and ABCA1 in plasma membrane, it has been suggested an 

important role of intracellular cholesterol pool, especially the late 

endosomal/lysosomal compartment, in mediating ABCA1 cholesterol 

efflux. The mobilization of this specific cholesterol pool by internalized 

ABCA1, and apoA-I co-internalization, suggest the possibility of 

intracellular nascent HDL formation111.  ABCA1 is widely expressed 

throughout animal tissues where it may have multiple and diverse 

functions. In humans, ABCA1 mRNA was reported to be most abundant 

in liver, placenta, small intestine, and lung. In mice, ABCA1 mRNA was 

reported to be most abundant in liver, kidney, adrenal, heart, bladder, 

testis, and brain112. Interestingly, measurements of ABCA1 protein levels in 

tissues showed discordance with mRNA abundance, in that some tissues 

with high mRNA levels (kidney, heart, bladder, and brain) had relatively 

low protein levels112. These observations are consistent with the possibility 

that posttranscriptional regulation plays a major role in tissue expression 

of ABCA1. ABCA1 expression is regulated by a variety of mechanisms (for 

review see104). Briefly: the transcription of ABCA1 is induced by nuclear 

orphan receptors, liver X receptors (LXR) or ß, and retinoid X receptor 

(RXR), alone or in combination, in which case, the effect is additive. 

Oxysterols, including 27-, 22(R)-, and 20(S)-hydroxycholesterol, are potent 

ligands of the LXR, whereas 9-cis-retinoic acid is an effective RXR 

activator. The upregulation seen with cholesterol enrichment of cells is 

also probably mediated by the LXR/RXR system. ABCA1 transcription is 

also stimulated in murine macrophages by cAMP.  Post transcriptional 

regulation of ABCA1 is afforded by apoA-I binding, which stabilizes the 

receptor and prevents its degradation, whereas unsaturated fatty acids 

seem to promote its turnover. 
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ATP binding cassette transporter G1 (ABCG1) belongs to the ABC half-

type transporters and it is a 678-amino acid, 75.6-kDa integral protein. It 

has been proposed to act as homodimer in human and murine 

macrophages113. Other evidence has been suggested that ABCG1 may 

heterodimerise with ABCG4, as the proteins are closely related in amino 

acid sequence, and have nearly identical intron locations at their 

structural genes114. Like ABCA1, it is expressed in cholesterol loaded 

macrophages and seems to be active in cholesterol depletion, 

mediating its cellular efflux115. In cells, ABCG1 is expressed both in the 

plasma membrane and cytoplasmic compartment, and mediates the 

transport of cholesterol from cells to high density lipoprotein (HDL) but not 

to lipid-depleted apolipoprotein A-I. Moreover it has been suggested to 

be only a cholesterol transporter. 115  Conversely another study reported 

the ability of ABCA1 to mediate phospholipid cellular efflux (especially 

sphingomyelin) 116. Studies from the same research group have also 

suggested that the ABCG1-mediated efflux of cholesterol and SM is 

dependent on the cellular SM level and distribution of cholesterol in the 

plasma membrane117. It has been proposed that ABCA1 and ABCG1 

could efflux cholesterol in peripheral tissues by a synergistic relationship, 

where ABCA1 lipidates any lipid-poor/free apoA-I to generate nascent 

or pre-beta-HDL. These particles in turn may serve as substrates for 

ABCG1-mediated cholesterol export118. The transcription of ABCG1 is 

regulated by LXR/RXR system and the synthesis of oxysterols in 

macrophages seems to induce ABCG1 expression119. Moreoverit has 

been demonstrated that LXR activation induces redistribution of ABCG1 

from macrophage intracellular sites to the plasma membrane and 

increases cholesterol mass efflux to HDL in an ABCG1-dependent 

pathway120. Northern blot analyses showed abundant expression of 

ABCG1 protein in the liver, lung and spleen121, and dot blot analysis 
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revealed ubiquitous expression of ABCG1122.Several studies confirm 

significant ABCG1 mRNA expression in the brain. In situ hybridization 

studies in mouse brain indicate mRNA mRNA is widely expressed in both 

the ventricular and mantle zones of embryonic brains and in both gray 

and white matter of postnatal brains. ABCG1 was also found to be 

expressed in all cortical layers as well as in the striatum and thalamus, 

and in many different classes of neurons in the mouse CNS. qRT-PCR 

analysis and western blot analysis of human fetal brain cells indicated 

the highest ABCG1 expression in microglia followed by oligodendrocytes, 

neurons and astrocytes. (for review see123).  

 

Human ABCG5 was identified as the human homolog of the rodent 

isoform that was induced in the liver by treatment with LXR agonist, 

T0901317. ABCG5 is localized adjacent to ABCG8 on chromosome 2p21 

and seems to be coordinately regulated with ABCG8 through common 

regulatory elements (such as the nuclear receptor LXR). As consequence 

this 2 transporters have similar tissue- and cell-specific expression 

patterns124. ABCG5 and ABCG8 proteins act as heterodimeric 

transporter125, and are expressed at high levels in the canalicular 

membrane of hepatocytes, where they play an essential role in 

hepatobiliary cholesterol transport. It has been demonstrated that in 

Abcg5 Abcg8 (−/−) knockout mice biliary cholesterol concentrations are 

extremely low, compared with wild-type animals126. In addition, 

ABCG5/ABCG8 are expressed at lower levels in the apical membrane of 

enterocytes in small intestine and colon, where they limit the absorption 

of sterols from the lumen124, 127. It has been also shown that mutations in 

either ABCG5 or ABCG8 cause sitosterolemia, a rare autosomal recessive 

disorder characterised by accumulation of both plant-derived sterols 

(primarily sitosterol, but also campesterol, stigmasterol, and 

brassicasterol) and animal-derived sterol (cholesterol) in plasma and 
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tissues, leading to the development of xanthomas124, 128. Recent 

evidences seem to suggest that expression of the bile salt transporter 

ABCB4 is required for ABCG5/ABCG8-mediated biliary sterol secretion, 

suggesting that cholesterol excretion into bile requires bile salt micelles as 

cholesterol acceptor 129. 

 

 

 

Passive 

diffusion 

Figure 3 – Schematic representation of cellular cholesterol efflux (modified from130)  
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THE SECOND AND THIRD STEP OF REVERSE CHOLESTEROL 

TRANSPORT 

 

The nascent HDL particles undergo an intravascular process of 

maturation and remodeling through a several metabolic and enzymatic 

reactions. Initially, Lecithin cholesterol acyltransferase (LCAT) catalyzes 

the transfer of 2-acyl groups from lecithin to FC, generating CE (i.e. 

cholesteryl linoleate) and lysolecithin70. CE is more hydrophobic than FC 

and moves to the core of the lipoprotein particle, resulting in the 

modification of HDL particle shape. The discoidal preβ-HDL is transformed 

by LCAT activity in a more mature and spherical HDL (α-HDL)131. LCAT has 

been long proposed to play a critical role in promoting reverse 

cholesterol transport, by maintaining the correct cholesterol 

concentration gradient between cells and plasma HDL73. A defect in 

LCAT function would be expected to enhance atherosclerosis by 

interfering with this process. In a very recent review by Rader and 

Rothblat’ s group132, it has been suggested  that while LCAT is clearly 

important for HDL metabolism, it could have not such a critical role in 

macrophages reverse cholesterol transport132.  Moreover,  our group has 

recently demonstrated that serum from LCAT deficient patients show the 

same capacity of control serum to decrease the cholesterol content of 

cholesterol-loaded macrophages due to a higher efflux potential via 

ABCA1 133. HDL particles distribution appear strongly altered in carriers of 

LCAT gene mutation, being characterized by a reduced content in HDL2 

particles,  and by accumulation of preβ-HDL responsible for the greater 

ABCA1 mediated cholesterol efflux observed. The results from the study 

suggest that functional LCAT is not required for appropriate macrophage 

cholesterol depletion and RCT, since cell cholesterol can be taken up by 

discoidal preβ-HDL, and then delivered to the liver possibly through SR-

BI133. 
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In this intravascular stage of RCT, α-HDL particles undergo the activity of 

cholesteryl ester transfer protein (CETP). This enzyme is a hydrophobic 

glycoprotein, secreted by the liver and the adipose tissue that circulates 

in plasma bound to lipoprotein. CETP promote the transfer of cholesterol 

ester (CE) from HDL to LDL (only when hypertriglyceridemia is present, to 

VLDL69) in exchange for triglyceride (TG), and viceversa70. Low density 

lipoprotein return then to the liver and, interacting with LDL receptor 

release CE to hepatocytes. It has been suggested that the major part of 

HDL-CE follows this indirect pathway to be uptaken by the liver. However, 

the final step of RCT is mediated by other mechanisms, as occur in CETP 

deficient animals (e.g. mice). The most studied pathway of RCT involves 

the selective uptake of HDL-cholesterol by the hepatic SR-BI. SR-BI 

knockout mice have increased plasma HDL-cholesterol levels resulting 

from impaired hepatic uptake134, while hepatic overexpression of SR-BI 

reduced plasma HDL-cholesterol levels due to increased hepatic 

uptake135, 136. It has been demonstrated that overexpression of hepatic 

SR-BI in mice promoted macrophage RCT despite reduced plasma HDL-

cholesterol concentrations; conversely, ablation of SR-BI markedly 

reduced macrophage RCT despite increased plasma HDL-cholesterol 

concentrations137. Another mechanism proposed for the final step of RCT 

in the absence or disfunction of CETP, is the apolipoprotein E (apoE) 

enriched HDL pathway (HDLapoE). Since apoE is an effective ligand for 

LDLr, it has been proposed that HDLapoE could directly deliver CE to the 

liver interacting with LDLr138. 
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HDL PARTICLE CLASSIFICATION 
 

HDL is a class of heterogeneous lipoproteins containing characterized by 

high density (>1.063 g/mL) and small size (5–17 nm). Human HDLs contain 

two main apolipoproteins: apoA-I and apoA-II which account, 

respectively, for 70 and 20% of the HDL protein. There are also several 

minor apolipoproteins in HDL, including apoA-IV, the C-apolipoproteins, 

apoD, apoE and apoJ139, and apoM140. As mentioned above, by the 

action of different plasma and cellular factors HDLs undergo a 

continuous process of remodeling, leading to several HDL sub-

populations and fractions detectable in human blood. Several criteria 

can be used to classify HDL sub-fractions, depending on the different 

techniques for separation: 

 

• Electronic microscopy: spherical and discoidal particles 

• Density (d) gradient by ultracentrifugation:  

HDL2(1.063<d<1.125 gr/ml) and HDL3  (1.125<d<1.121 gr/ml) 

• Polyacrylamide gel separation (by size): 

HDL3c< HDL3b< HDL3a< HDL2a< HDL2b 

• Apolipoprotein composition:  

A-I HDL and A-I/A-II HDL 

• Agarose gel 2D electrophoresis:  

α, preβ and γ-migrating HDL  

 

HDL remodeling and metabolism consists of changement in lipids and 

apolipoprotein content and involves at least 10 different proteins: 

ABCA1, LCAT, SR-BI, CETP (see above), apoA-I, PLTP, LPL, HL, EL and 

cubulin140, 141. 
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Phospsholipid transfer protein (PLTP) transfers surface PL from VLDL and 

chylomicrons to HDL during TG lipolysis and accounts for most of the PL 

transfer in human plasma. PLTP remodels HDL particles into larger HDL 

particles by particle fusion, subsequently releasing apoA-I 142. Targeted 

disruption of PLTP in mice results in 60% reduction in HDL and apoA-I 

levels 143because of enhanced clearance of HDL particles. Human PLTP 

transgenic mice have increased levels of pre-β1 HDL, apoA-I and PL144. 

The role of PLTP in human pathophysiology has yet to be elucidated. 

Lipoprotein lipase (LPL) is secreted by many tissues of the body, mainly 

by adipose tissue and muscle. It is bound in the luminal surface of 

endothelial cells as homodimers to heparan sulfate proteoglycans and 

can be released by administration of heparin145. It mediates the 

hydrolysis of TG, transforming large TG-rich particles (VLDL, chylomicrons) 

into smaller TG-depleted remnant lipoproteins. Redundant surface lipid 

(FC, PL) and apolipoproteins are subsequently transferred from 

chylomicrons to HDL, increasing HDL-C and apoA-I plasmatic levels.141 

Like LPL, Hepatic lipase (HL) and endothelial lipase (EL) are two member 

of the TG lipase family141.  HL is synthesized by hepatocytes, and has 

greater activity against HDL than VLDL or chylomicrons. It converts large 

HDL2 particles into smaller HDL3 and lipid-poor apoA-I by TG hydrolysis. HL 

is most effective in hydrolyzing HDL if the HDL is TG enriched; 

hypertriglyceridemic conditions HL increases apoA-I catabolism and 

decreases HDL levels141. EL appears to have relatively more 

phospholipase activity than TG lipase activity and appears to have a 

greater preference for HDL over apoB-containing lipoproteins146.  

Levels of ApoA-I in plasma are strongly correlated with HDL levels. In 

agreement with the studies on HDL, low apoAI has been shown to be 

equivalent or better than low HDL cholesterol as a risk marker for 

atherosclerosis or cardiovascular events147, 148. Liver and intestine are the 

two major organs secreting nascent HDL as lipid-poor apoA-I or small 
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particles containing apoA-I and phospholipids and with pre-ß mobility 

on electrophoresis.  The newly secreted particles acquire additional 

cholesterol and phospholipids via ABCA1, forming pre-ß HDL. It is likely 

that pre-ß HDL particles are formed very rapidly when monomeric apoA-

I is exposed to cells.  

Although the liver is the central modulator of cholesterol homeostasis in 

the body and the major site of synthesis of apoA-I, this organ erroneously 

has not been considered as source of cholesterol for lipidation of 

circulating apoA-I and HDL biogenesis. 

Recent findings have shown that ABCA1 plays a key role in hepatic 

cholesterol efflux, inducing pathways that modulate cholesterol 

homeostasis in the liver, and establish the liver as a major source of 

plasma HDL-C. 149. By in vitro study it has also been demonstrated that 

ABCA1-dependent lipid efflux to apolipoprotein A-I mediates HDL 

particle formation and decreases VLDL secretion from murine 

hepatocytes150. Moreover, the idea of liver as a major organ for HDL 

synthesis is strongly supported by the demonstration that in mice with 

specific hepatic ABCA1 disruption lead to a decrease of 80% in HDL-C, 

while the decrease in HDL induced in full ABCA1-/- mice was of 95% 151.  
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APOLIPOPROTEIN E AND APOE KNOCK OUT MOUSE MODEL 
 

The apolipoprotein E (apoE) is a 34kDa glicoprotein contained in all 

lipoproteins other than LDL, whose physiological role consists in the 

regulation of lipoprotein metabolism. Plasma apoE is mainly produced by 

the liver (>75%) and the brain is the second major organ of its synthesis.  

Macrophages also synthesize apoE 152. This apolipoprotein accomplishes 

this function mainly by promoting the hepatic clearance of HDL, VLDL, 

IDL and chylomicrons through the binding with LDL and chylomicron-

remnant receptor153 and inhibiting trygliceride lipolysis154. ApoE 

deficiency (really rare in human) or mutation causes an impairment of 

lipoprotein plasma profile, leading to hypercholesterolemia, related to 

the accumulation of chylomicron remnants in plasma and early 

development of atherosclerosis155, 156.  Mice lacking apoE (apoE-/-) 

provided the first practical model of hyperlipidemia and atherosclerosis. 

ApoE-/- mice exhibit abnormal deposition of lipids in the proximal aorta 

and liver even at 3 months of age, indicating that the lack of this 

apolipoprotein is sufficient to initiate the atherogenic process. The lesion 

development and plaque composition in apoEKO mice is also similar to 

that in humans, establishing it as an excellent animal model for studying 

the pathogenesis of atherosclerosis. A small collection of foam cells that 

are tightly adhered to the aortic valve begin to appear in mice at about 

two months of age. With time the complexity of the lesion increases to 

have fibrous caps, a necrotic core of foam cell debris, cholesterol 

crystals and calcifications. Large advanced plaques are often 

associated with the thickening of medial and adventitial tissue, 

accompanied by chronic inflammation157. The proatherogenic alteration 

in lipoprotein composition derived from apoE deficiency in mice was well 

characterized by Zhang and colleagues158: marked increase in total 

cholesterol, significant reduction in HDL-C, moderate raise of 
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triglycerides. More specific characterization of lipoprotein structure lead 

to the discovery that apoE deficient causes not only a quantitative, but 

also a qualitative modification of lipoproteins: whereas in normal mouse 

plasma HDL migrates in alpha position and VLDL/LDL in pre-beta and 

beta position, in apoE deficient mouse plasma the distribution of lipids 

shifted towards the position where lipoproteins of lower density 

migrate158. Moreover, substantial alterations in apolipoprotein content 

and distribution in lipoproteins was observed: accumulation of 

Apolipoprotein A-I (apoA-I), A-IV and B-48 in VLDL. Interestingly, the total 

amount of apoA-I is not different between normal and apoE deficient 

mice.  
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ACAT ENZYMES: STRUCTURE, TISSUE DISTRIBUTION AND 

FUNCTION 

ACAT stands for acyl-conzyme A:cholesterol acyltransferase and is an 

integral membrane enzyme located in the endoplasmic reticulum (ER) in 

a variety of cells and tissues. It catalyzes the synthesis of cholesterol esters 

(CE) conjugating a free cholesterol (FC) molecule and a fatty acyl-

CoA159. Approximately 15 years ago, two different ACAT genes (Soat1 

and Soat2) encoding for the two different ACAT enzymes (ACAT1 and 

ACAT2) have been identified. Soat1 was first identified in 1993 thanks to 

its ability to functionally complement the ACAT deficiency of a Chinese 

hamster ovary (CHO) cell mutant160. Some years later the first description 

of the effect of ACAT1 gene disruption in mice foreshowed the 

subsequent identification of a second ACAT enzyme161: these ACAT1-/- 

mice showed essentially normal hepatic cholesterol esters 

concentration, synthesis rate and response to ACAT inhibitors161. In 1998 

the Soat2 gene was simultaneously identified in monkeys, mice and 

humans162-164. Whereas the two protein isoforms catalyse the same 

chemical reaction, it has become clear that the apparent physical 

structure of the protein and the physiological role in cholesterol 

metabolism are different from one another165. Both ACAT1 and ACAT2 

are membrane-bound enzymes predicted by computer models to have 

as many as 8 transmembrane domains for ACAT1 and 7 for ACAT2162. 

Membrane topology studies have been performed by two research 

groups reporting different models for insertion of ACAT enzymes into and 

across ER.  Joyce et al. showed that ACAT1 and ACAT2 used 5 

transmembrane domains (3 of those were the same one for both 

enzymes) with serine residues essential for the activity (Ser269 and Ser249 for 

ACAT1 and ACAT2 respectively). Interestingly the developed topology 

model placed Ser269 on the cytoplasmic side of ER membrane, whereas 
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the analogous serine in ACAT2 was positioned in the ER lumen166. In other 

studies by Lin et al. 7 transmembrane domains were predicted to be 

used for ACAT1, while only 2 were predicted to be used in ACAT2167, 168. 

Different methodologies were used by the two groups, and nowadays it 

still not clear which model for the insertion of these proteins into and 

across the membrane might be correct, but both studies suggested 

fundamental structural differences between the 2 enzymes. This is 

consistent with the understanding that has been progressed from the 

discovery of the two ACAT isoforms, and that has clearly demonstrated 

their different tissue distribution and physiological function. ACAT1 mRNA 

is ubiquitously expressed in mammalian tissues: expression levels are 

highest in the adrenals glands, macrophages and sebaceous glands160, 

169, 170. Studies on non human primates indicated that ACAT1 expression 

was greatest in globet cells and interstitial macrophages of the small 

intestine, Kupffer cells of the liver, adrenocortical cells, and in cells of 

Bowman’s capsule and distal tubules in kidney171. In mice, this isoform is 

expressed at the highest level in macrophages, adrenocortical cells, 

dermal sebaceous glands and preputial glands169, 170.  Conversely, 

ACAT2 is expressed only in small intestine and liver, as demonstrated by 

studies in adult nonhuman primates4 (where the expression of ACAT2 

protein has shown to be limited to only 2 cell types, small intestinal 

enterocytes and hepatocytes171) and mice163. For several years the only 

available ACAT1 and ACAT2 localization data in human claimed that 

ACAT2 was not located in the hepatocytes of the adult liver164, 172, 173. As 

in animals, ACAT1 was demonstrated to be highly expressed in human 

atherosclerotic lesion174, in macrophages and hormone producing cell17, 

but conversely with animals171, ACAT1 was suggested to be the major 

enzyme present both in human hepatocytes and Kupffer cells, 172, 175. In 

2004 Parini at al. clearly demonstrated by that as in animals, also in the 

adult human liver ACAT2 was expressed in the ER of all hepatocytes, 
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whereas ACAT1 was only detectable within Kupffer cells176. Interestingly, 

samples analyzed in this study were snap-frozen human liver biopsy 

taken at the time of the surgery for gallstone removal, and not post 

mortem tissues as in the previous studies. Studies on the 5’-untranslated 

region of human ACAT2, from the same research group, have identified 

the hepatic nuclear factor 1 (HNF1) as one of the main transcription 

factor of this enzyme in hepatocytes elucidating the mechanisms that 

control the liver-specific expression of the human ACAT2 gene177.  In vitro 

it has been shown the possibility to find both ACAT1 and ACAT2 

expressed in HepG2 cells and Caco2 cells and some have claimed that 

isolated hepatocytes may contain both ACAT enzymes172, 173 and 

macrophages may express both178, but evidence support the fact that in 

mammals enterocytes and hepatocytes are the only 2 cell types to 

abundantly express ACAT2 without expressing detectable amount of 

ACAT1.  Both ACAT1 and ACAT2 seem to be not expressed in a 

physiological settings in the same cell types in any tissue of the body80.  

Hence, the various types of studies performed on acyl-conzyme 

A:cholesterol acyltransferase (see above)  generally support the 

likehood that ACAT1 and ACAT2 are structurally different enzymes, 

localized in different cell types, and have separate physiologic functions 

in cholesterol metabolism pathway80 (see figure 4): ACAT1, found in 

highest quantities in tissues that store cholesterol esters in cytoplasmic 

lipid droplets (i.e. maprophages), is suggested to provides essential 

“housekeeping” functions to prevent free cholesterol-induced 

cytotoxicity, in response to excessive cholesterol availability within the 

cells, and presumably to the needs of membrane function. Conversely 

ACAT2, confined in hepatocytes and small intestine enterocytes, 

synthesize cholesterol esters (mainly oleate and palmitate) that may be 

incorporated into lipid storage droplets (from which FC can be 

 41 



regenerated) or incorporated into apoB-containing lipoproteins and 

secreted into plasma80.  

 

 

 

Figure 4 - Diagram of the separate roles of ACAT1 and ACAT2 in cholesterol metabolism 

in the liver, enterocyte, and macrophages within the artery wall (from80) 
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SPECIFIC ACAT2 INHIBITOR TO RETARD ATHEROSCLEROSIS: MAY 

BE THE FUTURE? 

After the discovery of the ACAT reaction, inhibitors of intracellular 

esterification as a means to prevent the arterial CE accumulation in 

atherosclerosis have been experimentally investigated for two decades. 

Because FC can be fluxed out from cells and incorporated in HDL, the 

rational to inhibit ACAT activity was that altering the intracellular 

cholesterol balance in favor of FC production would promote more 

efficient cholesterol efflux, activation of RCT, and deflation of 

atheroma179. A second rational for ACAT inhibition therapy approaches 

was to decrease hepatic and intestinal CEs formation, resulting in 

decreases in plasma levels of apoB-containing lipoprotein: thus the 

incorrect identification of ACAT1 as the exclusive esterifying enzyme in 

human liver172, 175 has generated incorrect physiologic models, which in 

part have contributed to wrong therapeutic approaches aimed to 

unspecific inhibition of ACAT1 and ACAT2 (see editorial179). In the clinical 

settings, ACAT inhibitors available failed the aim to retard atherosclerosis: 

this is the result demonstrate by two different clinical trials, the Avasimibe 

and Progression of Lesion on Ultrasound (A-PLUS) study, and the more 

recent ACAT Intravascular Atherosclerosis Treatment Evaluation 

(ACTIVATE) trial180, 181. As suggested by Fazio and Linton179, regarding the 

ACTIVATE outcomes, “A bold conclusion cab be drawn from the study 

by Nissen et al.: non selective ACAT inhibition in an ineffective 

antiatherosclerosis therapy and is probably harmful.” As already 

mentioned it has been demonstrated that, as in animals ACAT2 is the 

predominant cholesterol esterifying enzyme in the liver and seems to 

exclusively take part in the synthesis and secretion of CE in apoB-

containing lipoprotein, conversely to ACAT1 confined in Kupffer cells176. 

For this reason ACAT2 has been proposed as a new potential 
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therapeutic target for prevention of CVD80. Much key information has 

been learned from animals models with gene deletion of either ACAT1 or 

ACAT2. It has been demonstrated that the marked alteration in 

cholesterol homeostasis caused by ACAT1 disruption led to massive 

deposition of unesterified cholesterol in mouse skin and brain182, 183. 

Moreover, macrophages lacking ACAT1 increased atherosclerosis in 

mice with dyslipidemia, probably owing to toxic effect of free cholesterol 

and to apoptosis of macrophages in the vessel wall184, and ACAT 

unspecific pharmacological inhibition has been shown to promote rather 

than decrease atherosclerosis in mice and rabbits185. Thus, it has been 

suggested that inhibition of ACAT1 enzyme should not be aim at80. On 

the contrary, deletion of ACAT2 has been consistently atheroprotective. 

Atherosclerosis in ACAT2 deficiency was first studied in apoE/ACAT2 

double knockout mice (for review see80). ApoE/ACAT2 double knockout 

mice had greatly reduced levels of aortic atherosclerosis compared to 

the apoE single knockout controls. The lipid core of plasma apoB-

containing lipoproteins of apoE/ACAT2 double knockout mice consisted 

almost entirely of triglycerides with extremely low levels of CE. The plasma 

levels of apo-B were unchanged, suggesting that the amount of ACAT2-

derived CE present in the lipoprotein core was of vital importance. The 

protection from atherosclerosis in ACAT2 deficient mice has also been 

established in animals challenged with diets containing different fatty 

acids (FA). Regardless of the FA present in the diet (i.e n-trans FA and 

saturated FA) animals deficient for ACAT2 did not develop 

atherosclerosis186. Thus, ACAT2 plays an essential role in facilitating 

dietary fat type-specific atherosclerosis. A successful protection from 

atherosclerosis has also been obtained by decreasing the activity of 

hepatic ACAT2 in mice injected with anti-sense oligonucleotide therapy, 

which interferes with and reduces ACAT2 mRNA187. Using the same 

therapeutic approach, depletion of hepatic ACAT2 activity in mice also 
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revealed a non-biliary route for fecal cholesterol excretion188. In non-

human primates the atherogenic role for ACAT2 has been established. 

For many years, it was recognized that plasma low density lipoproteins 

(LDL) enriched in ACAT2-derived CE (cholesteryl oleate and cholesteryl 

palmitate) accumulate in the plasma of monkeys that are more 

susceptible to the development of the coronary artery atherosclerosis 

(for review see80). Subsequently, observations were made that during 

liver perfusion, the secretion rate of CE was highly correlated to the 

extent of coronary artery atherosclerosis and to the CE enrichment of 

plasma LDL, indicating a direct correlation between hepatic ACAT2 

activity and atherogenesis. In humans, several publications showed that 

higher proportions of CE derived from ACAT2 are associated with a 

increased incidence of complications from CVD80. Moreover in the 

Atherosclerosis Risk in Communities (ARIC) study, Ma et al. 189 found in 

both men and women (2872 participants) that the average carotid 

intima-media thickness (IMT) was associated significantly and positively 

with the proportion of ACAT2 derived cholesterol. Furthermore also in the 

ULSAM study, a positive association between ACAT2 derived CE 

(cholesteryl palmitate and oleate) and CVD death has been 

identified190. 
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Apolipoprotein E is a plasma protein that serves as a ligand for low 

density lipoprotein reptors. Through its interaction with these receptors, 

apoE participates actively in the transport of cholesterol and other lipids 

among various cells of the body191. Hence, apoE has been suggested to 

act as an important key-player in several critical step of the lipoprotein 

metabolism pathway. Mice lacking this apolipoprotein develop early 

and spontaneously atherosclerotic plaques. Thus, apoE-/- mice provide 

the first and one of the most useful models to study hyperlipidemia and 

atherosclerosis157. 

 

Acyl-conzyme A:cholesterol acyltransferase 2, confined in hepatocytes 

and small intestine enterocytes, synthesize cholesterol esters (mainly 

oleate and palmitate) that are incorporated into apoB-containing 

lipoproteins and secreted into plasma80. In human there are several 

indication that ACAT2-derived cholesteryl esters accumulate in plasma 

in association with coronary heart disease. In monkeys and mice, this 

accumulation has also been highly correlated with increased 

atherosclerosis80. 

 

The general aim of this work was to investigate the molecular 

mechanisms involved in lipoprotein metabolism and lipid homeostasis 

trying to further clarify the role played by these two proteins. 

Specific aim 1:  

Beyond the influence on plasma lipoprotein profile, it has been 

demonstrated that promotion of cholesterol release from foam cells is 

clearly secondary to apoE expression and secretion in macrophages, the 

most important cholesterol accumulating cells in atherosclerosis192.  Thus, 

the deletion of apoE in mice may produce an atherogenic phenotype 

also because of an impaired mobilization of cholesterol from 

macrophages. Hence, we could expect a possible negative effect on 
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the process of reverse cholesterol transport in apoE-/-. To verify this 

hypothesis we measured the macrophagic RCT in this mouse model of 

atherogenesis. 

Specific aim 2: 

Disruption ACAT2 in mice has lead to an increased triglyceride content in 

VLDL particle and to a diminished trigliceride content in the liver80. These 

findings may involve a LXRs stimulation resulting from the increased free 

cholesterol levels inside hepatocyte, as consequence of ACAT2 

deficiency. It has been extensively demonstrated that the liver x 

receptors, for which different oxysterols serve as ligand, are key players in 

the regulation of lipoprotein ad lipid metabolism. By regulating the 

expression of SREBP-1c, ACC, FAS and SCD-1, LXRs influence metabolism 

of fatty acids, triglycerides, and triglycerides rich lipoprotein. Moreover, 

similarly to what can be conceived for triglycerides secretion into VLDL, 

disruption of ACAT2 could lead to an increase in ABCA1 expression in 

hepatocytes, resulting in greater cholesterol efflux into nascent HDL.  

Thus, the aim of this part of the work was to further investigate the effect 

of specific hepatic ACAT2 knock down in mice by means of anti-sense 

oligonucleotide therapy (ASO6), trying to unmask a possible effect 

mediated by LXR stimulation and to unmask  a possible link between 

ACAT2 and HDL synthesis in mice. 
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Animals and experimental design 

IN VIVO REVERSE CHOLESTEROL TRANSPORT STUDY 

10 apoE-/- (B6.129P2-Apoetm1Unc/J) mice  and 10 C57Bl/6 (WT) mice 

(about10 week older) were used as MPM donors. Macrophagic RCT was 

quantified in apoE-/- (B6.129P2-Apoetm1Unc/J) (n=5) mice  and  C57Bl/6 

(WT) mice (n=5) as described below. 

 

ASO6 STUDY 

Male C57Bl/6 (WT) mice and male LXRa/b double knock-out (LXR doko) 

mice (on a pure C57Bl/6 genetic background) were treated for 4 weeks 

with twice a week injection (7 animals/group) of: 

– anti-sense oligonucleotide (ASO) specifically targeted to the 

hepatic ACAT2 gene (ASO6) – 25 mg/kg 

– ASO bearing a non-sense sequence (Ctrl) – 25 mg/kg  

4 weeks prior start and for all the duration of the experiment, animals 

were fed with 10% SAT (cal) and 0.2% cholesterol (w/w) diet. Animals 

were fasted for 4 hrs prior sacrifice. 

 

Quantification of Macrophagic RCT in-vivo 

Macrophagic RCT in vivo was evaluated as previously described193, but 

using murine peritoneal macrophages (MPM) instead of J774 

macrophages. After MPM harvesting, cells were incubated for 48 hours 

with [3H]-cholesterol (5 µCi) and AcLDL (100 µg/ml). Subsequently, MPM 

from wild type mice were intraperitoneally injected into wild type mice 

(WT/WT), and macrophages from apoE-/- mice were injected into apoE-

/- mice (apoE/apoE).  Mice were successively separated into individual 

cages, and  after 48 hours from the injection mice were sacrificed and 

blood and liver were collected. Plasma was separated and counted in a 

β-counter. Livers were extracted by Bligh and Dyer method and counted 

by liquid scintillation addition. Feces were collected at 24 h and 48 h 
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after the injection of radiolabeled cells extracted by the Bligh and Dyer 

method, and counted  by liquid scintillation addition. 

 

Evaluation of plasma efflux potential 

Mice were sacrificed and blood was collected from the heart, 

recovered in plastic tubes and anticoagulated with sodium citrate 3.8% 

(1 part citrate:9 part blood). Plasma was isolated by low speed 

centrifugation and stored at -80°C until use. Aliquots of plasma were 

used as acceptors in cholesterol efflux experiments. 

 

Measurement of passive diffusion and ABCA1-mediated cell cholesterol 

efflux 

Efflux by passive diffusion was measured using control J774 

macrophages. ABCA1-mediated cholesterol efflux was measured using 

control J774 macrophages and J774 macrophages treated with cpt-

cAMP to upregulate ABCA1194. Cells were grown in RPMI with 10% FCS, 

incubated at 37°C, 5% CO2, seeded in 12-well plates and utilized at 80-

90% of confluence. Monolayers were washed with PBS and incubated for 

24 h in medium containing [3H]cholesterol (4 μCi/ml). The labeling 

medium contained 1% FCS and 2 μg/ml of an ACAT inhibitor. Following 

24 h labeling period, cells were washed and incubated with 0.2% BSA, 

with or without 0.3 mM cpt-cAMP for 18 h. After this incubation, some 

wells were washed with PBS, dried, and extracted with 2-propanol; these 

cells provide baseline (time 0) values for total [3H]cholesterol content. 

Stimulated and unstimulated monolayers containing [3H]cholesterol were 

washed with PBS and incubated for efflux time (4 h) in the presence of 

2% (v/v) serum Cell media were centrifuged to remove floating cells, and 

radioactivity in the supernatant was determined by liquid scintillation 

counting. Cholesterol efflux was calculated as: (cpm in medium at 4h / 

cpm at time 0) x 100. The ABCA1-mediated cholesterol efflux was 
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calculated as the percentage efflux from stimulated J774 macrophages 

minus the percentage efflux from unstimulated J774 cells. 

 

Measurement of ABCG1-mediated cell cholesterol efflux 

CHO-K1 cells stably expressing hABCG1 were generated as previously 

described118. Parent and hABCG1-expressing cells were labeled for 24 h 

with [3H]-cholesterol, washed, and equilibrated for 90 minutes in serum-

free medium, then incubated in efflux medium containing BSA (1 

mg/mL) in the presence of 2% (v/v) serum for efflux time (6 h). Cell media 

were centrifuged to remove floating cells and cells were lysed in 0.1% 

(v/v) Triton X-100. Cells and media were assayed for radioactivity and 

cholesterol efflux in medium samples calculated as a percentage of 

total cholesterol (cells plus medium) in the culture. The ABCG1-mediated 

cholesterol efflux was then calculated as the difference between the 

percentage efflux from transfected cells minus the percentage efflux 

from CHO-K1 parent cells. 

 

Measurement of SR-BI-mediated cell cholesterol efflux 

SR-BI-mediated cholesterol efflux was measured using Fu5AH rat 

hepatoma cells, a stable highly SR-BI-expressing cell line195. Cells were 

seeded in 12-well plates and grown in DMEM medium with 5% FCS for 2 

days, and labeled with 4 μCi/ml [3H]cholesterol for 24 h in medium with 

1% FCS and 2 μg/ml of an ACAT inhibitor, to ensure that all labeled 

cholesterol was present as free cholesterol. Cells were then incubated for 

18 h with 0.2% BSA. After this incubation, some wells were washed with 

PBS, dried, and extracted with 2-propanol; these cells provide baseline 

(time 0) values for total [3H]cholesterol content. Cells were then washed 

with PBS and incubated in the presence of 2% (v/v) serum for efflux time 

(4 h). Cell media were centrifuged to remove floating cells, and 

radioactivity in the supernatant was determined by liquid scintillation 
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counting. Cholesterol efflux was calculated as: (cpm in medium at 4h / 

cpm at time 0) x 100. 

Antisense Oligonucleotides 

The 20-mer phosphorothioate oligonucleotides containing 2’-0- 

methoxyethyl groups at positions 1 to 5 and 15 to 20 with sequences 

targeted to mouse ACAT2. The sequences of these ASOs are as follows: 

ASO 6: 5’-TTCGGAAATGTTGCACCTCC-3’; ASO control: 5’-

GTCGCTCAACATCTGAATCC-3’. The ASO control is not complementary 

to the ACAT2 sequence and does not hybridize with any specific gene 

target.  

ASOs were obtained from ISIS Pharmaceuticals, Carlsbad, CA, USA, by 

means of a collaboration. 

 

Plasma lipoprotein profile  

Plasma lipoproteins were separated by size exclusion chromatography, 

and the total cholesterol, free cholesterol, triglyceride content were 

determined by a system for on-line detection 196 

 

Hepatic lipid analysis 

Liver and extracted in chloroform-methanol (2:1, v/v). 7α-hydroxy-4-

cholesten-3-one (C4) levels were determined in liver lipid extract by the 

LC-MS/MS method with 2H6-labelled C4 as internal standard as previously 

described197. Hepatic total cholesterol , cholesterol ester , free 

cholesterol , triglyceride  mass was measured in liver lipid extracts using 

enzymatic assays as described previously188, 198. Protein content was 

determined according to Lowry's method.  

 

Relative RNA expression level measurements 

Hepatic total RNA was extracted with Trizol® (Invitrogen, Carlsbad, CA) 

and reverse-transcribed into cDNA (High Capacity cDNA Reverse 
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Transcription kit, Applied Biosystem). Real-time quantitative PCR assays 

were performed in triplicate using SYBR-Green (Power SYBR Green Master 

PCR master mix, Applied Biosystem). Primers (primer sequences are 

available on request) were designed using Primer Express 2.0, all with 

sequences crossing exon-exon boundaries. Data were calculated by the 

delta-Ct method, expressed in arbitrary units, and were normalized by 

the signals obtained from the same cDNA for endogenous gene mRNA 

expression. 

 

Western Blot analysis 

3 increasing amounts of liver membranes from each mouse sample were 

separated on a NuPage 3-8% Tris-Acetate gel (Invitrogen) and then 

transferred onto nitrocellulose membranes (Invitrogen). After blocking in 

5% nonfat dry milk in PBS-T (PBS with 0.1% Tween-20), the nitrocellulose 

membranes were incubated overnight at 4°C with rabbit primary 

antibody in 5% nonfat milk powder in PBS-T. After washing with PBS-T, 

secondary antibody HPR-conjugated was added for 2 hours. The signals 

were detected using the SuperSignal chemiluminescence kit (Pierce 

Biotechnology, Inc., Rockford, IL) and a Fuji BAS 1800 analyzer (Fuji Photo 

Film Co.) and quantified by Image Gauge software (Science Lab 98, 

version 3.12; Fuji Photo Film Co.). 

 

 

Liver membrane preparation 

Liver samples (200mg) were homogenized in 3-mL ice-cold buffer 

containing 20mM Tris-HCl, 0.25 M sucrose, and  2mM MgCl2. A protease 

inhibitor cocktail (complete MINI Roche diagnostic) was added to the 

buffer before homogenization. The homogenate was then centrifuged 

for 10 minutes at 2000xg (4°C) to remove fats. The resulting intermediate 

phase was centrifuged for 45 minutes at 32000rpm by Beckman 
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Ultracentrifuge XL-70. The pellet from this spin was resuspended in 100 µl 

of Lysis Buffer containing 80 mM NaCl, 50 mM Tris-HCl, 2 mM CaCl2, 1% 

TritonX-100  and protease inhibitor cocktail, and immediately frozen at –

80°C.  

 

Isolation of microsomes and enzymatic analysis 

Liver samples (50 to 150 mg) were homogenized in 3-mL ice-cold buffer 

containing 0.1 mol/L K2HPO4, 0.25 mol/L sucrose, and 1 mmol/L EDTA, pH 

7.4. A protease inhibitor cocktail (Sigma) was added to the buffer before 

homogenization. The homogenate was then centrifuged for 15 minutes 

at 12 000g (4°C) to remove cell debris. The resulting supernatant was 

centrifuged for 60 minutes at 100 000g. The microsomal pellet from this 

spin was resuspended in 0.1 mol/L K2HPO4 at pH 7.4 and immediately 

frozen at –80°C.  

For Western blot analyses, 100 µg of microsomal protein was analyzed 

after suspension in protein solubilization buffer (120 mmol/L Tris, pH 6.8; 

20% glycerol, 4% sodium dodecyl sulfate, and bromophenol blue). 

Dithiothreitol was added to a final concentration of 100 mmol/L, and 

samples were incubated at 37°C for 30 minutes. Separation and blotting 

were performed as described earlier with the antibodies made against 

monkey enzyme N-terminal sequences199. Detection was accomplished 

by chemiluminescence, with exposure times being adjusted to maximize 

band intensity.  Total ACAT enzymatic activity was determined with 

hepatic microsomes as previously described200, except preincubation 

included a cholesterol-saturated solution of ß-hydroxypropyl cyclodextrin 

for 30 minutes before addition of 14[C]oleoyl Co-A. In separate tubes, 

pyripyropene A, a specific ACAT2 inhibitor201, was included in the 

preincubation and reaction mixture at a concentration of 5 µmol/L to 

separately identify ACAT1 (uninhibited) and ACAT2 (total–ACAT1) 

activities.  
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2D gel electrophoresis 

Plasma HDL subclasses were separated by 2D electrophoresis, in which 

agarose gel electrophoresis was followed by non denaturing 

polyacrylamide gradient gel electrophoresis and subsequent 

immunoblotting202. In the first dimension, plasma (5 μl) was run on a 0.5% 

agarose gel; agarose gel strips containing the separated lipoproteins 

were then transferred to a 3-20% polyacrylamide gradient gel. 

Separation in the second dimension was performed at 30mA for 4 hours. 

Fractionated HDL were then electroblotted onto a nitrocellulose 

membrane and detected with an anti apoA-I antibody. 

 

Statistical analysis 

RCT and efflux results were analyzed by Student’s t test with the use of 

GraphPad Prism Software, San Diego, CA. Efflux data are reported as 

means of triplicates ± S.D.  Significance of differences in ASO6 study was 

determined for each group of values by 2-way ANOVA using Statistica 

7.0 software, StatSoft Inc., Tulsa, USA. A P value less than 0.05 was 

considered significant. 
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REVERSE CHOLESTEROL TRANSPORT STUDY 

 
By means of a method that has been widely applied to physiological 

and pharmacological studies193, 203,  we tested the mobilization of 

radiolabeled cholesterol from macrophages, injected into the 

peritoneum of recipient mice, to plasma, liver and feces to evaluate the 

role of apoE in the antiatherosclerotic process of RCT in vivo.  In the first 

experiment, macrophages from wild type mice were injected into wild 

type mice (WT/WT), and apoE deficient macrophages were injected into 

apoE-/- mice (apoE/apoE). 48 hours after injection of MPM apoE/apoE 

showed an higher content of [3H]-cholesterol in plasma compared to 

WT/WT (FIGURE 5 (A)). Plasma total cholesterol measured by colorimetric 

method was 5 fold increased in apoE deficient mice compared to wild 

type (35.44±8.71mg/dl vs 175.43±27.39 mg/dl in WT/WT and apoE/apoE 

mice respectively).  An opposite trend was observed for [3H]-cholesterol 

measured in liver and faeces, since samples from apoE-/- mice showed a 

dramatic reduction of tracer compared to wild type (FIGURE 5 (B)/(C)). 

Total RCT, calculated as the sum of cholesterol mobilized from 

macrophages and thus detected in plasma, liver and feces, was higher 

in WT/WT mice (5.38% ±0.74vs 3.97% ±1.11Student’s t test p=0.05). These 

data indicate that reverse cholesterol transport is impaired in absence of 

apoE. 

To further investigate the role of apoE in the RCT and particularly its 

involvement in the first step, plasma from WT/WT or apoE/apoE  mice was 

tested as cholesterol acceptor. This assay was performed in different cell 

models, in order to investigate the specific mechanism of efflux involved.  
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FIGURE 5 -  Macrophage-specific RCT in vivo: Macrophage-derived [3H]-cholesterol in 
plasma (A), liver (B) and feces (C). Aliquots of plasma were counted in a β-counter. 
Samples of hepatic tissue and feces were extracted by Bligh and Dyer method in order 
to isolate the sterol fraction. Quantification of radioactivity content was performed by 
liquid scintillation counting. Results were expressed as amount of radioactivity in whole 
plasma, liver or total feces. Student’s t test *p<0.05, **p<0.01, ***p<0.001. 

 

 

 59 



The evaluation of SR-BI-mediated efflux was assessed in rat hepatoma 

Fu5AH cells, where high amounts of this transporter are naturally 

present195. The incubation of these cells for 4 hours with 2% plasma from 

apoE/apoE promoted more efficient release of cholesterol than plasma 

from WT/WT (FIGURE 6).  
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FIGURE 6 – Plasma efflux potential by SR-BI mediated mechanism: Fu5AH were 
radiolabeled with [3H]-cholesterol, equilibrated in an albumin-containing medium and 
exposed to 2% plasma for 4h. Efflux was expressed as cpm in medium/cpm To*100. 
Student’s t test *p<0.05 
 

 

A similar trend was observed when passive diffusion- and ABCG1-

mediated cholesterol efflux were evaluated, respectively in J774 

macrophages and CHO cells (FIGURE 7 and FIGURE 8). Conversely, no 

difference in the capacity of plasma from WT/WT and apoE/apoE mice 

to drive lipid release by ABCA1 was observed (FIGURE 9).Taken together 

these results suggest that the deletion of apoE in mice, impairs the RCT in 

vivo in spite of an increase in plasma efflux potential.  
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FIGURE 7 - Plasma efflux potential by acqueous passive diffusion: J774 macrophages 
were radiolabeled with [3H]-cholesterol, equilibrated in an albumin-containing medium 
and exposed to 2% plasma for 4h. Efflux was expressed as cpm in medium/cpm To*100. 
Student’s t test *p<0.05 
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FIGURE 7 - Plasma efflux potential by ABCG1 mediated mechanism: Parent and 
hABCG1-expressing CHO cells were radiolabeled with [3H]-cholesterol, equilibrated in 
an albumin-containing medium and exposed to 2% plasma for 4h. The ABCG1-
mediated cholesterol efflux was then calculated as the difference between the 
percentage efflux from transfected cells minus the percentage efflux from CHO parent 
cells Efflux was expressed as cpm in medium/cpm To*100. Student’s t test *p<0.005 
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FIGURE 9 - Plasma efflux potential by ABCA1 mediated mechanism: J774 macrophages 
were radiolabeled with [3H]-cholesterol, equilibrated in an albumin-containing medium 
in presence of cpt-cAMP 0.3mM and exposed to 2% plasma for 4h. Efflux was expressed 
as cpm in medium/cpm To*100.  
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ASO6 STUDY 
 
We initially measured the SOAT2 mRNA levels in the liver by RT-PCR, and 

the expression of ACAT2 protein in liver microsomes by western blot 

analysis. As expected, ASO6 led to a reduction of ACAT2 both at mRNA 

and protein levels, in both WT and LXR double knockout mice (FIGURE 

10).  Analysis of ACAT2 activity in liver microsomes showed a significant 

reduction in both animal strains treated with ASO6 (Student’s t test 

p<0.001), while ACAT1 activity was not affected by the anti-sense 

oligonucleotide treatment (FIGURE 11). It should be pointed out that the 

ACAT1 activity observed in the hepatic microsomal fraction is the 

contribution of 

Kupffer cells present in the liver:  ACAT1 is confined  only to these cells 

whereas ACAT2 only to hepatocytes (for review see80). LXRα mRNA 

expression in the liver was slightly decreased in WT mice treated with 

ASO6 (p<0.05), while LXRβ expression was not affected by ACAT2 

disruption. As expected both LXR genes were absent in LXR DOKO mice. 

(FIGURE 12 ) 
 

 

FIGURE 10 – Effect of ASO6 treatment on ACAT2 mRNA and protein expression in the 
liver: mRNA expressions were analyzed by real-time RT-PCR. Data are standardized for 
TFIIB mRNA expression and normalized to WT Ctrl. 2-way ANOVA, ***p<0,001. Western 
blot analysis was performed on liver microsomes as described in methods. 
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FIGURE 11 – Effect of ASO6 treatment on ACAT2 and ACAT1 activity in liver microsomes 
(for details see methods). Student’s t test ***p<0.001 
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FIGURE 12 – Effect of ASO6 treatment on LXRα and LXRβ gene expression in the liver: 
mRNA expressions were analyzed by real-time RT-PCR. Data are standardized for TFIIB 
mRNA expression and normalized to WT Ctrl. 2-way ANOVA, *p<0.05 ***p<0.001.  
 

 

 

 

PLASMA LIPOPROTEIN PROFILE 

The analysis of plasma lipoprotein fractions revealed that ASO6 led to a 

slight increase in HDL-total cholesterol and to a clear increase in HDL-free 

cholesterol content. The latter was more pronounced in LXR DOKO mice 

(FIGURE 13 (A)/(B)).  Serum triglycerides were increased in apoB-

containing lipoprotein fraction by ACAT2 down-regulation, and this 

effect was clearly not LXR-dependent (FIGURE 13 (c))  
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FIGURE 13 – Plasma lipoprotein profile: (A) Total cholesteol, (B) Free cholesterol, (C) 
Triglycerides. Plasma lipoproteins were separated by size exclusion chromatography, 
and the TC, FC, TG content were determined by a system for on-line detection 196 
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LIVER LIPID COMPOSITION 

Hepatic total cholesterol content was about 4 fold higher in LXR DOKO 

mice than in WT (390.04 ± 38.8 mg /gr Protein vs. 92.21 ± 8.44 mg/gr 

Protein, n=6,  2-way ANOVA p<0.001). ASO6 treatment lead to a 71% and 

24% decrease of hepatic TC in WT and LXR DOKO mice, respectively 

(FIGURE 14 (A)) ACAT2 down-regulation did not affect the hepatic free 

cholesterol content both in WT and LXR DOKO mice.  The latter showed a 

significantly increased FC amount compared to WT (FIGURE 14 (B)). Also, 

cholesteryl ester levels were 4.6-fold higher in the liver of LXR DOKO mice 

than in WT.  In WT mice, ASO6 treatment reduced hepatic CE levels by 

90%, while only a 29% reduction was observed in LXR DOKO mice 

receiving ASO6 (FIGURE-14 (C)). In WT mice hepatic TG were about 7.5 

fold higher than in LXR DOKO. ACAT2 down-regulation lead to a modest 

reduction in hepatic TG content (22% and 38% reduction in WT and LXR 

DOKO mice respectively). (FIGURE-14 (D)).   
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FIGURE 14 – Effect of ASO6 treatment on liver lipid composition. Hepatic total cholesterol 
, cholesterol ester , free cholesterol , triglyceride  mass was measured in liver lipid 
extracts by enzymatic assays. 2-way ANOVA, *p<005, ***p<0.001 
 

 

ANALYSIS OF HEPATIC GENE AND PROTEIN INVOLVED IN LIPID 

HOMEOSTASIS  

Down-regulation of hepatic ACAT2 activity by ASO treatment should 

affect to the pool of free cholesterol that can signal to and determine a 

down-regulation of the SREBP-system. This indeed led to down regulation 

of the expression of the gene limiting cholesterol synthesis, but only in WT 

mice. If no differences in hepatic expression of 3-hydroxy-3-methyl-

glutaryl-CoA reductase and synthase between the two different 

genotypes, ASO6 treatment lead to reduction of mRNA expression of 
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these two genes only in WT  mice (FIGURE 15 (A)/(B)). A similar trend was 

observed also for LDLr and PCSK9 mRNA: significant reduction induced 

by ACAT2 down-regulation was shown in WT group, while in LXR DOKO 

mice no statistically significant effects were seen (FIGURE 15 (C)/(D)).  

Despite the higher decrease in PCSK9 expression, compared to the 

decrease in LDLr expression, the net effects of ASO6-tretamnet was a 

down regulation of LDLr protein expression in liver membranes of WT 

mice (46% decrease)(FIGURE 16). Interestingly, we found that LXR DOKO 

mice showed undetectable levels of LDLr protein in liver membranes by 

western blot analysis (FIGURE 16).   

 

 

 
FIGURE 15 – Effect of ASO6 treatment on hepatic gene esxpression: (A) HMG-CoA 
reductase, (B) HMG-CoA Synthase, (C) LDL receptor, (D) PCSK9. mRNA expressions were 
analyzed by real-time RT-PCR. Data are standardized for TFIIB mRNA expression and 
normalized to WT Ctrl. 2-way ANOVA, **p<0.005 ***p<0.001.  
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FIGURE 16 – Effect of ASO6 treatment on LDLr protein expression in liver membrane. 
 

 

 

Quantification of mRNA by RT-PCR of the genes involved in bile acids 

synthesis and cholesterol transport revealed that ASO6 had no effect on 

the hepatic mRNA levels of CYP7A1, ABCG5 and ABCG8, both in WT and 

LXR DOKO mice. As expected, all these gene were down regulated  in 

LXR DOKO mice compared to WT (FIGURE 17 (A)/(C)/(D)) Small 

heterodimer partner (SHP) mRNA expression was similar in both 

genotypes, and ASO6-treatment resulted in a down-regulation only in 

LXR DOKO mice (FIGURE 17 (B)). Quantification of 7α-hydroxy-4-

cholesten-3-one (C4), a surrogate marker for bile acid synthesis, in 

hepatic lipid extract showed an increase following ASO6-treatment both 
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in WT and LXR DOKO mice (FIGURE 18). As expected and consequence 

of CYP7A1 down-regulation, C4 levels were significantly lower and the 

increase by ASO6-treatment smaller in LXR DOKO mice when comparet 

to WT animals.  

 

 

 

 

 

 

 
FIGURE 17 – Effect of ASO6 treatment on hepatic mRNA expression of gene involved in 
bile acids synthesis and cholesterol transport: (A) Cyp7A1, (B) SHP, (C) ABCG8, (D) 
ABCG5. mRNA expressions were analyzed by real-time RT-PCR. Data are standardized 
for TFIIB mRNA expression and normalized to WT Ctrl. 2-way ANOVA, *p<0.05, **p<0.005. 
 

 71 



 
FIGURE 18 – Quantification of 7α-hydroxy-4-cholesten-3-one (C4) in the liver. Data are 
corrected  for hepatic total cholesterol content, and expressed as Mean value for 
each group (n=6) ± SEM, 2-way ANOVA *p<0.01, **p<0.005. 
 

 

 

Hepatic mRNA levels of the gene involved in cholesterol efflux from 

hepatocytes (i.e. ABCA1, and SR-BI) were not affected by 

oligonucleotide therapy (FIGURE 19), but ASO6 lead to an increase of 

ABCA1 and SR-BI protein in the liver membrane from both animal 

genotypes. SR-BI protein was increased by treatment of 28% and 27% for 

WT and LXR DOKO respectively (FIGURE 20).  
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FIGURE 19 – Effect of ASO6 treatment on hepatic mRNA expression of  cholesterol 
transport er gene(A) SR-BI, (B) ABCA1. mRNA expressions were analyzed by real-time RT-
PCR. Data are standardized for TFIIB mRNA expression and normalized to WT Ctrl.  
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FIGURE 20 – Effect of ASO6 treatment on SR-BI protein expression in liver membrane. 
 

 

Interestingly, ASO6 lead to a 134% increase of ABCA1 protein in liver 

membrane from WT mice and to a higher increase (188%) in LXR DOKO 

liver membranes (FIGURE 21).  Although the minor effects seen for 

triglyceride content in the liver (see above), ASO treatment led to down-

regulation of all the gene involved in fatty acid synthesis, likely mediated 

by a SREBP1-c down-regulation (i.e. Fatty acid synthase, hepatic 

stearoyl-CoA deaturase 1 and acetyl-CoA carboxylase 1)(FIGURE 22).  

Triacylglycerol hydrolase 1 and 2 mRNA expression resulted significantly 

reduced in LXR DOKO KO mice compared to WT, suggesting TGH-1 and 

TGH-2 as new LXR gene target. ASO6 did not seem to affect the 

expression of this gene in WT mice, while in LXR DOKO mice ACAT2 

down-regulation lead to a slight increase of TGH-1 mRNA and a 

decrease in TGH-2 mRNA levels (FIGURE 23). 
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FIGURE 21 – Effect of ASO6 treatment on ABCA1 protein expression in liver membrane. 
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FIGURE 22 – Effect of ASO6 treatment on hepatic mRNA expression of  genes involved in 
fatty acid synthesis: (A) fatty acid synthase, (B) stearoyl-CoA deaturase 1, (C) acetyl-
CoA carboxylase 1. mRNA expressions were analyzed by real-time RT-PCR. Data are 
standardized for TFIIB mRNA expression and normalized to WT Ctrl. 
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FIGURE 23 – Effect of ASO6 treatment on hepatic mRNA expression of Triacylglycerol 
hydrolase 1 (A) and 2 (B)  mRNA expressions were analyzed by real-time RT-PCR. Data 
are standardized for 18S mRNA expression and normalized to WT Ctrl.  
 
 
 
 

 

 

 

HDL subpopulation distribution 

Since the observed increase in plasma HDL-C and ABCA1 protein in the 

liver secondary to ACAT2 down-regulation, we decided to analyze 

mouse sera by 2D-gel electrophoresis to identify possible changes in HDL 

sub-fractions. In WT mice ASO6 treatment did not affect small pre-beta 

HDL percentage (FIGURE 24), but lead to clear changes in HDL 

subpopulation distribution: HDL becomes more heterogeneous, with the 

appearance in the alpha region of particles of lager size (FIGURE 25). A 

different trend was observed in LXR DOKO mice, in which ASO6 
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treatment induced a significant increase in pre-beta HDL percentage 

(FIGURE 24) and to a shift of the alpha HDL towards smaller size particles 

(FIGURE 25). 
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FIGURE 24 –  % of total apoA-I in preβ  HDL subfraction. Student’s t test p<0.05  
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FIGURE 25 –  HDL subclasses. HDL subclasses were separated by 2D electrophoresis and 
transferred onto a nitrocellulose membrane, on which lipoproteins were detected with 
an anti apoA-I antibody. 
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DISCUSSION 
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IN-VIVO REVERSE CHOLESTEROL TRANSPORT STUDY 

 
The atheroprotective role of apoE is well documented by several works, 

showing the impact of its deletion on atherosclerosis development. This 

activity is at least in part related to the modulation of lipoprotein profile, 

but it has been shown that independently of this, apoE selective 

expression in macrophages protects towards the development of 

atherosclerosis in hypercholesterolemic mice. Since RCT is an 

antiatherosclerotic process possibly influenced by circulating lipoprotein 

(particularly HDL) we aimed to evaluate apoE role in this physiological 

pathway. We manage a method that allows the determination of RCT 

that occurs specifically from macrophages. Here we used peritoneal 

macrophages from WT or apoE-/- mice enriched with 3H-cholesterol and 

injected into WT or apoE deficient mice respectively. Cholesterol is 

delivered from macrophages to the plasma compartment and 

successively returns to the liver and feces. The quantification of 

radioactivity in plasma, liver and faeces allows to measure every single 

step of RCT. The amount of radioactivity in plasma is significantly higher in 

apoE/apoE mice, consistent with increased level of circulating 

lipoproteins. In contrast, reduced amount of cholesterol in liver and feces 

was detected, consistent with previously published data showing that 

apoE KO mice present a reduced uptake of CE-HDL204 and that apoE 

promotes biliar excretion205. The quantification of total RCT, estimated as 

the sum of radioactive cholesterol in plasma, liver and feces, revealed 

that more radioactivity is mobilized within WT/WT mice, indicating that 

the whole process is impaired in absence of apoE. To investigate 

whether increase of lipid efflux may account for the increased RCT in 

WT/WT mice, we tested plasma capacity to drive cholesterol release 

from cells. However, cholesterol efflux to apoE KO mice plasma by 

passive diffusion, SR-BI and ABCG1 was improved. This probably reflects 
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the higher content of apoB-containing lipoproteins, that are known to be 

good and efficient acceptors of cholesterol through these mechanisms. 

However, it should be reminded that passive diffusion and SR-BI-

mediated efflux are bidirectional processes, whose global effect 

depends on lipid concentration gradient between cells and acceptors. 

It is therefore conceivable that apoE/apoE mouse plasma is also able to 

promote lipid influx, thus enriching cell cholesterol content. Conversely, 

plasma capacity to drive ABCA1-mediated efflux was similar in both 

animal groups.   

 

Taken together these results suggest that apoE essential for a functional 

RCT. 

 

 

ASO6 STUDY 

 

Inhibition of intracellular esterification of cholesterol as a means to 

prevent the arterial CE accumulation in atherosclerosis has for many 

years been considered as potential strategy. Much key information has 

been learned from mice with gene deletion either of ACAT1 or ACAT2. In 

hypercholesterolemic ACAT1-/- animals, the ACAT1 deficiency led to a 

marked alteration in cholesterol metabolism leading to massive 

accumulation of unesterified cholesterol causing numerous skin and 

brain lesions. The atherosclerotic lesions in the apoE-/- and LDLr-/- mice 

lacking ACAT1 had reduced levels of neutral lipids and a paucity of 

macrophages which may reflect cell death via apoptotic mechanisms 
182. On the contrary, deletion of ACAT2 has been consistently 

atheroprotective (for review see80). A successful protection from 

atherosclerosis has been obtained by decreasing the activity of hepatic 

ACAT2 in mice injected with anti-sense oligonucleotide therapy, which 
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interferes with and reduces ACAT2 mRNA187.  Using the same therapeutic 

approach in the present work we investigated the role of hepatic ACAT2 

disruption in triglyceride and cholesterol metabolism in LXRα/β double 

knock-out mice and in wild type mice fed with 10% SAT (cal) and 0.2% 

cholesterol (w/w) diet. The use of these two animal models was aimed to 

find a possible LXR activation secondary to ACAT2 inhibition. No evident 

LXR activation followed down-regulation of hepatic ACAT2 activity by 

ASO treatment in male mice. In WT mice ASO6 seemed to affect the 

pool of free cholesterol that could signal to and determine a down-

regulation of the SREBP-system.  Indeed, the effect observed in this 

animal group was a decreased mRNA expression of HMG-CoR, HMG-

CoS. ASO6 led also to a down-regulation LDLr mRNA and to a higher 

extent decrease in PCSK9 expression. Nevertheless, the net effect was a 

down regulation of LDL-receptor protein expression in liver membranes 

from WT mice.  Interestingly, we found that LXR DOKO mice showed 

undetectable levels of LDLr protein in liver membranes by western blot 

analysis, suggesting a defect in LDLr recycling (more work will have to be 

performed to confirm this hypothesis).  Furthermore in wild-type mice, the 

lack of LXR activation and the down-regulation of the SREBP-system after 

ASO treatment suggest that LXRs are not sensitive to phisologic variation 

of cholesterol levels within the cell, conversely to the SEBRP-system.  

It has been demonstrated that disruption of ACAT2 in mice leads to 

increased plasma triglyceride to reduced hepatic triglyceride (for review 

see80). In the present study serum triglycerides were increased in apoB-

containing lipoprotein fraction by ACAT2 down-regulation, and this 

effect was clearly not LXR-dependent.  Curiously, hepatic ACAT2 knock 

down led only to a modest reduction in hepatic TG content both in WT 

and LXR DOKO mice. Never the less ASO treatment led to down-

regulation of all genes involved in fatty acid synthesis, likely mediated by 

the SREBP1-c down-regulation.   
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As described above, animals were on a 10% SAT (cal) and 0.2% 

cholesterol (w/w) diet four weeks prior start and for all the duration of 

ASO6 treatment. This condition probably caused a strong hepatic fat 

load, leading to the observed partial effect of ASO treatment  in 

reducing liver TG content. We demonstrated that cholesteryl ester levels 

were 4.6-fold higher in the liver of LXR DOKO mice than in WT, and ASO6 

treatment reduced hepatic CE levels by 90% in WT animals, while only a 

29% reduction was observed in LXR DOKO mice receiving ASO6. For the 

first time we identified TGH1 and TGH2 as new LXR-target gene. Since it 

has been shown that triacylglycerol hydrolase catalyses not only the 

hydrolysis of TG but also of CE,  TGH1 and TGH2  reduced expression 

observed in LXR DOKO may explain the elevated hepatic CE-content in 

the livers of LXR DOKO mice. ACAT2 down-regulation did not affect the 

hepatic free cholesterol content both in WT and LXR DOKO mice. Similar 

results were shown in a recent mouse study using the antisense 

oligonucleotide approach for hepatic ACAT2 activity down-

regulation206. In this elegant study, depletion of hepatic ACAT2 resulted 

in reduced packaging of cholesterol into apoB-containing lipoprotein, 

whereas HDL levels remained unchanged. Despite the reduced CE 

accumulation in the liver of ASO treated mice, no hepatic  free 

cholesterol accumulation occurred and neutral fecal sterol excretion 

was promoted206. Brown et al. supported the concept that when hepatic 

cholesterol esterification is limited, the liver doesn’t deal with FC burden 

by a new mechanism where none of the traditional pathway (i.e. 

repression of the novo synthesis, conversion to bile acid, efflux into 

nascent HDL) are involved206. They proposed a non-biliary route for fecal 

cholesterol excretion206.  Our work was also aimed to unmask a possible 

link between ACAT2 and HDL synthesis in  mice. In a recent study on 

gallstone and gallstone-free patients we demonstrated a significant 

negative correlation between the hepatic ACAT2 activity and the 
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plasma levels of HDL cholesterol and apoA-I (manuscript in preparation). 

This important finding is in line with the hypothesis that when hepatic 

ACAT2 is low, free cholesterol may be fluxed through ABCA1 to apoA-I 

and thus increasing nascent HDL particles. It should be also reminded 

that the study by Brown et al. 206 was performed on apoB100only/LDLr-/- 

mice: being apoB-100 highly expressed and LDLr lacking, the resulting 

elevated secretion of VLDL and the dramatically decreased LDL-

clearance could mask the positive effect of ACAT2 inhibition on HDL-C 

mediated by the ABCA1 pathway:  FC could be forced into the larger 

amount of apoB-100-containig particles or utilized as substrate for bile 

acid synthesis rather than be fluxed into nascent HDL.   

In the present work we demonstrated that down-regulation of hepatic 

ACAT2 activity is coupled to an  increase in protein expression of ABCA1 

in the liver, providing us with the mechanism by which ACAT2 may 

regulate HDL levels in plasma.  Indeed the analysis of plasma lipoprotein 

profile revealed that ASO6 treatment led to a slight increase in HDL-total 

cholesterol and to a clear increase in HDL-free cholesterol content. 

Moreover in WT mice ASO6 treatment did not affect small pre-beta HDL 

percentage, but lead to clear changes in HDL subpopulation distribution: 

HDL becomes more heterogeneous, with the appearance in the alpha 

region of particles of lager size.  A different trend was observed in LXR 

DOKO mice, in which ACAT2 down-regulation induced a significant 

increase in pre-beta HDL percentage and to a shift of the alpha HDL 

towards smaller size particles.   

 

In conclusion, the use of anti-sense oligonuclotide targeted to hepatic 

ACAT2 revealed a new pathway by which the liver contributes to HDL 

metabolism and identify ACAT2 as an important intracellular hepatocyte 

player in the determination of cholesterol fluxes either into apoB-

containing lipoprotein secretion or into apoAI lipoprotein synthesis. 
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A B B R E V I A T I O N S 

 

ABCA1  ATP-binding cassette A1 

ABCG1   ATP-binding cassette G1 

ABCG5   ATP-binding cassette G5 

ABCG8   ATP-binding cassette G8 

ACAT    acyl-CoA:cholesterol acyltransferase 

ACC1   acetyl-CoA carboxylase 1 

AcLDL   acetylated LDL 

apoA-I   apolipoprotein A-1 

apoB    apolipoproteinB 

apoE    apolipoprotein E 

ASO    antisense olionucleotide 

C4    7α-hydroxy-4-cholesten-3-one  

Ca    calcium 

CE    cholesteryl ester 

CETP    cholesterol ester transfer protein 

Cyp7a   cholesterol 7 alpha hydroxylase 

EC    endothelial cell 

EL    endothelial lipase 

ER    endoplasmic reticulum 
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FA    fatty acid 

FAS     fatty acid synthase 

FC    free cholesterol 

glycLDL   glycosilated LDL 

HDL    high-density lipoprotein 

HDL-C   HDL cholesterol 

HL    hepatic lipase 

HMG-CoR    3- hydroxymethyl glutaryl coenzyme A reductase 

HMG-CoS  3- hydroxymethyl glutaryl coenzyme A synthase 

ICAM   intracellular adhesion molecule 

IDL    intermediate density lipoprotein 

IL    interleukins 

INSIG    insulin inducible gene 

IR    insulin receptor 

LCAT    lecithin:cholesterol acyl transferase 

LDL    low-density lipoprotein 

LDLr    low-density lipoprotein receptor 

LOX-1   lectin-like oxidized low-density lipoprotein receptor-1 

Lp (a)   lipoprotein (a) 

LPL    lipoprotein lipase 

LPS    lipopolysacchride 

 87 



LXR    liver X receptor 

LXRE    LXR response elements 

MCP-1   macrophage chemotactic protein 

MCSF   macrophage colony-stimulating factor 

MMPs   matrix metalloproteinases 

MPM   murine pedritonel macrophages 

MTTP    microsomal triglyceride transfer protein 

NBD    binding domain 

NFkB    nuclear factor-kappa B 

NO    nitric oxide 

NPC    Niemann-Pick type C 

OxLDL   oxidized LDL 

PLA2    phospholipase A2  

PLC    Phospholipase C 

PLTP    phospholipid transfer protein PLTP 

PPAR    peroxisome proliferator-activated receptors 

PUFA    poly-unsaturated fatty acids  

RCT    reverse cholesterol transport 

RXR    retinoid X receptor 

SCAP   SREBP cleavage activating protein 

SCD-1   stearoyl CoA desaturase 
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SHP    Small heterodimer partner 

SMC    smooth muscle cells 

SR-B1    scavenger receptor B-1 

SREBP   sterol response element-binding protein  

TC    total cholesterol 

TG    triglyceride 

TGH1    Triacylglycerol hydrolase 1 

TGH2    Triacylglycerol hydrolase 2 

TLR    Toll-like receptor 

VCAM   vascular cell adhesion molecule 

VLDL    very low density lipoprotein 

VLDLr    VLDL receptor  

 

 

 

 

 

 

 

 

 

 

 

 89 



REFERENCES 
 

1. Tiwari RL, Singh V, Barthwal MK. Macrophages: an elusive yet emerging 
therapeutic target of atherosclerosis. Medicinal research reviews. 
2008;28(4):483-544. 

2. Lusis AJ. Atherosclerosis. Nature. 2000;407(6801):233-241. 
3. Organization WH. The atlas of heart disease and stroke. Available at: 

http:www.who.int/cardiovascular_diseases/resources/atlas/en. 
4. Glass CK, Witztum JL. Atherosclerosis. the road ahead. Cell. 

2001;104(4):503-516. 
5. Brown MS, Goldstein JL. Lipoprotein metabolism in the macrophage: 

implications for cholesterol deposition in atherosclerosis. Annual review of 
biochemistry. 1983;52:223-261. 

6. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, Jr., 
Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW. A definition of 
advanced types of atherosclerotic lesions and a histological 
classification of atherosclerosis. A report from the Committee on 
Vascular Lesions of the Council on Arteriosclerosis, American Heart 
Association. Arteriosclerosis, thrombosis, and vascular biology. 
1995;15(9):1512-1531. 

7. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, Jr., 
Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW. A definition of 
advanced types of atherosclerotic lesions and a histological 
classification of atherosclerosis. A report from the Committee on 
Vascular Lesions of the Council on Arteriosclerosis, American Heart 
Association. Circulation. 1995;92(5):1355-1374. 

8. Khalil MF, Wagner WD, Goldberg IJ. Molecular interactions leading to 
lipoprotein retention and the initiation of atherosclerosis. Arteriosclerosis, 
thrombosis, and vascular biology. 2004;24(12):2211-2218. 

9. Jain KS, Kathiravan MK, Somani RS, Shishoo CJ. The biology and 
chemistry of hyperlipidemia. Bioorganic & medicinal chemistry. 
2007;15(14):4674-4699. 

10. Boren J, Olin K, Lee I, Chait A, Wight TN, Innerarity TL. Identification of the 
principal proteoglycan-binding site in LDL. A single-point mutation in 
apo-B100 severely affects proteoglycan interaction without affecting LDL 
receptor binding. The Journal of clinical investigation. 1998;101(12):2658-
2664. 

11. Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages 
that mediates uptake and degradation of acetylated low density 
lipoprotein, producing massive cholesterol deposition. Proceedings of 
the National Academy of Sciences of the United States of America. 
1979;76(1):333-337. 

12. Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular 
disease. Arteriosclerosis, thrombosis, and vascular biology. 2005;25(1):29-
38. 

13. Morrow JD. Quantification of isoprostanes as indices of oxidant stress and 
the risk of atherosclerosis in humans. Arteriosclerosis, thrombosis, and 
vascular biology. 2005;25(2):279-286. 

 90 

http://www.who.int/cardiovascular_diseases/resources/atlas/en


14. Schwedhelm E, Bartling A, Lenzen H, Tsikas D, Maas R, Brummer J, Gutzki 
FM, Berger J, Frolich JC, Boger RH. Urinary 8-iso-prostaglandin F2alpha as 
a risk marker in patients with coronary heart disease: a matched case-
control study. Circulation. 2004;109(7):843-848. 

15. Meisinger C, Baumert J, Khuseyinova N, Loewel H, Koenig W. Plasma 
oxidized low-density lipoprotein, a strong predictor for acute coronary 
heart disease events in apparently healthy, middle-aged men from the 
general population. Circulation. 2005;112(5):651-657. 

16. Chisolm GM, Steinberg D. The oxidative modification hypothesis of 
atherogenesis: an overview. Free radical biology & medicine. 
2000;28(12):1815-1826. 

17. Younis N, Sharma R, Soran H, Charlton-Menys V, Elseweidy M, Durrington 
PN. Glycation as an atherogenic modification of LDL. Current opinion in 
lipidology. 2008;19(4):378-384. 

18. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. 
Compensatory enlargement of human atherosclerotic coronary arteries. 
The New England journal of medicine. 1987;316(22):1371-1375. 

19. Libby P. Current concepts of the pathogenesis of the acute coronary 
syndromes. Circulation. 2001;104(3):365-372. 

20. Binder CJ, Chang MK, Shaw PX, Miller YI, Hartvigsen K, Dewan A, Witztum 
JL. Innate and acquired immunity in atherogenesis. Nature medicine. 
2002;8(11):1218-1226. 

21. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. 
The New England journal of medicine. 2005;352(16):1685-1695. 

22. Nathan C. Points of control in inflammation. Nature. 2002;420(6917):846-
852. 

23. Libby P, Theroux P. Pathophysiology of coronary artery disease. 
Circulation. 2005;111(25):3481-3488. 

24. Thompson GR, Barter PJ. Clinical lipidology at the end of the millennium. 
Current opinion in lipidology. 1999;10(6):521-526. 

25. Mahley RW, Bersot TP. Drug therapy for hypercholesterolemia and 
dyslipidemia. In: Hardman JG LL, ed. Goodman & Gilman’s The 
Pharmacological Basis of Therapeutics. 11th ed. New York: McGraw-Hill 
Medical Publishing Division; 2006:933–966. 

26. Shapiro DJ, Rodwell VW. Regulation of hepatic 3-hydroxy-3-
methylglutaryl coenzyme A reductase and cholesterol synthesis. The 
Journal of biological chemistry. 1971;246(10):3210-3216. 

27. Goldstein JL, Brown MS. Familial hypercholesterolemia: identification of a 
defect in the regulation of 3-hydroxy-3-methylglutaryl coenzyme A 
reductase activity associated with overproduction of cholesterol. 
Proceedings of the National Academy of Sciences of the United States 
of America. 1973;70(10):2804-2808. 

28. Brown MS, Goldstein JL. Familial hypercholesterolemia: defective binding 
of lipoproteins to cultured fibroblasts associated with impaired regulation 
of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. 
Proceedings of the National Academy of Sciences of the United States 
of America. 1974;71(3):788-792. 

29. Endo A, Kuroda M, Tanzawa K. Competitive inhibition of 3-hydroxy-3-
methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal 

 91 



metabolites, having hypocholesterolemic activity. FEBS letters. 
1976;72(2):323-326. 

30. Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, Rothrock J, 
Lopez M, Joshua H, Harris E, Patchett A, Monaghan R, Currie S, Stapley E, 
Albers-Schonberg G, Hensens O, Hirshfield J, Hoogsteen K, Liesch J, 
Springer J. Mevinolin: a highly potent competitive inhibitor of 
hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-
lowering agent. Proceedings of the National Academy of Sciences of 
the United States of America. 1980;77(7):3957-3961. 

31. Executive Summary of The Third Report of The National Cholesterol 
Education Program (NCEP) Expert Panel on Detection, Evaluation, And 
Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). 
Jama. 2001;285(19):2486-2497. 

32. Bhatt DL, Steg PG, Ohman EM, Hirsch AT, Ikeda Y, Mas JL, Goto S, Liau 
CS, Richard AJ, Rother J, Wilson PW. International prevalence, 
recognition, and treatment of cardiovascular risk factors in outpatients 
with atherothrombosis. Jama. 2006;295(2):180-189. 

33. Steg PG, Bhatt DL, Wilson PW, D'Agostino R, Sr., Ohman EM, Rother J, Liau 
CS, Hirsch AT, Mas JL, Ikeda Y, Pencina MJ, Goto S. One-year 
cardiovascular event rates in outpatients with atherothrombosis. Jama. 
2007;297(11):1197-1206. 

34. Randomised trial of cholesterol lowering in 4444 patients with coronary 
heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet. 
1994;344(8934):1383-1389. 

35. Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, MacFarlane PW, 
McKillop JH, Packard CJ. Prevention of coronary heart disease with 
pravastatin in men with hypercholesterolemia. West of Scotland 
Coronary Prevention Study Group. The New England journal of medicine. 
1995;333(20):1301-1307. 

36. Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, 
Brown L, Warnica JW, Arnold JM, Wun CC, Davis BR, Braunwald E. The 
effect of pravastatin on coronary events after myocardial infarction in 
patients with average cholesterol levels. Cholesterol and Recurrent 
Events Trial investigators. The New England journal of medicine. 
1996;335(14):1001-1009. 

37. Prevention of cardiovascular events and death with pravastatin in 
patients with coronary heart disease and a broad range of initial 
cholesterol levels. The Long-Term Intervention with Pravastatin in 
Ischaemic Disease (LIPID) Study Group. The New England journal of 
medicine. 1998;339(19):1349-1357. 

38. Downs JR, Clearfield M, Weis S, Whitney E, Shapiro DR, Beere PA, 
Langendorfer A, Stein EA, Kruyer W, Gotto AM, Jr. Primary prevention of 
acute coronary events with lovastatin in men and women with average 
cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary 
Atherosclerosis Prevention Study. Jama. 1998;279(20):1615-1622. 

39. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin 
in 20,536 high-risk individuals: a randomised placebo-controlled trial. 
Lancet. 2002;360(9326):7-22. 

 92 



40. Sever PS, Dahlof B, Poulter NR, Wedel H, Beevers G, Caulfield M, Collins R, 
Kjeldsen SE, Kristinsson A, McInnes GT, Mehlsen J, Nieminen M, O'Brien E, 
Ostergren J. Prevention of coronary and stroke events with atorvastatin 
in hypertensive patients who have average or lower-than-average 
cholesterol concentrations, in the Anglo-Scandinavian Cardiac 
Outcomes Trial--Lipid Lowering Arm (ASCOT-LLA): a multicentre 
randomised controlled trial. Lancet. 2003;361(9364):1149-1158. 

41. Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, Cobbe SM, 
Ford I, Gaw A, Hyland M, Jukema JW, Kamper AM, Macfarlane PW, 
Meinders AE, Norrie J, Packard CJ, Perry IJ, Stott DJ, Sweeney BJ, Twomey 
C, Westendorp RG. Pravastatin in elderly individuals at risk of vascular 
disease (PROSPER): a randomised controlled trial. Lancet. 
2002;360(9346):1623-1630. 

42. Castelli WP, Garrison RJ, Wilson PW, Abbott RD, Kalousdian S, Kannel WB. 
Incidence of coronary heart disease and lipoprotein cholesterol levels. 
The Framingham Study. Jama. 1986;256(20):2835-2838. 

43. Kannel WB. High-density lipoproteins: epidemiologic profile and risks of 
coronary artery disease. The American journal of cardiology. 
1983;52(4):9B-12B. 

44. Wilson PW. High-density lipoprotein, low-density lipoprotein and coronary 
artery disease. The American journal of cardiology. 1990;66(6):7A-10A. 

45. Barter P, Gotto AM, LaRosa JC, Maroni J, Szarek M, Grundy SM, Kastelein 
JJ, Bittner V, Fruchart JC. HDL cholesterol, very low levels of LDL 
cholesterol, and cardiovascular events. The New England journal of 
medicine. 2007;357(13):1301-1310. 

46. LaRosa JC, Grundy SM, Waters DD, Shear C, Barter P, Fruchart JC, Gotto 
AM, Greten H, Kastelein JJ, Shepherd J, Wenger NK. Intensive lipid 
lowering with atorvastatin in patients with stable coronary disease. The 
New England journal of medicine. 2005;352(14):1425-1435. 

47. Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, 
Lopez-Sendon J, Mosca L, Tardif JC, Waters DD, Shear CL, Revkin JH, Buhr 
KA, Fisher MR, Tall AR, Brewer B. Effects of torcetrapib in patients at high 
risk for coronary events. The New England journal of medicine. 
2007;357(21):2109-2122. 

48. Tall AR. CETP inhibitors to increase HDL cholesterol levels. The New 
England journal of medicine. 2007;356(13):1364-1366. 

49. Tall AR, Yvan-Charvet L, Wang N. The failure of torcetrapib: was it the 
molecule or the mechanism? Arteriosclerosis, thrombosis, and vascular 
biology. 2007;27(2):257-260. 

50. Schaefer EJ, Asztalos BF. Increasing high-density lipoprotein cholesterol, 
inhibition of cholesteryl ester transfer protein, and heart disease risk 
reduction. The American journal of cardiology. 2007;100(11 A):n25-31. 

51. El Harchaoui K, van der Steeg WA, Stroes ES, Kastelein JJ. The role of CETP 
inhibition in dyslipidemia. Current atherosclerosis reports. 2007;9(2):125-
133. 

52. Adorni MP, Zimetti F, Billheimer JT, Wang N, Rader DJ, Phillips MC, 
Rothblat GH. The roles of different pathways in the release of cholesterol 
from macrophages. Journal of lipid research. 2007;48(11):2453-2462. 

 93 



53. Wang X, Collins HL, Ranalletta M, Fuki IV, Billheimer JT, Rothblat GH, Tall 
AR, Rader DJ. Macrophage ABCA1 and ABCG1, but not SR-BI, promote 
macrophage reverse cholesterol transport in vivo. The Journal of clinical 
investigation. 2007;117(8):2216-2224. 

54. Khuseyinova N, Koenig W. Apolipoprotein A-I and risk for cardiovascular 
diseases. Current atherosclerosis reports. 2006;8(5):365-373. 

55. Havel RJ, Hamilton RL. Hepatic catabolism of remnant lipoproteins: 
where the action is. Arteriosclerosis, thrombosis, and vascular biology. 
2004;24(2):213-215. 

56. Boren J, Graham L, Wettesten M, Scott J, White A, Olofsson SO. The 
assembly and secretion of ApoB 100-containing lipoproteins in Hep G2 
cells. ApoB 100 is cotranslationally integrated into lipoproteins. The 
Journal of biological chemistry. 1992;267(14):9858-9867. 

57. Boren J, Rustaeus S, Olofsson SO. Studies on the assembly of 
apolipoprotein B-100- and B-48-containing very low density lipoproteins in 
McA-RH7777 cells. The Journal of biological chemistry. 
1994;269(41):25879-25888. 

58. Rustaeus S, Lindberg K, Stillemark P, Claesson C, Asp L, Larsson T, Boren J, 
Olofsson SO. Assembly of very low density lipoprotein: a two-step process 
of apolipoprotein B core lipidation. The Journal of nutrition. 1999;129(2S 
Suppl):463S-466S. 

59. Stillemark P, Boren J, Andersson M, Larsson T, Rustaeus S, Karlsson KA, 
Olofsson SO. The assembly and secretion of apolipoprotein B-48-
containing very low density lipoproteins in McA-RH7777 cells. The Journal 
of biological chemistry. 2000;275(14):10506-10513. 

60. Hooper AJ, van Bockxmeer FM, Burnett JR. Monogenic 
hypocholesterolaemic lipid disorders and apolipoprotein B metabolism. 
Critical reviews in clinical laboratory sciences. 2005;42(5-6):515-545. 

61. Rustaeus S, Stillemark P, Lindberg K, Gordon D, Olofsson SO. The 
microsomal triglyceride transfer protein catalyzes the post-translational 
assembly of apolipoprotein B-100 very low density lipoprotein in McA-
RH7777 cells. The Journal of biological chemistry. 1998;273(9):5196-5203. 

62. Wang S, McLeod RS, Gordon DA, Yao Z. The microsomal triglyceride 
transfer protein facilitates assembly and secretion of apolipoprotein B-
containing lipoproteins and decreases cotranslational degradation of 
apolipoprotein B in transfected COS-7 cells. The Journal of biological 
chemistry. 1996;271(24):14124-14133. 

63. Wu X, Zhou M, Huang LS, Wetterau J, Ginsberg HN. Demonstration of a 
physical interaction between microsomal triglyceride transfer protein 
and apolipoprotein B during the assembly of ApoB-containing 
lipoproteins. The Journal of biological chemistry. 1996;271(17):10277-
10281. 

64. Tran K, Thorne-Tjomsland G, DeLong CJ, Cui Z, Shan J, Burton L, Jamieson 
JC, Yao Z. Intracellular assembly of very low density lipoproteins 
containing apolipoprotein B100 in rat hepatoma McA-RH7777 cells. The 
Journal of biological chemistry. 2002;277(34):31187-31200. 

65. Rusinol A, Verkade H, Vance JE. Assembly of rat hepatic very low density 
lipoproteins in the endoplasmic reticulum. The Journal of biological 
chemistry. 1993;268(5):3555-3562. 

 94 



66. Borchardt RA, Davis RA. Intrahepatic assembly of very low density 
lipoproteins. Rate of transport out of the endoplasmic reticulum 
determines rate of secretion. The Journal of biological chemistry. 
1987;262(34):16394-16402. 

67. Dixon JL, Furukawa S, Ginsberg HN. Oleate stimulates secretion of 
apolipoprotein B-containing lipoproteins from Hep G2 cells by inhibiting 
early intracellular degradation of apolipoprotein B. The Journal of 
biological chemistry. 1991;266(8):5080-5086. 

68. White AL, Graham DL, LeGros J, Pease RJ, Scott J. Oleate-mediated 
stimulation of apolipoprotein B secretion from rat hepatoma cells. A 
function of the ability of apolipoprotein B to direct lipoprotein assembly 
and escape presecretory degradation. The Journal of biological 
chemistry. 1992;267(22):15657-15664. 

69. Guerin M, Le Goff W, Lassel TS, Van Tol A, Steiner G, Chapman MJ. 
Atherogenic role of elevated CE transfer from HDL to VLDL(1) and dense 
LDL in type 2 diabetes : impact of the degree of triglyceridemia. 
Arteriosclerosis, thrombosis, and vascular biology. 2001;21(2):282-288. 

70. Franceschini G, Maderna P, Sirtori CR. Reverse cholesterol transport: 
physiology and pharmacology. Atherosclerosis. 1991;88(2-3):99-107. 

71. Raghow R, Yellaturu C, Deng X, Park EA, Elam MB. SREBPs: the crossroads 
of physiological and pathological lipid homeostasis. Trends in 
endocrinology and metabolism: TEM. 2008;19(2):65-73. 

72. Espenshade PJ, Hughes AL. Regulation of sterol synthesis in eukaryotes. 
Annual review of genetics. 2007;41:401-427. 

73. Glomset JA, Norum KR. The metabolic role of lecithin: cholesterol 
acyltransferase: perspectives form pathology. Advances in lipid 
research. 1973;11:1-65. 

74. Cuchel M, Rader DJ. Macrophage reverse cholesterol transport: key to 
the regression of atherosclerosis? Circulation. 2006;113(21):2548-2555. 

75. Ross R, Glomset JA. Atherosclerosis and the arterial smooth muscle cell: 
Proliferation of smooth muscle is a key event in the genesis of the lesions 
of atherosclerosis. Science (New York, N.Y. 1973;180(93):1332-1339. 

76. Miller GJ, Miller NE. Plasma-high-density-lipoprotein concentration and 
development of ischaemic heart-disease. Lancet. 1975;1(7897):16-19. 

77. Simons K, Ehehalt R. Cholesterol, lipid rafts, and disease. The Journal of 
clinical investigation. 2002;110(5):597-603. 

78. Lange Y. Disposition of intracellular cholesterol in human fibroblasts. 
Journal of lipid research. 1991;32(2):329-339. 

79. Tabas I. Consequences of cellular cholesterol accumulation: basic 
concepts and physiological implications. The Journal of clinical 
investigation. 2002;110(7):905-911. 

80. Rudel LL, Lee RG, Parini P. ACAT2 is a target for treatment of coronary 
heart disease associated with hypercholesterolemia. Arteriosclerosis, 
thrombosis, and vascular biology. 2005;25(6):1112-1118. 

81. Oram JF, Vaughan AM. ATP-Binding cassette cholesterol transporters 
and cardiovascular disease. Circ Res. 2006;99(10):1031-1043. 

82. Johnson WJ, Mahlberg FH, Rothblat GH, Phillips MC. Cholesterol transport 
between cells and high-density lipoproteins. Biochimica et biophysica 
acta. 1991;1085(3):273-298. 

 95 



83. Yancey PG, Bortnick AE, Kellner-Weibel G, de la Llera-Moya M, Phillips 
MC, Rothblat GH. Importance of different pathways of cellular 
cholesterol efflux. Arteriosclerosis, thrombosis, and vascular biology. 
2003;23(5):712-719. 

84. Phillips MC, Gillotte KL, Haynes MP, Johnson WJ, Lund-Katz S, Rothblat 
GH. Mechanisms of high density lipoprotein-mediated efflux of 
cholesterol from cell plasma membranes. Atherosclerosis. 1998;137 
Suppl:S13-17. 

85. Phillips MC, Johnson WJ, Rothblat GH. Mechanisms and consequences 
of cellular cholesterol exchange and transfer. Biochimica et biophysica 
acta. 1987;906(2):223-276. 

86. Yokoyama S. Release of cellular cholesterol: molecular mechanism for 
cholesterol homeostasis in cells and in the body. Biochimica et 
biophysica acta. 2000;1529(1-3):231-244. 

87. Krieger M, Herz J. Structures and functions of multiligand lipoprotein 
receptors: macrophage scavenger receptors and LDL receptor-related 
protein (LRP). Annual review of biochemistry. 1994;63:601-637. 

88. Acton SL, Scherer PE, Lodish HF, Krieger M. Expression cloning of SR-BI, a 
CD36-related class B scavenger receptor. The Journal of biological 
chemistry. 1994;269(33):21003-21009. 

89. Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification 
of scavenger receptor SR-BI as a high density lipoprotein receptor. 
Science (New York, N.Y. 1996;271(5248):518-520. 

90. Ji Y, Jian B, Wang N, Sun Y, Moya ML, Phillips MC, Rothblat GH, Swaney 
JB, Tall AR. Scavenger receptor BI promotes high density lipoprotein-
mediated cellular cholesterol efflux. The Journal of biological chemistry. 
1997;272(34):20982-20985. 

91. Owen JS, Mulcahy JV. ATP-binding cassette A1 protein and HDL 
homeostasis. Atheroscler Suppl. 2002;3(4):13-22. 

92. Webb NR, Connell PM, Graf GA, Smart EJ, de Villiers WJ, de Beer FC, van 
der Westhuyzen DR. SR-BII, an isoform of the scavenger receptor BI 
containing an alternate cytoplasmic tail, mediates lipid transfer between 
high density lipoprotein and cells. The Journal of biological chemistry. 
1998;273(24):15241-15248. 

93. Gu X, Lawrence R, Krieger M. Dissociation of the high density lipoprotein 
and low density lipoprotein binding activities of murine scavenger 
receptor class B type I (mSR-BI) using retrovirus library-based activity 
dissection. The Journal of biological chemistry. 2000;275(13):9120-9130. 

94. Yancey PG, de la Llera-Moya M, Swarnakar S, Monzo P, Klein SM, 
Connelly MA, Johnson WJ, Williams DL, Rothblat GH. High density 
lipoprotein phospholipid composition is a major determinant of the bi-
directional flux and net movement of cellular free cholesterol mediated 
by scavenger receptor BI. The Journal of biological chemistry. 
2000;275(47):36596-36604. 

95. Jian B, de la Llera-Moya M, Ji Y, Wang N, Phillips MC, Swaney JB, Tall AR, 
Rothblat GH. Scavenger receptor class B type I as a mediator of cellular 
cholesterol efflux to lipoproteins and phospholipid acceptors. The Journal 
of biological chemistry. 1998;273(10):5599-5606. 

 96 



96. Annilo T, Chen ZQ, Shulenin S, Costantino J, Thomas L, Lou H, Stefanov S, 
Dean M. Evolution of the vertebrate ABC gene family: analysis of gene 
birth and death. Genomics. 2006;88(1):1-11. 

97. Lawn RM, Wade DP, Garvin MR, Wang X, Schwartz K, Porter JG, 
Seilhamer JJ, Vaughan AM, Oram JF. The Tangier disease gene product 
ABC1 controls the cellular apolipoprotein-mediated lipid removal 
pathway. The Journal of clinical investigation. 1999;104(8):R25-31. 

98. Bodzioch M, Orso E, Klucken J, Langmann T, Bottcher A, Diederich W, 
Drobnik W, Barlage S, Buchler C, Porsch-Ozcurumez M, Kaminski WE, 
Hahmann HW, Oette K, Rothe G, Aslanidis C, Lackner KJ, Schmitz G. The 
gene encoding ATP-binding cassette transporter 1 is mutated in Tangier 
disease. Nature genetics. 1999;22(4):347-351. 

99. Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, Deleuze JF, Brewer 
HB, Duverger N, Denefle P, Assmann G. Tangier disease is caused by 
mutations in the gene encoding ATP-binding cassette transporter 1. 
Nature genetics. 1999;22(4):352-355. 

100. Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, Yu 
L, Brewer C, Collins JA, Molhuizen HO, Loubser O, Ouelette BF, Fichter K, 
Ashbourne-Excoffon KJ, Sensen CW, Scherer S, Mott S, Denis M, 
Martindale D, Frohlich J, Morgan K, Koop B, Pimstone S, Kastelein JJ, 
Genest J, Jr., Hayden MR. Mutations in ABC1 in Tangier disease and 
familial high-density lipoprotein deficiency. Nature genetics. 
1999;22(4):336-345. 

101. Francis GA, Knopp RH, Oram JF. Defective removal of cellular cholesterol 
and phospholipids by apolipoprotein A-I in Tangier Disease. The Journal 
of clinical investigation. 1995;96(1):78-87. 

102. Remaley AT, Schumacher UK, Stonik JA, Farsi BD, Nazih H, Brewer HB, Jr. 
Decreased reverse cholesterol transport from Tangier disease fibroblasts. 
Acceptor specificity and effect of brefeldin on lipid efflux. 
Arteriosclerosis, thrombosis, and vascular biology. 1997;17(9):1813-1821. 

103. Tall AR. Cholesterol efflux pathways and other potential mechanisms 
involved in the athero-protective effect of high density lipoproteins. 
Journal of internal medicine. 2008;263(3):256-273. 

104. Oram JF, Heinecke JW. ATP-binding cassette transporter A1: a cell 
cholesterol exporter that protects against cardiovascular disease. 
Physiological reviews. 2005;85(4):1343-1372. 

105. Dean M, Hamon Y, Chimini G. The human ATP-binding cassette (ABC) 
transporter superfamily. Journal of lipid research. 2001;42(7):1007-1017. 

106. van Meer G, Halter D, Sprong H, Somerharju P, Egmond MR. ABC lipid 
transporters: extruders, flippases, or flopless activators? FEBS letters. 
2006;580(4):1171-1177. 

107. Dawson RJ, Locher KP. Structure of a bacterial multidrug ABC transporter. 
Nature. 2006;443(7108):180-185. 

108. Brunham R, Yang C, Maclean I, Kimani J, Maitha G, Plummer F. 
Chlamydia trachomatis from individuals in a sexually transmitted disease 
core group exhibit frequent sequence variation in the major outer 
membrane protein (omp1) gene. The Journal of clinical investigation. 
1994;94(1):458-463. 

 97 



109. Thorngate FE, Yancey PG, Kellner-Weibel G, Rudel LL, Rothblat GH, 
Williams DL. Testing the role of apoA-I, HDL, and cholesterol efflux in the 
atheroprotective action of low-level apoE expression. Journal of lipid 
research. 2003;44(12):2331-2338. 

110. Chroni A, Liu T, Fitzgerald ML, Freeman MW, Zannis VI. Cross-linking and 
lipid efflux properties of apoA-I mutants suggest direct association 
between apoA-I helices and ABCA1. Biochemistry. 2004;43(7):2126-2139. 

111. Boadu E, Bilbey NJ, Francis GA. Cellular cholesterol substrate pools for 
adenosine-triphosphate cassette transporter A1-dependent high-density 
lipoprotein formation. Current opinion in lipidology. 2008;19(3):270-276. 

112. Wellington CL, Walker EK, Suarez A, Kwok A, Bissada N, Singaraja R, Yang 
YZ, Zhang LH, James E, Wilson JE, Francone O, McManus BM, Hayden 
MR. ABCA1 mRNA and protein distribution patterns predict multiple 
different roles and levels of regulation. Laboratory investigation; a journal 
of technical methods and pathology. 2002;82(3):273-283. 

113. Vaughan AM, Oram JF. ABCA1 and ABCG1 or ABCG4 act sequentially 
to remove cellular cholesterol and generate cholesterol-rich HDL. Journal 
of lipid research. 2006;47(11):2433-2443. 

114. Cserepes J, Szentpetery Z, Seres L, Ozvegy-Laczka C, Langmann T, 
Schmitz G, Glavinas H, Klein I, Homolya L, Varadi A, Sarkadi B, Elkind NB. 
Functional expression and characterization of the human ABCG1 and 
ABCG4 proteins: indications for heterodimerization. Biochemical and 
biophysical research communications. 2004;320(3):860-867. 

115. Vaughan AM, Oram JF. ABCG1 redistributes cell cholesterol to domains 
removable by high density lipoprotein but not by lipid-depleted 
apolipoproteins. The Journal of biological chemistry. 2005;280(34):30150-
30157. 

116. Kobayashi A, Takanezawa Y, Hirata T, Shimizu Y, Misasa K, Kioka N, Arai H, 
Ueda K, Matsuo M. Efflux of sphingomyelin, cholesterol, and 
phosphatidylcholine by ABCG1. Journal of lipid research. 
2006;47(8):1791-1802. 

117. Sano O, Kobayashi A, Nagao K, Kumagai K, Kioka N, Hanada K, Ueda K, 
Matsuo M. Sphingomyelin-dependence of cholesterol efflux mediated 
by ABCG1. Journal of lipid research. 2007;48(11):2377-2384. 

118. Gelissen IC, Harris M, Rye KA, Quinn C, Brown AJ, Kockx M, Cartland S, 
Packianathan M, Kritharides L, Jessup W. ABCA1 and ABCG1 synergize to 
mediate cholesterol export to apoA-I. Arteriosclerosis, thrombosis, and 
vascular biology. 2006;26(3):534-540. 

119. Baldan A, Tarr P, Lee R, Edwards PA. ATP-binding cassette transporter G1 
and lipid homeostasis. Current opinion in lipidology. 2006;17(3):227-232. 

120. Wang N, Ranalletta M, Matsuura F, Peng F, Tall AR. LXR-induced 
redistribution of ABCG1 to plasma membrane in macrophages 
enhances cholesterol mass efflux to HDL. Arteriosclerosis, thrombosis, and 
vascular biology. 2006;26(6):1310-1316. 

121. Croop JM, Tiller GE, Fletcher JA, Lux ML, Raab E, Goldenson D, Son D, 
Arciniegas S, Wu RL. Isolation and characterization of a mammalian 
homolog of the Drosophila white gene. Gene. 1997;185(1):77-85. 

122. Klucken J, Buchler C, Orso E, Kaminski WE, Porsch-Ozcurumez M, Liebisch 
G, Kapinsky M, Diederich W, Drobnik W, Dean M, Allikmets R, Schmitz G. 

 98 



ABCG1 (ABC8), the human homolog of the Drosophila white gene, is a 
regulator of macrophage cholesterol and phospholipid transport. 
Proceedings of the National Academy of Sciences of the United States 
of America. 2000;97(2):817-822. 

123. Kim WS, Weickert CS, Garner B. Role of ATP-binding cassette transporters 
in brain lipid transport and neurological disease. Journal of 
neurochemistry. 2008;104(5):1145-1166. 

124. Berge KE, Tian H, Graf GA, Yu L, Grishin NV, Schultz J, Kwiterovich P, Shan 
B, Barnes R, Hobbs HH. Accumulation of dietary cholesterol in 
sitosterolemia caused by mutations in adjacent ABC transporters. 
Science (New York, N.Y. 2000;290(5497):1771-1775. 

125. Graf GA, Yu L, Li WP, Gerard R, Tuma PL, Cohen JC, Hobbs HH. ABCG5 
and ABCG8 are obligate heterodimers for protein trafficking and biliary 
cholesterol excretion. The Journal of biological chemistry. 
2003;278(48):48275-48282. 

126. Yu L, Gupta S, Xu F, Liverman AD, Moschetta A, Mangelsdorf DJ, Repa JJ, 
Hobbs HH, Cohen JC. Expression of ABCG5 and ABCG8 is required for 
regulation of biliary cholesterol secretion. The Journal of biological 
chemistry. 2005;280(10):8742-8747. 

127. Repa JJ, Dietschy JM, Turley SD. Inhibition of cholesterol absorption by 
SCH 58053 in the mouse is not mediated via changes in the expression of 
mRNA for ABCA1, ABCG5, or ABCG8 in the enterocyte. Journal of lipid 
research. 2002;43(11):1864-1874. 

128. Lee MH, Lu K, Patel SB. Genetic basis of sitosterolemia. Current opinion in 
lipidology. 2001;12(2):141-149. 

129. Vrins C, Vink E, Vandenberghe KE, Frijters R, Seppen J, Groen AK. The 
sterol transporting heterodimer ABCG5/ABCG8 requires bile salts to 
mediate cholesterol efflux. FEBS letters. 2007;581(24):4616-4620. 

130. Rader DJ. Molecular regulation of HDL metabolism and function: 
implications for novel therapies. J Clin Invest. 2006;116(12):3090-3100. 

131. Attie AD, Kastelein JP, Hayden MR. Pivotal role of ABCA1 in reverse 
cholesterol transport influencing HDL levels and susceptibility to 
atherosclerosis. Journal of lipid research. 2001;42(11):1717-1726. 

132. Rader DJ, Alexander ET, Weibel GL, Billheimer J, Rothblat GH. Role of 
reverse cholesterol transport in animals and humans and relationship to 
atherosclerosis. Journal of lipid research. 2008. 

133. Calabresi L, Favari E, Moleri E, Adorni MP, Pedrelli M, Costa S, Jessup W, 
Gelissen IC, Kovanen PT, Bernini F, Franceschini G. Functional LCAT is not 
required for macrophage cholesterol efflux to human serum. 
Atherosclerosis. 2008. 

134. Rigotti A, Trigatti BL, Penman M, Rayburn H, Herz J, Krieger M. A targeted 
mutation in the murine gene encoding the high density lipoprotein (HDL) 
receptor scavenger receptor class B type I reveals its key role in HDL 
metabolism. Proceedings of the National Academy of Sciences of the 
United States of America. 1997;94(23):12610-12615. 

135. Wang N, Arai T, Ji Y, Rinninger F, Tall AR. Liver-specific overexpression of 
scavenger receptor BI decreases levels of very low density lipoprotein 
ApoB, low density lipoprotein ApoB, and high density lipoprotein in 

 99 



transgenic mice. The Journal of biological chemistry. 1998;273(49):32920-
32926. 

136. Kozarsky KF, Donahee MH, Rigotti A, Iqbal SN, Edelman ER, Krieger M. 
Overexpression of the HDL receptor SR-BI alters plasma HDL and bile 
cholesterol levels. Nature. 1997;387(6631):414-417. 

137. Zhang Y, Da Silva JR, Reilly M, Billheimer JT, Rothblat GH, Rader DJ. 
Hepatic expression of scavenger receptor class B type I (SR-BI) is a 
positive regulator of macrophage reverse cholesterol transport in vivo. 
The Journal of clinical investigation. 2005;115(10):2870-2874. 

138. Mahley RW, Huang Y, Weisgraber KH. Putting cholesterol in its place: 
apoE and reverse cholesterol transport. The Journal of clinical 
investigation. 2006;116(5):1226-1229. 

139. Barter PJ. Hugh sinclair lecture: the regulation and remodelling of HDL by 
plasma factors. Atherosclerosis. 2002;3(4):39-47. 

140. Nielsen LB, Dahlback B. Lipid metabolism: why is apoM an 
apolipoprotein? Current opinion in lipidology. 2008;19(6):622-623. 

141. Wang M, Briggs MR. HDL: the metabolism, function, and therapeutic 
importance. Chemical reviews. 2004;104(1):119-137. 

142. Qin S, Kawano K, Bruce C, Lin M, Bisgaier C, Tall AR, Jiang X. Phospholipid 
transfer protein gene knock-out mice have low high density lipoprotein 
levels, due to hypercatabolism, and accumulate apoA-IV-rich lamellar 
lipoproteins. Journal of lipid research. 2000;41(2):269-276. 

143. Jiang XC, Bruce C, Mar J, Lin M, Ji Y, Francone OL, Tall AR. Targeted 
mutation of plasma phospholipid transfer protein gene markedly 
reduces high-density lipoprotein levels. The Journal of clinical 
investigation. 1999;103(6):907-914. 

144. Jiang X, Francone OL, Bruce C, Milne R, Mar J, Walsh A, Breslow JL, Tall 
AR. Increased prebeta-high density lipoprotein, apolipoprotein AI, and 
phospholipid in mice expressing the human phospholipid transfer protein 
and human apolipoprotein AI transgenes. The Journal of clinical 
investigation. 1996;98(10):2373-2380. 

145. Camps L, Reina M, Llobera M, Vilaro S, Olivecrona T. Lipoprotein lipase: 
cellular origin and functional distribution. The American journal of 
physiology. 1990;258(4 Pt 1):C673-681. 

146. Rader DJ, Jaye M. Endothelial lipase: a new member of the triglyceride 
lipase gene family. Current opinion in lipidology. 2000;11(2):141-147. 

147. Francis MC, Frohlich JJ. Coronary artery disease in patients at low risk--
apolipoprotein AI as an independent risk factor. Atherosclerosis. 
2001;155(1):165-170. 

148. Walldius G, Jungner I. The apoB/apoA-I ratio: a strong, new risk factor for 
cardiovascular disease and a target for lipid-lowering therapy--a review 
of the evidence. Journal of internal medicine. 2006;259(5):493-519. 

149. Basso F, Freeman L, Knapper CL, Remaley A, Stonik J, Neufeld EB, Tansey 
T, Amar MJ, Fruchart-Najib J, Duverger N, Santamarina-Fojo S, Brewer HB, 
Jr. Role of the hepatic ABCA1 transporter in modulating intrahepatic 
cholesterol and plasma HDL cholesterol concentrations. Journal of lipid 
research. 2003;44(2):296-302. 

150. Sahoo D, Trischuk TC, Chan T, Drover VA, Ho S, Chimini G, Agellon LB, 
Agnihotri R, Francis GA, Lehner R. ABCA1-dependent lipid efflux to 

 100 



apolipoprotein A-I mediates HDL particle formation and decreases VLDL 
secretion from murine hepatocytes. Journal of lipid research. 
2004;45(6):1122-1131. 

151. Timmins JM, Lee JY, Boudyguina E, Kluckman KD, Brunham LR, Mulya A, 
Gebre AK, Coutinho JM, Colvin PL, Smith TL, Hayden MR, Maeda N, Parks 
JS. Targeted inactivation of hepatic Abca1 causes profound 
hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. The 
Journal of clinical investigation. 2005;115(5):1333-1342. 

152. Elshourbagy NA, Liao WS, Mahley RW, Taylor JM. Apolipoprotein E mRNA 
is abundant in the brain and adrenals, as well as in the liver, and is 
present in other peripheral tissues of rats and marmosets. Proc Natl Acad 
Sci U S A. 1985;82(1):203-207. 

153. Mahley RW, Ji ZS. Remnant lipoprotein metabolism: key pathways 
involving cell-surface heparan sulfate proteoglycans and apolipoprotein 
E. J Lipid Res. 1999;40(1):1-16. 

154. Mahley RW, Rall SC, Jr. Apolipoprotein E: far more than a lipid transport 
protein. Annu Rev Genomics Hum Genet. 2000;1:507-537. 

155. Ghiselli G, Schaefer EJ, Gascon P, Breser HB, Jr. Type III 
hyperlipoproteinemia associated with apolipoprotein E deficiency. 
Science. 1981;214(4526):1239-1241. 

156. Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG, Rubin 
EM, Breslow JL. Severe hypercholesterolemia and atherosclerosis in 
apolipoprotein E-deficient mice created by homologous recombination 
in ES cells. Cell. 1992;71(2):343-353. 

157. Pendse AA, Arbones-Mainar JM, Johnson LA, Altenburg M, Maeda N. 
ApoE knock-out and knock-in mice: atherosclerosis, metabolic syndrome 
and beyond. J Lipid Res. 2008. 

158. Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous 
hypercholesterolemia and arterial lesions in mice lacking apolipoprotein 
E. Science. 1992;258(5081):468-471. 

159. Buhman KF, Accad M, Farese RV. Mammalian acyl-CoA:cholesterol 
acyltransferases. Biochimica et biophysica acta. 2000;1529(1-3):142-154. 

160. Chang CC, Huh HY, Cadigan KM, Chang TY. Molecular cloning and 
functional expression of human acyl-coenzyme A:cholesterol 
acyltransferase cDNA in mutant Chinese hamster ovary cells. The Journal 
of biological chemistry. 1993;268(28):20747-20755. 

161. Meiner VL, Cases S, Myers HM, Sande ER, Bellosta S, Schambelan M, Pitas 
RE, McGuire J, Herz J, Farese RV, Jr. Disruption of the acyl-
CoA:cholesterol acyltransferase gene in mice: evidence suggesting 
multiple cholesterol esterification enzymes in mammals. Proceedings of 
the National Academy of Sciences of the United States of America. 
1996;93(24):14041-14046. 

162. Anderson RA, Joyce C, Davis M, Reagan JW, Clark M, Shelness GS, Rudel 
LL. Identification of a form of acyl-CoA:cholesterol acyltransferase 
specific to liver and intestine in nonhuman primates. The Journal of 
biological chemistry. 1998;273(41):26747-26754. 

163. Cases S, Novak S, Zheng YW, Myers HM, Lear SR, Sande E, Welch CB, Lusis 
AJ, Spencer TA, Krause BR, Erickson SK, Farese RV, Jr. ACAT-2, a second 
mammalian acyl-CoA:cholesterol acyltransferase. Its cloning, expression, 

 101 



and characterization. The Journal of biological chemistry. 
1998;273(41):26755-26764. 

164. Oelkers P, Behari A, Cromley D, Billheimer JT, Sturley SL. Characterization 
of two human genes encoding acyl coenzyme A:cholesterol 
acyltransferase-related enzymes. The Journal of biological chemistry. 
1998;273(41):26765-26771. 

165. Rudel LL, Lee RG, Cockman TL. Acyl coenzyme A: cholesterol 
acyltransferase types 1 and 2: structure and function in atherosclerosis. 
Current opinion in lipidology. 2001;12(2):121-127. 

166. Joyce CW, Shelness GS, Davis MA, Lee RG, Skinner K, Anderson RA, Rudel 
LL. ACAT1 and ACAT2 membrane topology segregates a serine residue 
essential for activity to opposite sides of the endoplasmic reticulum 
membrane. Molecular biology of the cell. 2000;11(11):3675-3687. 

167. Lin S, Cheng D, Liu MS, Chen J, Chang TY. Human acyl-CoA:cholesterol 
acyltransferase-1 in the endoplasmic reticulum contains seven 
transmembrane domains. The Journal of biological chemistry. 
1999;274(33):23276-23285. 

168. Lin S, Lu X, Chang CC, Chang TY. Human acyl-coenzyme A:cholesterol 
acyltransferase expressed in chinese hamster ovary cells: membrane 
topology and active site location. Molecular biology of the cell. 
2003;14(6):2447-2460. 

169. Uelmen PJ, Oka K, Sullivan M, Chang CC, Chang TY, Chan L. Tissue-
specific expression and cholesterol regulation of acylcoenzyme 
A:cholesterol acyltransferase (ACAT) in mice. Molecular cloning of 
mouse ACAT cDNA, chromosomal localization, and regulation of ACAT 
in vivo and in vitro. The Journal of biological chemistry. 
1995;270(44):26192-26201. 

170. Meiner V, Tam C, Gunn MD, Dong LM, Weisgraber KH, Novak S, Myers 
HM, Erickson SK, Farese RV, Jr. Tissue expression studies on the mouse 
acyl-CoA: cholesterol acyltransferase gene (Acact): findings supporting 
the existence of multiple cholesterol esterification enzymes in mice. 
Journal of lipid research. 1997;38(9):1928-1933. 

171. Lee RG, Willingham MC, Davis MA, Skinner KA, Rudel LL. Differential 
expression of ACAT1 and ACAT2 among cells within liver, intestine, 
kidney, and adrenal of nonhuman primates. Journal of lipid research. 
2000;41(12):1991-2001. 

172. Chang CC, Sakashita N, Ornvold K, Lee O, Chang ET, Dong R, Lin S, Lee 
CY, Strom SC, Kashyap R, Fung JJ, Farese RV, Jr., Patoiseau JF, Delhon A, 
Chang TY. Immunological quantitation and localization of ACAT-1 and 
ACAT-2 in human liver and small intestine. The Journal of biological 
chemistry. 2000;275(36):28083-28092. 

173. Chang TY, Chang CC, Lin S, Yu C, Li BL, Miyazaki A. Roles of acyl-
coenzyme A:cholesterol acyltransferase-1 and -2. Current opinion in 
lipidology. 2001;12(3):289-296. 

174. Miyazaki A, Sakashita N, Lee O, Takahashi K, Horiuchi S, Hakamata H, 
Morganelli PM, Chang CC, Chang TY. Expression of ACAT-1 protein in 
human atherosclerotic lesions and cultured human monocytes-
macrophages. Arteriosclerosis, thrombosis, and vascular biology. 
1998;18(10):1568-1574. 

 102 



175. Sakashita N, Miyazaki A, Takeya M, Horiuchi S, Chang CC, Chang TY, 
Takahashi K. Localization of human acyl-coenzyme A: cholesterol 
acyltransferase-1 (ACAT-1) in macrophages and in various tissues. The 
American journal of pathology. 2000;156(1):227-236. 

176. Parini P, Davis M, Lada AT, Erickson SK, Wright TL, Gustafsson U, Sahlin S, 
Einarsson C, Eriksson M, Angelin B, Tomoda H, Omura S, Willingham MC, 
Rudel LL. ACAT2 is localized to hepatocytes and is the major cholesterol-
esterifying enzyme in human liver. Circulation. 2004;110(14):2017-2023. 

177. Pramfalk C, Davis MA, Eriksson M, Rudel LL, Parini P. Control of ACAT2 liver 
expression by HNF1. Journal of lipid research. 2005;46(9):1868-1876. 

178. Sakashita N, Miyazaki A, Chang CC, Chang TY, Kiyota E, Satoh M, 
Komohara Y, Morganelli PM, Horiuchi S, Takeya M. Acyl-coenzyme 
A:cholesterol acyltransferase 2 (ACAT2) is induced in monocyte-derived 
macrophages: in vivo and in vitro studies. Laboratory investigation; a 
journal of technical methods and pathology. 2003;83(11):1569-1581. 

179. Fazio S, Linton M. Failure of ACAT inhibition to retard atherosclerosis. The 
New England journal of medicine. 2006;354(12):1307-1309. 

180. Tardif JC, Gregoire J, L'Allier PL, Anderson TJ, Bertrand O, Reeves F, Title 
LM, Alfonso F, Schampaert E, Hassan A, McLain R, Pressler ML, Ibrahim R, 
Lesperance J, Blue J, Heinonen T, Rodes-Cabau J. Effects of the acyl 
coenzyme A:cholesterol acyltransferase inhibitor avasimibe on human 
atherosclerotic lesions. Circulation. 2004;110(21):3372-3377. 

181. Nissen SE, Tuzcu EM, Brewer HB, Sipahi I, Nicholls SJ, Ganz P, 
Schoenhagen P, Waters DD, Pepine CJ, Crowe TD, Davidson MH, 
Deanfield JE, Wisniewski LM, Hanyok JJ, Kassalow LM. Effect of ACAT 
inhibition on the progression of coronary atherosclerosis. The New 
England journal of medicine. 2006;354(12):1253-1263. 

182. Accad M, Smith SJ, Newland DL, Sanan DA, King LE, Jr., Linton MF, Fazio 
S, Farese RV, Jr. Massive xanthomatosis and altered composition of 
atherosclerotic lesions in hyperlipidemic mice lacking acyl 
CoA:cholesterol acyltransferase 1. J Clin Invest. 2000;105(6):711-719. 

183. Yagyu H, Kitamine T, Osuga J, Tozawa R, Chen Z, Kaji Y, Oka T, Perrey S, 
Tamura Y, Ohashi K, Okazaki H, Yahagi N, Shionoiri F, Iizuka Y, Harada K, 
Shimano H, Yamashita H, Gotoda T, Yamada N, Ishibashi S. Absence of 
ACAT-1 attenuates atherosclerosis but causes dry eye and cutaneous 
xanthomatosis in mice with congenital hyperlipidemia. The Journal of 
biological chemistry. 2000;275(28):21324-21330. 

184. Fazio S, Major AS, Swift LL, Gleaves LA, Accad M, Linton MF, Farese RV, Jr. 
Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in 
macrophages. The Journal of clinical investigation. 2001;107(2):163-171. 

185. Perrey S, Legendre C, Matsuura A, Guffroy C, Binet J, Ohbayashi S, 
Tanaka T, Ortuno JC, Matsukura T, Laugel T, Padovani P, Bellamy F, Edgar 
AD. Preferential pharmacological inhibition of macrophage ACAT 
increases plaque formation in mouse and rabbit models of 
atherogenesis. Atherosclerosis. 2001;155(2):359-370. 

186. Bell TA, 3rd, Kelley K, Wilson MD, Sawyer JK, Rudel LL. Dietary fat-induced 
alterations in atherosclerosis are abolished by ACAT2-deficiency in 
ApoB100 only, LDLr-/- mice. Arteriosclerosis, thrombosis, and vascular 
biology. 2007;27(6):1396-1402. 

 103 



187. Bell TA, 3rd, Brown JM, Graham MJ, Lemonidis KM, Crooke RM, Rudel LL. 
Liver-specific inhibition of acyl-coenzyme a:cholesterol acyltransferase 2 
with antisense oligonucleotides limits atherosclerosis development in 
apolipoprotein B100-only low-density lipoprotein receptor-/- mice. 
Arteriosclerosis, thrombosis, and vascular biology. 2006;26(8):1814-1820. 

188. Brown JM, Bell TA, 3rd, Alger HM, Sawyer JK, Smith TL, Kelley K, Shah R, 
Wilson MD, Davis MA, Lee RG, Graham MJ, Crooke RM, Rudel LL. 
Targeted depletion of hepatic ACAT2-driven cholesterol esterification 
reveals a non-biliary route for fecal neutral sterol loss. J Biol Chem. 
2008;283(16):10522-10534. 

189. Ma J, Folsom AR, Lewis L, Eckfeldt JH. Relation of plasma phospholipid 
and cholesterol ester fatty acid composition to carotid artery intima-
media thickness: the Atherosclerosis Risk in Communities (ARIC) Study. 
The American journal of clinical nutrition. 1997;65(2):551-559. 

190. Warensjo E, Riserus U, Gustafsson IB, Mohsen R, Cederholm T, Vessby B. 
Effects of saturated and unsaturated fatty acids on estimated 
desaturase activities during a controlled dietary intervention. Nutr Metab 
Cardiovasc Dis. 2008. 

191. Mahley RW. Apolipoprotein E: cholesterol transport protein with 
expanding role in cell biology. Science (New York, N.Y. 
1988;240(4852):622-630. 

192. Bellosta S, Mahley RW, Sanan DA, Murata J, Newland DL, Taylor JM, Pitas 
RE. Macrophage-specific expression of human apolipoprotein E reduces 
atherosclerosis in hypercholesterolemic apolipoprotein E-null mice. The 
Journal of clinical investigation. 1995;96(5):2170-2179. 

193. Zhang Y, Zanotti I, Reilly MP, Glick JM, Rothblat GH, Rader DJ. 
Overexpression of apolipoprotein A-I promotes reverse transport of 
cholesterol from macrophages to feces in vivo. Circulation. 
2003;108(6):661-663. 

194. Bortnick AE, Rothblat GH, Stoudt G, Hoppe KL, Royer LJ, McNeish J, 
Francone OL. The correlation of ATP-binding cassette 1 mRNA levels with 
cholesterol efflux from various cell lines. The Journal of biological 
chemistry. 2000;275(37):28634-28640. 

195. de la Llera-Moya M, Rothblat GH, Connelly MA, Kellner-Weibel G, Sakr 
SW, Phillips MC, Williams DL. Scavenger receptor BI (SR-BI) mediates free 
cholesterol flux independently of HDL tethering to the cell surface. 
Journal of lipid research. 1999;40(3):575-580. 

196. Parini P, Johansson L, Bröijersén A, Angelin B, Rudling M. Lipoprotein 
profiles in plasma and interstitial fluid analyzed with an automated gel-
filtration system. Eur J Clin Invest. 2006;36:98-104. 

197. Lovgren-Sandblom A, Heverin M, Larsson H, Lundstrom E, Wahren J, 
Diczfalusy U, Bjorkhem I. Novel LC-MS/MS method for assay of 7alpha-
hydroxy-4-cholesten-3-one in human plasma. Evidence for a significant 
extrahepatic metabolism. J Chromatogr B Analyt Technol Biomed Life 
Sci. 2007;856(1-2):15-19. 

198. Temel RE, Tang W, Ma Y, Rudel LL, Willingham MC, Ioannou YA, Davies 
JP, Nilsson LM, Yu L. Hepatic Niemann-Pick C1-like 1 regulates biliary 
cholesterol concentration and is a target of ezetimibe. J Clin Invest. 
2007;117(7):1968-1978. 

 104 



 105 

199. Rudel LL, Davis M, Sawyer J, Shah R, Wallace J. Primates highly responsive 
to dietary cholesterol up-regulate hepatic ACAT2, and less responsive 
primates do not. The Journal of biological chemistry. 2002;277(35):31401-
31406. 

200. Carr TP, Parks JS, Rudel LL. Hepatic ACAT activity in African green 
monkeys is highly correlated to plasma LDL cholesteryl ester enrichment 
and coronary artery atherosclerosis. Arterioscler Thromb. 
1992;12(11):1274-1283. 

201. Lada AT, Davis M, Kent C, Chapman J, Tomoda H, Omura S, Rudel LL. 
Identification of ACAT1- and ACAT2-specific inhibitors using a novel, cell-
based fluorescence assay: individual ACAT uniqueness. Journal of lipid 
research. 2004;45(2):378-386. 

202. Favari E, Lee M, Calabresi L, Franceschini G, Zimetti F, Bernini F, Kovanen 
PT. Depletion of pre-beta-high density lipoprotein by human chymase 
impairs ATP-binding cassette transporter A1- but not scavenger receptor 
class B type I-mediated lipid efflux to high density lipoprotein. The Journal 
of biological chemistry. 2004;279(11):9930-9936. 

203. Zanotti I, Poti F, Pedrelli M, Favari E, Moleri E, Franceschini G, Calabresi L, 
Bernini F. The LXR agonist T0901317 promotes the reverse cholesterol 
transport from macrophages by increasing plasma efflux potential. J 
Lipid Res. 2008;49(5):954-960. 

204. Arai T, Rinninger F, Varban L, Fairchild-Huntress V, Liang CP, Chen W, Seo 
T, Deckelbaum R, Huszar D, Tall AR. Decreased selective uptake of high 
density lipoprotein cholesteryl esters in apolipoprotein E knock-out mice. 
Proc Natl Acad Sci U S A. 1999;96(21):12050-12055. 

205. Meir KS, Leitersdorf E. Atherosclerosis in the apolipoprotein-E-deficient 
mouse: a decade of progress. Arterioscler Thromb Vasc Biol. 
2004;24(6):1006-1014. 

206. Brown JM, Bell TA, 3rd, Alger HM, Sawyer JK, Smith TL, Kelley KD, Shah RA, 
Wilson MD, Davis MA, Lee RG, Graham MJ, Crooke RM, Rudel LL. 
Targeted depletion of hepatic ACAT2-driven cholesterol esterification 
reveals a non-biliary route for fecal sterol loss. J Biol Chem. 2008. 

 
 


	Frontespizio MA
	Farmacologia e Tossicologia Sperimentali
	XXI Ciclo
	Triennio accademico 2005-2008


	INDEX
	complete

