
UNIVERSITÀ DEGLI STUDI DI PARMA

Dottorato di Ricerca in Tecnologie dell’Informazione

XXI Ciclo

COMPUTATION AND TIME CONSTRAINTS

IN LOCALIZATION AND MAPPING PROBLEMS

Coordinatore:

Chiar.mo Prof. Carlo Morandi

Tutor:

Chiar.mo Prof. Stefano Caselli

Dottorando: Dario Lodi Rizzini

Gennaio 2009





Alla mia famiglia





Contents

1 Introduction 1
1.1 Localization and Mapping Problems . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . 6

2 Problem Model 9
2.1 Probabilistic formulation of the problem . . . . . . . . . . . . . . . 9

2.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Bayesian filters . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Marginalization and conditioning . . . . . . . . . . . . . . 14

2.2 Real-Time Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Particle filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Monte Carlo Localization . . . . . . . . . . . . . . . . . . 21

2.3.3 Effective Sample Size . . . . . . . . . . . . . . . . . . . . 25

2.4 Maximum Likelihood Mapping . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.2 Probabilistic Derivation . . . . . . . . . . . . . . . . . . . 29

3 Real-Time Particle Filter for Robot Localization 33
3.1 Motivation and Problem Formulation . . . . . . . . . . . . . . . . . 33



ii Contents

3.2 Real-Time Particle Filters . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . 39

3.3 An Enhanced RTPF . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Bias in RTPF Mixture . . . . . . . . . . . . . . . . . . . . 39

3.3.2 Alternative computation of Mixture Weights . . . . . . . . 44

3.4 Delayed Estimation in RTPF . . . . . . . . . . . . . . . . . . . . . 45

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Incremental Maximum Likelihood Mapping 57
4.1 Stochastic Gradient Descent for Maximum Likelihood Mapping . . 58

4.1.1 Network Optimization using Stochastic Gradient Descent . 58

4.1.2 Tree Parameterization . . . . . . . . . . . . . . . . . . . . 59

4.2 Overview of Tree Network Optimizer . . . . . . . . . . . . . . . . 61

4.3 Online Network Optimization . . . . . . . . . . . . . . . . . . . . 63

4.3.1 Incremental Construction of the Tree . . . . . . . . . . . . 64

4.3.2 Constraint Selection . . . . . . . . . . . . . . . . . . . . . 65

4.3.3 Adaptive Learning Rates . . . . . . . . . . . . . . . . . . . 65

4.3.4 Scheduling the Network Optimization . . . . . . . . . . . . 68

4.4 Results on Incremental Tree Network Optimizer . . . . . . . . . . . 69

4.4.1 Real World Experiments . . . . . . . . . . . . . . . . . . . 69

4.4.2 Statistical Experiments on Error Evolution . . . . . . . . . 69

4.4.3 Runtime Comparison . . . . . . . . . . . . . . . . . . . . . 73

4.5 Building the Constraint Network from Laser Scans . . . . . . . . . 73

4.5.1 ScanMap . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5.2 GraphMap . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



Contents iii

5 Parallel decomposition of Mapping problem 83
5.1 Motivation and Problem . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Gauss-Seidel Relaxation for Maximum Likelihood Mapping . . . . 85
5.3 A Parallel Linear-Equation Solver . . . . . . . . . . . . . . . . . . 87

5.3.1 Clustering nodes and reordering variables . . . . . . . . . . 88
5.3.2 Parallel Implementation . . . . . . . . . . . . . . . . . . . 89

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Conclusion 97

A Pose and Constraint Networks 101
A.1 Pose Compounding Operation . . . . . . . . . . . . . . . . . . . . 101
A.2 Pose Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.3 Constraint Extraction from Laser Scans . . . . . . . . . . . . . . . 103

Bibliography 107

Acknowledgements 117





Chapter 1

Introduction

1.1 Localization and Mapping Problems

The key issue of mobile robotics is the interaction between the robot and the envi-
ronment. The robot acquires information about the environment through sensors and
changes the configuration of environment through actuators. A robotic task may be
generally seen as a controlled exchange of sensor observations and motion commands
conceived by a designer to achieve useful goals. The autonomy and intelligence of
robots depend on their ability to answer to the inputs from the environment, which
is complex and unpredictable. Moreover, even if the environment could be modelled
completely, robot perception and motion are noisy and limited.

Several approaches have been proposed to design autonomous and intelligent
robots. The reactive approach claims that, since a complete representation of envi-
ronmental settings is not possible, a robotic task should be designed as a set of con-
current behaviors. A behavior is a function that maps sensor observations to actions
without the capability of reasoning on a model of the world. While the imitation of
“instinctive” behaviors is effective and computationally efficient for low level activ-
ities, more complex tasks, like planning the path to reach a goal position, require a
representation of the environment.

Thus, a robot needs a geometric description of the world and an assessment of
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its space relationship inside this setting. Localization is the problem of estimating the
robot pose, which is the union of position and orientation, with respect to an external
reference frame. Mapping is the problem of integrating the information gathered with
the robot sensors into a given representation, the map. When a map of the environ-
ment or an initial estimation of robot position are given, global localization or pose
tracking can be addressed as independent issues. Otherwise the two complementary
and strictly dependent problems constitute a unique Simultaneous Localization and
Mapping (SLAM) problem. Localization is achieved by comparing observations with
known references of the environment stored in a map. On the other hand, a set of ob-
servations can be arranged in a consistent map only if the locations, in which these
observation have been acquired, is known. Therefore robot pose and environment
map variables are estimated concurrently.

To perform the estimation the robot is given observations acquired by on board
sensors and motion commands. These data have two major limitations. First, they
provide local information since sensors have a limited visibility range. It is usually
assumed that the inference on environment does not rely on a global off-board sensor
infrastructure that provides additional information and the robot is independent from
the context. An important consequence is that robot pose or observation arrangement
in a map cannot be achieved by data integration: a single error in measurements
produces a drift from the correct value. Correction of a wrong estimation depends
on the comparison of the observation with the known map in localization and with a
previously explored region of the map in SLAM.

The second limitation comes from the uncertainty on the knowledge about the
world. Perception produces noisy information and the outcome of motion execution
always differs from kinematic models description. Since uncertainty cannot be ne-
glected in localization and mapping problems, the new paradigm of probabilistic
robotics has been proposed [74]. In this paradigm, problem data are modelled as ran-
dom variables and their relationships are expressed by Bayesian theory. According to
the probabilistic paradigm localization and mapping problems have been formulated
as stochastic state estimation problems. Robotics researchers have studied and pro-
posed algorithms that can be classified in three main categories briefly listed in the
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following.

Extended Kalman Filters (EKFs) [45] are probably the earliest stochastic esti-
mation techniques exploited for SLAM. Due to its strong mathematical foundation,
the EKF is still the most used technique, even though its computational cost grows
quadratically with the size of the state and it suffers from linearization error. Several
variants and extensions derived from Kalman filters, like Extended Information Filter
(EIF) and Unscented Kalman Filters (UKF), have been proposed to overcome these
drawbacks [38, 37].

Particles filters [26] have been initially proposed in order to overcome the lim-
itations of EKF in global localization: particle filters are suitable to represent any
distribution of localization hypotheses with a discrete set of samples and not only
the uni-modal one. Flexibility granted by importance sampling is balanced by the
computational complexity due to the management of samples. Particle filters can-
not be directly applied to solve SLAM problems due to the curse of dimensionality
of state space. Particle filters have been subsequently adapted to SLAM by apply-
ing marginalization: the distribution of state is decomposed into robot pose distri-
bution and map distribution that is then conditioned to robot pose. Thus, in Rao-
Blackwellized Particle Filters (RBPF) importance sampling is used only to estimate
robot pose and there is a map associated to each sample. Efficient implementations
of RBPF allow sharing of map elements among several samples [62, 33].

Maximum Likelihood (ML) mapping is a quite different approach from recursive
Bayesian filters. Mapping is formulated as a full SLAM problem, that is the evalu-
ation of the map and all poses belonging to robot trajectory. Maximum Likelihood
mapping is naturally formulated in the form of graphical model: robot poses and map
features correspond to the nodes of the graph, while the constraints between pairs of
variables derived from odometry information and observations are associated to the
edges. The full SLAM posterior distribution is usually decomposed into the product
of all constraints. The best map estimation corresponds to the graph configuration
that maximizes the likelihood of the posterior and can be found solving a least square
estimation problem.
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1.2 Motivation

The brief overview in the previous section gives an idea of the extensive research of
simultaneous localization and mapping problems carried out by robotics community
in the last decade. Several subproblems –like data association, map representation,
dynamic environment or semantic mapping– have been more or less intensively in-
vestigated. One of the most important questions is the computational complexity of
the algorithms exploited to solve the problem.

Complexity strongly depends on the scale of the problem, or equivalently on the
size of the environment. In global localization the number of localization hypotheses
depends on the dimension of the map and on the presence of symmetric or indistin-
guishable regions of the map, albeit it is difficult to evaluate formally this dependence.
Scale affects dramatically the mapping problem: since SLAM is a state estimation
problem and map size increases with the exploration of new locations, map construc-
tion implies state augmentation and an increase of complexity. Thus, the evolution
of SLAM algorithms has been devoted to address scale. Extended Sparse Informa-
tion Filters [64, 74] have been introduced to better handle the quadratic increase of
complexity of EKF. Marginalization is the trick exploited by RBPFs to cope with
the curse of dimensionality of importance sampling methods. Recent popularity of
maximum likelihood techniques with hybrid metric-topological maps is mainly due
to their ability of better addressing large scale environments without numerical diver-
gences.

Nonetheless, less effort has been devoted by the robotics community to another
important implication of map scale: the increase of the time required to update state
estimation with incoming data from the environment. Even if time for algorithm ex-
ecution is related to computational complexity, the ability to respect time constraints
in adapting robot belief about the world to world stimuli is a distinct issue. Robot mo-
tion information and sensor observations are usually acquired periodically. In several
robotics applications the localization and mapping evaluation is useful only if it is
provided concurrently with the robot activity. Therefore, online methods for localiza-
tion and mapping are subjected to time constraints due to odometry and perception.
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Such constraints are considered feasible when the system is able to process data ac-
cording to given deadlines, even if the results of processing are delayed in time. In
other words real-time feasibility depends on the design of the localization and map-
ping algorithms and may be granted by a proper distribution of computation in time
intervals in spite of the computational complexity.

In literature there are examples of algorithmic adaptations that match or approach
such feasibility. All the methods discussed in this thesis are derived from existing
state-of-the-art algorithms. For example, the Real-Time Particle Filter [44] is an evo-
lution of standard Monte-Carlo localization that meets time constraints. Furthermore,
maximum likelihood methods for SLAM were originally applied offline and have
been adapted to incremental construction of the map. The structure of the problem
does not lend itself to easy adaptation to real-time operation, at least at the moment,
but several solutions have been devised to reduce update time.

Beyond these partial contributions, no comprehensive discussion of real-time fea-
sibility in localization and mapping problems has been proposed. Despite differences
in the nature of each specific problem and in the solution methods, general design
criteria for real-time or update time bounded localization and mapping can be found.
In this thesis, we claim that Locality of the effects due to the newly added infor-
mation is the fundamental criterion to address online execution of localization and
mapping algorithms. Locality may be applied to perform temporal or spatial decom-
position of the global estimation. In localization the complexity lies in the number of
localization hypotheses tracked by the localizer before the convergence to the correct
robot location. In this case the decomposition concerns the space of the hypotheses.
Complexity of mapping algorithms depends on the relationships among the basic el-
ements of the map. Locality of map estimation is then possible when these features
are loosely correlated and the problem structure is sparse. Algorithms designed ac-
cording to the locality principle may not always grant real-time feasibility, but they
help online execution. Several existing localization and mapping solutions already
exploit locality to reduce their complexity, but to our knowledge locality has never
been explicitly related to time constrained execution.
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1.3 Contribution

The two main contributions of this thesis are the identification of real-time issue in
localization and mapping problem and the improvement and adaptation of algorithms
according to this perspective. More specifically, the most important contributions of
the thesis include:

• a general perspective of real-time feasibility and the identification of proxim-
ity decomposition as a general design criterion for algorithms to meet time
constraints;

• a new enhanced version of Real-Time Particle Filter that is less prone to bias
problem and to numeric divergence;

• the proposal of an incremental version of a maximum likelihood map estimator
based on stochastic gradient descent;

• a parallel mapping algorithm that decomposes a graphical model into indepen-
dent subproblems that can be solved on different processors.

1.4 Organization of the Thesis

The thesis is organized as follows. Chapter 2 illustrates the common probabilistic
formulation of localization and mapping problems and discusses real-time feasibil-
ity related to the models that represent the structure of the problem and, in particu-
lar, to the graphical model. Then, classical Monte Carlo Localization and Maximum
Likelihood methods for mappings are presented. These methods will be referred and
developed in the rest of the dissertation.

Chapter 3 presents the Real-Time Particle Filter, a solution proposed to meet time
constraints feasible in localization. In particular, the limitations and drawbacks of the
original technique are formally interpreted using the key concept of effective sample
size of the mixture representation and an improved version is proposed and compared
experimentally with the original algorithm.
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Chapter 4 describes a recent maximum likelihood method for robot mapping
based on stochastic gradient descent and exploiting an efficient tree parameteriza-
tion. An incremental version of this algorithm, originally conceived for offline map
learning, is the presented. The incremental algorithm is then integrated into a system
that estimates a map from odometry data and laser scans.

Chapter 5 illustrates a parallel maximum likelihood algorithm based on Gauss-
Seidel relaxation. This parallel algorithm is potentially suitable for multi-robot map
building. The general network representing the map is partitioned in clusters which
are solved independently.

A final chapter summarizes this dissertation.





Chapter 2

Problem Model

In this chapter, localization and mapping problems are described in probabilistic for-
mulation according to recent mainstream literature in robotics. Specific formulation
of localization or mapping problems and different methods for their solution can be
derived from the general problem using the concepts of marginalization and condi-
tioning. Such unified perspective suggests that feasibility of time constraints in local-
ization and mapping algorithm may be addressed with a uniform criterion like locality
principle. Reduction of original problem in local subproblem is the basic procedure
that will be adopted in the following chapters. The remaining of the chapter is de-
voted to the introduction of the methods that will be used in the thesis. In particular,
the latest sections present particle filters for robot localization and maximum likeli-
hood approaches to robot mapping.

2.1 Probabilistic formulation of the problem

2.1.1 Definitions

Localization and mapping problems are usually formulated as a stochastic state es-
timation. Uncertainty on both state variables and acquired data can be conveniently
represented by using random variables. Depending on the specific problem, state may
consist of the robot pose with respect to an external fixed reference frame or the map
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of the environment. Robot pose is usually labeled as xt
1, where pedix t refers to a

discrete time index. When a whole sequence of variables is involved in the estima-
tion, we use the shorthand notation x0:t that represents the vector of values x0, · · · ,xt

assumed by a variable in time. Vector m contains the variables of map m j and the
interpretation of each map elements depends on the adopted representation for the
map. Possible models for maps, feature or occupancy grid maps, will be discussed
later. An important assumption about the map is that it does not change in time: the
environment is assumed to be static. Furthermore, we assume the environment state
fully represented by the mentioned variables, xt and m. This assumption is called
complete state hypothesis and is better discussed in the remaining of the chapter.

In the estimation two kinds of information sources are used: the sequence of mo-
tion commands u1:t and the sequence of observations z1:t . Motion information ut may
be retrieved from control commands sent to the robot or from the measurements of
robot encoders. The motion command vector may contain the speed commands or the
relative displacement between consecutive robot poses. The interpretation of obser-
vation vector zt depends strictly on the nature of sensor data. Different sensor devices
give a quite different range of data: range sensors like sonars or laser scanners re-
turn mostly accurate measurements of distance to nearest obstacle, cameras provide
bitmap images that require further processing, inertial measurement units maintain
orientation and position information. Furthermore, data can be used in raw or pro-
cessed form. Several examples of observations will be illustrated in the rest of the
thesis.

Location and mapping estimations can be described as the problems of finding the
posterior distribution function of state that consists of either robot pose xt alone or the
ensemble of robot trajectory in time and map [x0:t ,m1:M]T . In localization problems
the posterior probability distribution is

p(xt |u1:t ,z1:t ,m) (2.1)

The above conditioned probability density function assumes that the map is known
along with observations and robot motion. On the other hand the posterior for SLAM

1This notation sometimes appears unclear when compared to a specific coordinate.
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problems is
p(xt ,m|u1:t ,z1:t) (2.2)

Sometimes additional association variables appear in the conditioning variables in
the above conditioned distributions. Association variables model uncertainty on the
matching between the observations and the map. They will be omitted to focus more
on the significant issues than on notation.

The two posteriors differs in the composition of the variables to be estimated.
Map is a known term and is part of the conditioning terms in posterior of localiza-
tion problems, and part of the state when simultaneous localization and mapping is
addressed. While the two problems may look totally apart, posterior Eq. (2.2) can be
decomposed into the product of Eq. (2.1) and the probability density function of map
variables m. Thus, probabilistic approach allows a unique formulation of different
problems: an estimation problem can be reduced to another problem by explicitly ac-
knowledging dependencies between variables. Such relationship may be derived by
applying Bayes formula, conditioning, independence and conditional independence
hypotheses or marginalization of joint distributions.

Therefore, it is convenient to provide a more general formulation of SLAM: in
full SLAM problem the issue is the estimation of the posterior

p(x0:t ,m|u1:t ,z1:t) (2.3)

The aim is then the computation of map and whole robot trajectory. Depending on
the specific application we may not be interested in the evaluation of the whole joint
distribution. Anyway Eq. (2.3) may be reduced by variable elimination. Sometimes
only a marginal distribution of the full state is required or the selective elimination of
variables allows more efficient estimation.

Full SLAM formulation can be conveniently represented by an intuitive graphi-
cal model [23, 19, 74, 14] like the one depicted in figure 2.1. The graphical model is
a graph whose vertices represent the random variables of the problem and arcs rep-
resent the relationships between these variables. Each arc is directed from the condi-
tioning variable to the conditioned one. Such a graphical model is sometimes called
belief network [14] and is similar for several aspects to Bayes networks and Markov
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Figure 2.1: Graphical model of SLAM problem.

random fields [75]. Such representation has the advantage of being sufficiently ab-
stract to provide a general interpretation of all approaches to SLAM. For example
recursive bayesian filters may be viewed as a recursive elimination of the latest robot
pose.

The graphical representation has also the advantage of catching dependencies
among variables in term of connectivity of the graph. Such graph can also be inter-
preted topologically because the state variables to be estimated consist of robot poses
and map features. The dependencies among variables have a significant impact on
the estimation of posterior Eq. (2.3), since they affect the computational complex-
ity of the estimating algorithms and the possible distribution of computational load
in time. While the connectivity of the graphical model is given and depends on the
specific problem, the solving algorithm may perform selective variable elimination
or may select the part of the network to be processed. In online mapping problem the
state is augmented after each step and the updated estimation should involve only the
variables affected by each addition. Thus, the time required for the update respects
real-time constraints, if the variables affected by the addition are local. The graphical
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model is then effective in emphasizing this locality condition.

2.1.2 Bayesian filters

Bayesian filtering is one of the most used approaches to stochastic state estimation
problems. In order to estimate the posteriors of state, either Eq. (2.1) or Eq. (2.2), this
method reverts the conditioning and the conditioned variables using Bayes formula.
In particular, the inference of robot state xt given the current sensor observation zt is
achieved by comparing the observation with the expected input given the robot pose
xt . In such comparison state variables xt are the conditioning term. The expression
rewritten with Bayes formula has the advantage of being easier to compute. Given
the robot pose the expected observation can be obtained with a generative model.
Generative models emulate the physical laws that rule the motion and perception of
the robot.

The formal derivation of recursive bayesian filters is now an essential introduc-
tion to localization and mapping problems treatment [27, 74, 19]. First, the general
posterior Eq. (2.2) is decomposed according to Bayes formula

p(xt ,m|u1:t ,z1:t) =
p(zt |xt ,m,u1:t ,z1:t−1) p(xt ,m|u1:t ,z1:t−1)

p(zt |u1:t ,z1:t−1)
(2.4)

= η p(zt |xt ,m) p(xt ,m|u1:t ,z1:t−1) (2.5)

Since term on denominator contributes to normalization and is difficult to evaluate,
it is commonly substituted with a normalization constant to be determined for each
specific technique. The first term in Eq. (2.5) can be simplified due to the Markov
assumption that postulates that the past and future data are independent if the current
state xt is known. Markov assumption is another name of complete state hypothesis.
Indeed, the observation zt does not depend on previous observations and commands,
which can be removed from conditioning terms. The second factor in Eq. (2.5) rep-
resents the prediction on state that takes into account only the odometry and is then
corrected using the feedback from perception. In order to achieve a recursive for-
mulation the predictive term is further decomposed according to the theorem of total
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probability

Eq. (2.2) = η p(zt |xt ,m) ·∫
Rd+2M

p(xt ,m|xt−1,u1:t ,z1:t−1) p(xt−1,m|u1:t ,z1:t−1)dxt−1 (2.6)

= η p(zt |xt ,m) ·∫
Rd+2M

p(xt ,m|xt−1,ut) p(xt−1,m|u1:t−1,z1:t−1)dxt−1 (2.7)

Simplification of Eq. (2.6) is due once again to the complete state hypothesis. The
resulting equation formally defines recursive Bayes filters. Starting from the posterior
p(xt−1,m|u1:t−1,z1:t−1) estimated in the previous time instant t − 1, a Bayes filter
performs a prediction step using the transition model that describes the dynamics of
system. The distribution is then corrected through the likelihood function p(zt |xt ,m)
and the posterior for step t is achieved. The previous description refers to the SLAM
problem, but a straightforward extension holds also for localization problem since the
focus of bayesian filters is on the estimation of the dynamical part xt of the state. Map
m is immutable in the previous description because decision on map augmentation
and other important details have been omitted.

The derivation of Bayes filters illustrated above hides a marginalization of com-
plete state distribution. In Eq. (2.6) robot pose in the previous time instant xt−1 is
introduced without previous notice. The implicit premise lies in the complete graph-
ical model of the problem: the whole robot trajectory is included and recursively
removed from the marginal distribution that is estimated. Thus, marginalization is a
unifying concept for all the approaches to localization and mapping problems.

2.1.3 Marginalization and conditioning

The most general formulation of localization and mapping problems is provided by
the graphical model of full SLAM. All random variables and relationships between
pairs of variables are represented. However, each specific method operates on a re-
duced subset of variables to estimate the solution. For example, Bayes filters illus-
trated in previous section recursively remove the latest robot pose and keep the up-
dated value. Formally, the distribution obtained from a subset of joint distributions is
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called marginal distribution, hence the name of marginalization. Marginalization is
achieved by integrating the variables to be removed on their domains.

Furthermore, a decomposition of joint distribution can be achieved through con-
ditioning. Sometimes conditioning allows factorization of joint variables that are con-
ditionally independent. While independence is a strong assumption, conditional in-
dependence is often a proper hypothesis based on the structure of the problem. An
important case is the mutual conditional independence among map features when
conditioned by robot pose: such reasonable assumption is the foundation of Rao-
Blackwellized Particle Filters [59, 58]. The result of factorization is that the com-
plete posterior is decomposed into marginal distributions and such marginals can be
computed independently.

Reduction of the number of variables achieved by marginalization or decom-
position allowed by factorization are required for several reasons. Several methods
decompose the joint distribution because only elementary distributions have a closed
form mathematical formulation. For example Bayes filters split the estimation into
prediction and correction steps that are performed using elementary generative laws.
Motion and sensor models are used to update the value of robot pose, or more for-
mally to update the associated marginal posterior.

Another important reason for focusing on marginals is the limitation of SLAM
problem dimension. Curse of dimensionality is a main issue in mapping problems
because the map size increases with the exploration of unknown regions of the en-
vironment. State augmentation affects solution algorithms in many ways, not only
their computational complexity. Approaches based on importance sampling are sen-
sitive to state size more than parametric Bayes filters since they rely on sampling. The
number of samples required for an accurate estimation depends on the size of the do-
main of variables and the systematic increase of the number of variables causes an
explosion of complexity and hinders convergence speed to the solution. Hence, Rao-
Blackwellization has been introduced to split state in two parts: the dynamical one is
estimated with sequential importance sampling, while the map is treated with para-
metric representations (usually gaussian). An explicit example of marginalization is
found in the GraphSLAM algorithm [60, 74]. This offline algorithm computes the
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full posterior that consists of the whole robot trajectory and map features. Solution is
achieved by iterating the elimination of map variables and the update of estimation
through numeric methods. In this case the convergence speed and the complexity of
iterative numerical methods motivate marginalization.

In this thesis marginalization and conditioning have been discussed because these
operations change the dependencies between problem variables. In particular they af-
fect the connectivity of the graphical model. When the state is represented by mul-
tivariate normal random variables, the connectivity is apparent from the second or-
der statistics, i.e. from the covariance or information matrix. On the matrix variable
elimination is then equivalent to removing the rows and columns corresponding to
the deleted variables and to substituting the terms associated to the remaing variables
with the Schur complement [74, 14]. If two variables were connected to a third re-
moved variable, this matrix operation connects the first two variables. The resulting
matrix tends to be less and less sparse within variable elimination.

The connectivity of the network clearly has an impact on the computation time
and on the feasibility of time constraints. When new variables are added to the graph-
ical model, the full posterior of the modified network has to be re-estimated. An
incremental method would update the previously computed posterior by limiting the
modification of previous estimation. The extent of the update depends both on the
network topology and on the manipulation performed by the solution algorithm. Fig-
ure 2.2 shows two different iterations of incremental estimation of an artificial map
consisting of poses. The figure does not represent the graphical model, but the corre-
spondence of the poses and connecting lines of the map to the random variables and
conditioned constraints in the graphical model is straightforward. When the poses
added to the network are loosely connected with the other part of the network (Fig-
ure 2.2, top), only a local modification is required. On the other hand, the update in-
volves a large portion when a loop is closed (Figure 2.2, bottom). While no control of
the topology of the belief network resulting from the exploration of the environment
is possible, mapping algorithms manage the structure of reduced networks through
marginalization. Recursive filtering techniques remove past robot trajectory without
questioning whether the elimination of robot pose has an impact on the network.
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Figure 2.2: Examples of incremental map estimation when a small (top) or large
portion (bottom) of the previously estimated map is recomputed. The modified part
is shown in green color.
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Therefore, the approaches that explicitly evaluate variable connectivity in a graphical
model grant larger control on real-time feasibility.

2.2 Real-Time Feasibility

The main issue of this thesis is the adaptation of localization and mapping algorithm
in order to meet time constraints. Localization and mapping estimation is performed
iteratively after a new observation is available to the robot. The task should be accom-
plished before the next acquisition. The time interval between two sensor acquisitions
gives the relative deadline for each iteration. Here, we assume that the sensor acqui-
sition is periodic and that sensor data are delivered as a single observation regardless
for the potentially different sources of perception. Furthermore, several details about
other robotic tasks that may interferes with the execution are not considered. The fo-
cus is entirely on the algorithmic requirements to meet real-time constraints, although
soft constraints. The preliminary question is whether there are general design princi-
ples that hold both for localization and mapping problems. Apparently, the answer is
negative since the sources of complexity are different for the two problems.

Posterior estimation in localization is on a fixed size state: the aim is the eval-
uation of current robot pose distribution given by Eq. (2.1). Bayes filters are then
suitable to solve global localization because the map of the environment is known
and there is no need to grow the dimension of state space. The most effective method
to address localization is Monte Carlo Localization (MCL). MCL represents the pos-
terior using a set of samples of the robot state according to the well established tech-
nique of importance sampling. Such sampled representation is the reason both of its
flexibility and of its complexity when compared to other parametric Bayes filters.
The number of samples is a measure both of the accuracy of the representation of
localization hypotheses and of the time required to perform a filter iteration. Roughly
speaking a time constraint on the execution of MCL corresponds to a bound on the
number of samples. Thus, real-time feasibility depends on an internal parameter of
the algorithm rather than on the structure of the problem.

Conversely, the complexity of mapping algorithms lies in size and correlation
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of state variables. The discussion in the previous section clearly illustrates how the
complexity of the mapping problem depends on the connectivity of the graphical
model. Moreover, there is no control on the topology of the network and no real
bound can be established on the execution time. A solving technique may keep the
network as sparse as possible through careful variable elimination. Even if no real-
time constraint is granted, the incremental update of the network is limited to local
interaction when possible.

In the two cases discussed above the limitations on real-time feasibility depend on
different variables: the samples for MCL and the state variables (robot trajectory and
map features) for mapping. We call them complexity variables hence after. However,
the solutions proposed in this thesis to meet time constraints have several similarities.

First, the complexity variables are subdivided into subsets. Each subset collects
the variables that are in the proximity of the event that changes the estimation of the
posterior. Such proximity may be temporal or spatial. In MCL the samples represent
the robot location hypotheses on the whole map, but the event that modifies the esti-
mation is the periodic acquisition of a measurement: the new observation is used to
compute the importance weights. The addition of a new map feature (or robot pose)
is the event that causes the update of the rest of the map. The perturbation should
be limited to the subset of variables near the changed map changed. The results of
processing in “local” subsets are then composed together to achieve the complete
estimation. The complete estimation of posterior is somehow delayed. We will see
when and how this could be achieved for specific algorithms.

2.3 Particle filters

This section illustrates the localization methods based on sequential importance sam-
pling (SIR), also known as Particle Filters (PF) or Monte Carlo Localization. Such
methods have become the most widely used approaches to localization due to their
ability of approximating a large range of probability distributions, in contrast to
Kalman filters. The previous discussion of real-time constraints in MCL has shown
the difficulties due to importance sampling technique. In the following we present a
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brief account of literature on PFs for robot localization and the details of the algo-
rithm.

2.3.1 Related works

Earlier approaches to probabilistic robot localization with on-board sensors focused
on position tracking. The initial pose of the robot is given and the aim is to keep this
information. Position tracking has been addressed with the well established Kalman
filter and a beacon based map and sensor model [45]. However, gaussianity assump-
tion of Kalman filters on state distribution does not held in global localization prob-
lems. To overcome this limitation solutions like Multi-Hypothesis Tracking have been
proposed [2].

Concrete advancements in the solution of general localization problem have been
made with the Particle Filter, a discrete Bayes filter technique relying on importance
sampling. Historically, the origin of importance sampling traces back to the works of
Metropolis and Hastings [57, 35], but sequential importance sampling for the estima-
tion of dynamic systems has been introduced in early ’90s and has been extensively
studied only in the last decade [16, 48, 17]. Particle filters have been then proposed to
solve robot localization [26, 27]. Several aspects have been investigated in the devel-
opment of grid-based localization, a predecessor of MCL: for example active local-
ization [6], correlation-based sensor models [42], and feature-based sensor models
for cameras [72, 20].

Three significant contributions to particle filter algorithm will be discussed with
greater attention in this thesis. The contribution in [27] includes a thoughtful discus-
sion of the effects of inefficient proposal distribution2 on localizer performance and
several alternative proposals are illustrated. A sampling method based on Kull-Back
Leibler divergence (KLD) has been proposed in [25] to reduce to the minimum the
number of samples used in the estimation of posterior. The KLD measures the differ-
ence between two distributions. The number of samples required to approximate the
true posterior with a divergence less than ε with a confidence of at least 1−δ is com-

2Proposal distribution will be defined formally in next subsection.
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puted with a closed form formula. Finally, the Real-Time Particle Filter (RTPF) [44]
algorithm represents the most significant effort to adapt PFs to real-time constraints.
For a deeper discussion of RTPF we refer to chapter 3.

Particle filters have been also adapted to solve SLAM problem as briefly re-
minded in previous discussion on posterior factorization. To overcome the curse of
dimensionality for SIR techniques, Rao-Blackwellized Particle Filters (RBPFs) have
been proposed. FastSLAM is the first RBPF to handle features map [58, 59]. A ver-
sion of RBPF for efficient occupancy grid map is presented in [33]. The work on
asynchronous multirate RBPF in [1] is interesting for the discussion on real-time
feasibility, since its aim is the management of sensors and actuators with different
sampling rates.

2.3.2 Monte Carlo Localization

Monte Carlo Localization is a localization method based on importance sampling.
Importance sampling is a Monte Carlo technique originally conceived for evaluating
integrals related to the distribution of a random variable. In a typical formulation of
the problem [46, 17], the aim is the estimation of the quantity I(h) = Ep [h(x)], where
x is a random variable, h(·) a function of interest and p(x) is the target distribution.
Since the probability density function p(x) is unknown or difficult to manipulate in
a closed form expression, I(h) is computed by generating samples x(i) (i = 1 . . .N)
distributed according to a proposal distribution π(x) that approximates the target
distribution. Each sample x(i) approximates p(x) with a different degree of precision
and the contribution of each sample x(i) is measured by the importance weight defined
as

w(i) = w(x(i)) =
p(x(i))
π(x(i))

(2.8)

Thus, the value of I(h) is then estimated by the following weighted discrete approxi-
mation

ÎN(h) = ∑
N
i=1 h(x(i))w(x(i))

∑
N
i=1 w(x(i))

(2.9)

Note that the term at the denominator is a normalization constant.
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This formulation of importance sampling method cannot be directly applied to
estimate posterior Eq. (2.1) in robot localization. A robot is a dynamical system and
a localizer has to update recursively the value of robot location, when new measure-
ments are acquired. Importance sampling has to be adapted to Bayes filter framework:
the target distribution is conditioned by control data and observations and the com-
putation is decomposed in prediction and correction steps. Moreover, the purpose of
robot localization is not the estimation of a specific value like the expected value
I(h), because the dynamic evolution of the robot is fully represented by the sampled
distribution.

Sequential importance sampling has been proposed to extend the above method to
sequential estimation problems. According to this formulation the target distribution
at iteration t is approximated by a set of weighted samples St = {(x(i)

t ,w(i)
t )}N

i=1 and
both the distribution and the samples set evolve in time. The importance weight of
each sample is updated after the evolution of the sample value. In the specific case of
localization, the expression of weight is given by

w(i)
t ∝

p(x(i)
t |u1:t ,z1:t ,m)

π(x(i)
t |u1:t ,z1:t ,m)

w(i)
t−1 (2.10)

The target distribution Eq. (2.1) can be decomposed as shown in Bayes filters deriva-
tion (section 2.1.2). A natural choice for proposal π(·) is then the distribution ob-
tained after the prediction step. Thus, importance weights are updated by the remain-
ing term p(zt |x(i)

t ) which represents the likelihood function. This proposal allows a
remarkable simplification of expression and it is easy to compute, but it leads also
to poor performance when it places too few samples in regions where the likelihood
function is large. Several improvements in sampling criteria have been proposed for
both localization and mapping problems [27, 63, 31]. The choice of proposal will be
further discussed in chapter 3.

The computation of weights suggested by Eq. (2.10) is prone to numerical di-
vergence. The values of importance weights tend to be smaller and smaller because
a small portion of the sample set represents the most likely estimation hypotheses.
Bootstrap provides a solution to the divergence of sample distribution from the cor-
rect posterior. Samples with low importance weight are removed and replaced by par-
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ticles with high importance weight. The weighted distribution is replaced by a new
set of samples with equal weights. Bootstrap is operatively performed by resampling.

Data: St−1: set of N samples
〈

x(i)
t−1,w

(i)
t−1

〉
with i = 1 . . .N; ut : motion

command; zt : observation.
Result: St : updated set of samples
St =;1

s = 0;2

foreach i = 1 . . .N do3

pick index j from St−1 and corresponding sample x( j)
t−1;4

sample x(i)
t from p(xt |xt−1,ut) using x( j)

t−1 and ut ;5

w(i)
t = p(zt |x(i)

t );6

St = St ∪{
〈

x(i)
t ,w(i)

t

〉
};7

s = s+w(i)
t ;8

end9

foreach i = 1 . . .N do10

w(i)
t = w(i)

t /s;11

end12

Algorithm 1: Standard Monte Carlo Localization algorithm.

Algorithm 1 shows a single iteration of the standard Particle Filter for robot local-
ization. The input data consist of the set of samples St−1 obtained after the previous
iteration and of the current motion command ut and observation zt . The result consist
of the updated set of samples St . The posterior distribution defined by sample set is
often noted as belief. The execution is centered on the cycle that performs the update
of sampled distribution. First, a new sample is drawn from the previous distribution.
This operation is the resampling step and is usually better performed on the whole
distribution. Several resampling techniques have been proposed and a satisfactory
overview can be found in [4]. Resampling step is conceptually the last step of the
algorithm to be placed after normalization, but the pseudo-code is more compact if
its execution is put inside the update cycle.
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The prediction of the new robot location hypotheses is represented by the sam-
pling from motion model p(xt |xt−1,ut). The motion model is usually composed by
the kinematic model of the robot and an additive noise. Possible modelling inaccu-
racies in the motion equations are sometimes included in the noise. An outcome of
noise representing the uncertainty on motion is generated as a pseudo-random num-
ber and can be added to the command ut used to compute the new pose or directly to
the computed robot pose. The predicted distribution can then be computed without
linearizing motion equations. On the contrary, EKFs and parametric filters in general
require the linearization of equations to update the distribution.

The correction step corresponds to the computation of importance weight w(i)
t .

The sensor model p(zt |x(i)
t ) has a significant role in the convergence of the filter.

Importance weights measure the likelihood of the hypotheses contained in the sam-
ples. As noted before, if the regions of the state domain with large likelihood are too
small and too few samples fall inside them, the correct hypothesis may be dropped.
This drawback can be avoided with a careful choice of proposal, but also of the sen-
sor model. Sensor models have been proposed for range sensors [74], correlation
models [42], vision landmarks [20]. An observation zt is often composed of several
measurements, e.g. a laser scan is a vector of ranges. Independence of such mea-
surements is usually assumed to factorize the likelihood function and to compute
the weight. Such assumption has a remarkable impact on likelihood, but it does not
always hold and alternative sensor models have been proposed [69].

The above description of Particle Filters shows that the time required to exe-
cute the algorithm mainly depends on the number of samples. Prediction, correction
and resampling are performed on each sample. Estimation of the number of sam-
ples needed for an accurate approximation of true state distribution is difficult, since
it changes during the various phases of localization. At the beginning the particles
should be distributed on all the map because no information on robot position is avail-
able, but after few filter iterations clusters of particles appear. Given a target density
of samples, i.e. the bin size, the KLD sampling technique [25] mentioned in previous
subsection allows the computation of the number of samples required to approximate
the true distribution with the desired precision. However, such solution does not en-
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sure real-time feasibility, even though it reduces the filter complexity. Observations
are acquired periodically in spite of the needed samples.

2.3.3 Effective Sample Size

The effective sample size is an heuristic measure of the efficiency for an importance
sampling scheme. In a standard estimation problem like Eq. (2.9), the efficiency de-
pends on the variance of the estimated value, Varπ [ÎN(h)]. The smaller is the variance
of estimation, the smaller is the number of samples needed to reach a stable value.
Since a direct evaluation of variance for the resulting quantity is difficult, a “rule of
thumb” approximating Varπ [ÎN(h)] has been proposed in [47, 46]. Using standard
delta methods for ratio statistics, the efficiency is approximatively given by

ne f f =
N

1+Varπ [w(x)]
(2.11)

Since the expected value Eπ [w(x)] = 1, the variance of importance weight function
can be expressed using the square values of weight samples

ne f f =
N

1+ 1
N ∑

N
i=1

(
w(i)2−1

) (2.12)

≈ 1

∑
N
s=1 w̃(i)2 (2.13)

The final result Eq. (2.13) has been achieved by substituting the weights w(i) with
the normalized weights N w̃(i). This heuristic rule can be applied also to sequential
importance sampling.

The effective sample size may be interpreted as the number of samples that should
be drawn from the unknown target distribution to achieve an approximation as accu-
rate as the current one obtained by sampling from the proposal. The samples drawn
from a proposal equal to the target distribution would have all unitary weights (see
Eq. (2.8)), normalized weights w̃(i) = 1/N and null variance. Thus, the ne f f would be
then equal to the cardinality of the whole set. In particle filter practice, the effective
sample size is commonly used as a criterion for deciding when to perform resam-
pling step. A resampling step is necessary both to avoid numerical divergence and



26 Chapter 2. Problem Model

Figure 2.3: Example of sample set after a single particle filter iteration. The starting
distribution was uniform on all the free space of themap.

to replace the samples with low importance weight, but it may remove good sam-
ples causing particle impoverishment [31]. Resampling is then performed when the
effective sample size is less than a given threshold typically equal to N/2 or 3N/2.

The effective sample size can be interpreted as a measure of the accuracy required
by the likelihood function used by the particle filter. The more the likelihood func-
tion is peaked around its maxima, the less is the size of the domain regions with an
high likelihood. Figure 2.3 shows an example of the first particle filter iteration for a
specific problem. The proposal distribution is uniform on the free space of the map in
the figure, but after the resampling step samples remain only in the regions where the
importance weights are higher. The experiment can be repeated many times using a
range sensor model with different numbers of beams [74]. Figure 2.4 depicts the rela-
tive effective sample size with respect to the number of beam ranges considered in the
evaluation of the importance weights. The effective sample size obviously decreases
with the number of beams because the likelihood function is more restrictive.

Thus, the value of effective sample size is related both to the concentration of
samples in most likely domain regions due to the proposal and to the size of these
regions due to the likelihood function. The geometric interpretation of this parameter
will be extensively used in chapter 3 for the analysis of mixture representation in
RTPF.
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Figure 2.4: Effective sample size after resampling with respect to the number of
beams considered by a range sensor model.

2.4 Maximum Likelihood Mapping

This section illustrates the principles of maximum likelihood (ML) techniques for
mapping. This approach is more closely correlated to graphical model discussed in
section 2.1.3 than recursive Bayes filtering. For ML methods the graphical model is
not only a theoretical reference model, but a framework for every operation over the
map. For this reason some of these algorithms are called GraphSLAM or Graphical
SLAM [61, 23, 24, 60]. Even though they have been originally formulated for offline
mapping, ML algorithms are convenient candidates for real-time and distributed ex-
ecution. An important consequence of graphical formulation is the sparse structure
of the problem. Such sparsity may be exploited by ML algorithms to decompose the
network in the most convenient form.

After a discussion of related works, this section provides the derivation of the
approach from the general probabilistic formulation. The focus is more on the two
possible models for the problem, the feature-based and the delayed-state models.
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2.4.1 Related Works

The first techniques proposed for ML mapping were batch algorithms for the solution
of offline SLAM. Offline methods require all data to be available right from the be-
ginning. When a robot pose or observation is added to the map, the map is computed
again without exploiting previously computed estimation. Lu and Milios [55, 56] pi-
oneered the maximum likelihood approach proposing a brute force technique to align
range scans. The map consists of a collection of scans and the constraints are recov-
ered through scan matching [54]. A variant of the algorithm with a metric-topological
hybrid map and an effective loop detection based on correlation was presented in [34].
To improve the efficiency of estimation, gradient descent and conjugate gradient tech-
niques have been applied [41, 61, 60].

Other solutions are based on Gauss-Seidel relaxation [18, 23, 24, 29]. In partic-
ular, Duckett et al. [18] iteratively solve the pose of each node fixing the position
of other nodes and assuming that the orientation of each pose is known. Folkesson
et al. [23, 24] propose a technique to group adjacent nodes into a star node in order
to accelerate the convergence of the algorithm. Multi-Level Relaxation (MLR) [29]
performs Gauss-Seidel iteration at different levels of resolution.

Dellaert et al. proposed different algorithms based on factorization of informa-
tion matrix [15, 14, 39]. The method in [15] relies on QR factorization of linearized
information matrix and on decomposition of factorization problem into small sub-
problems. Square Smoothing And Mapping (SAM) may use either Cholesky or QR
factorization with back-substitution [14]. Efficiency can be obtained with variable
reordering and variable elimination. An incremental version of SAM is illustrated
in [39].

ML methods generally manipulate the exact graphical model, but some tech-
niques prune the graphical model and force a tree structure. Thin Junction Tree Filters
(TJTF) [68] and Treemap [28] both ignore the weak correlations between distant lo-
cations.

Olson et al. [66] proposed to apply Stochastic Gradient Descent (SGD) for the
estimation of the map. SGD selects one constraint at a time and solves it indepen-
dently from other constraints. SGD is particularly efficient when the incremental pa-
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rameterization is used. A tree parameterization that speeds up convergence has been
proposed in [32]. The incremental versions of this technique [67, 30] will be further
described in chapter 4.

Frameworks like ATLAS [5] are hybrid solutions that combine linearized submaps
estimated with EKF in a unique submap. Since ML methods are less prone to lin-
earization error, they can be used to adjust local map and handle large environments.

The evolution of ML briefly depicted above shows the progressive transition from
offline to incremental algorithms. First, researchers directed their effort to the reduc-
tion of the computational complexity of batch estimation. Efficiency has been reached
by decomposing the algorithm in either a hierarchical or a parallel way. Several ad-
vanced offline methods are so fast that can be used in online estimation when the
size of the map is not too large. Finally, incremental versions have been proposed to
update the map estimation without recomputing the whole map.

2.4.2 Probabilistic Derivation

The probabilistic interpretation of Maximum Likelihood methods is less apparent
than Bayes filters. Sometimes these techniques have been presented with more em-
phasis on the nonlinear optimization problem that has to be solved in order to esti-
mate the map. The function to be optimized is a quadratic function that represents the
weighted error of map configuration with respect to given constraints. The probabilis-
tic origin of the approach lies in the interpretation of the error function that has to be
minimized and the “weighting” terms directly related to the second order statistics.

In the following, the derivation of the optimization problem from the estimation
of full SLAM distribution Eq. (2.3) is briefly described according to [74]. The full
posterior can be decomposed with Bayes formula as shown for recursive Bayesian
filters Eq. (2.5)

p(x0:t ,m|u1:t ,z1:t) = η p(zt |x0:t ,m,u1:t ,z1:t−1) p(x0:t ,m|u1:t ,z1:t−1) (2.14)

= η p(zt |xt ,m) p(x0:t ,m|u1:t ,z1:t−1) (2.15)

As usual, the irrelevant conditioning variables have been removed. The only differ-
ence is that in this case the variables representing the previous robot trajectory x0:t−1
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are removed. The contribution of robot motion ut can be pointed out simply by con-
ditioning current robot pose xt

p(x0:t ,m|u1:t ,z1:t−1) = p(xt |x0:t−1,m,u1:t ,z1:t−1)p(x0:t−1,m|u1:t−1,z1:t−1)(2.16)

= p(xt |xt−1,ut)p(x0:t−1,m|u1:t−1,z1:t−1) (2.17)

Since the estimation concerns full SLAM, no marginal has to be computed and the
above equation does not contain integrals. When the two steps described above are
applied recursively, an exact factorization of full SLAM is achieved

p(x0:t ,m|u1:t ,z1:t) = η p(x0,m)
T

∏
t=1

p(zt |xt ,m) p(xt |xt−1,ut) (2.18)

An important consequence of the above factorization is that two non-consecutive
robot poses are not correlated. Since map features m are locally related to the poses
where they have been observed, the graphical model associated to the problem is
naturally sparse.

If a different map representation or sensor model are exploited, the structure of the
graphical model may not be as illustrated above. In particular, when sensor returns an
observation related to the view of the robot in a given pose instead of a set of features,
map variables of vector m are not explicitly represented. A view based approach is
typically used with laser scans [55], but also with a vision based system [21]. In the
case of laser scans, odometry information ut and observations zt−1:t may be implicitly
used to compute the distribution of consecutive poses xt−1:t with scan matching [54,
11]. Formally, the delayed-state formulation of mapping problem is obtained from
the full SLAM formulation by computing the marginal distribution of x0:t [22]. For
example, when a map feature mk is observed by robot both in pose xi (observation zi)
and in x j (observation z j), the integration over mk transforms the terms of factorized
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posterior Eq. (2.18) related to mk as follows

[integr. Eq. (2.18)] =
∫

Rd
p(zi|xi,mk) p(z j,xi|mk) p(x0,mk) dmk (2.19)

=
∫

Rd

p(zi,xi|mk)
p(xi|mk)

p(z j,x j|mk)
p(x j|mk)

p(x0,mk) dmk (2.20)

=
∫

Rd

p(zi,z j,xi,x j)|mk)
p(xi,x j|mk)

p(x0,mk) dmk (2.21)

= p(zi,z j|xi,x j) p(x0) (2.22)

= p(zi|xi,x j) p(z j|xi,x j) p(x0) (2.23)

In the original posterior poses xi and x j were only conditionally independent (see
Eq. (2.20)) and after marginalization zi and z j are conditioned both by the two poses.
Since a map feature can be observed only when the robot moves in the neighborhood
of the feature, a robot pose is correlated with near poses even after marginalization.
Thus, the global network remains sparse also for the delayed-state formulation.

Each observation may be viewed as a constraint between a pair poses. In the
following c ji will be used for the constraint 〈 j, i〉 computed by combining two ob-
servations zi and z j, sometimes using also the odometric information. As observed
in [65], in this context a constraint is not an inviolable condition that must be satis-
fied by the solution. Such condition may be violated, but each violation has a cost that
is proportional to the magnitude of the violation. The form of constraints depends on
the provided sensor information. Bearing only or range models are among the most
commonly used ones. In this thesis, a constraint c ji represents the observation of pose
j from node i, i.e. the relative transformation between the two reference frames. The
value of relative transformation from i to j can also be computed as a function of
the current configuration of the network x, f ji(x). Map estimation should reduce the
conflict between f ji(x) and constraint c ji.

Notation for state variables x has been slightly changed both to simplify formal-
ism and to point out that in delayed-state formulation poses vector x does not always
represent robot trajectory. In particular some methods exploit a different parameter-
ization for robot poses like the incremental parameterization in [66]. Furthermore,
poses in x may refer to the reference frames of local maps extracted from several
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observations acquired in the area [34, 18, 51].
A solution for the problem formulated above requires the choice of the distribu-

tion of map variables. A common assumption is that constraints 〈 j, i〉 are distributed
according to multivariate normal c ji ∝ N (δ ji,Ω

−1
ji ), where δ ji is the expected value

of constraint and Ω ji is its information matrix. The constraint set is noted with the
symbol C . The map configuration x∗ that maximizes the likelihood

x∗ = argmax
x

p(x|c ji ∈ C ) (2.24)

is the solution to the estimation problem. The distribution in Eq. (2.24) is the marginal
of Eq. (2.18). In the equation the distribution is in a compact form, but it can be
factorized as shown by Eq. (2.23)

p(x|c ji ∈ C ) = p(x0) ∏
〈 j,i〉∈C

p(c ji|x) (2.25)

The conditioning terms z1:t and u1:t of posterior have been substituted by the derived
constraints.

The estimation problem Eq. (2.24) is usually simplified by applying logarithm to
remove the exponential function of multivariate distribution. Furthermore, the factor-
ized posterior is transformed into a sum of quadratic terms representing the Maha-
lanobis distances between each constraint and the map configuration. In the equiva-
lent formulation of the problem the aim is the minimization of negative log-posterior

x∗ = argmin
x

∑
〈 j,i〉∈C

r ji(x)T
Ω jir ji(x). (2.26)

where r ji(x) = δ ji− f ji(x) are the residuals. Negative log-likelihood can also be in-
terpreted as an error function. The methods listed in previous subsection differ in the
techniques used to solve the nonlinear optimization problem given by Eq. (2.26).



Chapter 3

Real-Time Particle Filter for
Robot Localization

In this chapter the Real-Time Particle Filter (RTPF) for robot localization is intro-
duced. The method is a variant of standard Monte Carlo Localization (MCL) de-
signed to achieve a trade-off between time constraints related to sensor management
and filter performance.

3.1 Motivation and Problem Formulation

In chapter 2 Monte Carlo Localization (MCL) has been presented. Such method in-
herits advantages of sequential importance sampling with resampling (SIR) tech-
niques: it allows flexibility in representation of the posterior, which usually does not
have a given parametric model, and limits linearization errors in motion and sensor
model equations, which often lead to poor performance and divergence of filter.

Unfortunately, particle filter (PF) complexity and performance both depend on
the number of samples: in global localization a high density of samples helps to
discover and to converge towards the correct localization hypothesis. However, for
each additional sample a prediction, a correction and a resampling step are performed.
Furthermore, localization performance also depends on sensor information, which



34 Chapter 3. Real-Time Particle Filter for Robot Localization

could be acquired at a rate higher than the filter update rate. Possible solutions to
this mismatch between sensing rate and processing time include reduction of the
number of samples, e.g. adapting the size of the mixture [25], or of the number of
observations, i.e. discarding sensor data.

The Real-Time Particle Filter (RTPF) [25, 44] provides a tradeoff between time
constraints related to sensor management and filter performance. The tradeoff is
achieved applying a particular form of the locality criterion. Samples are partitioned
into subsets, each of them corresponding to an observation that is used to compute the
weights of the samples of the partition. Samples are then decomposed in small por-
tions temporally local to sensor data. The size of each partitioned subset is chosen so
that a particle filter iteration can be performed before a new observation is acquired.

The difference with standard PF with smaller sample set lies in the representation
of the posterior as a mixture of samples obtained during resampling step. Indeed,
the partition sets are grouped in estimation windows of k consecutive sets. At the
end of an estimation window the new sets of samples are obtained by resampling
from each of the k subsets of the window. The decomposition of distribution in local
aggregations is then composed into a new mixture distribution.

Critical parameters of RTPF are the mixture weights. Mixture weights deter-
mine how each partition set contributes to the posterior and are computed in order to
minimize the approximation error of the mixture distribution. However, the original
proposal for computation of mixture weights, based on minimization of Kullback-
Leibler (KL) divergence [25, 44], is prone to bias problems and numerical instability
arising from the need to perform a numerical gradient descent.

In this chapter, we provide two main contributions: a formal analysis for the evo-
lution of mixture of posterior in RTPF and a novel solution for the computation of
mixture weights [49, 52]. Each partition set posterior consists of samples, which are
drawn from motion model as proposal on the estimation windows and whose im-
portance weight depends only on a single observation. Since the correction step is
performed at different time instants for each partition set, differences among parti-
tion posteriors introduce a bias in estimation. We show that the bias is an outcome of
prominence of partition set that minimizes KL-divergence and has poor effective sam-
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ple size simultaneously. We then present an improved approach for the computation
of mixture weights based on effective sample size of the partition sets.

3.2 Real-Time Particle Filters

In particle filters, updating the particles used to represent the probability density func-
tion (potentially a large number) usually requires a time which is a multiple of the
cycle of sensor information arrival. Naive approaches, yet often adopted, include dis-
carding observations arriving during the update of the sample set, aggregating mul-
tiple observations into a single one, and halting the generation of new samples upon
a new observation arrival [44]. These approaches can affect filter convergence, as ei-
ther they loose valuable sensor information, or they result in inefficient choices in
algorithm parameters.

An advanced approach dealing with such situations is the Real-Time Particle Fil-
ters (RTPF) [25, 44], which will be briefly described in the following. Consider k ob-
servations. The key idea of the Real-Time Particle Filter is to distribute the samples
in sets, each one associated with one of the k observations. The distribution repre-
senting the system state within an estimation window will be defined as a mixture of
the k sample sets as shown in Figure 3.1. At the end of each estimation window, the
weights of the mixture belief are determined by RTPF based on the associated ob-
servations in order to minimize the approximation error relative to the optimal filter
process. The optimal belief could be obtained with enough computational resources
by computing the whole set of samples for each observation. Formally:

Belopt(xtk) ∝

∫
. . .
∫ k

∏
i=1

p(zti |xti) · p(xti |xti−1 ,uti−1) ·Bel(xt0)dxt0 · · ·dxtk−1 (3.1)

where Bel(xt0) is the belief generated in the previous estimation window, and zti , uti ,
xti are, respectively, the observation, the control information, and the state for the
i− th interval.

Within the RTPF framework, the belief for the i− th set can be expressed, simi-
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Figure 3.1: RTPF operation: samples are distributed in sets, associated with the ob-
servations. The distribution is a mixture of the sample sets based on weights αi (la-
beled ai in figure).

larly, as:

Beli(xtk) ∝

∫
. . .
∫

p(zti |xti) ·
k

∏
j=1

p(xt j |xt j−1 ,ut j−1) ·Bel(xt0)dxt0 . . .dxtk−1 (3.2)

containing only observation-free trajectories, since the only feedback is based on the
observation zti , sensor data available at time ti. The weighted sum of the k believes
belonging to an estimation window results in an approximation of the optimal belief:

Belmix(xtk |α) ∝

k

∑
i=1

αiBeli(xtk) (3.3)

An open problem is how to define the optimal mixture weights minimizing the differ-
ence between the Belopt(xtk) and Belmix(xtk |α). In [44], the authors propose to mini-
mize their Kullback-Leibler distance (KLD). This measure of the difference between
probability distributions is largely used in information theory [13] and can be ex-
pressed as:

J(α) =
∫

Belmix(xtk |α) log
Belmix(xtk |α)

Belopt(xtk)
dxtk (3.4)

To optimize the weights of mixture approximation, a gradient descent method is
proposed in [44]. Since gradient computation is not possible without knowing the
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optimal belief, which requires the integration of all observations, the gradient is ob-
tained by Monte Carlo approximation: believes Beli share the same trajectories over
the estimation windows, so we can use the weights to evaluate both Beli (each weight
corresponds to an observation) and Belopt (the weight of a trajectory is the product
of the weights associated to this trajectory in each partition). Hence, the gradient is
given by the following formula:

∂J
∂αi

' 1+Beli log
∑

k
j=1 α jBel j

Belopt
(3.5)

' 1+
Np

∑
s=1

wti(x
(s)
ti )

∑
k
j=1 α j wt j(x

(s)
t j )

∏
k
j=1 wt j(x

(s)
t j )

(3.6)

where Beli is substituted by the sum of the weights of partition set i− th and Belopt

by the sum of the weights of each trajectory.

Unfortunately, the mixture posterior computed with Eq. (3.6) suffers from a bias
problem. The mixture weights computed using the approximate gradient of KL-
divergence tend to increase over the estimation window as shown in Figure 3.3. How-
ever, the sample sets tend to be more and more spread. Figure 3.2 shows two partition
sets, one at the beginning of the window (top) and the other at the end (bottom). The
latter set has less samples that fall in a region with significant likelihood, i.e. there are
less samples in the correct robot location. After the resampling step, the distribution
obtained with Eq. (3.6) contains a portion of localization hypotheses loosely related
with the correct robot pose. These samples causes the bias in the estimation.

The effect of bias is even more dramatic when the posterior is a multi-modal dis-
tribution. In this scenario samples are clustered in the proximity of local maxima of
the likelihood function. If an observation discerning the correct localization hypothe-
sis is acquired, the particle filter should converge to the correct estimation. However,
if the partition set representing the correct localization hypothesis contains a bias,
then the choice of the correct localization hypothesis is more difficult. The solution
proposed in [44] to mitigate the effect of bias is the clustering of samples. The con-
tribution of each cluster to the gradient Eq. (3.6) is computed separately. Clustering
does not remove the bias, but it limits the ambiguity. In the next section, an alternative
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Figure 3.2: Examples of RTPF partition sets in a simulated environment at the be-
ginning (partition set 4, top) or at the end (partition set 15, bottom) of the estimation
window (k = 15). Samples with larger weights are colored with red.
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solution is proposed.

3.2.1 Algorithm Overview

Algorithm 2 illustrates a single iteration of RTPF for the computation of partition
set Stl . The normal sample update (cycle iterating on index variable m) consisting of
resampling, prediction and correction steps, is included inside the cycle that collects a
contribution from each partition of the previous estimation window. Mixture weights
αi are used to compute the number of samples ni drawn from each set.

In the initial version of RTPF [43] a different resampling schema is applied by
the so called Monte Carlo gradient descent. In particular, the first partition set of
the estimation window St1 is obtained by drawing samples from the partitions St−1i

(i = 1 . . .k) of the previous window. On the other hand, sets Stl (l > 1) consist of the
samples of St1 updated with the proper motion commands. The intuitive justification
for Monte Carlo gradient descent is that samples are used to represent the whole
robot trajectory on the estimation window. This solution is computationally efficient,
but it stesses the bias problem. The sample set is the same for all partitions of the
estimation window, but more spread for the last sets. Thus, accumulation of samples
that are less representative of the localization hypotheses is faster.

3.3 An Enhanced RTPF

In this section we provide a formal investigation on the motivation of bias in RTPF
estimation in [44], and we propose a new solution for mixture weights computation.

3.3.1 Bias in RTPF Mixture

In RTPF, samples belonging to different partition sets are drawn from the same pro-
posal, but their importance weights depend on different observation likelihood func-
tions p(zti |xti), which are computed in different time instants ti. Hence, the first source
of disparity among partition sets is the degree of proposal dispersion during the cor-
rection step. A suitable measure of proposal dispersion at iteration ti is provided by
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Data: k: partition number; l: current partition; Np: partition size;
S(t−1)1 , · · · ,S(t−1)k

: set of samples; α t−1: mixture weights;
u(t−1)1 , · · · ,u(t−1)k

,ut1 , · · · ,ut j−1 : motion commands; ztl : observation
Result: Stl : updated set of samples for tl
Stl = /0;1

s = 0;2

foreach i = 1, · · · ,k do3

ni = α(t−1)iNp4

foreach m = 1, · · · ,ni do5

sample index j from distribution of S(t−1)i ;6

sample x(m)
tl from p(xtl |x(t−1)i ,u(t−1)i , · · · ,utl−1) given x( j)

(t−1)i
and7

motion commands on intervals from (t−1)i and tl−1;
w(m)

tl = p(ztl |x
(m)
tl );8

s = s+w(m)
tl ;9

Stl = Stl ∪{< x(m)
tl ,w(m)

tl >};10

end11

foreach m = 1 . . .Np do12

w(i)
t = w(i)

t /s;13

end14

if l == 0 then15

compute mixture weights αt1 , · · · ,αtk ;16

end17

end18

Algorithm 2: An iteration of Real-Time Particle Filter.
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the radius of the ball set B(ηxti
,r)⊆Rd , which is centered on expected value ηxti

and
includes a consistent portion of the distribution of xti . The probability that a sample
falls in B(ηxti

,r) can be bound by r and the trace of the covariance matrix Σxti
, since

the following Chebychev-like inequality holds:

P
(

xti ∈ B(ηxti
,r)
)

> 1−
tr(Σxti

)
r2 (3.7)

In the following, the probability of event given by B(ηxti
,r) will refer to a proposal

density function arrested in ti:

π(xti) =
∫

Rd×i

i

∏
j=1

p(xti |xti−1 ,uti−1) dxt0 . . .dxti−1 (3.8)

Then, given 0 < ε < 1, a sample falls in a ball with at least probability ε when its
radius is larger than the dispersion radius:

rti,ε =
√

tr(Σxti
)/(1− ε) (3.9)

Parameter rti,ε provides a rough estimation for dispersion because only for uni-
modal PDF the ball B(ηxti

,rti,ε) (briefly B hereafter) limits a region around a local
maximum. Furthermore, it is often the case that xti is a vector of heterogeneous ran-
dom variables (e.g. cartesian coordinates and angular values), whose variances are
mixed in the trace, with the result that bound Eq. (3.9) largely overestimates the
region. However, the dispersion radius is a synthetic value and can be adapted to
multimodal distributions after decomposition into a sum of unimodal hypotheses.
Empirically, this decomposition is achieved by clustering on samples.

By applying command control and updating robot position, the dispersion radius
increases together with the trace of covariance matrix. If Gti is the Jacobian of motion
model computed in (ηxti

,uti), with Gti GT
ti ≥ 0 and tr(Gti GT

ti )≥ 1 (hypotheses verified
by a standard model like [74]), and Σwti

is the covariance matrix of additive noise,
then

tr(Σxti+1
)≈ tr(Gti Σxti

GT
ti )+ tr(Σwti

) (3.10)

Thus, we conclude that tr(Σxti
) ≤ tr(Σxti+1

) and that the dispersion radius increases
over the estimation window. A more accurate estimation of how it increases could be
obtained with further hypotheses on the motion model, e.g. Lipschitz continuity.
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Since the proposal is more and more spread in the estimation window and cor-
rection is performed at different times for each partition, we want to investigate how
the dispersion affects importance weights. Observation likelihood wti(x) = p(zti |x) is
usually more concentrated than the proposal, sometimes peaked as shown in [31]. We
assume that, given a proper δ > 0, region

L = {x ∈ B | wti(x) > δ} (3.11)

covers a consistent portion of wti(x). Thus, observation likelihood is bound in L by
M = supx∈L wti(x) < ∞ (envelope condition) and in B\L by δ . Hence, wti(x)≤ λ (x)
over B, with

λ (x) =

{
M x ∈ L
δ else

(3.12)

The bounding function λ (x) and set L are defined on ball B, and in the following we
will restrict the sampling domain to B using π(xti |xti ∈ B) as proposal. This assump-
tion allows us to consider the dispersion radius in the following discussion. Moreover,
this approximation is not so rough when ε is close to 1.

The effective sample size [46] is a measure of the efficiency of a set of samples in
the representation of a target posterior:

ne f f ti
=

1

∑
N
s=1 w̃2

ti(x
(s)
ti )

(3.13)

=

(
∑

N
s=1 wti(x

(s)
ti )
)2

∑
N
s=1 w2

ti(x
(s)
ti )

(3.14)

The above expression is achieved by substituting normalized weights w̃ti(x) with their
expression. Maximizing the effective sample size is equivalent to minimizing the
variance of the weights: it is easy to show with Jensen inequality that ne f f is bounded
by the number of samples N, which is obtained when each weight is equal to 1 and
the variance is small. Bounds on observation likelihood allow an approximation of
expected values of weight and square weight:

Eπ [wti(xti)|xti ∈ B] ≤ M HL +δ HB\L (3.15)

Eπ

[
w2

ti(xti)|xti ∈ B
]
≤ M2 HL +δ

2 HB\L (3.16)
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where HL = Eπ [IL(x)] and HB\L = Eπ [IB\L(x)] are the visit histograms of bins L and
B\L respectively; in our notation ID(x) is the indicator variable with value 1 when x
falls in D, zero otherwise. Equations Eq. (3.15) and Eq. (3.16) can be used to approx-
imate numerator and denominator of Eq. (3.14):

ne f f ti
≈ N

(
M HL +δ HB\L

)2

M2 HL +δ 2 HB\L
(3.17)

≈ N
(

HB\L +2
M
δ

HL +
M2 H2

L

δ 2 HB\L

)
(3.18)

The approximation given by Eq. (3.18) follows from the assumption that HL/HB\L <<

(δ/M)2. When dispersion is large, proposal can be considered almost constant on re-
gion L and its visit histogram HL decreases proportionally with the ratio of hypervol-
umes of L and B\L: HL ∝ 1/rd

ti,ε in d-dimensional space. Thus, the last partition sets
in the estimation window, i.e. those approximating better the distribution at the end
of the estimation window, have a spread proposal and are represented by few effec-
tive samples, as shown by the trend of Eq. (3.18). From difference between effective
sample size and KLD reduction, the bias in estimation follows.

The solution proposed in [44] mitigates the effects of bias by considering the
multimodal structure of samples distribution in KL-distance gradient estimation. The
estimation of gradient given by Eq. (3.6) ignores samples dispersion in different bins.
Formally, gradient Eq. (3.6) is the result of underestimation of KL-divergence: call
Belmix(C j) and Belopt(C j) the mixture and optimal histograms for cluster C j respec-
tively; from the convexity of KLD [13], Jensen inequality holds

KL(
M

∑
j=1

Belmix(C j) ‖
M

∑
j=1

Belopt(C j))≤
M

∑
j=1

KL(Belmix(C j) ‖ Belopt(C j)) (3.19)

Gradient estimation based on the second term of inequality Eq. (3.19) is better than
the previous one based on the first term, but no optimality can be claimed since bin
subdivision is empirical and gradient descent approaches easily incur in local min-
ima problems. Furthermore, even if cluster detection is usually performed in PF to
group localization hypotheses and no additional computational load is required, sam-
ple management is not at all straightforward.
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3.3.2 Alternative computation of Mixture Weights

This section proposes an alternative criterion to compute the values of the weights for
the mixture belief. Instead of trying to reduce the Kullback-Leibler divergence, our
approach considers mixture weights as the assigned measure of relative importance
of partitions that is transformed by processing at the end of estimation window. RTPF
prior distribution is the result of two main steps: resampling of samples and propaga-
tion of trajectories along previous estimation window. The effect of resampling is the
concentration of previous estimation window samples in a single distribution carry-
ing information from each observation. Conversely, the trajectories update given by
odometry and observation spreads the particles on partition sets.

Our attempt is to build a linear map modeling the change of relative importance,
i.e. mixture weights α , due to resampling and propagation of samples. This map
should depend on sample weights. Let wi j be the weight of the i− th sample (or
trajectory) of the j− th partition set. Then, the weight partition matrix is given by

W =

 w11 ... w1k

... ...

wNp1 ... wNpk

 (3.20)

The weights on a row of this matrix trace the history of a trajectory on the estimation
window; a group of values along a column depicts a partition handling sensor data
in a given time. Resampling and trajectory propagation steps can be shaped using
matrix W and mixture weights α .

• Resampling. The effect of resampling is the concentration of each trajectory
in a single sample whose weight is the weighted mean of the weights of the
trajectory. In formula, the vector of trajectory weights is given by t = W ·α .

• Propagation. Projecting a sample along a trajectory is equivalent to the com-
putation of the weight of the sample (i.e., the posterior) for each set, given the
proper sensor information. Again, matrix W gives an estimation of the weight.
Trajectories projection can thus be done with a simple matrix product

α̂ = W T · t = W T W ·α (3.21)
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Vector α̂ is a measure of the relative amount of importance of each partition
set after resampling and propagation depending on the choice of coefficient α .
Hence, α̂ is the new coefficient vector for the new mixture of believes.

Some remarks can be made about the matrix V = W T W in Eq. (3.21). First,
since we assume wi j > 0, V is a symmetric and positive semi-definite (SPSD) matrix.
Moreover, each element j on the main diagonal is the inverse of the effective sample
size of set j. The effective sample size is a measure of the efficiency of importance
sampling on each of the partition sets. Therefore, the off-diagonal elements of V
correspond to a sort of importance covariances among two partition sets. Thus we
will refer to this matrix as weights matrix.

Hence, a criterion to compute the mixture weights consists of choosing the vec-
tor α that is left unchanged by map Eq. (3.21) except for scale. Since Eq. (3.21)
depends on square of sample weights, the resulting mixture weights reflect the im-
portance of each partition set according to the effective sample size. The vector is
thus obtained by searching for an eigenvector of matrix V . To achieve better stability
we choose the eigenvector corresponding to the largest eigenvalue. The eigenvector
can be computed using the power method or the inverse power method. This criterion
can be interpreted as an effort to balance the effective number of samples keeping the
proportion among different partition sets.

Figure 3.3 illustrates the differences in mixture weights computed according to
the original algorithm (RTPF-Grad) and the proposed variant (RTPF-Eig) with an
example. When RTPT-Eig is used to compute mixture weights, the weights of the
last partition sets in the estimation window decrease with the effective sample size of
the sets, while they increase with RTPF-Grad. Thus, the proposed criterion takes into
account the effectiveness of representation provided by partition sets.

3.4 Delayed Estimation in RTPF

The presentation of RTPF has been focused on the problem and on algorithmic issues
of the method. To ensure real-time feasibility, RTPF exploits a complex resampling
scheme that generates a mixture distribution. Since the number of samples used in
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Figure 3.3: Effective sample size (high) and mixture weights computed according to
the original algorithm and to the proposed variant (low) in an estimation window of
15 partitions.
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Figure 3.4: Life cycle for particle, measurement, and control variables within a single
step in a real-time particle filter.

the estimation window is almost equal to the number of samples used by a standard
particle on the same period, the complexity of RTPF remains unchanged except for
the overhead due to the mixture weights computation and generation of samples.

However, there is a small price to be paid in term of estimation delay and interme-
diate storage of problem variables. A first remark concerns the mixture of posteriors
Belmix that is never explicitly computed in the concrete implementation of RTPF as
illustrated in Algorithm 2. The complete mixture could be obtained only at the end of
the estimation window. Furthermore, since the samples of each partition set Stl rep-
resent the distribution of robot location at time tl (l = 1 . . .k), samples of Stl should
be updated by applying motion commands utl :tk in order to estimate the complete
mixture at time tk. Each partition set represents the whole distribution at time tl and
there is no need to explicitly build the complete mixture. However, this estimation
delay makes difficult to adapt the number of samples to the desired accuracy with the
rule in [25]. The adaptation criterion suggested in [44] is too empirical to be easily
applied to different contexts.
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Local decomposition into partition sets and delayed resampling at the end of es-
timation window affect also the lifecycle and the storage policy of the variables of
the problem. Figure 3.4 shows the lifecycle of samples, sensor measurements and
motion controls. Note that measurements are used “locally” and are discarded imme-
diately after the estimation of importance weights of the related samples. On the other
hand, samples and motion commands are stored and used after the end of the esti-
mation window. While this is not very expensive in term of computation resources,
a management policy and proper data structures for storage are required in a flex-
ible implementation. From the perspective of computer science, it is interesting to
observe that algorithmic solutions relying on dynamical or delayed computation of-
ten require storage for intermediate results (for example, compare with the case of
dynamic programming [12]).

3.5 Results

We report RTPF performance evaluation both in simulated environments and using
experimental data collected by navigating a robot in a known environment. These
results have been obtained exploiting the localization system described in [53]. Tests
have compared the effectiveness of the two solutions previously described for com-
putation of RTPF mixture weights by assessing their impact on localization perfor-
mance.

3.5.1 Simulation

Several tests were performed in the environments shown in figures 3.5 and 3.6. They
correspond to the main ground floor hallway in the Computer Engineering Depart-
ment of the University of Parma (figure 3.5) and to the hallway of the Department
of Computer Science and Engineering of the University of Washington (figure 3.6,
map adapted from [44]). These environments allow verification of RTPF correctness
while coping with several symmetric features, which may cause ambiguities in the
choice of correct localization hypotheses. The environment of figure 3.6 had been
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Figure 3.5: Map 1 – Hallway and simulated paths in the Computer Engineering
Department, University of Parma.

Figure 3.6: Map 2 – Hallway and simulated paths in the Department of Computer
Science and Engineering, University of Washington.

exploited in [44] to verify RTPF correctness and has therefore been considered as a
reference.

In simulation, the map is stored as a grid with a given resolution (0.20 m) and is
used both to create simulated observations and to compute importance weights in cor-
rection steps. Data provided to the localizer consist of a sequence of laser scans and
measurements: scanned ranges are obtained by ray tracing a beam on the discretized
map. The measurement model is also based on ray tracing according to standard
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beam models for laser scanner [74]. In our tests we have used only three laser beams
measuring distances to left, right and frontal obstacles; such poor sensor data stress
the role of algorithm instead of sensor data. A gaussian additive noise was added to
both range beams and robot movements representing environment inputs and robot
state in simulation. Thus simulation tests are performed in an environment known in
detail and are best suited for comparing performance between algorithms. The task
of the robot is to achieve localization while moving in the environments of figures
3.5 and 3.6 along assigned trajectories. Simulated trajectories, labeled as Path 1 and
Path 2 in figures 3.5 and 3.6, correspond to lengths of approximately 5 to 8 m.

Localization algorithms investigated are the original steepest descent-based one
(RTPF-Grad) and the proposed RTPF based on the effective number of samples
(RTPF-Eig). During these tests the partition set size was 1000 samples.

A summary of simulation results is reported in figures 3.7 and 3.8, where curves
show the localization error for the two algorithms at each iteration by considering
convergence to the maximal hypothesis. For both curves, each value is obtained by
averaging the distances of the estimated pose from the real pose over 10 trials where
localization eventually converged to the correct hypothesis within the maximum num-
ber of iterations (set to 40). For both algorithms there were also a few instances
where localization did not converge to the correct hypothesis within the length of the
path, although the correct hypothesis was the second best. These unsuccessful exper-
iments were approximately 10% of all simulated localization trials. We did not verify
whether the robot would eventually recover its correct pose in the environment with
further navigation.

On the average, the two versions of the RTPF-based localizer converge to some
few hypotheses after three iterations, and the common samples distribution is multi-
modal. Hence, cluster search leads to few hypotheses with different weight. In our
tests a hypothesis close to the correct robot pose always exists, and when this hy-
pothesis prevails there is a sudden change in localization error, as shown in figures
3.7 and 3.8. Convergence is helped by recognizable features, e.g. the shape of scans,
but when the environment is symmetric it can be difficult to reach, especially with
limited or noisy sensoriality. Of course, the mean error in figures 3.7 and 3.8 does not
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correspond to any of the simulated trials; rather, it is the result of averaging trials with
quick convergence and trials where the convergence requires many more iterations.
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Figure 3.7: Performance of the two RTPF versions in the simulated environment of
Map 1. The x-axis represents the iterations of the algorithm. The y-axis shows the
average error distance of the estimated pose from robot pose.

Figure 3.9 provides an alternative view of the same data, as curves show the per-
centage of simulation trials converging to the correct hypothesis (i.e. with localization
error less than 1.5 m) at each iteration. In a few simulations, the correct robot pose
is recovered only after about 20 or 30 iterations, i.e. after sensing map features that
increase the weight of the correct samples.

Empirically, for the examined environments RTPF-Eig seems to exhibit a slightly
faster convergence, on the average, to the correct localization hypothesis, even though
its average error at the last recorded iteration appears somewhat larger.
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Figure 3.8: Performance of the two RTPF versions in the simulated environment of
Map 2. The x-axis represents the iterations of the algorithm. The y-axis shows the
average error distance of the estimated pose from robot pose.

3.5.2 Experiments

Real experiments were run in the environment of figure 3.5 collecting data with a
Nomad 200 mobile robot equipped with a Sick LMS 200 laser scanner. The localizer
was integrated in a real-time robot architecture [8]. The robot moved along Path 1 for
about 5 m, from the left end of the hallway in steps of about 15−20 cm and reading
three laser beams from each scan in the same way of the simulation tests.

To assess the consistency of the localizer’s output in an automated way, we com-
pared the robot pose computed by the localizer (using the RTPF-Eig algorithm) with
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Figure 3.9: Percentage of simulation trials converged to the correct hypothesis, i.e.
with localization error less than 1.5 m, during iterations for Map 1 (a) and Map 2 (b).

the one provided by an independent localization methodology. To this purpose, some
visual landmarks were placed in the environment and on the mobile robot, and a vi-
sion system was exploited to triangulate the robot position based on these landmarks.
The vision system provided an independent, coarse estimate of the robot pose at any
step, and hence allowed to establish convergence of the RTPF-based localizer. The
two localization estimates were computed concurrently at each location and stored
by the robot.

Figure 3.10 shows the results of 10 tests of RTPF-Eig over about 20 iterations.
In these real experiments RTPF-Eig achieves localization to the correct hypothesis
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Figure 3.10: Performance of RTPF-Eig using real data collected in the hallway of
Map 1.

very fast in most cases. After convergence, the maximum distance between RTPF-
based and vision based estimates is about 70 cm, due to the compound error of the
two systems. In real experiments in Map 1 localization was always successful within
the length of the path. Moreover, results in figure 3.10 show that localization to the
correct hypothesis was always reached in less than 10 iterations.

3.6 Discussion

In this chapter, we have presented a formal discussion of computation of mixture
weights in RTPFs, along with an improved approach overcoming potential problems
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associated with the existing technique. The method proposed in this chapter computes
mixture weights as the eigenvector of a matrix and thus avoids gradient descent, pos-
sibly prone to numerical instability. The method provides a balance of the effective
sample size of partition sets on an estimation window.

The proposed approach has been implemented in a RTPF for localization with
a mobile robot equipped with a laser range scanner, and evaluated in both simula-
tion tests and real experiments. In two simulated environments, the new approach has
achieved a localization performance similar to the original algorithm based on gra-
dient of KLD, while avoiding the potential problems associated with gradient search
methods. In real experiments with the mobile robot, the modified RTPF-based local-
ization system has proven very effective, yielding correct localization within a small
number of filter iterations.





Chapter 4

Incremental Maximum Likelihood
Mapping

This chapter presents the incremental version of a maximum likelihood algorithm for
robot mapping. The method uses a stochastic gradient descent to find the configura-
tion that minimizes the negative log-likelihood of the map. By combining stochas-
tic gradient descent with an efficient tree parameterization, this technique converges
faster than several other approaches presented in literature. The incremental method
is derived from an earlier ML algorithm [66, 32] where the map is solved offline and
all the data must be available before the optimization.

The incremental tree network optimizer has been adapted to the online construc-
tion of the map. When a pose or a constraint is added to the network, the configuration
of map variables is updated exploiting the previously computed result. The solutions
adopted to avoid a complete re-evaluation of the network follow the locality criterion:
the perturbation due to map augmentation is limited to the portion affected by the up-
date, which is in the proximity of the inserted element. Unfortunately, feasibility of
time constraints is not granted because the magnitude of the update depends on the
topology of the network. However, the proposed optimizer limits update time when
possible –i.e. when the closed loops are small compared with the connectivity in the
parameterization tree illustrated later.
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4.1 Stochastic Gradient Descent for Maximum Likelihood
Mapping

In chapter 2 maximum likelihood approaches to graph-based SLAM have been intro-
duced. The approach presented in this chapter also belongs to this class of methods.
The goal of graph-based ML mapping algorithms is to find the configuration of the
nodes that maximizes the likelihood of the observations.

Let x = (x1 · · · xn)T be a vector of parameters which describes a configuration of
the nodes. Let δ ji and Ω ji be respectively the mean and the information matrix of an
observation of node j seen from node i. Let f ji(x) be a function that computes a zero
noise observation according to the current configuration of the nodes j and i.

Given a constraint between node j and node i, we define the error e ji introduced
by the constraint as

e ji(x) = f ji(x)−δ ji (4.1)

as well as the residual r ji = −e ji(x). Let C = {〈 j1, i1〉 , . . . ,〈 jM, iM〉} be the set of
pairs of indices for which a constraint δ jmim exists. The goal of a ML approach is to
find the configuration x∗ of the nodes that minimized the negative log likelihood of
the observations. Assuming the constraints to be independent, this can be written as

x∗ = argmin
x

∑
〈 j,i〉∈C

r ji(x)T
Ω jir ji(x). (4.2)

In the remainder of this section we describe how the general framework of stochas-
tic gradient descent can be used for minimizing Eq. (4.2) and how to construct a
parameterization of the network which increases the convergence speed.

4.1.1 Network Optimization using Stochastic Gradient Descent

Olson et al. [66] propose a variant of the preconditioned stochastic gradient de-
scent (SGD) to compute the most likely configuration of the network nodes. The
approach minimizes Eq. (4.2) by iteratively selecting a constraint 〈 j, i〉 and moving
the nodes of the network in order to decrease the error introduced by the selected
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constraint. Compared to the standard formulation of gradient descent, the constraints
are not optimized as a whole but individually. The nodes are updated according to the
following equation:

xt+1 = xt +λ ·H−1JT
jiΩ jir ji (4.3)

Here x is the set of variables describing the locations of the poses in the network
and H−1 is a preconditioning matrix. J ji is the Jacobian of f ji, Ω ji is the informa-
tion matrix capturing the uncertainty of the observation, r ji is the residual, and λ

is the learning rate which decreases with the iteration. For a detailed explanation of
Eq. (4.3), we refer the reader to [32, 66].

In practice, the algorithm decomposes the overall problem into many smaller
problems by optimizing subsets of nodes, one subset for each constraint. Whenever
a solution for one of these subproblems is found, the network is updated accordingly.
Obviously, updating the different constraints one after each other can have antago-
nistic effects on the corresponding subsets of variables. To avoid infinite oscillations,
the learning rate λ reduces the fraction of the residual which is used for updating the
variables. This strategy makes the solutions of the different sub-problems to asymp-
totically converge towards an equilibrium point that is the solution reported by the
algorithm.

4.1.2 Tree Parameterization

The poses p = {p1, . . . , pn} of the nodes define the configuration of the network. The
poses can be described by a vector of parameters x such that a bidirectional mapping
between p and x exists. The parameterization defines the subset of variables that are
modified when updating a constraint. An efficient way of parameterizing the nodes
is to use a tree. One can construct a spanning tree (not necessarily a minimum one)
from the graph of poses. Given such a tree, we define the parameterization for a node
as

xi = pi− pparent(i), (4.4)
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Figure 4.1: An example of tree parameterization.

where pparent(i) refers to the parent of node i in the spanning tree. Figure 4.1 shows
an example of tree parameterization. As defined in Eq. (4.4), the tree stores the dif-
ferences between poses. This choice is similar in the spirit to the incremental rep-
resentation used in the Olson’s original formulation, in that the difference in pose
positions (in global coordinates) is used rather than pose-relative coordinates or rigid
body transformations.

To obtain the difference between two arbitrary nodes based on the tree, one needs
to traverse the tree from the first node upwards to the first common ancestor of both
nodes and then downwards to the second node. The same holds for computing the
error of a constraint. We refer to the nodes one needs to traverse on the tree as the path
of a constraint. For example, P ji is the path from node i to node j for the constraint
〈 j, i〉. The path can be divided into an ascending part P

[−]
ji of the path starting from

node i and a descending part P
[+]
ji to node j. We can then compute the residual in the

global frame by

r′ji = ∑
k[−]∈P [−]

ji

xk[−]− ∑
k[+]∈P [+]

ji

xk[+] +Riδ ji. (4.5)

Here Ri is the homogeneous rotation matrix of the pose pi. It can be computed ac-
cording to the structure of the tree as the product of the individual rotation matrices
along the path to the root. Note that this tree does not replace the graph as an internal
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representation. The tree only defines the parameterization of the nodes.

Let Ω′ji = RiΩ jiRT
i be the information matrix of a constraint in the global frame.

According to [66], we compute an approximation of the Jacobian as

J′ji = ∑
k[+]∈P [+]

ji

Ik[+]− ∑
k[−]∈P [−]

ji

Ik[−] , (4.6)

with Ik = (0 · · · 0 I︸︷︷︸
kth element

0 · · · 0). Then, the update of a constraint turns into

xt+1 = xt +λ |P ji|M−1
Ω
′
jir
′
ji, (4.7)

where |P ji| refers to the number of nodes in P ji. In Eq. (4.7), we replaced the
preconditioning matrix H−1 with its scaled approximation M−1 as described in [66].
This substitution avoids a computationally expensive matrix inversion.

Let the level of a node be the distance in the tree between the node itself and the
root. We define the top node of a constraint as the node on the path with the smallest
level. Our parameterization implies that updating a constraint will never change the
configuration of a node with a level smaller than the level of the top node of the
constraint.

In principle, one could apply the technique described in this section as a batch
algorithm to an arbitrarily constructed spanning tree of the graph. However, our pro-
posed method uses a spanning tree which can be constructed incrementally, as de-
scribed in the next section.

4.2 Overview of Tree Network Optimizer

This section presents an overview of the method described in previous sections. Al-
gorithm 3, which illustrates a single gradient descent iteration, is essentially the same
algorithm reported in [66] except for the tree parametrization. The algorithm requires
the set of constraints E that are updated and the set of nodes N involved in the up-
date. The batch version of this technique solves all the network constraints for the
first time, so E = C . N is the set of nodes whose learning rate is updated according
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Data: E : set of affected constraints (default C ); np: number of nodes; niter:
iteration number

Result: new node configuration x
/* Compute preconditioner γ */

foreach i = 1 . . .np do1

Mi = [0,0,0];2

end3

γ = [∞,∞,∞];4

foreach 〈i, j〉 ∈ E do5

compute rotation matrix Ri from orientation of pose pi;6

Ω′ji = R Ω ji RT ;7

foreach node n ∈P ji do8

Mindex(n)+ = diag(Ω′ji);9

γ = min(γ,diag(Ω′ji));10

end11

end12

/* Gradient Descent */

foreach 〈i, j〉 inE do13

compute rotation matrix R from orientation of pose pi;14

p̂ j = pi⊕δ ji;15

r = p̂ j− p j;16

rθ = atan2(sinrθ ,cosrθ );17

/* Weight vector over the path */

tot = 1
niter

[
1
γx

(
∑n∈P ji

1
Mn,x

)−1
, 1

γy

(
∑n∈P ji

1
Mn,y

)−1
, 1

γθ

(
∑n∈P ji

1
Mn,θ

)−1
]

;
18

foreach node n ∈P ji do19

λ = learning_rate(n,N );20

w =
[

totx
Mn,x

,
toty
Mn,y

, totθ
Mn,θ

]T
;21

xn+ = λ |P ji|wT Ω′jir
′
ji;22

end23

update poses using new values of incremental parameters xn24

for each node n ∈P ji;25

end26

Algorithm 3: Computation of preconditioning matrix.
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to adaptive learning rate as will be shown in next section. The batch version of the
optimizer uses a constant learning rate γ .

A significant part of the algorithm is devoted to the computation of matrix M−1

approximating Hessian preconditioner H−1. Approximation with M−1 uses the di-
agonal of the global information matrix Ω′ji as required by Jacobi preconditioning.
Terms Mn accumulate the diagonal elements associated to the constraints that affect
node n. The inverse of the matrix is approximated by inverting the each values of
vector Mn. When gradient descent is performed, parameters Mn are used to distribute
gradually the residual all over the path P ji from node i to node j on the spanning
tree. Since incremental tree parameterization is used, the error on constraint 〈i, j〉 is
weighted according to the ratio of 1/Mn and ∑k∈P ji 1/Mk. In the final step, the value
of incremental paramers xn is used to update the value of the poses.

4.3 Online Network Optimization

The algorithm presented in the previous section is a batch procedure. At every itera-
tion, the poses of all nodes in the network are optimized. The fraction of the residual
used in updating every constraint decreases over time with the learning rate λ , which
evolves according to an harmonic progression. During online optimization, the net-
work is dynamically updated to incorporate new movements and observations. In
theory, one could also apply the batch version of our optimizer to correct the net-
work. This, however, would require to compute a solution from scratch each time the
robot moves or makes an observation, which would obviously lead to an inefficient
algorithm.

In this section we describe an incremental version of our optimization algorithm,
which is suitable for solving on-line mapping problems. As pointed out in [67] an
incremental algorithm should have the following properties:

1. Every time a constraint is added to the network, only the part of the network
which is affected by that constraint should be optimized. For example, when
exploring new terrain, the effects of the optimization should not perturb distant
parts of the graph.
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2. When revisiting a known region of the environment it is common to re-localize
the robot in the previously built map. One should use the information provided
by the re-localization to compute a better initial guess for the position of the
newly added nodes.

3. To have a consistent network, performing an optimization step after adding
each constraint is often unnecessary. This happens when the newly added con-
straints are adequately satisfied by the current network configuration. Having
a criterion for deciding when to perform unnecessary optimizations can save a
substantial amount of computation.

In the remainder of this section, we present four improvements to the algorithm
so that it satisfies the properties discussed above.

4.3.1 Incremental Construction of the Tree

When constructing the parameterization tree online, we can assume that the input is
a sequence of poses corresponding to a trajectory of the robot. In this case, subse-
quent poses are located closely together and there exist constraints between subse-
quent poses resulting from odometry or scan-matching. Further constraints between
arbitrary nodes result from observations when revisiting a place in the environment.

We proceed as follows: the oldest node is the root of the tree. When adding a
node i to the network, we choose as its parent the oldest node for which a constraint
to the node i exists. Such a tree can be constructed incrementally since adding a new
node does not require to change the existing parts of the tree.

The pose pi and parameter xi of a newly added node i is initialized according to
the position of the parent node and the connecting constraint as

pi = pparent(i)⊕δi,parent(i) (4.8)

xi = pi− pparent(i). (4.9)

The parent node represents an already explored part of the environment and the
constraint between the new node and the parent can be regarded as a localization
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event in an already constructed map, thus satisfying Property 2. As shown in the
experiments described later in the chapter, this initialization appears to be a good
heuristic for determining the initial guess of the pose of a newly added node.

4.3.2 Constraint Selection

When adding a constraint 〈 j, i〉 to the graph, a subset of nodes needs to be updated.
This set depends on the topology of the network and can be determined by a vari-
ant of breadth first visit. Let G j,i be the minimal subgraph that contains the added
constraint and has only one constraint to the rest of the graph. Then, the nodes that
need to be updated are all nodes of the minimal subtree that contains G j,i. The precise
formulation on how to efficiently determine this set is given by Algorithm 4.

Note that the number of nodes in G j,i does depend only on the root of the tree and
on the overall graph. It contains all variables which are affected by adding the new
constraint 〈i, j〉.

4.3.3 Adaptive Learning Rates

Rather than using one learning rate λ for all nodes, the incremental version of the
algorithm uses spatially adaptive learning rates introduced in [67]. The idea is to as-
sign an individual learning rate to each node, allowing different parts of the network
to be optimized at different rates. These learning rates are initialized when a new con-
straint is added to the network and they decrease with each iteration of the algorithm.
In the following, we describe how to initialize and update the learning rates and how
to adapt the update of the network specified in Eq. (4.7).

Initialization of the learning rates When a new constraint 〈 j, i〉 is added to the
network, we need to update the learning rates for the nodes N ji determined in the
previous section. First, we compute the learning rate λ ′ji for the newly introduced
information. Then, we propagate this learning rate to the nodes N ji.

A proper learning rate is determined as follows. Let β ji be the fraction of the
residual that would appropriately fuse the previous estimate and the new constraint.
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Data: 〈 j, i〉: the constraint; G : the graph; T : the tree.
Result: N ji: the set of affected nodes; E ji: the affected constraints.
Queue f = childrenOf(topNode(〈 j, i〉));1

E ji := edgesToChildren(topNode(〈 j, i〉));2

foreach 〈a,b〉 ∈ E ji do3

〈a,b〉 .mark = true;4

end5

while f 6= {} do6

Node n := first( f );7

n.mark := true8

foreach 〈a,b〉 ∈ edgesOf(n) do9

if 〈a,b〉 .mark = true then10

continue;11

end12

Node m := (a = n)?b : a;13

if m = parent(n) or m.mark = true then14

continue;15

end16

〈a,b〉 .mark = true;17

E ji := E ji∪{〈a,b〉};18

if 〈a,b〉 ∈T then19

f := f ∪{m};20

else21

f := f ∪ childrenOf(topNode(〈a,b〉));22

end23

end24

f := removeFirst( f );25

N ji := N ji∪{n};26

end27

Algorithm 4: Construction of the set of nodes affected by a constraint. For readability
we assume that the frontier f can only contain nodes which are not already marked.
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Similar to a Kalman filter, β ji is determined as

β ji = Ω ji(Ω ji +Ω
graph
ji )−1, (4.10)

where Ω ji is the information matrix of the new constraint, and Ω
graph
ji is an informa-

tion matrix representing the uncertainty of the constraints in the network. Based on
Eq. (4.10), we can compute the learning rate λ ′ji of the new constraint as

λ
′
ji = maxrow

(
1
|P ji|

(β ji�MΩ
′
ji)
)

. (4.11)

Here � represents the row by row division (see [67] for further details). The learning
rate of the constraint is then propagated to all nodes k ∈N ji as

λk ← max(λk,λ
′
ji), (4.12)

where λk is the learning rate of the node k. According to Eq. (4.11) constraints with
large residuals result in larger learning rate increases than constraints with small
residuals.

Update of the network When updating the network, one has to consider the newly
introduced learning rates. During an iteration, we decrease the individual learning
rates of the nodes according to a generalized harmonic progression [70]:

λk ← λk

1+λk
(4.13)

In this way, one guarantees the strong monotonicity of λk and thus the convergence
of the algorithm to an equilibrium point.

The learning rates of the nodes cannot be directly used for updating the poses
since Eq. (4.7) requires a learning rate for each constraint and not for each node.
When updating the network given the constraint 〈 j, i〉, we obtain an average learning
rate λ̃ ji from the nodes on P ji as

λ̃ ji =
1
|P ji| ∑

k∈P ji

λk. (4.14)

Then, the constraint update turns into

∆xk = λ̃ ji|P ji|M−1
Ω
′
jir
′
ji. (4.15)
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4.3.4 Scheduling the Network Optimization

When adding a set of constraints 〈 j, i〉 ∈ Cnew to a network without performing an
optimization, we can incrementally compute the error of the network as

enew = ∑
〈 j,i〉∈Cold

rT
jiΩ jir ji + ∑

〈 j,i〉∈Cnew

rT
jiΩ jir ji. (4.16)

Here enew is the new error and Cold refers to the set of constraints before the modifi-
cation.

To avoid unnecessary computation, we perform the optimization only if needed.
This is the case when the newly incorporated information introduced a significant
error compared to the error of the network before. The optimization is performed if

enew− eold > α max
〈 j,i〉∈Cold

rT
jiΩ jir ji (4.17)

The above condition is verified when the addition of new constraints causes an incre-
ment of global error greater than the error obtained with α worst constraints in the
previous map. This criterion is different from the heuristic proposed in [30]

enew

|Cnew|+ |Cold|
> α

′ max
〈 j,i〉∈Cold

rT
jiΩ jir ji. (4.18)

Here α ′ is a user-defined factor that allows the designer of a mapping system to adapt
the quality of the incremental solutions to the needs of the specific application. The
interpretation of parameter α ′ is less clear.

If we assume that the network in Cold has already converged, this heuristic trig-
gers an optimization only if a significant inconsistency is revealed. Furthermore, the
optimization only needs to be performed for a subset of the network and not for the
whole network. The subset is given by

E =
⋃

〈 j,i〉∈Cnew

E ji. (4.19)

Here E ji is the set of constraints to be updated given a new constraint 〈 j, i〉 ∈ Cnew.
The sets E ji are computed according to Algorithm 4. This criterion satisfies Prop-
erty 3 and leads to an efficient algorithm for incrementally optimizing the network of
constraints.
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4.4 Results on Incremental Tree Network Optimizer

This section is designed to evaluate the effectiveness of the proposed methods to
incrementally learn maximum likelihood maps. We first show that such a technique is
well suited to generate accurate grid maps given laser range data and odometry from
a real robot. Second, we provide simulation experiments to evaluate the evolution of
the error and provide comparisons to our previously proposed techniques [32, 66, 67].
Finally, we illustrate the computational advantages resulting from our algorithm.

4.4.1 Real World Experiments

To illustrate that our technique can be used to learn maps from real robot data, we
performed tests on two available datasets: the ACES building at UT Austin cam-
pus (ACES) and the Intel Research Lab (INTEL) [36]. During this experiment, con-
straints between consecutive poses have been extracted by means of pairwise scan
matching. Loop closures were determined by localizing the robot in the previously
built map by means of a particle filter. The above operations were performed using a
part of GMapping algorithm by Grisetti et al. [31]. Figure 4.2 shows the optimized
networks for the two datasets. Both the images do not represent the environment map,
but the trajectory of the robot. In the case of INTEL dataset, the motion of robot from
the hallway to each room is appearent. Even though the picture of map is not shown,
several map details like orthogonality of walls and the lack of inconsistencies show
that the proposed approach leads to accurate maps for real robot data.

4.4.2 Statistical Experiments on Error Evolution

In the these experiments, we moved a virtual robot on a grid world. An observation is
generated each time the current position of the robot was close to a previously visited
location. The observations are corrupted by a given amount of Gaussian noise. The
network used in this experiment is depicted in Figure 4.3.

We compare our approach named Tree Incremental with its offline variant [32]
called Tree Offline which solves the overall problem from scratch. In addition to that,
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Figure 4.2: Results of incremental building and optimization for datasets ACES (top)
and INTEL (bottom). The images represents networks of poses.
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Figure 4.3: Network used in the simulated experiments. Left: initial guess. Right:
ground truth.

we compare it to the offline version without the tree optimization [66] called Olson
Offline as well as its incremental variant [67] referred to as Olson Incremental. For
space reasons, we omit comparisons to LU decomposition, EKF, and Gauss-Seidel.
The advantages of our method over these other methods is similar to those previously
reported [66].

To allow a fair comparison, we disabled the scheduling of the optimization of
Eq. (4.18) and we performed 30 iterations every time 16 constraints were added to
the network. During the very first iterations, the error of all approaches may show an
increase, due to the bigger correction steps which result from increasing the learning
rates.

Figure 4.4 depicts the evolution of the error for all four techniques during a map-
ping experiment. We depicted two situations. In the first one, the robot closed a small
loop. As can be seen, the introduced error is small and thus our approach corrects the
error within 2 iterations. Both incremental techniques perform better than their of-
fline variants. The approach proposed in this paper outperforms the other techniques.
The same holds for the second situation in which the robot was closing a large loop.
Note that in most cases, one iteration of the incremental approach can be carried out
faster, since only a subpart of the network needs to be updated.
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Figure 4.4: Statistical experiments showing the evolution of the error per iteration
of the algorithm. Top: situation in which the robot is closes a small loop. Bottom:
closure of a large loop. The statistics have been generated by considering 10 different
realizations of the observation noise along the same path.
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4.4.3 Runtime Comparison

Finally, we evaluated our incremental version and its offline variant with respect to
the execution time. Both methods where executed only when needed according to
our criterion specified by Eq. (4.18). We measured the time needed to run the in-
dividual approach until convergence to the same low error configuration, or until a
maximum number of iterations (30) was reached. As can be seen in Figure 4.5(top),
the incremental technique requires significantly less operations and thus runtime to
provide equivalent results in terms of error. Figure 4.5(bottom) shows the error plot of
a comparison of our approach and Treemap [28] proposed by Frese. As shown in the
error-plot, in the beginning Treemap performs slightly better than our algorithm, due
to the exact calculation of the Jacobians. However, when closing large loops Treemap
is more sensitive to angular wraparounds (see increase of the error at constraint 2400
in Figure 4.5). This issue is typically better handled by our iterative procedure. Over-
all, we observed that for datasets having a small noise Treemap provides slightly
better estimates, while our approach is generally more robust to extreme conditions.

4.5 Building the Constraint Network from Laser Scans

In this section we describe the part of the system that transforms raw sensor data
into a network of constraints ready to be processed by the optimizer described in the
previous section. The aim is to extract from laser scans a graph consisting of poses
and constraints among pairs of poses. Therefore, map estimation does not depend
explicitly on environment features, but only on robot poses like in [55].

A constraint between two poses consists of a relative transformation vector (trans-
lation and rotation) and second order statistics, i.e. the information matrix describing
the uncertainty on the transformation. The primitive operation to extract these data
from a pair of laser scans is a scan matching algorithm. Several scan matching al-
gorithms have been proposed and many of them belong to the iterative closest point
(ICP) approach. In this work, we adopted the ICP variant described in [9], whose
implementation is also available.

However, scan matching is not enough to build the constraints network. This tech-



74 Chapter 4. Incremental Maximum Likelihood Mapping

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  1000  2000  3000  4000

tim
e

Tree Offline
Tree Incremental

 0

 0.01

 0.02

 0.03

 0.04

 0  1000  2000  3000  4000

er
ro

r/
co

ns
tr

ai
nt

constraints

Treemap
Tree Incremental

Figure 4.5: Top: runtime comparison of the offline and the incremental approaches
using a tree parameterization. The optimization is performed only when the error
condition specified by Eq. (4.18) was verified. Bottom: Comparison of the evolution
of the global error between Treemap and the online version of our approach.
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Figure 4.6: General schema of the ScanMap to build constraint network.

nique is effective when two scans significantly overlap and the initial guess of relative
pose is not too far from the correct value. These conditions hold when consecutive
poses are compared, but the comparison fails when the robot moves in a previously
explored region and tries to match current observation with the stored map. Two dif-
ferent network builders, named ScanMap and GraphMap respectively, have been
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Figure 4.7: General schema of the GraphMap to build constraint network.

developed.

ScanMap [50] exploits a straightforward representation of the map: each node
of the graph stores a pose and the corresponding laser scan acquired when the robot
visited the pose. The scan associated to a location provides a sort of local map. Fig-
ure 4.6 displays the main steps of the algorithm. Initially, the pose of new node is
initialized with the relative motion refined by scan matcher. When a loop is closed,
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the algorithm selects candidate scans for data association, tries to match current pose
and candidates and performs an optimization step on them. Unfortunately, the con-
straints extracted with this procedure are not always estimated correctly as will be
shown later.

GraphMap [51] (Figure 4.7) has been developed to overcome ScanMap lim-
itations and is similar to the method described in [34]. In particular, the local map
stored in each node is an occupancy grid map obtained from several aligned con-
secutive scans. Thus, the number of nodes significantly decreases and loop closure
becomes more effective since each local map patch better describes a location. Data
association is performed with a correlation-like algorithm. In the following, the two
algorithms are discussed thoroughly.

4.5.1 ScanMap

ScanMap represents the map as a collection of pairs of poses and scans. Such so-
lution is quite straightforward and completely relies on scan matching technique for
both pose initialization and loop closure. The initial value of a pose depends on the
value of the previous pose and on the relative transformation between them due to
the motion of the robot. Relative pose is first estimated with odometry and then it is
corrected by scan alignment.

The core of the map builder is therefore the loop closure detector that performs
in two steps. After the addition of a new pose, candidate cycles are found via range
search on a kd-tree [3]. The size of the searching region depends on the size of the
current map and on the uncertainty in the estimation. Furthermore, if a loop has been
closed recently, the search is concentrated on a smaller area.

Candidate poses for data association are then selected from the poses inside
searching area. Recent nodes, i.e. nodes directly connected to current node through
a path that falls inside the searching area, are not considered to avoid too small or
repeated loops. Several criteria are applied to reduce candidates and detect correct
associations. Alignment of current scan with a candidate scan estimates their relative
pose. Scan matching is performed starting from null initial guess. The most likely
candidate is then selected by evaluating the match covariance values, the distance
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between the pair of poses, and the extent of the overlapping area.
Main drawbacks of the approach are the limited metric accuracy and the need to

choose parameters for heuristic rules like the range size for the preliminary search
and the threshold for covariance. Discussion follows in the next session.

4.5.2 GraphMap

GraphMap consists of a graph whose nodes stores poses with a local map and whose
edges correspond to constraints between pairs of nodes like in ScanMap. The dif-
ference between the two algorithms lies in the interpretation of nodes. Indeed, the
pose stored in each node is the local reference frame of the local map and does not
correspond to the robot trajectory. Therefore, a local map consists of an occupancy
grid map built from a set of consecutive laser scans. Each cell of the local map has
one of the following values: empty, occupied or unknown. A laser scan is inserted
in a map patch by placing the center of the scan in the map and tracing each beam
until the measured distance is reached. Traversed cells are filled with empty value,
until the last cell is labeled as occupied. Such a representation, also called map patch,
is more expressive than a collection of raw scans and allows a more effective data
association.

Figure 4.6(b) illustrates the main steps of the algorithm. First, the new scan is
aligned with the previous one by scan matching to improve the estimation of relative
motion provided by odometry. Then, the observation is stored in a temporary buffer
containing the last scans available for any comparison. If the distance between the
current robot pose and the center of map patch is less than a given threshold, then the
scan is used to fill the current grid map. For the experiments illustrated in the next
section the threshold was set to 6 m. Otherwise a new patch is created.

Since occupancy grid maps are suitable for the representation of obstacles ex-
tending along directions orthogonal to patch borders, the algorithm extracts the main
orientation of the first scan added to the patch. The main orientation intuitively cor-
responds to the bundle of parallel lines that better fits the length of the obstacles and
it is operatively computed by searching maxima in the Hough spectrum [7]. Finding
a principal direction also helps when two grid maps are compared for data associa-
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tion. Main orientation is usually well-defined for indoor structured environment, but
sometimes it is indistinguishable, as pointed out in the next section.

After the insertion of a new node, GraphMap searches for candidate nodes for
data association with the now completed map patch. Candidates are found with range
search as illustrated before and then are matched with the current patch by exploiting
a correlation-like function. Assuming that relative orientation of two local maps is
obtained by comparing their main orientations, two occupancy grids are better per-
formed by a correlation function that operates on pairs of matching cells. In order to
limit computational load, displacement between two patches is computed by corre-
lating their separate histograms for axes x and y. A histogram bin counts the number
of occupied cells whose projection falls inside the bin. Displacement between two
maps is computed searching for maxima of correlations between x-histograms and
y-histograms. Finally, the algorithm performs an acceptance test on the overlapping
parts of the two patches placed according to the estimated relative position and ori-
entation. This test counts the number of cells with equal values and ignores the cells
with unknown value. If the outcome of the test is positive, i.e. the number of agree-
ing cells is larger than a given threshold, a link between the two nodes is added to
GraphMap and to TORO and an optimization is performed.

4.5.3 Results

In this section, we evaluate and compare the effectiveness of the two proposed sys-
tems for map learning based on the tree network optimizer. To test the two map
builders with real robot data, the freely available ACES dataset [36] was used.

This dataset provides a sequence of laser scans acquired sequentially as the robot
moves in an environment. The reported experiment consists in the extraction of con-
straints relating consecutive poses from pairs of scans and in the detection of cycles
with the previously discussed techniques.

Figure 4.8 illustrates the main problem with the first map estimator proposed
in this chapter: when a loop closure is performed, ScanMap correctly recognizes a
known region, but the scan matcher does not provide a good estimation of relative
constraints between the scans stored in matching nodes. The result shown in Fig-
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Figure 4.8: Map of the environment of dataset ACES before (left) and after (right) a
loop closure is solved with ScanMap.

ure 4.8(right) shows the effect of the new constraint: the estimated distance between
the two places is too short and the resulting map is pulled on the top part.

The map estimation performed by GraphMap is shown in figure 4.9. The in-
ternal representation adopted by the algorithm is apparent: the map consists of a set
of occupancy grid maps associated to the nodes of the network. The boundaries of
each map are represented by the rectangular bounding box and the occupied cells are
represented by a point. For readability, the output does not distinguish empty cells
from unknown ones. Note that the orientation of each submap is consistent with the
orientation of map walls of the represented region.

The size and resolution of each grid map are fixed. In this experiment the value
of the grid map size is equal to 20.0× 10.0 m with a resolution of 0.2 m. The size
of the map patch may appear large if compared to the size of the whole map (about
55× 45 m), but it is a trade-off between the local adjustment of consecutive scans
allowed by the scan matcher and the need for distinguishable map. Indeed, smaller
map patches appear too similar to each other and the resulting loop closure detection
is too prone to matching errors.

The execution of GraphMap with online optimization with TORO on an Intel
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Figure 4.9: Map of the environment of dataset ACES after an optimization performed
with GraphMap.

Core 2 Quad Q9300 2.5 GHz has required about 42.73 s. The network optimizer
has no significant impact on the total amount of time. GraphMap generates only
41 nodes compared to the about 700 nodes used by ScanMap. Thus, GraphMap
reduces the complexity of the network optimization.
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4.6 Discussion

In this chapter, we have presented an incremental maximum likelihood algorithm for
mapping tasks. The method improves over earlier maximum graph based approaches
to SLAM by integrating several heuristics and optimizations which make it suitable
for incremental online operation.

We have integrated the incremental tree network optimizer with a scan matcher
operating on laser scans. After evaluating two alternative map representations, we
have developed a complete mapping system, capable of building a reasonably accu-
rate metric-topological map of an unknown indoor environment, as shown by tests on
a benchmark dataset.



Chapter 5

Parallel decomposition of
Mapping problem

In this chapter a parallel algorithm for map estimation based on Gauss-Seidel re-
laxation is presented. The map is given in the form of a constraints network and is
partioned into clusters of nodes by applying a node-tearing technique. The identified
clusters of nodes can then be processed independently as tasks assigned to different
processors. This algorithm can be used to exploits the computational resources of
multicore processors and is suitable for solving distributed mapping in multi-robot
context.

5.1 Motivation and Problem

The discussion in the previous chapter has shown that the maximum likelihood ap-
proach is suitable for local decomposition due to the sparsity of the graphical model
representing the full SLAM formulation. Such sparsity has been exploited by several
maximum likelihood algorithms to reduce the computational complexity and to allow
online execution. The graph decomposition can be hierarchical or concerns the por-
tion of graph involved by the addition of new measurements, but it is allowed by the
sparsity of the information matrix in ML approaches that avoids repeated marginal-
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ization. Given such decomposition, the update of network configurations focuses only
on a portion of the map.

Decomposition of the network allows also the introduction of parallelism in al-
gorithms for map estimation. There are several advantages in a parallel design. First,
map estimation is sped-up by computing solutions for different graph clusters on
different threads, when a proper hardware is available. The decomposition of the
problem in tasks for different processors requires a distributed implementation. Re-
cently, the diffusion of multi-core processors has also stimulated multi-threaded sin-
gle process implementations. In any case, the impact of non-parallelizable portions
of the algorithms and the overhead due to data sharing and synchronization should be
carefully considered. Moreover, a parallel design of SLAM algorithms simplify their
extension to a multi-robot context. When only one robot is involved, data acquisition
and map-building are intrinsically serial operations. However, graph decomposition
is required when the map is concurrently estimated by two or more robots. In multi-
robot contexts, map decomposition is sometimes determined by the activity of each
robot as shown in [15].

In this chapter, we present a parallel algorithm that solves SLAM problems where
a set of constraints is provided as input. The algorithm combines Gauss-Seidel relax-
ation and a reordering of variables that transforms the information matrix in block-
bordered-diagonal form. The graph associated to the information matrix is partitioned
into clusters of connected nodes. A special cluster contains all nodes separating pairs
of clusters. Hence, the Gauss-Seidel update of the value of a pose in a cluster depends
either on another pose in the same cluster or on a separator node. The Gauss-Seidel
update depends on variables whose value could have been already updated in current
iteration or not, and the order of variables matter. Thus, each cluster can be computed
independently if the separator set is computed after the other clusters.

Graph clustering is performed with a node-tearing heuristic algorithm. The effi-
ciency of the proposed algorithm depends on the sparsity of the information matrix
that determines the result of decomposition. Gauss-Seidel relaxation is chosen be-
cause easy to parallelize, but it has the drawback of being an offline method.
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5.2 Gauss-Seidel Relaxation for Maximum Likelihood Map-
ping

This section discusses the general formulation of the maximum likelihood (ML) ap-
proach and a solution algorithm based on Gauss-Seidel relaxation to solve the result-
ing equations. The SLAM problem is formulated as a graph, whose nodes correspond
to the variables of the map and whose edges represent the constraints between pairs
of these variables.

In the following, delayed-state representation [22] is used instead of feature based
one. According to delayed-state representation the map is represented by robot poses.
Relations between poses are obtained by scan matching [55] or by reduction of fea-
tures [74]. Then let x = (x1 · · · xn)T be the vector of robot poses. Let δ ji and Ω ji be
respectively the mean and the information matrix of an observation of node j seen
from node i. Let f ji(x) be a function that computes a zero noise observation according
to the current configuration of the nodes j and i

fi j(x) =

 (x j,x− xi,x) cosxi,θ +(x j,y− xi,y) sinxi,θ

−(x j,x− xi,x) sinxi,θ +(x j,y− xi,y) cosxi,θ

x j,θ − xi,θ

 (5.1)

Thus, the error on constraint 〈 j, i〉 is given by

e ji(x) = f ji(x)−δ ji (5.2)

Let C = {〈 j1, i1〉 , . . . ,〈 jM, iM〉} be the set of pairs of indices for which a constraint
δ jmim exists. Then the aim of ML approach is to minimize the negative log-likelihood
or error function on the observation

χ
2(x) = ∑

〈 j,i〉∈C
eT

ji(x) Ω ji e ji(x) (5.3)

Several numeric techniques have been proposed in order to find the minimum of
χ2(x). In this section, we illustrate part of the relaxation algorithm proposed by Frese
et al [29]. The algorithm consists of two steps. First, the observation functions fi j(x)
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are linearized around the current value of the network configuration x̂

ei j(x)≈ fi j(x̂)−δ ji + Ji
i j(xi− x̂i)+ J j

i j(x j− x̂ j) (5.4)

where Ji
i j and J j

i j are the Jacobians of the observation function with respect to xi and
x j evaluated in point x̂i and x̂ j. Since Eq. (5.1) only depends on poses i and j, there
are no additional terms.

Then, the resulting negative log-likelihood χ2(x) is approximated by a quadratic
function

χ
2(x) ≈ xT A x+2bxT b+ c (5.5)

The minimum of the linearized function is easily found by solving the linear system
A x = b. The method proposed in [29] to perform this final step is Gauss-Seidel
relaxation. The value of each pose xi is computed individually by solving the single
block-row equation i with fixed value of x j ( j 6= i). Let Ai j be the block of matrix A
corresponding to block-row i and block-column j; let bi be the values for block-row
i. Respectively, we have

Ai j = ∑
〈 j,i〉∈C

Ji
i j

T
Ωi j J j

i j (5.6)

bi = ∑
〈 j,i〉∈C

Ji
i j

T
Ωi j (Ji

i jx̂i + J j
i jx̂ j) (5.7)

The relaxed solution of equation i at step k is

x(k+1)
i = A−1

ii

(
bi−∑

j<i
Ai jx

(k+1)
j −∑

j>i
Ai jx

(k)
j

)
(5.8)

The estimated value of xi is determined by the neighbor poses, either already up-
dated ( j < i) or not ( j > i). These procedure is performed iteratively until solution is
reached with enough precision. Since A is a symmetric positive defined matrix, the
convergence of the algorithm is granted.

Gauss-Seidel relaxation is only the basic step of multi-level relaxation (MLR)
algorithm. MLR defines a hierarchy between nodes to solve the problem at different
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levels of resolution in order to speed up the convergence. However, the Gauss-Seidel
algorithm can be conveniently decomposed in separate tasks that are performed inde-
pendently. In the next section, we describe a parallel version of Gauss-Seidel relax-
ation.

5.3 A Parallel Linear-Equation Solver

Identification of the parts of the algorithm that can be executed independently is the
first step in making an algorithm parallel. The block-row update equation Eq. (5.8)
of Gauss-Seidel depends on nodes x j that are connected to the current node, i.e. the
nodes with Ai j 6= 03×3. The structure of the linearized information matrix A depends
on the connectivity of the constraints network. Since the graph is built incrementally
by one or more robots adding each pose in a trajectory or eventually closing loops, the
resulting matrix is naturally sparse and locally connected. Hence, a decomposition of
the network into clusters follows directly from the structure of the problem. Still the
clusters are connected to each other: the computation of border nodes requires data
from another cluster and the single algorithm tasks cannot be executed in parallel
when such dependency exists.

An important remark concerns the role of order for node variables in equation Eq. (5.8).
While the order does not change the value to which the algorithm converges, it de-
termines the dependencies among variables. In particular, at a given iteration k the
updated value of pose x(k+1)

i depends both on already updated poses, whose index is
j < i, and on the poses yet to be updated ( j > i). The value of the last ones is known
before starting a new iteration, so their values and the value of pose i can be computed
independently. Thus, in order to compute the nodes of a cluster independently from
the nodes connected to the cluster and not belonging to it, the contour nodes have to
be computed at the end.

The suggested reorder leads to the so called block-bordered-diagonal form (BBD)
of a matrix [40]. Figure 5.1 shows how it is possible to reorder variables based on a
cluster decomposition. Each simple cluster (labeled with B1,B2,B3) has no direct
connection to other clusters, except than contour nodes (labeled with a,b,c) cluster.
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By reordering nodes so that contour nodes are the last ones, the resulting information
matrix assumes a block diagonal form with a border due to contour nodes. Each clus-
ter can be solved independently by using the value of contour nodes at the previous
step. It is therefore convenient that the contour partition be as small as possible in
order to limit computation of the sequential part. In the following, we discuss how to
find the clusters and the permutation that achieves BBD form.

Figure 5.1: Decomposition of a graph in clusters of nodes (left) and information
matrix in block-bordered-diagonal form after reordering (right). Note the position of
contour nodes (a,b,c) in the matrix.

5.3.1 Clustering nodes and reordering variables

A clustering algorithm is needed to reorder the matrix into BBD form. There are two
main requirements for this algorithm. First, the number of contour nodes should be
limited as much as possible. This property is achieved when the clustering algorithm
picks bottleneck nodes. Bottlenecks nodes correspond to the minima in the size of
the contour when partition consists of sets of connected nodes. Therefore the size
of the clusters could be chosen to balance the computational load of each task. We
propose to meet these requirements by adopting a heuristic algorithm to perform
node-tearing using a contour set [71]. Node-tearing methods decompose a network in
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smaller subnetworks that can be solved separately. Starting from a weakly connected
node, the contour set is expanded putting the new nodes in a contour set. Bottleneck
is detected by searching a minimum in the size of contour set. Heuristic techniques
avoid local minima and bound the minimum and maximum size of a cluster to the
interval [perc nmax,nmax] (0 < perc < 1).

Algorithm 5 illustrates how clustering is performed. Note that the condition for
creating a new cluster is satisfied in two cases: when the contour is empty or when
the candidate cluster set contains nmax nodes. Anyway, the final cluster set contains
only the nodes found before the last detected bottleneck.

Each cluster is labeled with an integer, except for the contour nodes cluster that
is labeled with ∞ (in real implementation, an integer larger than other labels is used).
Thus, the numeric identifier of a cluster induces an order in the set of nodes. The
identifiers of the simple clusters could be permuted without significant changes for
parallel Gauss-Seidel relaxation. The order of the nodes belonging to the same cluster
remains undefined and is chosen by implementation. Since the robot poses are usually
numbered incrementally, it seems convenient to use their identifiers as second index
of a lexicographic order criterion.

5.3.2 Parallel Implementation

The clustering algorithm identifies the independent groups of nodes that can be solved
independently. Then, there is a set of tasks to be assigned to different threads or pro-
cesses. A map estimator consisting of different processes would allow the execution
of the algorithm on different hosts and could be applied in multi-robot contexts. The
drawback of such a solution is the overhead due to the exchange of messages required
at the end of each iteration. Nonetheless, the amount of exchanged data is limited to
nodes of contour cluster.

In this chapter, the straightforward multi-threads solution is described. Algo-
rithm 6 summarizes the mains step of the algorithm. A thread-pool, specifically a
work crew, has been implemented in order to create and manage threads ready to ac-
cept tasks. This choice allows the creation of a correct number of threads depending
on the available parallelism of the machine. After nodes reorder, the evaluation of
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Data: N : set of nodes, nmax: maximum size of cluster, perc: portion of nmax

considered as minimum size of cluster.
Result: a label for each node
I = {}; /* candidate cluster set */1

C = {}; /* current contour set */2

lastContourSize = 0;3

iteratingSize = 0;4

foreach n ∈N do5

n.label = {};6

end7

while ∃n ∈N : n.label = {} do8

pick n, node with minimum degree in N );9

while ∃n ∈ C : n.label = {} do10

I = I ∪{n};11

if n ∈ C then12

remove n from C ;13

end14

foreach node t adjacent to n and t.label = {} do15

C = C ∪{t}16

end17

if card(I ) > perc nmax and card(C ) < lastSize then18

T = C ; /* save cutting set */19

iteratingSize = card(I );20

end21

if C = {} then22

iteratingSize = card(I );23

else24

end25

if ={} or card(I ) > nmax then26

foreach t in first iteratingSize of I do27

t.label = newClusterLabel();28

end29

foreach node t in cutting T do30

t.label = ∞;31

end32

C = {};33

end34

lastSize = card(C );35

pick n from C , if exists;36

end37

end38

Algorithm 5: Partition of graph into clusters.
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the poses of a cluster is inserted in the queue of tasks ready to be executed by an
available thread. When the execution of all tasks is completed, the poses of contour
nodes are updated. The Gauss-Seidel procedure within linearization is then repeated
for an appropriate number of iterations.

Synchronization is required at the end of each iteration to update data for all
threads. A development of this approach would consist in reducing the dependencies
between the tasks. This could be achieved only with the adoption of a more hierarchi-
cal approach than simple Gauss-Seidel relaxation. The decomposition of the network
suggests itself a hierarchy to be exploited in relaxation.

Data: N : set of nodes, E : set of constraints.
Result: the updated graph (N ,E )
compute clusters;1

reorder set N according to the following criterion:2

n1 < n2 iff (n1.label < n2.label or (n1.label == n2.label and3

n1.index < n2.indes));
initialize thread pool;4

while algorithm not converged do5

foreach cluster I do6

assign cluster I to a thread of the pool;7

/* executed on thread */

linearize constraints;8

perform Gauss-Seidel relaxation on constraints of I ;9

end10

/* thread synchronization */

linearize constraints of countour set C ;11

perform Gauss-Seidel relaxation on constraints of C ;12

end13

Algorithm 6: Parallel Gauss-Seidel relaxation
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5.4 Results

In this section, we evaluate the performance of the proposed parallel constraints
solver. To test the algorithm we used the constraint networks extracted from the two
datasets used in section 4.4: the ACES building at UT Austin campus (ACES), al-
reaady exploited in previous chapter, and the Intel Research Lab (INTEL) [36]. Con-
straints between pairs of poses have been obtained by matching laser scans and grid
map patches. The resulting graph is the input for the experiments described in the
following.
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Figure 5.2: Global error χ2 of Gauss-Seidel relaxation and stochastic gradient de-
scent (Toro) after each iteration for datasets ACES (left) and INTEL (right).

First, the convergence rate of Gauss-Seidel relaxation has been evaluated to re-
mark its advantages and drawbacks. In particular, we compared the relaxation method
with the offline version of the tree network optimizer (Toro) [30]. Figure 5.2 depicts
the global error of the network for the two algorithms at different iteration steps. Af-
ter few iterations, the global error decreases faster with Toro than with Gauss-Seidel.
This outcome was expected and confirms the results previously obtained in the com-
parison between Gauss-Seidel relaxation and stochastic gradient descent [66] with a
new implementation.

Figure 5.3 shows the adjusted network for ACES. These experiments show that
Gauss-Seidel relaxation is not the best algorithm to estimate a maximum likelihood
map, but rather it is a simple method that can be easily adapted to a distributed con-
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Figure 5.3: Network from ACES before the optimization (left) and after adjustment
with Gauss-Seidel relaxation at iteration 5 (right). The effect of the adjustment is
observable in the top left-most loop closure.

text.

Figure 5.4: The clustered graph of datasets ACES (top) and INTEL (bottom). Clusters
are identified by different colors and contour nodes appears as clear spots dividing
clusters. The poses of nodes have been modified by the plotting program.

As pointed out in section 5.3, the main issue of a parallel algorithm is the choice
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of a suitable graph partitioning. In the proposed method, this operation is performed
by a heuristic node-tearing technique. One of the main advantages of this approach
is that it accepts bounds on the maximum size of a partition and on the preferred
minimum size. Figure 5.4 shows the results of decomposition of graphs of ACES and
INTEL with maximum size nmax = 50 and perc = 0.6. Table 5.1 reports data on the

Dataset Nodes Mean Cluster Contour
number size number size

ACES 648 39.7 19 43

INTEL 729 30.2 14 106

Table 5.1: Results of clustering.

results of the clustering algorithm. The mean size of clusters and the size of contour
partition depend on the topology of the constraints network. In particular, the ACES
dataset has a smaller mean node degree and the number of contour nodes is limited.

Despite the overhead there are advantages with the multi-thread implementation
of the proposed algorithm. The system has been tested on an Intel Core 2 Quad
Q9450 both with a sequential version of the algorithm and with a variable number
of threads. Results in table 5.2 report the average time required to complete a Gauss-

Thread Time
number (ms)

1 17.668

2 5.659

3 4.507

4 4.316

Table 5.2: Average time of Gauss-Seidel relaxation for the ACES dataset.

Seidel iteration for the ACES dataset. Node clustering has been formed with default
parameter values nmax = 50 and perc = 0.6. With two threads the advantage of the
multi-threaded version over the sequential one is remarkable. By further increasing
the number of threads, the average time further decreases. It should be noted that no
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advanced thread programming features have been exploited and thread priorities have
not been modified. Hence, the parallel execution of tasks is not granted and relies on
operating system scheduler. However, the improvement is significant and would have
possibly been even more notable with a larger network.

5.5 Discussion

In this chapter, we have presented a parallel algorithm that estimates a map con-
sisting of poses and constraints. The proposed method combines elementary Gauss-
Seidel relaxation on linearized likelihood function and node clustering into parti-
tions. Constraint network decomposition removes mutual dependencies among the
node partitions, except for special nodes called contour nodes. Formally, this opera-
tion corresponds to a permutation of the variables of the network that transforms the
information matrix in block-bordered diagonal form. Thus, a Gauss-Seidel iteration
is decomposed in tasks to be executed in parallel.

A preliminary version of the algorithm in a multi-thread design exploiting com-
modity multi-core processors has been implemented. Experiments with two different
datasets show the effectiveness of graph decomposition and a better exploitation of
computational resources in map estimation. Although faster methods have been pro-
posed, Gauss-Seidel relaxation has proven appropriate for a parallel design. Advan-
tages of parallel design are clearer in multi-robot mapping and in general distributed
contexts.





Chapter 6

Conclusion

This dissertation has presented a novel perspective of real-time feasibility in local-
ization and mapping problems. Online localization and mapping methods update the
estimation of robot location, environment representation, or both by integrating the
incoming sensor information. Since observations are periodically captured by robot
sensors, localization and mapping algorithms are constrained to complete the execu-
tion of an update before a new observation is available. In literature, several partial
contributions have been presented, most of them focused on the reduction of com-
putational complexity, but no comprehensive discussion of real-time feasibility had
been previously proposed.

The reasons that make real-time feasibility difficult are different in the case of
localization and of mapping problems. The execution time of a global localization
method depends on the number of localization hypotheses tracked by the localizer
before the convergence to the correct robot location. In mapping problems, the aug-
mentation of map produces a global update, when the effect of integrated map ele-
ments is propagated to the whole existing map. Despite differences in the nature of
each specific problem and in the solution methods, in this thesis we claim that a lo-
cality principle is a general design criterion for real-time or incremental execution of
localization and mapping algorithms. The probabilistic robotics paradigm provides
a unified formulation for the different problems and a conceptual framework for the
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application of the proposed criterion. Locality may be applied to perform tempo-
ral or spatial decomposition of the global estimation. Each subproblem collects the
elements that are in the proximity of the event that changes the estimation. If the com-
putation of update is locally bounded to this set, processing meets time constraints.
The results of subproblems are then composed together to achieve the complete esti-
mation, that in some cases may be delayed. The particular contributions of this thesis
correspond to the application of the locality principle to specific problems.

The Real-Time Particle Filter is an advanced version of Particle Filter algorithm
conceived to achieve a tradeoff between time constraints related to sensor manage-
ment and filter accuracy depending on the number of samples. This goal is achieved
by partitioning the overall samples required to obtain the required accuracy into sets,
each of them corresponding to an observation. Such partitioning of samples is an ex-
ample of temporal decomposition. The local estimations represented by partition sets
are composed again when the resampling step is performed at the end of temporal
estimation window. In the original version, the mixture posterior computed mixing
samples from each partition suffers from a bias problem. In this thesis, we proposed
two main contributions: first, an analysis of the efficiency of the resampling solution
of the Real-Time Particle Filter through the concept of effective sample size; second,
a method to compute the mixture weights that balances the the effective sample size
of partition sets and is less prone to numerical instability.

The feasibility of time constraints is more difficult to achieve in mapping prob-
lems. Maximum Likelihood mapping is the most suitable approach for applying the
locality principle thanks to the sparsity allowed by the full SLAM formulation and
to the uniformity of the constraint network model. The technique adopted in this
thesis combines stochastic gradient descent and incremental tree parameterization.
This tree network optimizer exploits an efficient optimization technique and orga-
nizes the graph into a spanning tree structure suitable for a decomposition. In this
thesis, the incremental version of the original algorithm has been adapted using again
the locality principle. Local decomposition is achieved selecting the portion of the
network perturbed by the addition of a new constraint. Furthermore, the perturbation
of gradient descent iteration is limited for the region already converged by adapting
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the learning rate. Adapting learning rates have been already proposed in literature,
and in this thesis this concept is applied to the tree parameterization. Finally, opti-
mization is scheduled with an heuristic rule that controls the error increase in the
constraint network. The algorithm converges faster than the previous version of the
same algorithm and in several condition performs better than other state-of-the-art
methods. Real-time feasibility is not granted since network update cannot always be
locally bounded, e.g. when large loops involving a significant portion of spanning
tree are closed. However, the proposed incremental tree network optimizer is suitable
for online execution. The constraint solver has been integrated with a map builder
that extracts the constraint network from a laser scan. This system uses a metric-
topological hybrid map that associates a local map to the nodes of the network. The
map builder further reduces the number of nodes by extracting an occupancy grid
map from several observations.

The final contribution is a parallel maximum likelihood algorithm for robot map-
ping. Local decomposition, which has been exploited for the adaptation of maximum
likelihood approach to online incremental mapping, allows also parallel decomposi-
tion. The proposed algorithm estimates the map iterating a linearization step and the
solution of the linear system with Gauss-Seidel relaxation. Gauss-Seidel moves one
pose at a time according to the local constraints and the neighbor poses, which can
be already updated or not. Since this solution technique does not force the order of
poses, a proper variable reorder allows decomposition of the general problem into
independent parts. The proposed algorithm divides the network in connected clus-
ters of local nodes. The reorder of network nodes induced by clusters transforms the
linearized information matrix in block-border diagonal form. Each diagonal block
of the matrix can then be solved independently. The border block of the matrix cor-
responds to the nodes that divide the clusters and represents the sequential part of
the algorithm. The proposed parallel maximum likelihood algorithm can exploit the
computation resources provided by commodity multi-core processor. Moreover, this
solution can be applied to multi-robot mapping.

In conclusion, the contributions presented in this dissertation outline a novel per-
spective on real-time feasibility of robot localization and mapping methods, thus
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bringing these algorithmic techniques closer to applications.



Appendix A

Pose and Constraint Networks

A.1 Pose Compounding Operation

This section describes the commonly used notation of pose compounding introduced
in [73]. This notation is used to represent transformations or relationships between
planar poses. In the following pose t = [tx, ty, tθ ] represents the transformation from
the pose pi = [pi,x, pi,y, pi,θ ] to pose p j = [p j,x, p j,y, p j,θ ]. The compounding of pose
pi with pose t is usually denoted with

p j = pi⊕ t (A.1)

Relationship between coordinates in pose compounding is defined as p j,x

p j,y

p j,θ

 =

 pi,x + tx cos pi,θ − ty sin pi,θ

pi,y + tx sin pi,θ + ty cos pi,θ

pi,θ + tθ

 (A.2)

Inverse compounding of pose p j with pi returns the relative transformation and is
defined by

t = p j	 pi (A.3)
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The equations of inverse compounding can be easily derived from Eq. (A.2): tx
ty
tθ

 =

 (p j,x− pix) cos pi,θ +(p j,y− pi,y) sin pi,θ

−(p j,x− pix) sin pi,θ +(p j,y− pi,y) cos pi,θ

p j,θ − piθ

 (A.4)

In this thesis, constraints between poses i and j are expressed by relative transforma-
tion between the two poses. In particular, constraint 〈i, j〉 represents the observation
of pose j from pose i, which is equivalent to p j	 pi. Since it is a stochastic constraint,
〈i, j〉 has an expected value δ ji and an information matrix Ω ji expressed as a relative
transformation.

A.2 Pose Parameterization

In maximum likelihood methods for robot mapping the choice of parameters repre-
senting network configuration has a great importance. Parameters xi are associated to
the robot poses in a constraint network, but they are distinguished from poses. Three
possible pose parameterizations have been proposed [66]. The three parameteriza-
tions are discussed in the following.

• Global pose. A global pose represents the value of robot pose with respect to
global reference frame, i.e. xi = pi. This parameterization is the most com-
monly used one and has the advantage of a sparse Jacobian of constraints. In
particular, the Jacobians of constraint 〈i, j〉 with respect to xi and x j are Ji

i j and
J j

i j respectively

Ji
i j =

 cosxiθ sinxiθ 0
−sinxiθ cosxiθ 0

0 0 1

 (A.5)

J j
i j =

 −cosxiθ −sinxiθ −(x jx − xix) sinxiθ +(x jy − xiy) cosxiθ

sinxiθ −cosxiθ −(x jx − xix) cosxiθ − (x jy − xiy) sinxiθ

0 0 −1

 (A.6)

The main drawback of global pose lies in its sensitivity to the adjacent con-
straints. Since the motion of the robot is cumulative, the modification of a sin-
gle pose affects a large number of poses.
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• Relative pose. A relative parameter xi represents the relative transformation
with respect to parameter xi−1.

xi =

{
p0

pi	 pi−1
(A.7)

With this parameterization a modification of a single parameters affect the
evaluation of several parameters, but the Jacobians are strongly nonlinear and
dense.

• Incremental pose. Incremental parameterization is exploited in the maximum
likelihood method based on stochastic gradient descent proposed by Olson et
al. [66]. An incremental pose is defined by the difference between the current
global pose and the previous one. The incremental tree parameterization uses
the parent node of node i on spanning tree

xi =

{
p0

pi− pparent(i)
(A.8)

The resulting path from the root of spanning tree to the current node is shorter.
Incremental parameterization is a sort of approximation of the global pose, but
with a straightforward approximated expression of the Jacobians. The Jacobian
Jk

ji of constraint 〈i, j〉 with respect to node k is the unit matrix I , if the node k
is on the path P ji from i to j; otherwise the Jacobian is null. A more careful
analysis [65] shows that for the node belonging to P ji the Jacobian Jk

ji is bet-
ter approximated by the rotation matrix associated to pose pi. The discussion
of incremental pose in [65] also illustrates that this representation introduces
artifacts in the Jacobian.

A.3 Constraint Extraction from Laser Scans

In chapter 4 a mapping system using a metric-topological map representation is de-
scribed. Several scans contribute to the creation of a map patch representing the local
occupancy grid map. The local maps are then associated to a node of the network.
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Figure A.1: An example of Hough transform computed on a laser scan (top) and the
related Hough spectrum (bottom).
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Spatial relationships between pairs of map reference frames correspond to the con-
straints of the network. Several operations are performed to achieve this result.

• Scan Matching. Scan matching is used to compute the local relationships be-
tween pairs of poses where the scans have been observed. The scan matcher
used is a variant of the classic ICP proposed by Censi [9, 10].

• Orientation. In the adopted map occupancy grids are used to represent local
maps. Data association is then performed with the correlation algorithm illus-
trated later. Since correlation is sensitive to orientation, the map patches are
oriented according to the principal orientation of the scans. In indoor envi-
ronment, walls and other architectural elements usually outline a major direc-
tion. This hypothesis of main orientation holds for the most common datasets
of indoor environments. To extract such orientation the Hough spectrum has
been exploited [11, 7]. Given the Hough transform H(iρ , iθ ) computed with
the points of a laser scan, the Hough spectrum is computed as

HS(iθ ) =
nρ

∑
iρ=0

H2(iρ , iθ ) (A.9)

Figure A.1 shows an example of Hough spectrum computed from a Hough
plane.

• Axis histograms. In order to overlap two occupancy grid maps, that candidate
occupancy grid maps are aligned along their principal orientation. or orthog-
onally. Both directions are investigated. The initial search of candidate trans-
lation vectors is performed by correlating axis histograms. An axis histogram
counts the number of occupied cells on a specific direction. Figure A.2 shows
an example of axis histogram for the x-axis.

• Acceptance index. An acceptance index is used to validate the computed trans-
lation vector similar to the one proposed by [7]. The two candidate maps are
overlapped according to the candidate vector and the index is computed by
counting the number of match and mismatch between the cells of the map.
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Figure A.2: An example of axis histogram of x-axis.

If the ratio between the number of matching cells and the total number of
overlapping cells (excluding the cells with undefined values) is greater than a
given threshold, then data association is validated. The chosen threshold value
is equal to 0.5.
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