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Introduction

Recent years have witnessed an exponential growth of micro device manufacturing

techniques and, in particular, of powerful sensor devices.The costs of these sensors

have dropped, leading to an increasing interest on sensor networks for civilian appli-

cations, e.g., environmental monitoring. The use of sensornetworks in the military

field has, on the other hand, a long history.

In all cases, the goal of a sensor network is to identify the status of a pheno-

menon of interest through a collaborative action of the sensors. An istance of this

collaborative action is given bydistributed detection. The increasing interest for sen-

sor networks has, therefore, spurred a significant activityon the design of efficient

distributed detection techniques.

In this thesis, we investigate how the structural properties of the physical pheno-

menon under observation can be taken into account in designing distributed detection

algorithms for sensor networks. After an accurate literature survey (Chapter 1), this

thesis will be structured around the following themes.

• Distributed detection of spatiallyconstantphenomena, i.e., phenomena with

the same status across the sensors (Chapter 2). We first present an analytical

framework for performance evaluation of multihop clustered sensor networks,

with multi-level information fusion. In this case, a simplereclustering proce-

dure is proposed to prolong the network lifetime. Finally, our framework is

extended to scenarios with non-constant observation SNR and possible joint

decoding/fusion strategies at the access point (AP).

• Distributed detection of a phenomenon whose status changes independently



2 Introduction

from sensor to sensor (Chapter 3). In this case, the goal of the AP is to re-

construct the overall phenomenon status. Thereofore, heuristic detection algo-

rithms with reduced computational complexity are proposedand compared to

the optimum minimum mean square error (MMSE) strategy.

• Distributed detection of spatiallycorrelatedsources (Chapter 4). In this case,

we design distributed detection algorithms which take intoaccount the spatial

correlation among the sensors in scenarios with or without an intermediate

relay. Moreover, the impact of simple power control strategies is evaluated.

In all cases, a lot of emphasis is put on the negative impact ofthe noise in the com-

munication channels and proper techniques are incorporated into the proposed algo-

rithms to counter-act this limitation. Moreover, simulation and experimental results,

relative to IEEE 802.15.4 sensor networks, are provided, inorder to validate our ana-

lytical framework also in these more realistic scenarios.



Chapter 1

Literature Analysis and

Motivations

1.1 Introduction

Recent years have witnessed an increasing interest for the use of distributed dete-

ction techniques in sensor networks [2], especially for civilian applications [3], e.g.,

environmental monitoring [4]. The application of distributed detection techniques in

the military field has, on the other hand, a long history. In all cases, the goal of a

sensor network with distributed detection is to identify the status of a phenomenon

of interest through a collaborative action of the sensors [5]. The increasing interest

for sensor networks has, therefore, spurred a significant activity on the design of effi-

cient distributed detection techniques, in order to obtainfault-tolerant networks with

the longest possible lifetime [6].

This chapter is structured as follows. In Section 1.2, we review the literature re-

lated to the distributed detection of spatially constant phenomena, i.e., phenomena

with the same status across all the sensors. In Section 1.3, we focus on the techniques

proposed in the literature for distributed detection of spatially non-constant pheno-

mena, i.e., phenomena changing independently their statusfrom sensor to sensor.

Finally, in Section 1.4 we focus on techniques which exploitthe spatial correlation
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of the observed phenomenon.

1.2 Detection of Spatially Constant Phenomena

Several communication-theoretic-oriented approaches have been proposed to study

decentralized detection [7–14]. In [15], the authors follow a Bayesian approach for

the minimization of the probability of decision error at theAP and study optimal

fusion rules. Most of the proposed approaches are based on the assumption ofideal

communication links between the sensors and the AP. However, in a realistic com-

munication scenario, these links are likely to benoisy [16]. The impact of noisy

communication links on the design of optimal fusion rules isevaluated in [17–21].

A practical and widely used model for the noisy communication links is the binary

symmetric channel (BSC) [17–21]. In [21], a few techniques are proposed to make

the system more robust against the noise. In [13], the authorconsiders MMSE para-

meter estimation in sensor networks. Use of censoring algorithms at the sensors has

also been studied for the design of decentralized detectionschemes [22]. In [23] the

authors analyze aspects related to compression of observeddata (using distributed

source coding) and data transmission.

Information-theoretic approaches have also been proposedfor the study of sen-

sor networks with decentralized detection. In [12], the authors propose a framework

to characterize a sensor network in terms of its entropy and false alarm/missed de-

tection probabilities. Information theory has also been used to tackle the problem

of optimally placing sensors over a given surface to meet thechosen design crite-

rion. In [24], the mutual information is evaluated in a scenario with censoring sen-

sors which transmit their local likelihood ratios, by maximizing the probability of

correct decision [25]. In order to optimally place the sensors over a given surface,

system entropy and mutual information are considered in [26] and [27], respectively.

In [28], an information-theoretic approach is proposed to solve, with limited com-

plexity, the problem of sensor selection and placement for target localization and

tracking. Decentralized detection algorithms, based on the evaluation of the sensor

network mutual information, have also been proposed to design intelligent systems
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that recognize, in a robust manner, a target in a scene which rapidly changes [29].

The impact of communication constraints, e.g., limited bandwidth and presence

of noise, is considered in [30], where a randomization paradigm for decentralized

detection is proposed to overcome the communication bottle-neck. In [31], the au-

thors consider the problem of decentralized detection inwirelesssensor networks

where communication links are affected by fading. In the latter scenario, the optimal

distributed detection strategy is first derived, on the basis of the integration of the

communication and fusion phases, and then suboptimal (requiring a limited a pri-

ori knowledge of the channel state) strategies are developed. This approach is further

extended in [17], where the authors optimize the local decision strategy in sensor net-

works with fading, and in [32], where the authors propose a decentralized detection

strategy based on censoring sensors, which transmit only when their local likelihood

ratios are sufficiently large.

One of the critical issues in designing sensor networks is their energy efficiency,

especially in wireless scenarios, where sensors may be battery-powered. Motivated

by recent theoretical results in the area of network coding [33–38], significant re-

search activity has been devoted to the development of specific channel coding strate-

gies. Although preliminary works focus on scenarios with ideal communication chan-

nels, the impact of communication noise has also been investigated [39]. Moreover,

distributed network coding strategies for the multi-access relay channel, i.e., a chan-

nel where source nodes can send their information to the destination through a com-

mon relay node, have been investigated [40,41].

The problem of extending the sensor network lifetime is a direct consequence

of the energy efficiency in scenarios with battery-powered nodes. In particular, the

derivation of upper bounds for the sensor network lifetime has been exploited. In [42–

50], various analyses are carried out according to the particular sensor network archi-

tecture and the definition of sensor network lifetime. In [51], a simple formula, inde-

pendent of these parameters, is provided for the computation of the sensor network

lifetime and a medium access control (MAC) protocol is proposed to maximize the

sensor network lifetime. In [52], a distributed MAC protocol is designed in order to

maximize the network lifetime. In [53], network lifetime maximization is considered
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as the main criterion for the design of sensor networks with data gathering. In [54],

the authors consider a realistic sensor network with nodes equipped with TinyOS, an

event-based operating system for networked sensor motes. In this scenario, the net-

work lifetime is evaluated as a function of the average distance of the sensors from

the central data collector. In [55], an analytical framework, based on the Chen-Stein

method of Poisson approximation, is proposed in order to findthe critical time at

which isolated nodes, i.e., nodes without neighbors in the network, begin to appear,

due to the deaths of other nodes. Although this method is derived for generic net-

works where nodes are randomly deployed and can die in a random manner, this can

also be applied to sensor networks. Finally, an important area of application of wire-

less sensor networking is the medical field. In [56], an analysis of network lifetime

using IEEE 802.15.4 sensor networks [57] is derived for thiskind of applications.

In several situations, the sensors might observe thesamephenomenon withvary-

ing quality. In other words, while some sensors might have direct accessto the phe-

nomenon (e.g., they are close to a monitored source of heat),other sensors might not

(e.g., there is an obstruction between them and the target source of heat). Therefore, a

relevant problem, with practical implications, consists in evaluating the performance

of distributed detection schemes with non-constant observation quality at the sensors.

1.3 Detection of Spatially Non-Constant Phenomena

While in Section 1.2 we surveyed the literature on decentralized detection of a pheno-

menoncommonfor all sensors, it is of interest to analyze cases where the status of the

phenomenon may vary from sensor to sensor. In [58], the authors consider a scenario

with a single phenomenon status change (denoted, in the following, asboundary) and

propose a framework, based on minimum mean square error (MMSE) estimation, to

determine the position of this boundary. In [59], under the assumption of proper regu-

larity of the observed boundary, a reduced-complexity MMSEdecoder is proposed.

In [60], the authors show that an MMSE decoder is unfeasible for large scale sensor

networks, due to its computational complexity, and proposea distributed detection

strategy based on factor graphs and the sum-product algorithm. Moreover, MMSE-
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based distributed detection schemes have also been investigated in scenarios with

a common binary phenomenon under observation and bandwidthconstraints [61].

Finally, in [62, 63] the authors examine the problem of determining boundaries of

natural phenomena through proper processing of data collected by sensor networks.

In those papers, particular attention is devoted to the estimation accuracy, given in

terms of the confidence interval of the results obtained withthe proposed framework.

1.4 Detection of Correlated Sources

In the previous sections, we focused on scenarios where the phenomenon under ob-

servation iscommonfor all sensors or may changeindependentlyacross them. Ho-

wever, in a more general case, the phenomenon status observed at each sensor can

be correlated. In the case of a single collector node (the AP), this problemis of-

ten referred to as the reach-back channel problem [64–67]. In its simplest form, it

can be summarized as follows: two independent nodes have to transmit correlated

sensed data to a collector node by spending the minimum possible energy, i.e., by

exploiting in some way the implicit correlation among the data. In the case of or-

thogonal additive white Gaussian noise (AWGN) channels, the separation between

source and channel coding is optimal [67, 68]. This means that the theoretical limit

can be achieved by, first, compressing each source up to the Slepian-Wolf (SW)

limit and, then, utilizing two independent capacity-achieving channel codes (one per

source). However, implementing a practical system based onseparation, i.e., distribu-

ted source coding (DSC), is not straightforward [69–73]. Inparticular, the problem of

designing good practical codes for correlated sources is still an open issue [74] and,

moreover, separation between source and channel coding maylead to catastrophic

error propagation.

An alternative approach to exploiting the correlation between sources is repre-

sented by joint source-channel coding (JSCC). In this case,the correlated sources

are not source-encoded but only channel-encoded. If we compare, for a given infor-

mation rate, a JSCC system with a system based on source/channel separation, the

channel codes used in the JSCC system must be less powerful (i.e., with higher rate).
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This weakness can be compensated by exploiting the correlation between sources

at the joint decoder, making the overall performance approach the theoretical limits.

Note that in the JSCC approach, the sources are encoded independently of each other

(i.e., for a given source neither the realizations from the other sources nor the corre-

lation model are available at the encoder site) and transmitted through the channel.

Correlation between the sources, instead, must be assumed to be known or accu-

rately estimated at the (common) receiver, which aims at thereconstruction of the

two sources. Works dealing with JSCC schemes have so far considered turbo or low-

density parity-check (LDPC) codes [75–77], in such a way that the decoder can ex-

ploit the correlation among sources by performing proper message passing between

the two decoders. Recently, the application of rateless coding has also been conside-

red to improve the performance of multiple access systems [78,79].

In [80], the authors consider LDPC coding at the sources and network coding

at the relay, and their goal is to derive an overall Tanner graph to describe the joint

LDPC/network code and implement message-passing decoding. Moreover, in [80]

scenarios with only two sources are considered, whereas ourframework is applicable

to scenarios with any number of sources. Note also that relaynetworks with a sin-

gle source (and not correlated sources) and single destination have been thoroughly

investigated [81, 82]. Although cooperative coding [83, 84] has also been applied to

relayed schemes [85,86], we underline that our focus is onnon-cooperativeschemes,

i.e., schemes where the sources do not cooperate directly with each other.

The performance of multiple access schemes can be improved by the use of feed-

back. In general terms, the collector can provide the sources with supplementary

information (e.g., on the links’ states) to allow them to counter-act the effects of

channel noise. From an information-theoretic viewpoint, while feedback does not in-

crease the capacity of a memoryless channel with one sender and one receiver [87], it

is well known that the capacity region of multiple access channels increases through

the use of feedback [88, 89]. In [90, 91], the authors devise joint source-channel co-

ding strategies for multiple-access channels with feedback and correlated sources.



Chapter 2

Distributed Detection of Spatially

Constant Phenomena

2.1 Introduction

In this chapter, we analyze the problem of distributed detection of a spatially constant

phenomenon in wireless sensor networks. We first present a communication-theoretic

framework on distributed detection in clustered sensor networks where hierarchical

multi-level fusion is considered. The sensor nodes observea binary phenomenon

and transmit their own data to an AP, possibly through intermediate fusion centers

(FCs), which perform majority-like fusion strategies. We investigate the impact of

uniform and non-uniform clustering on the system performance, evaluated in terms

of probability of decision error on the phenomenon status atthe AP. Our results show

that uniform clustering leads to minimum performance degradation, which depends

only on the number of decision levels, rather than on the specific clustered topology.

Since the uniform clustering topology allows to reduce the performance loss in-

curred by multi-level information fusion, we then investigate the benefits, in terms of

longer network lifetime, ofadaptive reclustering. In particular, the lifetime is studied

under a physical layer quality of service (QoS) constraint,given by the maximum

tolerable probability of decision error at the AP. On the other hand,absence of re-
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clustering leads to a shorter network lifetime, and we show the impact ofvarious

clustering configurations under different QoS conditions.Our results show that the

organization of sensors in afew big clustersis the winning strategy to maximize the

network lifetime. Moreover, the observation of the phenomenon should befrequent

in order to limit the penalties associated with the reclustering procedure.

Although our analysis in based on the assumption of constantsignal-to-noise ra-

tio (SNR) at the sensors, we show how to extend it to sensor networks characterized

by non-constantobservation SNRs at the sensors. Furthermore, we showhowthe im-

pact of communication noise in the links between the sensorsand the AP depends on

the sensor SNR profile (i.e., the spatial distribution of theobservation noise). More

precisely, different sensor SNR profiles are compared undertwo alternative assump-

tions: (i) commonmaximumsensor SNR or (ii) commonaveragesensor SNR.

Finally, we study how to combine decoding and fusion at the APin sensor net-

works for distributed detection to improve the performancein scenarios where the

sensors communicate to the AP throughnoisycommunication links. Simple distri-

buted channel coding strategies are analyzed, either usingrepetition coding at each

sensor (i.e., multiple observations) or distributed (network-wide) systematic block

channel coding. In the latter case, the use of a relay is proposed. In all cases, the

system performance is analyzedseparatingor joining the decoding and fusion ope-

rations at the AP. Our results show that the schemes with joint decoding and fusion

show a significant performance improvement with respect to that of schemes with

separate decoding and fusion and the use ofmultiple observationsis often the win-

ning choice at practical values of the probability of decision error.

Throughout this chapter, the analytical approach is extended to realistic sensor

networks, based on commercial protocols. In particular, simulation (relative to Zig-

bee networks) and experimental (relative to IEEE 802.15.4-based networks) results,

which confirm the analytical predictions, are presented, enriching the proposed ana-

lytical framework and showing how typical networking performance metrics (such

as throughput and delay) are influenced by the probability ofdecision error.

This chapter is structured as follows. In Section 2.2, we present the analytical

framework to analyze the peformance of clustered sensor networks. In Section 2.3,
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we analyze the sensor network lifetime in the presence of theproposed distributed

detection startegies. In Section 2.4, we extend our framework to take into account

possible non-constant SNR spatial distributions at the sensors. In Section 2.5, we ex-

tend the framework also to take into account the presence of different detection/fusion

strategies. Finally, in Section 2.6 concluding remarks aregiven.

2.2 Distributed Detection in Clustered Sensor Networks

2.2.1 Preliminaries on Distributed Binary Detection

We consider a network scenario wheren sensors observe acommon binary phenome-

nonwhose status is defined as follows:

H =

{
H0 with probability p0

H1 with probability 1− p0

wherep0 , P(H = H0). In the remainder of this thesis, if no otherwise stated, we

will focus on a scenario with equal a priori probabilities ofthe phenomenon, i.e.,

p0 = p1 = 1/2. However, similar results can be derived for a scenario with p0 6= 1/2.

The sensors are clustered intonc < n groups, and each sensor can communicate only

with its local first-level FC. The first-level FCs collect data from the sensors in their

corresponding clusters and make local decisions on the status of the binary phenome-

non. In a scenario with two levels of information fusion, each local FC transmits to

the AP, which makes the final decision. A logical representation of this architecture

is shown in Figure 2.1. The observed signal at thei-th sensor can be expressed as

r i = cE +ni i = 1, . . . ,n (2.1)

where

cE ,

{
0 if H = H0

s if H = H1

and{ni} are additive noise samples. Assuming that the noise samples{ni} are inde-

pendent with the same Gaussian distributionN (0,σ2), the common signal-to-noise
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Figure 2.1: Block diagram of a clustered sensor network withdistributed binary de-

tection and two decision levels.

ratio (SNR) at the sensors can be defined as follows:

SNRsensor=
[E{cE|H1}−E{cE|H0}]2

σ2 =
s2

σ2 . (2.2)

Each sensor makes a decision comparing its observationr i with a threshold valueτi

and computes a local decisionui =U(r i −τi), whereU(·) is the unit step function. In

order to optimize the system performance, the thresholds{τi} need to be optimized.

Even though, in general, a common value of the decision threshold for all sensors

might not be the best choice, in the following we assume that all sensors use the same

decision thresholdτ . While in a scenario with no clustering and ideal communication

links between the sensors and the AP the relation between theoptimized value ofτ
ands is well known [15], in the presence of clustering it is not. Inthe following, the

value ofτ will be optimized in all considered scenarios. More precisely, we consider

a possible (discrete) set of values which can be assumed byτ : {τmin,τmin+∆τ ,τmin+

2∆τ , . . . ,τmax}. In other words,τ can assume values in[τmin,τmax] at regular steps of

(sufficiently small) width∆τ . For a given sensor SNR, the probability of decision



2.2. Distributed Detection in Clustered Sensor Networks 13

error is evaluated for each possible value ofτ , and the minimizing value is selected

as threshold. In all considered cases, the optimized value of the common threshold is

around
√

SNRsensor/2, as already observed in [15,92].

In a scenario with noisy communication links, modeled as BSCs, the decisionui

sent by thei-th sensor can beflippedwith a probability corresponding to the cross-

over probability of the BSC model and denoted asp [21]. The received bit at the

fusion point (either an FC for clustered networks or directly the AP in the absence of

clustering), referred to asu(r)
i , can be expressed as

u(r)
i =

{
ui with probability 1− p

1−ui with probability p.

In the presence of noisy links, the value of the optimized local thresholdτ , fixed for

all sensors, might be different from that in a scenario with ideal communication links.

As for the case with ideal communication links, this optimization will be carried out,

for given SNR and clustering configuration, by minimizing the probability of deci-

sion error, as outlined at the end of the previous paragraph.Note that the best strategy

would consist in using a properly optimized set of decision thresholds{τi} at the

sensors. In particular, in a more general scenario where thetype of event perceived

by the sensor might vary, a more refined per-cluster optimization of the sensor deci-

sion threshold could be considered. However, since we are interested in monitoring a

spatially constant binary phenomenon, we consider a simpler optimization approach,

where the same threshold is used at all sensors.

While the communication links between sensors and first level FCs can be noisy,

we assume that the other communication links in the network (i.e., from each FC to

higher level FCs or the AP) are ideal. The rationale behind the assumption of ideal

high-level links lies in the fact that in practical sensor network design the FCs are

likely to be placed relatively close to the AP. Therefore, under the assumption of

a robust access control mechanism, one can assume that theselinks are ideal. The

proposed analytical framework can be extended to encompassthe presence of higher

level noisy links. Moreover, realistic sensor network scenarios (with collisions) will

be analyzed, through simulations and experiments, in Section 2.2.5.
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AP

FC FC

FCFC

Figure 2.2: An example of a uniformly clustered sensor network with n= 16 sensors.

There arenc = 4 clusters withdc = 4 sensors each.

We point out that the specific topologies of the considered networks are not ex-

plicitly taken into account. For instance, the distances between nodes are not explic-

itly mentioned. This corresponds to the assumption of modelling all noisy communi-

cation links as BSCs with the same cross-over probability. In order to extend our ana-

lytical framework, while still keeping the simple BSC-based link modelling, one can

consider different cross-over probabilities (they could be associated with a specific

network topology). This motivates the use of weighing fusion schemes, where the

decisions to be fused together are weighed by the corresponding link qualities [93].

2.2.2 An Analytical Framework for Distributed Detection in Clustered
Sensor Networks

Uniform Clustering

In a scenario withuniformclustering, the sensors are grouped into identical clusters,

i.e., each of thenc clusters containsdc sensors, withnc ·dc = n. A pictorial description

of a uniformly clustered sensor network withn = 16 sensors and 2 decision levels is

shown in Figure 2.2: there arenc = 4 clusters withdc = 4 sensors each.

According to the assumption of majority-like information fusion considered in
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this chapter, thej-th FC (j = 1, . . . ,nc) computes a local decision using the following

rule:

Ĥ j = Γ
(

u( j)
1 , . . . ,u( j)

dc

)
=

{
0 if ∑dc

m=1u( j)
m < k

1 if ∑dc
m=1u( j)

m ≥ k
(2.3)

whereu( j)
m is them−th decision of a sensor in thej−th cluster andk is the FC decision

threshold—since the clusters have the same dimension, the thresholdk = ⌊dc/2⌋+1

is the same at all FCs. The AP decides with the following majority-like rule based on

the local FC decisions{Ĥ j}:

Ĥ = Ψ
(

Ĥ1, . . . ,Ĥnc

)
=

{
H0 if ∑nc

j=1 Ĥ j < kf

H1 if ∑nc
j=1 Ĥ j ≥ kf

(2.4)

wherekf = ⌊nc/2⌋+ 1 is the fusion threshold at the AP. Using a combinatorial ap-

proach (based on the repeated trials formula [94]) and taking into account the decision

rules (2.3) and (2.4), the probability of decision error at the AP can be expressed as

follows:

Pe = P(Ĥ = H1|H0)P(H0)+P(Ĥ = H0|H1)P(H1) (2.5)

= p0 bin(kf ,nc,nc,bin(k,dc,dc,Q(τ)))

+(1− p0)bin(0,kf −1,nc,bin(k,dc,dc,Q(τ −s))) (2.6)

whereQ(x) ,
∫ ∞

x
1√
2π exp(−y2/2)dy and

bin(a,b,n,z) ,
b

∑
i=a

(
n
i

)
zi(1−z)(n−i) (2.7)

wherea,b,n∈ N andz∈ (0,1). If nc = kf = 1 anddc = n, i.e., there is no clustering,

the probability of decision error (2.6) reduces to that derived in [21].

We point out that the majority fusion rule (2.3) with FC decision thresholdk =

⌊dc/2⌋+ 1 is exact forodd values ofk. For evenvalues ofk, the proposed fusion

strategy tends to favor a final decision equal to ‘0.’ For example, if dc = 2, then only

the received sequence 11 leads to a final decision in favor of ‘1.’ However, since in

all considered scenarios the two statuses of the binary phenomenon are equiprobable,
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Figure 2.3: Basic structures for sensor networks with distributed detection. Three

cases are shown: (a) absence of clustering, (b) uniform clustering with two levels of

information fusion, and (c) uniform clustering with three levels of information fusion.

settingk to ⌊dc/2⌋ would unbalance the decision towards ‘1,’ but,on average, the

final performance would be the same.

Although we have previously derived the probability of decision error in a sce-

nario with uniform clustering and two levels of informationfusion, this analysis can

be extended to a scenario with three levels of information fusion. In Figure 2.3 (c),

the logical structure of a sensor network with three decision levels is illustrated. For

comparison, in the same figure the schemes with (a) no clustering and (b) two deci-

sion level uniform clustering are also shown. One should note that Figure 2.3 (b) is

logically equivalent to the network schemes shown in Figure2.1 and Figure 2.2.

In a three decision level scenario the probability of decision error at the AP be-

comes

Pe = p0 bin(kf ,nc2,nc2,bin(k2,dc2,dc2,bin(k1,dc1,dc1,Q(τ))))

+(1− p0)bin(0,kf −1,nc2,bin(k2,dc2,dc2,bin(k1,dc1,dc1,Q(τ −s))))). (2.8)

We remark that the above derivation can be straightforwardly extended to a sce-

nario with a generic number of fusion levels. As for the scenario with uniform cluste-

ring and one decision level, the thresholds{ki} can be optimized by minimizing the

probability of decision error at the AP.
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Non-Uniform Clustering

Assuming a two-level sensor network topology, the probability of decision error in a

generic scenario with non-uniform clustering can be evaluated as follows. Define the

cluster size vectorD , {d(1)
c ,d(2)

c , . . . ,d(nc)
c }, whered(i)

c is the number of sensors in

thei-th cluster (i = 1, . . . ,nc) and∑nc
i=1 d(i)

c = n. Furthermore, define also the following

two probability vectors:

P
1|1 ,

{
p1|1

1 , p1|1
2 , . . . , p1|1

nc

}
P

1|0 ,
{

p1|0
1 , p1|0

2 , . . . , p1|0
nc

}

wherep1|1
ℓ (p1|0

ℓ , respectively) is the probability that theℓ-th FC decides forH1 when

H1 (H0, respectively) has happened. We still consider the use of a common threshold

τ at the sensors, and its value is optimized as described in Section 2.2.1. The elements

of P1|1 (equivalently, the elements ofP1|0) are, in general, different from each other

and depend on the particular distribution of the sensors among the clusters. In [93],

it is shown that the probability of decision error can be expressed as follows:

Pe = p0

nc

∑
i=kf

(nc
i )

∑
j=1

nc

∏
ℓ=1

{
si, j (ℓ)p1|0

ℓ +(1−si, j(ℓ))(1− p1|0
ℓ )
}

+(1− p0)
kf−1

∑
i=0

(nc
i )

∑
j=1

nc

∏
ℓ=1

{
si, j(ℓ)p1|1

ℓ +(1−si, j(ℓ))(1− p1|1
ℓ )
}

(2.9)

wheresssi, j = (si, j(1), . . . ,si, j (nc)) is a vector which designates thej-th configuration

of the decisions from the first-level FCs in a case withi ‘1’s (and, obviously,nc− i

‘0’s). In Table 2.1, the possible configurations ofsssi, j are shown in the presence of

nc = 3 clusters. For example,sss1,2 is the second possible configuration with one ‘1’

(and two ‘0’): the ‘1’ is the decision of the second FC.

A scenario withuniform clustering can be interpreted as a special case of a

generic non-uniform scenario. In this case, in fact, the elements of the three vectors

D , P1|1, andP1|0, become equal, i.e.:





d(i)
c = dc

p1|1
i = bin(k,dc,dc,Q(τ −s))

p1|0
i = bin(k,dc,dc,Q(τ))
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Table 2.1: Possible configurations ofsssi, j in a scenario withnc = 3 clusters.

i j sssi, j

0 1 000

1 100

1 2 010

3 001

1 110

2 2 101

3 011

3 1 111

∀i = 1, . . . ,nc. It can be shown that (2.9) reduces to (2.6) in the presence ofuniform

clustering.

Scenarios with Noisy Communication Links

As described at the end of Section 2.2.1, realistic sensor networks are typically cha-

racterized by noisy communication links. In general, a BSC might not be the best

modelling choice for a wireless communication link, which might experience block

fading [31, 95–97]. However, in the presence of memoryless communication chan-

nels the use of a cross-over probabilityp is accurate. More precisely,p can be given

a precise expression depending on the type of channel (with AWGN or bit-by-bit in-

dependent fading). Therefore, our simple model can give significant insights into the

network behavior in many situations.

In a scenario with non-uniform clustering and two decision levels, the proba-

bility of decision error can be derived from (2.9), by replacing the probabilities

{p1|i
ℓ }i=0,1

ℓ=1,...,nc
with the probabilities{p1|i

ℓ,noisy}
i=0,1
ℓ=1,...,nc

, which take into account the

noise in the communication links between sensors and first-level FCs and are defined
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as

p1|0
ℓ,noisy ,

d(ℓ)
c

∑
m=kℓ

(
d(ℓ)

c

m

)
Pm

c0
Pd(ℓ)

c −m
e0

(2.10)

p1|1
ℓ,noisy ,

d(ℓ)
c

∑
m=kℓ

(
d(ℓ)

c

m

)
Pm

c1
Pd(ℓ)

c −m
e1

. (2.11)

In (2.10),Pc0 = 1−Pe0 is the probability that a sensor decision sent to a first-level FC

is in favor ofH1 whenH0 has happened and can be expressed, according to the BSC

model for a noisy communication link, as

Pc0 = Q(τ)(1− p)+ [1−Q(τ)] p. (2.12)

Similarly, in (2.11)Pc1 = 1−Pe1 represents the probability that a decision sent by a

sensor to a first-level FC is in favor ofH1 whenH1 has happened and can be given

the following expression:

Pc1 = Q(τ −s)(1− p)+ [1−Q(τ −s)] p. (2.13)

Finally, the probability of decision error in a scenario with noisy communication

links becomes

Pe = p0

nc

∑
i=kf

(nc
i )

∑
j=1

nc

∏
ℓ=1

{si, j (ℓ)p1|0
ℓ,noisy+(1−si, j(ℓ))(1− p1|0

ℓ,noisy)}

+(1− p0)
kf−1

∑
i=0

(nc
i )

∑
j=1

nc

∏
ℓ=1

{si, j (ℓ)p1|1
ℓ,noisy+(1−si, j(ℓ))(1− p1|1

ℓ,noisy)} . (2.14)

2.2.3 Communication-Theoretic Characterization

Ideal Communication Links

The analytical framework presented in Section 2.2.2 leads to a communication-theoretic

characterization of the network performance in terms of probability of decision error

at the AP as a function of the sensor SNR and the communicationnoise level.



20 Chapter 2. Distributed Detection of Spatially Constant Phenomena

0 3 6 9 12
SNR

sensor
 [dB]

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
e

no clustering

2 decision levels

3 decision levels

Figure 2.4: Probability of decision error, as a function of the sensor SNR, in a scenario

with n = 16 sensors and uniform clustering.

In Figure 2.4, the probability of decision error is shown, asa function of the

sensor SNR, in the case withn = 16 sensors, considering two and three decision

levels. In the scenario with two decision levels, the following topologies are possible:

• 8-8 (2 clusters with 8 sensors each);

• 4-4-4-4 (4 clusters with 4 sensors each);

• 2-2-2-2-2-2-2-2 (8 clusters with 2 sensors each).

For a three decision level scenario, the following topologies are considered:

• 4-4-4-4/2-2 (4 first-level FCs, each connected with 4 sensors, and 2 second-

level FCs, each connected with 2 first-level FCs);

• 2-2-2-2-2-2-2-2/4-4 (8 first-level FCs, each connected with 2 sensors, and 2

second-level FCs, each connected with 4 first-level FCs);

• 2-2-2-2-2-2-2-2/2-2-2-2 (8 first-level FCs, each connected with 2 sensors, and

4 second-level FCs, each connected with 2 first-level FCs).
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Lines and symbols (circles, triangles, and stars) correspond to analytical and simu-

lation results, respectively. For comparison, the probability of decision error with no

clustering is also shown. We point out that the simulation results shown in Figure 2.4

and those shown, in the following, in Figure 2.5 are meant to verify the correctness

of the analytical framework. In other words, these results are obtained by simulating

systems which are identical to those behind the analytical models. Obviously, the

agreement between analysis and simulations is perfect. In Section 2.2.5.A, instead,

the presented simulation results will refer to realistic Zigbee networks.

In Figure 2.4, only one curve is shown for the scenario with two levels of infor-

mation fusion, since the performance curves associated with all possible configura-

tions (i.e., 8-8, 4-4-4-4, 2-2-2-2-2-2-2-2) overlap. Thisimplies that one can choose

between a uniform network topology with a small number of large clusters and a uni-

form network topology with a large number of small clusters,still guaranteeing the

same performance level. The intuition behind this result isthe following.

• If one considers an architecture with small clusters, thenfusion at the first-

level FCs is not effective. However, many local cluster decisions are then fused

together, and this allows to recover (partially) the first-level information loss.

• On the other hand, considering large clusters leads to morereliable local first-

level decisions. However, a few of them are then fused together, so that the

supplementary (higher-level) refinement is not relevant.

Similar considerations also hold for a three decision levelscenario. We point out that

in Figure 2.4 the obtained analytical expressions of the probability of decision error

are numerically evaluated and verified through simulations. However, we are still

working on a simple analytical proof of the identity, for a given number of nodes, of

the expressions of the probabilities of decision error for different uniformly clustered

scenarios.

Comparing the performance in the absence of clustering withthat in the presence

of uniform clustering (with either two or three decision levels), one can conclude

that the larger is the number of decision levels, the worse isthe performance. This

is intuitive, since a larger number of decision levels corresponds to a larger number
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Figure 2.5: Probability of decision error, as a function of the sensor SNR, in a scenario

with n = 16 sensors. Various configurations are considered.

of partial information losses in correspondence to the fusion operations. However,

this holds in scenarios with ideal communication links. In awireless communication

scenario, where some links may be completely obstructed, a sensor network with

multiple communication layers might not yield the worst performance.

Although the analytical framework derived in the previous sections is general,

the presented results refer to networks with a (relatively)small number of sensors.

However, our framework can be extended to scenarios with a large number of sensors.

To this regard, in [93] we propose a simple, yet very accurate, approximation of

the derived framework based on the application of the De-Moivre Laplace (DML)

theorem.

In order to evaluate the impact of non-uniform clustering, we consider a scenario

with n = 16 sensors and various non-uniform network topologies. In Figure 2.5, the

probability of decision error is shown, as a function of the sensor SNR, considering

no clustering, two level uniform clustering, and various configurations with two de-

cision levels and non-uniform clustering (explicitly indicated). For comparison, the

curve in the absence of quantization at the sensors is also shown. The lines corre-
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spond to analytical results, whereas symbols are associated with simulations. In the

scenarios with non-uniform clustering, the considered configurations are 8-2-2-2-2

(5 clusters, out of which 4 contain 2 nodes and 1 contains 8 nodes), 10-2-2-2, and

14-1-1. As one can see from Figure 2.5, in the presence of majority-like information

fusion the higher is the non-uniformity degree among the clusters, i.e., the more un-

balanced is clustering, the worse is the system performance. Consequently, a sensor

network designer should avoid non-uniform configurations with one big cluster and

remaining small clusters. In general, a two-level uniformly clustered scenario is de-

sirable, since it guarantees the lowest energetic loss withrespect to a network with

no clustering. However, uniform clustering in a realistic scenario might not be possi-

ble, as, for example, in environmental monitoring applications. In fact, the area over

which the sensors are distributed could be irregular and, therefore, uniform cluste-

ring of the sensors could not be feasible. An interesting application of our framework

could consist of the identification of non-uniform clustering “classes,” with similar

performance per class. This could help significantly a network designer in predicting,

for example, the performance degradation caused by the lossof some sensors (e.g.,

for battery exhaustion).

The above analysis in non-uniformly clustered scenarios applies to situations

where the AP does not know the exact distribution of the sensors among the clu-

sters. This is meaningful, for instance, in large networks where only local topology

knowledge is possible. If, on the other hand, the distribution is very unbalanced (e.g.,

14-1-1 withn= 16 sensors) and the AP knows the exact topology, the less reliable de-

cisions originated by small clusters can be ignored. In a scenario withn= 16 sensors

and the considered 14-1-1 topology, atPe = 10−4 a sensor SNR gain equal to 5.47 dB

can be obtained without using, at the AP, the decisions associated with the smaller

clusters—this corresponds to the performance of a sensor network with n = 14 sen-

sors and no clustering. Therefore, knowledge of the clustering configuration at the

AP allows to obtain a performance very close to that in the absence of clustering.

In particular, in the previous case withn = 16 sensors and 14-1-1 configuration, the

sensor SNR loss (with respect to a scenario with no clustering) can be reduced to

0.77 dB by using only the decision sent by the 14-sensor cluster. Our goal, however,
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Figure 2.6: Probability of decision error, as a function of the sensor SNR, in a scenario

with uniform clustering. Different values of the number of sensors are considered.

is to compare clustering topologies when the AP gives the same weight to all received

decisions. This is meaningful for adynamicsensor network scenario, where sensors

might die and sensors clusters might become unbalanced. In this case, intelligent re-

clustering techniques can be used to improve the system performance, as it will be

shown later.

In Figure 2.6, the probability of decision error is shown, asa function of the sen-

sor SNR, for different values of the number of sensorsn in a scenario with uniform

clustering. In particular, the considered values forn are 16, 20, 32, 40, and 64. Ob-

serve that only one curve is associated with each value ofn, since we have previously

shown that the performance does not depend on the number of clusters (for a given

n), as long as clustering is uniform. Obviously, the performance improves (i.e., the

probability of decision error decreases) when the number ofsensors in the network

becomes larger. The results in Figure 2.6 will be used in Section 2.3.1 to compute the

sensor network lifetime under a QoS condition on the maximumacceptable probabi-

lity of decision error.
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Noisy Communication Links

While in Section 2.2.3 the performance in scenarios with ideal communication links

has been analyzed, we now turn our attention to scenarios with noisy communication

links. It is interesting to investigate how the probabilityof decision error behaves as

a function of the communication noise level, i.e., the cross-over probability p. To

this end, we introduce a communication-theoretic quality of service (QoS) condition,

in terms of the maximum tolerable probability of decision error, denoted asP∗
e . A

physical layer-oriented QoS condition can be written as

Pe ≤ P∗
e . (2.15)

Since the probability of decision error is a monotonically decreasing function of the

sensor SNR, the QoS condition (2.15) can be equivalently rewritten as

SNRsensor≥ SNR∗
sensor

where SNR∗sensordepends onP∗
e . It is then possible to evaluate the performance under

a desired QoS constraint, given by the maximum tolerable probability of decision

errorP∗
e .

In Figure 2.7, the value of the minimum sensor SNR required toguaranteeP∗
e ,

i.e., SNR∗sensor, is shown, as a function of the cross-over probabilityp, in scenarios (i)

without clustering and (ii) with clustering and two decision levels, respectively. Two

possible values forP∗
e are considered: (i) 10−3 (curves with circles) and (ii) 10−4

(curves with triangles). As expected, when the noise level increases, the minimum

sensor SNR required to guarantee the desired network performance also increases. In

fact, since communications become less reliable, a higher accuracy in the observation

phase is needed in order to maintain the same overall performance. Besides, one can

observe that there exists a vertical asymptote in each curvein Figure 2.7. In other

words, there exists a critical valuepcrit of the noise level, such that: (i) forp < pcrit,

the sensor network is operative, i.e., there exists a finite value of the sensor SNR

which satisfies the desired QoS condition (2.15); (ii) forp > pcrit, instead, the net-

work is not operative, i.e., it is not possible to achieve thedesired performance level,
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regardlessof the value of the sensor SNR. One could equivalently describe this be-

havior asbimodal. This is a typical behavior of distributed communication networks,

such as the bimodal connectivity behavior in ad hoc wirelessnetworks [98–102].

Proper operation of the considered sensor networks with distributed detection can be

equivalently interpreted as a symptom of network connectedness. In Figure 2.7, this

bimodal behavior is also confirmed in a scenario with uniformclustering and two

decision levels. However, in the latter case the impact of the communication noise is

stronger with respect to a scenario with no clustering, i.e., the network looses con-

nectivity for smaller values ofp. Consequently, the larger is the number of decision

levels in the network, the lower is the maximum tolerable communication noise level.

2.2.4 Joint Communication/Information-Theoretic Characterization

The considered sensor network schemes can be modeled as “black boxes” with a

binary input (the phenomenonH) and a binary output (the decision̂H at the AP).

Using the model in Figure 2.1, the final decisionĤ can be described as a binary ran-
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dom variable1 with P0 , P(Ĥ = H0). In a scenario with two-level uniform clustering

and ideal communication links, the parameterP0 can be rewritten (using the results

in Section 2.2.1) as

P0 = p0 bin(0,kf −1,nc,bin(k,dc,dc,Q(τ)))

+(1− p0)bin(0,kf −1,nc,bin(k,dc,dc,Q(τ −s))). (2.16)

We remark that equation (2.16) may look identical to (2.6). In (2.16), however, the

term on the right-hand side in the first row corresponds toP(Ĥ = H0|H0), whereas in

(2.6) it is given byP(Ĥ = H1|H0)—the second parameter of the function “bin” is, in

fact, different in the two cases.

The mutual information of the BIBO sensor network can then bewritten as [103,

ch. 2]

IREAL(H;Ĥ) = HREAL
e (Ĥ)−HREAL

e (Ĥ|H)

whereHREAL
e (Ĥ|H) is the conditional entropy of̂H givenH [103]. After a few ma-

nipulations, the mutual information becomes

IREAL(H;Ĥ) = He(p0(1− p10)+ (1− p0)p01)− p0He(p10)− (1− p0)He(p01)

(2.17)

wherepi j , P(Ĥ = Hi|H j), i, j = 0,1.

In Figure 2.8, the probability of decision error is shown, asa function of the

mutual information, for the same scenario considered in Figure 2.5, i.e., with no clu-

stering (circles), uniform clustering (triangles), and non-uniform clustering (pluses,

14-1-1 configuration), respectively. The communication links are ideal. The curves

considered in this figure are parameterized curves, obtained by combining probability

of decision error curves with mutual information curves, through the common para-

meter given by the sensor SNR. As one can see, the curves associated with different

sensor network topologies overlap. In other words, for a given value of the mutual

information, the probability of decision error is fixed. note, however, that a specific

mutual information is obtained in clustered (for example, 4-4-4-4 or 2-2-2-2-2-2-2-2)

1Note that the definition ofP0 = P(Ĥ = H0) (relative to the decision̂H) is different from that given

for thea priori probability of the phenomenonp0 = P(H = H0) given in Section 2.2.1.
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Figure 2.8: Probability of decision error, as a function of the mutual information, in

a scenario withn = 16 sensors. The operating points for various clustering configu-

rations and two sensor SNRs are shown.

and non-clustered scenarios for different values of the sensor SNR (in the figure, a

few representative points associated with two SNRs are highlighted). In other words,

for a given mutual information the presence of clustering leads to anenergetic lossat

the sensors (in the observation phase). The loss with non-uniform clustering is higher

than with uniform clustering. Similar curves can be derivedfor the other scenarios

considered in this chapter, e.g., for a large number of sensors, with more than two

decision levels, and in the presence of noisy communicationlinks between sensors

and first-level FCs (with sufficiently low values of the noiselevel p). However, the

network behavior does not change, i.e., for a fixed value of the mutual information,

the probability of decision error is uniquely determined.

In Figure 2.9, the probability of decision error is shown, asa function of the mu-

tual information, in a scenario withn= 16 sensors and uniform clustering. Communi-

cation links between sensors and first-level FCs are noisy, with cross-over probability

p = 0.05. The limiting (for SNRsensor→ ∞) operating points over thePe− I curve of

a BIBO sensor network, corresponding to all possible numbers of decision levels (1,
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(p = 0.05).

2, 3, and 4, respectively), are shown. For a given number of decision levels, the sy-

stem operating point moves from the position correspondingto I = 0 (for very low

values of SNRsensor) to the corresponding limiting point, which is asymptotically ap-

proached for SNRsensor→ ∞. As one can see, the presence of noise over the commu-

nication links limits the maximum achievable mutual information, i.e., the maximum

information transfer rate accross the network.

In [104], possible simplified expressions for the probability of decision error (as

a function of the mutual information), are presented. In particular, (i) polynomial

approximations, (ii) asymptotic (for sufficiently large sensor SNR) analytical expres-

sions, and (iii)bimodalapproximations (valid for all sensor SNRs), are derived.

2.2.5 Realistic Clustered Networks with Data Fusion

In this section, we presentsimulationand experimentalresults which validate our

analytical framework in practical sensor networking scenarios, where nodes comply

with the Zigbee (simulation results) or IEEE 802.15.4 (experimental results) stan-
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dards.

Simulations

The simulations have been carried out with the Opnet Modelersimulator [105] and a

built-in Zigbee network model designed at the national Institute of Standards and

Technologies (NIST) [106]. This model provides only the first two layers of the

ISO/OSI stack, and we have extended it with a simple Opnet model for a FC, which,

in addition to providing relaying functionalities, implements the intermediate data

fusion mechanisms described in the previous sections. Our Opnet model assumes

strong line-of-sight communications between the sensors and the FCs, and between

the FCs and the coordinator.

According to the theoretical analysis, the sensors make a noisy observation (af-

fected by AWGN) of a randomly generated binary phenomenonH and make local

decisions on the status of the phenomenon. Subsequently, the sensors embed their

decisions into proper data packets of length 216 bits,2 which are sent either to the

coordinator (in the absence of clustering) or to the first-level FCs (in the presence of

clustering). The decisions are assumed to be either 0 (no phenomenon) or 1 (presence

of the phenomenon). Obviously, if some packets are lost due to medium access colli-

sions, decisions (either at the FCs or at the AP) are made onlyon the received packets

(this leads to a reduced reliability of the decisions). If all the packets related to a set

of observations of the same phenomenon are lost, instead, the final binary decision is

random. Finally, if half of the decisions are in favor of one phenomenon status and

the other half are in favor of the other, the coordinator decides for the presence of the

phenomenon. More details about the implementation of the data fusion mechanism

in Opnet can be found in [107].

In both scenarios, it is possible to evaluate, by simulation, the probability of de-

cision error. Together with the probability of decision error, the simulator allows to

evaluate the (i)packet delivery fraction, denoted asξ and defined as the ratio bet-

ween the number of packets correctly delivered at the coordinator and the number

2This length corresponds to a payload of 96 bits and a header of120 bits introduced by physical and

MAC layers.
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Figure 2.10: Performance analysis in a scenario without clustering: packet delivery

fraction and delay performance as functions of the numbern of transmitting sensors.

of packets sent by the sensors and (ii) thedelay, defined as the time interval bet-

ween the transmission instant and the reception instant of ageneric packet. Results

about the aggregate throughput (dimension: [pck/s]), defined asSagg= n·g·ξ , where

n is the number of transmitting sensors andg is the packet generation rate (set to

2 pck/s in all simulation results presented in the remainderof this section), can be

found in [107]. Moreover, no acknowledgement (ACK) messages are used to con-

firm successful transmissions. In order to eliminate possible statistical fluctuations,

each simulation performance point is obtained by averagingthe results of ten Opnet

simulation runs.

In Figure 2.10, the packet delivery fraction and the delay are shown as functions

of the numbern of transmitting sensors. These curves are obtained considering a

fixed observation SNR at the sensors (equal to 0 dB). Our results, however, show that

the packet delivery fraction and the delay are not affected by the value of the obser-

vation SNR at the sensors. We consider, in fact, ideal communication channels, so

that only the observations at sensors are noisy, whereas thepackets sent from the sen-

sors to either an FC (clustered schemes) or the coordinator (non-clustered schemes)

are received without errors. Consequently, the performance does not depend on the
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considered SNR, since packet delivery fraction and delay are network performance

indicators and do not depend on the observation reliability. The packet delivery frac-

tion (solid line with circles) decreases monotonically. Inparticular, for small values

of n, it remains close to 1. When the number of transmitting nodesincreases, instead,

the number of collisions in the channel increases as well andthe packet delivery frac-

tion reduces. In the same figure, the delay (dotted line with diamonds) is also shown.

As the intuition suggests, the delay is low for small values of n. When the traffic

increases, instead, due to a larger number of collisions, the delay is higher, since the

channel is busy for a longer period of time and the probability of finding the channel

idle reduces. Finally, for large values ofn, the delay seems to start saturating to a

maximum value. In this case, in fact, due to the increased offered traffic, at least one

sensor is likely to be ready to send its packet as soon as the channel becomes idle.

In Figure 2.11, we analyze the impact of non-uniform clustering on the proba-

bility of decision error—as a performance benchmark, the probability of decision

error in the case with uniform clustering is also shown. We consider scenarios with
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n = 16 sensors and the following network configurations: (i) no clustering, (ii) 8-

8, (iii) 4-4-4-4 FCs, (iv) 14-1-1, (v) 10-2-2-2, and (vi) 8-2-2-2-2. According to the

results in Figure 2.11, the best performance is obtained in the absence of clustering,

whereas the worst performance is obtained in the 14-1-1 scenario, i.e., with 3 FCs and

non-uniform clustering. From Figure 2.11, one can concludethat, in the presence of

non-uniform clustering, the performance improves for relatively balanced clusters (as

also predicted by the analytical framework). In this case, in fact, decisions made by

intermediate FCs are more reliable, so the final decision made by the coordinator is

more likely to be correct. In the case of uniform clustering,instead, the probability of

decision error isnot affected by the number of clusters in the network, as long as the

total number of sensors remains the same. In this case, in fact, observing Figure 2.11

one can note that the curves relative to the scenarios with 4 4-sensor clusters and 2 8-

sensor clusters are almost overlapped. This is due to the fact that a smaller number of

clusters is compensated by a higher quality of the intermediate decisions. This result

is in agreement with the theoretical conclusions reached inSection 2.2.3. However,

note that the performance in Zigbee scenarios worsens with respect to the analytical

case, because the simulator takes into account the losses due to collisions. Since some

packets may be lost, the probability of decision error is influenced by the collisions.

Experiments

In order to verify the predictions of the theoretical framework from an experimental

perspective, we consider a networking set-up formed by MicaZ nodes [108]. Mi-

caZ platforms include an ATmega128L 7.3 MHz micro-controller [109], FLASH

and EEPROM memories, and a 2.4 GHz IEEE 802.15.4 Chipcon CC2420 radio-

frequency transceiver [110]. The nodes’ operating system is TinyOS. The experi-

mental set-up is characterized byn = 16 nodes, organized in uniform clusters, with

2 and 3 decision levels, respectively. In our implementation, each node observes a

“0” phenomenon and adds a Gaussian observation noise generated through the func-

tion “random” available in the TinyOS environment. According to the local decision

threshold, each source node makes a decision on the observedphenomenon and em-

beds it in a packet to be transmitted. Since each TinyOS packet is formed by a payload
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Figure 2.12: Experimental BER performance in scenarios with n = 16 sensors and

uniform clustering. Two and three decision levels are considered.

of 30 bytes (the first byte contains the dimension and the following 29 the informa-

tion data), we embed in each packet 29×8 = 232 consecutive binary decisions. This

corresponds to 232 consecutive (time-wise) realizations of the observed binary phe-

nomenon. The packets originated by the source nodes is then transmitted, through the

intermediate FCs, to the AP. Note that a packet duration is ofthe order of 1 ms, and

consecutive packet transmissions are separated by approximately 0.1 s. The transmit

power is set to−25 dBm and the sensitivity threshold at the receivers is -100dBm.

The distances between communicating nodes (of the order of 2m) are such that the

received power is significantly higher than the sensitivitythreshold. The data fusion

mechanisms at the intermediate FCs and at the AP follows the majority decision rules

described in the analytical framework.

The experimental BER performance is shown in Figure 2.12. Inthe same figure,

for comparison, we also show the corresponding theoreticalresults extracted from

Figure 2.4. As one can see, the experimental results are slightly worse than the theo-

retical ones (as observed also, in Section 2.2.5 for simulation results), but confirm

the trend. This discrepancy is due to the more realistic experimental scenario, where
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some packets may get lost because of the wireless communication links. Since the

decision rules at the FCs and at the AP do not adapt to the number of received obser-

vations, this explains the performance degradation. We point out that in our experi-

ments the packet losses are typicallynot due to collisions, i.e., the traffic load of the

considered network scenarios is too low to create problems at the access level. On the

opposite, the performance degradation is due to losses of packets due to propagation

reasons. An interesting research extension consists in incorporating these effects into

our analytical framework.

2.3 Extending the Lifetime of Clustered Sensor Networks

2.3.1 Sensor Network Lifetime under a Physical Layer QoS Condition

In order to evaluate the sensor network lifetime, one needs first to define when the

network has to be considered “alive.” We assume that the network is “alive” until the

QoS condition in (2.15) is satisfied. When a sensor in the network dies (e.g., there is

a hardware failure or its battery exhausts), the probability of decision error increases

since a lower number of sensors is alive (see, for instance, Figure 2.6). Moreover, the

presence of a specific clustering configuration might make the process of network

death faster. More precisely, the network dies when the desired QoS condition (2.15)

is no longer satisfied, as a consequence of the death of acritical sensor. Therefore,

the network lifetime corresponds to the lifetime of this critical sensor. Obviously, the

criticality of a sensor’s death depends on the particular sequence of previous sensors’

deaths.

Based on the considerations in the previous paragraph, in order to estimate the

networklifetime one, first, needs to consider a reasonable model forthesensorlife-

time. We denote byF(t) , P{Tsensor≤ t} the cumulative distribution function (CDF)

of a sensor’s lifetimeTsensor(the same for all sensors) and we consider the following

exponential distribution as representative:

F(t) =
[
1−e−t/µ

]
U(t) (2.18)

where the timet is measured in arbitrary units (dimension: [aU]). We have chosen
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the distribution in (2.18) as good models for a sensor lifetime [111, Ch. 8]. Consider-

ations about other good models for a sensor lifetime can be found in [112]. Note that

the results presented here for an exponential distributions also hold for other allowed

distributions in [112].

As mentioned before, we are interested in analyzing the network behavior when

the QoS condition (2.15) is satisfied. More precisely, in thefollowing sections we

evaluate the sensor network lifetime in scenarios with (A) ideal reclustering and (B)

no reclustering. The obtained results are then commented.

Analysis with Ideal Reclustering

In the case ofideal reclustering, the network dynamically reconfigures its topology,

immediately after a sensor death, in order to recreate a uniform configuration. Ob-

viously, the time needed for rearranging the network topology depends on the specific

strategy chosen in order to reconfigure correctly (according to the updated network

configuration) the connections between the sensors and the FCs and those between

the FCs and the AP. In Section 2.3.2, a simple reconfigurationstrategy will be pro-

posed.

Given a maximum tolerable probability of decision errorP∗
e , one can determine

the lowest number of sensors, denoted asnmin, required to satisfy the desired QoS

condition. For instance, considering Figure 2.6 and fixing amaximum tolerable value

P∗
e , one can observe that, for decreasing numbers of sensors, atsome point the actual

probability of decision errorPe becomes higher thanP∗
e . In other words, the probabi-

lity of decision error is lower thanP∗
e if at least nmin sensors are alive or, equivalently,

until ncrit = n−nmin+1 sensors die. Therefore, denoting asTnet the network lifetime,

one can write:

P(Tnet≤ t) = P

{
at leastncrit sensors

haveTsensor< t

}

whereTsensor is the sensor lifetime (recall that this random variable hasthe same

distribution for all sensors) with CDFF(t). Since the lifetimes of different sensors
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are supposed independent, using the repeated trials formula, one obtains

P(Tnet≤ t) =
n

∑
i=ncrit

(
n

ncrit

)
[F(t)]i [1−F(t)]n−i .

Absence of Reclustering

In the previous section, we have analyzed the network evolution in an ideal scenario

where the topology is dynamically reconfigured in response to a sensor death (e.g.,

because of the depletion of its battery or hardware failure). However, it might happen

that the initial clustered configuration is fixed, i.e., the connections between sensors,

FCs, and AP cannot be modified after a sensor death. In this case, the following que-

stion is relevant: is there an optimum initial topology which leads to longest network

lifetime? In order to answer this question, we will analyze the network evolution in

scenarios where there is no reclustering. The network is still considered dead when

the QoS condition (2.15) is no longer satisfied.

In the absence of ideal reclustering, an analytical performance evaluation is not

feasible, i.e., there does not exist a closed-form expression for the CDF of the net-

work lifetime. In fact, the CDF depends on the particular network evolution, i.e., it

depends on how the sensors die among the clusters in the network. Therefore, each

sequence of sensors’ deaths is characterized by a specific lifetime, and one needs to

resort to simulations in order to extrapolate an average statistical characterization.

The simulations are performed according to the following steps.

1. The lifetimes of alln sensors are generated according to the chosen distribution

and the sensors are randomly assigned to the clusters.

2. The sensors’ lifetimes are ordered in an increasing manner.

3. After a sensor death, the network topology is updated.

4. The probability of decision error is computed in correspondence to the survi-

ving topology determined at the previous point: if the QoS condition (2.15) is

satisfied, then the evolution of the network continues from step 3, otherwise,

step 5 applies.
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Figure 2.13: CDF of the network lifetime, as a function of time, in a scenario with

n = 32 sensors, uniform clustering (with, respectively, 2, 4, and 8 clusters), andab-

sence of reclustering(simulation results). The sensor SNR is set to 5 dB and the

maximum tolerable probability of decision error isP∗
e = 10−3. For comparison, the

curve associated with ideal reclustering (analytical results) is also shown.

5. The network lifetime corresponds to the lifetime of the last dead sensor.

In Figure 2.13, the CDF of the network lifetime is shown, as a function of time,

in a scenario withn = 32 sensors grouped, respectively, in 2, 4, and 8 clusters. The

sensor SNR is set to 5 dB and the maximum tolerable probability of decision error

is P∗
e = 10−3. For comparison, the curve associated with ideal reclustering is also

shown. One can observe that the larger is the number of clusters, the worse is the

performance, i.e., the higher is the probability of networkdeath. Moreover, the curve

associated with 2 clusters is very close to that relative to ideal reclustering. In fact, in a

scenario with only 2 clusters, the average number of sensorswhich die in each cluster

is approximately the same and, consequently, the topology remains approximatively

uniform.

In Table 2.2, the network lifetime corresponding to a CDF equal to 0.9 (i.e., an

outage probability of 90%) is shown, assuming anexponentialsensor lifetime (with

µ = 1 aU), for various clustering configurations and values of the maximum tolerable
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Table 2.2: Sensor network lifetime corresponding to an outage probability equal to

90% in a scenario withn = 64 sensors and SNRsensor= 5 dB. Three values for the

maximum tolerable probability of decision errorP∗
e are considered: (i) 10−2, (ii)

10−3, and (iii) 10−4. The mean parameter of the exponential distribution isµ = 1 aU.

All time values in the table entries are expressed in aU.
P∗

e Ideal no reclustering no reclustering no reclustering

reclustering (2 clusters) (4 clusters) (8 clusters)

10−2 2.1 2.1 2.0 1.68

10−3 1.3 1.3 1.2 1.012

10−4 0.78 0.78 0.74 0.725

probability of decision errorP∗
e . The number of sensors isn= 64. For comparison, the

network lifetime with ideal reclustering is also shown. From the results in Table 2.2,

the following observations can be carried out.

• For a small number of clusters (2 or 4), the lifetime reduction, with respect to

a scenario with ideal reclustering, is negligible. This is to be expected from the

results in Figure 2.13 and is due to the fact that the sensors die “more or less”

uniformly in all clusters. When the number of clusters increases beyond 4, the

network lifetime starts reducing appreciably. Therefore,our results show that,

in the absence of ideal reclustering, the winning strategy to prolong network

lifetime is to form a few large clusters.

• The impact of the QoS condition is very strong. In fact, whenthe QoS condi-

tion becomes more stringent (i.e.,P∗
e decreases), the network lifetime shortens,

since a lower number of sensor deaths is sufficient to violatethis condition. On

the other hand, if the QoS condition is less stringent, then alarger number of

sensors have to die in order to violate it.

• The impact of the number of nodes on the network lifetime hasnot been di-
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rectly analyzed. However, since the performance improves when the number

of sensors increases (as shown in Figure 2.6), one can conclude that, for a fixed

QoS condition, a network with a larger number of sensors willsatisfy the QoS

condition for a longer time and, therefore, the network lifetime will be pro-

longed. Equivalently, one can impose a stronger QoS condition (a lower value

of P∗
e ), still guaranteeing the same network lifetime.

2.3.2 Analytical Computation of Network Lifetime

In Section 2.3.1, we have analyzed the network performance without taking into ac-

count thecostof reclustering. In this section, instead, we investigate,from an analy-

tical viewpoint, the cost of the used reclustering protocolin terms of its impact on the

sensor network lifetime. In order to evaluate the cost of reclustering, one first needs

to detail a reclustering protocol. We remark that we limit ourselves mainly (but not

only) to scenarios with two (big) clusters, since they are associated with the minimum

loss, in terms of probability of decision error at the AP, with respect to the scenario

with the absence of clustering.

The reclustering protocol which will be used can be characterized as follows.

1. When an FC senses that a sensor belonging to its cluster is dead, e.g., when it

does not receive packets from this sensor, it sends a controlmessage, referred

to as “ALERT,” to the AP.

2. Assuming that the AP is aware of the current network topology, when it re-

ceives an ALERT message, it decides if reclustering has to becarried out. If

so, the optimized network topology is determined.

3. If no reclustering is required, the AP sends to both FCs an “OK” message

to confirm the current topology. On the other hand, if reclustering has to be

carried out, another message, referred to as “CHANGE” and containing the

new topology information, is sent to the FCs. In the latter case, the FCs send

the CHANGE message also to sensors in order to allow them to communicate

with the correct FC from then on.
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Figure 2.14: Message exchange in the proposed reclusteringprotocol. A network

scenario withn = 11 sensors and two clusters (with 6 and 5 sensors, respectively) is

considered. The control messages evolution follows the death of a sensor.

4. If reclustering has happened, the sensors retransmit their previous packet to the

FCs according to the new topology and a new data fusion is carried out at the

AP.

In Figure 2.14, the behavior of this simple protocol is pictured in an illustrative scena-

rio with n= 11 sensors and two clusters (with 6 and 5 sensors, respectively). The con-

trol messages associated with solid lines are exchanged in the absence of reclustering,

whereas the messages associated with dashed lines are exchanged in the presence of

reclustering.

In order to derive a simple analytical framework for evaluating the sensor network

lifetime, the following assumptions are expedient.

(a) The observation frequency, referred to asfobs, is sufficiently low to allow regu-

lar transmissions from the sensors to the AP and, if necessary, the applicability

of the reclustering protocol (this is reasonable for scenarios where the status of

the observed phenomenon does not change rapidly).

(b) Transmissions between sensors and FCs and between FCs and AP are supposed

instantaneous (this is reasonable, for example, if FCs and AP are connected
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through wired links or very reliable wireless links).

(c) Data processing and topology reconfiguration are instantaneous (this is reaso-

nable if the processing power at the AP is sufficiently high).

(d) There is perfect synchronization among all nodes in the network (this is a rea-

sonable assumption if nodes are equipped with synchronization devices, e.g.,

global positioning system).

The proposed reclustering algorithm and the assumptions above might look too sim-

plistic for a realistic wireless sensor network scenario. However, they allow to obtain

significant insights about the cost, in terms of network lifetime, of adaptive recluste-

ring.

We preliminary assume that the duration of a data packet transmission has no

influence on the lifetime of a single sensor. A more accurate analysis, which takes

properly into account the actual duration of a data transmission, will be proposed in

Section 2.3.4. In this case, the network lifetime can be written as

Dnet =
ncrit

∑
i=1

Td,i

wherencrit has been introduced in Section 2.3.1 andTd,i is the time interval between

the(i−1)-th sensor death and thei-th sensor death. Obviously,Td,1 is the time interval

until the death of the first sensor and can be written as

Td,1 = min
j=1,...,n

{
Tj
}

(2.19)

whereTj is the lifetime of the j-th sensor. SinceDnet is a random variable (RV),

one could determine its statistics (e.g., the CDF). However, in order to concisely

characterize the impact of reclustering, it is of interest to evaluate its average value,

i.e.,

E [Dnet] = E

[
ncrit

∑
i=1

Td,i

]

. (2.20)
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Absence of Reclustering

In this case,ncrit and{Td,i} in (2.20) are independent RVs. In fact, they depend on the

sensors’ lifetime distribution and the particular evolution (due to the nodes’ deaths)

of the network topology. Therefore, the sum in (2.20) is a stochastic sum. Using the

conditional expectation theorem and the fundamental theorem of probability [94],

one can write

E

[
ncrit

∑
i=1

Td,i

]

=
n

∑
j=1

P(ncrit = j)
j

∑
i=1

E [Td,i ] .

At this point, one needs to resort to simulations to compute the probabilities{P(ncrit =

j)}. In fact, they strongly depend on the particular network evolution before its death.

Ideal Reclustering

In Section 2.3.1, we have shown that the presence of ideal reclustering leads to an

upper bound on the network lifetime, i.e., it tolerates the maximum number of sen-

sors’ deaths before the network dies. This bound can be analytically evaluated using

(2.20) and replacingncrit with the valuenR
crit defined as follows:

nR
crit = min

n∗crit=1,...,n
{Pe(aftern∗crit sensors’ deaths) ≥ P∗

e}.

The value ofnR
crit can be determined by numerical inversion of the QoS condition.

Therefore, an upper bound for the network lifetime can be expressed as

UBDnet , E
[
Dnet|ncrit = nR

crit

]
=

nR
crit

∑
i=1

E [Td,i ] . (2.21)

In this case, one can observe that the sum in (2.21) is deterministic and, therefore, can

be analytically evaluated through the computation of{E [Td,i ]}. In [112], it is shown

that this upper bound is equal to

UBDnet =
µ
n

+
nR

crit

∑
i=2

µ
n− i

(n− i +1)2 . (2.22)
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Similarly, we can derive a lower bound on the network lifetime. This bound, for a

fixed number of sensors, is obtained when all sensors’ deathsoccur in the same clu-

ster. In this way, for a fixed topology, the highest possible probability of decision error

is obtained at each instant and, consequently, the corresponding network lifetime is

the shortest possible. This bound can be expressed as

LBDnet , E
[
Dnet|ncrit = nLB

crit

]
=

µ
n

+
nLB

crit

∑
i=2

µ
n− i

(n− i +1)2 . (2.23)

Expression (2.23) for LBDnet is derived from (2.22) by replacingnR
crit with nLB

crit, which

is obtained through simulations, since it depends on the network evolution. The value

of LBDnet is smaller than that of UBDnet, sincenR
crit > nLB

crit. As previously mentioned,

we consider an initial topology with two big clusters. In fact, this scenario allows to

obtain the lowest probability of decision error at each instant, because the network

topology is less unbalanced than in scenarios with a higher number of clusters, e.g.,

8. Therefore, evolution of the lower bound (2.23) in correspondence to a scenario

with two clusters leads to the tightest possible lower boundwith respect to a scenario

with no reclustering.

Finally, one needs to evaluate the extra time required by theapplication of the

reclustering procedure. We will refer to this quantity asTR. Under the given assump-

tions and since the probability that reclustering has happened is equal to 1/2 (the

derivation of this probability is summarized in [112]),TR can be expressed as

TR = (nR
crit −1)TRECL

whereTRECL represents the time required by a single reclustering operation. The du-

ration of this time interval cannot be a priori specified, since it depends on the dimen-

sions of the OK, CHANGE, and ALERT messages, the data-rate, and other network

parameters. It is reasonable to assume that the longer is theaverage sensor lifetime

µ , the shorter should be (proportionally)TRECL. In other words, one could assume

TRECL = c · µ , wherec is small if µ is large and vice versa. In general,c can be

chosen to model accurately the situation of interest.

Finally, one can define atime penaltyas the ratio between the time necessary for

the application of the reclustering protocol and the total time, given by the sum of
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reclustering and “useful” times (i.e., the time spent for data transmission). It follows

that:

Ptime =
TR

TR +E [Dnet]

=
(nR

crit −1)TRECL

(nR
crit −1)TRECL+

µ
n

+ ∑
nR

crit
i=2 µ

n− i
(n− i +1)2

. (2.24)

After a few mathematical passages, from it follows that

Ptime &
(n−k∗−1)c

(n−k∗−1)c+ 1
n + ln(n−2)− ln(k∗−1)

(2.25)

where we have used the fact that∑m
i=11/i ≃ lnm+0.577 [113].

From (2.25) and owing to the fact thatk∗ is approximately constant, one can

analytically show that

lim
n→∞

Ptime ≃ 1 ∀c.

In other words, if the number of sensors is large, for a fixed value of c the proposed

reclustering algorithm does not guarantee a limited time penalty. Similarly, one can

show that

lim
c→0

Ptime ≃ 0 ∀n.

In other words, for a fixed number of nodes the reclustering protocol is effective,

using the algorithm proposed in Section 2.3.2,provided thatthe duration of a single

reclustering operation is sufficiently short (e.g., very small control packets are used).

2.3.3 Numerical Results

In Figure 2.15, numerical results based on the application of the analytical framework

derived in Sections 2.3.2 and 2.3.2 are shown. In particular, (a) the average network

lifetime E [Dnet] and (b) the critical number of deathsncrit are shown as functions

of the number of sensorsn. The average network lifetime in a scenario with the no

reclustering (for various numbers of clusters) is comparedwith the upper and lower

bounds derived in Section 2.3.2. The QoS condition is associated withP∗
e = 10−3
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Figure 2.15: Sensor network performance using the proposedreclustering algorithm:

(a) network lifetime and (b) critical number of deaths, as functions of the number of

sensors. The performance in the absence of reclustering (with 2, 4, and 8 clusters,

respectively) is compared with the proposed upper bound UBDnet and lower bound

LBDnet. The QoS condition isP∗
e = 10−3 and the sensor SNR is set to 5 dB. The

average sensor lifetime isµ = 1.

and the sensor SNR is set to 5 dB. In order to compare these results with those in

Section 2.3.1, the distribution of the sensors’ lifetime isassumed to be exponential

with µ = 1 aU. From the results in Figure 2.15 (a), one can observe that, when the

number of sensors increases, also the network lifetime becomes longer, since a larger

number of sensors’ deaths have to occur in order to violate the QoS condition. This is

confirmed in Figure 2.15 (b), where the critical number of sensors’ deaths is shown

as a function of the number of sensors. Moreover, as expected, the sensor network

lifetime in the absence of reclustering is shorter than in the presence of ideal recluste-

ring (with the proposed reclustering protocol), since the network topology becomes

more and more non-uniform and, therefore, the probability of decision error becomes

higher and higher. As previously shown in Figure 2.13, when the initial number of

clusters is equal to two, the network lifetime with no reclustering is very close to that

corresponding to the application of the reclustering protocol. This is due to the fact

that the sensors’ deaths are, on average, equally distributed among the two clusters,
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i.e., there is a sort of “natural” reclustering. Finally, one can observe that when the

number of clusters in the initial topology increases (e.g.,is equal to 8) the network

lifetime drastically reduces forlow values of the number of sensors, since it is more

difficult to satisfy the QoS condition. However, it is interesting to observe that for

sufficiently large values ofn, the lifetime penalty incurred by the presence of a large

number of clusters is negligible, suggesting that there mayexist a minimum cluster

dimension which guarantees acceptable performance. This is probably due to the fact

that when the number of sensors is sufficiently large, the cluster dimension is also

sufficiently large and, consequently, its lifetime is longer. Therefore, the lifetime of

the entire sensor network is longer, since the network topology is less unbalanced.

2.3.4 Energy Budget

The analysis of the reclustering cost provided in Section 2.3.2 is ideal, since it does

not consider the energy spent by the nodes in the network. Although this assumption

is reasonable for the FCs and the AP,3 this is not realistic for remote nodes (sen-

sors) which need to rely on a limited battery energy. Moreover, there exists a delay

associated with a packet transmission. In this section, therealistic network energy

consumption is evaluated in the presence of ideal reclustering, using the reclustering

protocol proposed in Section 2.3.2. In order to analyze thisenergy consumption, we

will refer to a commercial wireless sensor network with a communication protocol

based on the IEEE 802.15.4 standard (also considered in Section 2.3.6) [57]. In par-

ticular, while the first analysis does not take into account the energy of the sensor

battery, we then show the impact of a limited battery energy at the sensors.

Analysis with Infinite Energy Battery at the Sensors

The energetic cost, for a single sensor, of the application of our reclustering algorithm

can be written as

Cen
tot = PtC

time
tot (2.26)

3In fact, they may be placed by the network designer so that they can be power-supplied.
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whereCen
tot is the total cost in terms of energy spent by a sensor,Pt is the transmit

power at each sensor, andCtime
tot is the total time cost associated with packet transmis-

sion. After a few manipulations, the total energetic cost can be written as [112]

Cen
tot = Pt

{
1
2

[
Lcont+Ldata

Rb

]
(nR

crit −1)

︸ ︷︷ ︸
Cost for transmission of

control packets:Ctime
R

+
Ldata

Rb
fobs

nR
crit

∑
i=1

E [Td,i]

︸ ︷︷ ︸
Cost for transmission

of data packets:Ctime
data

}
(2.27)

whereRb is the data-rate (dimension: [b/s]),Lcont and Ldata are, respectively, the

length of a control packet and data packet (dimension: [b/pck]), and fobs is the obser-

vation frequency. Expression (2.27) for the energetic costrepresents the total energy

spent by any of then−nR
crit surviving sensors after the network death. Obviously, this

energetic cost represents a worst case, since there arenR
crit nodes (i.e., those which

die while the network is still alive) which spend a lower amount of energy in their

shorter lifetimes. An average cost per sensor can be easily computed using the same

approach proposed above. In [112], the following expression for the average energy

cost is derived:

C
en
tot = Pt(C

time
R +C

time
data)

= Pt





(nR

crit −1)(Ldata+Lcont)

4Rb
+

Ldatafobs

Rbn

nR
crit

∑
i=1

(

(n−nR
crit)E [Td,i ]+

i

∑
j=1

E
[
Td, j
]
)

 .

(2.28)

Similarly to (2.24), we define the followingenergy penalties:

Pen−1 ,
Cen

R

Cen
tot

=
Ctime

R

Ctime
R +Ctime

data

(2.29)

Pen−2 ,
C

en
R

C
en
tot

=
C

time
R

C
time
R +C

time
data

(2.30)

wherePen−1 is theworst-casepenalty (associated with a sensor which survives until

the end) andPen−2 is theaverage-casepenalty (associated with the average energetic
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Figure 2.16: Energy penalty, associated with the reclustering protocol, as a function

of both the observation frequencyfobs and the number of sensorsn. Two possible

cases are considered: (a)maximumpenalty (associated with a sensor which survives

until the end) and (b)averagepenalty (among all the sensors in the network).

costs among all sensors in the network). As mentioned before, the energy penalties

(2.29) and (2.30) take into account, with respect to (2.24),realistic network parame-

ters, such asLdata, fobs, Rb, andPt.

In Figure 2.16, the energy penalty is shown, as a function of the number of sen-

sorsn and the observation frequencyfobs, in the two cases previously highlighted:

(a) worst-caseenergy consumption (obtained by using expression (2.29)) and (b)

average-caseenergy consumption (obtained by using expression (2.30)).In order to

compare the results in Figure 2.16 with the results given in the previous sections,

we have setP∗
e = 10−3 and SNRsensor= 5 dB. Realistic values for the network para-

meters, provided by the Zigbee standard, correspond toPt = 1 mW, Rb = 250 Kb/s,

Ldata= 1024 b/pck, andLcont= 80 b/pck.4 One can note that for low values of the ob-

servation frequency (rare observations), the performance worsens since the network

4In our analysis, we use the maximum possible data-rate allowed by the Zigbee standard, i.e.,Rb =

250 Kb/s. However, our experimental results show that only amaximum valueRb = 25 Kb/s can be

achieved by practical sensor networks [114]. Moreover, thelength of data packets is the maximum

allowed by the standard.
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spends more time in reclustering than in transmitting useful data. For a fixed value of

the number of sensorsn, the following limits hold:

lim
fobs→0

Pen−1 =
Cen

R

Cen
R

= 1 lim
fobs→0

Pen−2 =
C

en
R

C
en
R

= 1.

Besides, one can observe that for increasing values of the observation frequency (fre-

quent observations), the performance is better. In fact, for a fixed number of sensors,

there is a larger number of data transmissions from the sensors to the AP and the

value ofDen
R becomes increasingly negligible with respect to the value of Den

data. Ana-

lytically, one can write

lim
fobs→∞

Pen−1 =
1

Cen
data

= 0 lim
fobs→∞

Pen−2 =
1

C
en
data

= 0.

Note that a high value of the observation frequency might notbe admissible. In fact,

in Section 2.3.2 we have supposed that the inverse of the observation frequency is

much smaller than the time necessary to complete a transmission to the AP and,

eventually, the reclustering protocol (hypothesis (a) in Section 2.3.2).

Analysis with Energy-Limited Battery at the Sensors

In the previous derivations, the proposed framework and thepresented results have

used arbitrary time units. However, it is of interest to map these arbitrary time units

into realistic units. In order to do so, we assume that a node is equipped with a limited-

energy battery with initial energyEbattery (dimension: [J]). When a sensor battery

energy exhausts, the sensor dies and, consequently, the network is closer to breaking

the QoS condition. The average sensor lifetime (dimension:[s]) can be expressed as

E [Tsensor] =
Ebattery

P

whereP is the average power depleted at the node (dimension: [W]). In a realistic

wireless sensor network (e.g., Zigbee wireless sensor networks [57]), fourstatesare

admissible at the node: (1)transmission, (2) reception, (3) idle, and (4)sleep. In this
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case, the average power depleted at the node is given by

P =
4

∑
i=1

Pi pi (2.31)

wherePi andpi (i = 1,2,3,4) are, respectively, the power consumption in thei-th state

and the probability that the sensor is in thei-th state—note thatP1 = Pt. Typically,

in a Zigbee wireless sensor networkP4 ≪ 1 andp2 ≪ p3, p1 [115]. Therefore, the

average depleted power in (2.31) can be written as

P≃ P1p1 +P2p2

wherep2 = 1− p1 andP1 = P2 = Pt [115]. Therefore, the average consumed power

in (2.31) becomes

P = Pt

and it follows that

E [Tsensor] =
Ebattery

Pt
. (2.32)

Using the value ofE [Tsensor] given in (2.32) for the computation ofCtime
tot accor-

ding to the framework derived in Section 2.3.4, the lifetimeof a realistic Zigbee wire-

less sensor network, with the parameters used to derive the results in Figure 2.16, can

be obtained. The sensor network lifetime values, associated with different battery

energies at the sensors (typical for practical applications), are summarized in Ta-

ble 2.3.4. In particular, a scenario withn = 64 sensors,Pt = 1 mW, andfobs= 20s−1

is considered. One can observe that the theoretical resultsgiven in Section 2.3.3 are

confirmed also in a more realistic Zigbee wireless sensor network. However, note that

for n= 64 sensors the network lifetime in the ideal scenario is shorter thanE [Tsensor],

whereas it is longer in a realistic scenario. This behavior is due to the fact that our

theoretical framework does not consider the delay associated with packet transmis-

sions, as considered, instead, in the performance analysisfor a Zigbee network.

2.3.5 Noisy Communication Links

The analysis of the sensor network lifetime proposed in Section 2.3.2 is quite ge-

neral and, in particular, no assumption has been made on the communication links.
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Table 2.3: Sensor network lifetime for a realistic Zigbee wireless sensor network in a

scenario withn = 64 sensors,Pt = 1 mW, andfobs= 20 s−1. The Zigbee parameters

are the same considered in Figure 2.16. Different values of the battery energy at a

sensor are considered.

Battery energy Average sensor lifetime Sensor network lifetime

Ebattery [kJ] E [Tsensor] [days] Ctime
tot [days]

12.96

(400 mAh, 9 V)
150 196

19.44

(600 mAh, 9 V)
224 294

31.68 365 480

32.4

(1 Ah, 9 V)
375 491

However, the results presented in Section 2.3.3 are obtained under the assumption

of ideal communication links. In a scenario with noisy communication links, two

main differences, with respect to a scenario with ideal communication links, can be

observed:

• for a given value of the sensor SNR, the presence of noisy communication links

leads to a performance loss (i.e., higher probability of decision error);

• a probability of decision error floor can be visualized for high values of the

sensor SNR.

These differences between the scenarios with ideal communication links and those

with noisy communication links imply that the network lifetime will be shorter, since

the QoS condition will be satisfied for a shorter time. Moreover, the presence of a

probability of decision error floor implies that, for a givenvalue of the sensor SNR,

the QoS condition might never be satisfied. These considerations suggest that the QoS

condition and the operating sensor SNR, for a given value of the number of sensors

n, have to be properly chosen.
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Figure 2.17: CDF of the network lifetime, as a function of time, in a scenario with

n = 64 sensors, uniform clustering, and noisy communication links. Two possible

values for the cross-over probability are considered: (i)p = 0.1 and (ii) p = 0.001.

The sensor SNR is set to 5 dB and the maximum tolerable probability of decision

error isP∗
e = 10−3.

In Figure 2.17, the CDF of the network lifetime is shown, as a function of time,5

in a scenario withn= 64 sensors, uniform clustering, and noisy communication links.

Two possible values for the cross-over probability are considered: (i)p= 0.1 and (ii)

p = 0.001. For comparison, the curve associated with ideal communication links is

also shown. The sensor SNR is set to 5 dB and the maximum tolerable probability

of decision error isP∗
e = 10−3. One can observe that the higher is the noise intensity

in the communication links, the higher is the CDF of the network lifetime. In fact,

in this case the transfer of information from the sensors to the AP is less reliable

and, consequently, the probability of decision error becomes higher and higher and

the QoS condition can be guaranteed for a shorter time. As in ascenario with ideal

communication links, the presence of reclustering prolongs the network lifetime with

5We recall that the time is measured, here, in arbitrary units. For more realistic scenarios, see the

considerations at the end of Section 2.3.4.
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respect to a scenario with no reclustering. Obviously, for agiven reclustering strategy

a scenario with ideal communication links corresponds to a longer network lifetime,

since the probability of decision error is the lowest possible.

2.3.6 Throughput and Delay with Varying Sensor Network Lifetime

In this section, we evaluate the performance of a realistic Zigbee wireless sensor net-

work subject to nodes’ failures. In order to carry out this analysis, we resort, as in

Section 2.2.5, to simulations using Opnet Modeler 11.5 [105] and a built-in model

for IEEE 802.15.4 networks, provided by the NIST [106]. In this section we analyze

the network performance (in terms of number of transmitted packets, throughput,

and delay) in scenarios with no clustering (and, therefore,no reclustering). The goal

of this section is to show the impact of different QoS conditions (given in terms of

the required percentage of nodes’ deaths which make the network die) on different

network performance indicators (e.g., throughput and delay). For the performance in

the presence of relaying see [116]. As discussed in Section 2.3.1, the performance of

sensor networks with no clustering can be considered, from anetwork lifetime view-

point, as a lower bound, since the probability of decision error is lower than in sce-

narios with clustering. In the simulations, the following parameters are considered:

Rb = 250 Kb/s,Ldata= 994 b/pck, andg = 0.236 s, whereg is the packet interarrival

time at the sensors. Moreover, no transmission of acknowledgement packets is consi-

dered from the AP to the remote nodes. In all presented results, four QoS conditions

will be considered: (i) network death corresponds to 100% ofsensors’ deaths (i.e., the

network survives until there is a single sensor alive), (ii)network death corresponds

to 70% of sensors’ deaths, (iii) network death corresponds to 50% of sensors’ deaths,

and (iv) network death corresponds to 20% of sensors’ deaths.

In Figure 2.18, the packet delivery fraction is shown, as a function of the number

of sensorsn, for two possible distributions of a single sensor lifetime: (a) exponen-

tial with µ = 300 s (solid lines) and (b) uniform withtmax = 600 s (dashed lines).

First, one can observe that the more stringent is the QoS condition, the lower is the

throughput. In fact, a smaller number of transmissions are possible (since the network

lifetime is shorter) and a larger number of collisions happen, because there is a large
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Figure 2.18: Packet delivery fraction, as a function of the number of sensorsn, in a

Zigbee wireless sensor network with nodes’ failures. Two possible distributions for

a single sensor lifetime are considered: (a) exponential with µ = 300 s (solid lines)

and (b) uniform withtmax = 600 s (dashed lines).

number of sensors which try to transmit to the AP and a larger number of packets

are lost. Moreover, a scenario with uniform distribution ofthe sensors’ lifetime has a

lower throughput with respect to a scenario with exponential distribution, since more

packets are lost due to the collisions.

In Figure 2.19, the average MAC delay6 over all the received packetsD is shown,

as a function of the number of sensorsn, for two possible distributions of a sin-

gle sensor lifetime: (a) exponential withµ = 300 s (solid lines) and (b) uniform

with tmax = 600 s (dashed lines). Similarly to what happens for the throughput in

Figure 2.18, a larger number of collisions also causes a higher delay in receiving the

packets. Therefore, scenarios with a uniform distributionof the sensors’ lifetimes are

characterized by a higher delay with respect to scenarios with an exponential distribu-

tion. In this case as well, however, the more stringent is theQoS condition, the higher

6The average MAC delay corresponds to the delay averaged overall packets which are correctly

received at the MAC level during the Opnet simulations.
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Figure 2.19: Average MAC delayD, as a function of the number of sensorsn, in a

Zigbee wireless sensor network with nodes’ failures. Two possible distributions for

a single sensor lifetime are considered: (a) exponential with µ = 300 s (solid lines)

and (b) uniform withtmax = 600 s (dashed lines).

is the average MAC delay. Finally, the average MAC delay doesnot depend on the

number of sensors, for a fixed QoS condition, since the numberof surviving sensors

is (almost) the same and, therefore, the average delay in thepacket transmissions is

constant.

2.4 Impact of Different SNRs at the Sensors

Consider now a generic scenario with different SNRs at the sensors. For the sake

of simplicity, we consider a scenario with no clustering, i.e., direct communications

between the sensors and the AP. In this case, a decision basedon themajority-like

fusion rule might not be the best choice. In fact, if a sensor is very noisy (i.e., its

observation SNR is very small), its decision should be takeninto account with a low

level of reliability in the fusion process at the AP. Therefore, it would be reasonable to

assign each sensor a weight proportional to its own SNR—thisapproach is similar to
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that proposed in [31], where the weights are assigned according to the link qualities.

The AP could then make a final decision taking into account theweights assigned

to the sensors. Note that the improvement, in terms of probability of decision error,

comes at the price of a non-optimal network energy efficiency, since all sensors, even

those with low SNR, have to send their decisions to the AP and waste the same

amount of energy.

In the following, we consider a system where the AP takes intoaccount then

local sensor decisions with the same weight, i.e., without considering their SNRs,

and adopts a majority-like decision rule. In order to take into consideration the sensor

SNR profile, the threshold for local decision at each sensor is properly optimized, as

explained in detail in Section 2.4.1.

We now derive analytical expressions for the probability ofdecision error, dis-

tinguishing between a scenario withideal communication links and a scenario with

noisycommunication links. In [117], the reader might found an analytical expression

for the probability of decision error also in the case when noquantization is carried

out at the sensors, i.e., when sensors transmit their local likelihood values.

2.4.1 Ideal Communication Links

Probability of Decision Error

Consider the first conditional probability at the right-hand side of (2.5) and define the

threshold valuek in the majority-like decision rule. There is an error, i.e.,Ĥ = H1

given thatH = H0, if i ≥ k sensors decide forH1 whenH0 has happened. In this case,

there can be
(n

i

)
combinations of sensors deciding forH1. We denote asΩi( j) the

j-th possible combination (j = 1, . . . ,
(n

i

)
) in a scenario wherei sensors are in error.7

Therefore, the conditional probability of interest can be expressed as follows:

P(Ĥ = H1|H0) =
n

∑
i=k

(n
i)

∑
j=1

{
i

∏
ℓ=1

P
(

u(Ωi( j))
ℓ = H1|H0

) n

∏
m=i+1

P
(

u(Ωi ( j))
m = H0|H0

)}

(2.33)

7Note thatΩi( j) depends also onn. However, for the sake of notational simplicity, this dependence

is not explicitly indicated. The context should eliminate any ambiguity.
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whereP(u(Ωi( j))
ℓ = H1|H0) is the probability that at theℓ-th sensor, in theΩi( j)-th

combination (out of the
(n

i

)
possible ones), a wrong decision is made whenH0 has

happened.

Similarly, the second conditional probability at the right-hand side of (2.5) can

be expressed as

P(Ĥ = H0|H1) =
k−1

∑
i=0

(n
i)

∑
j=1

{
i

∏
ℓ=1

P
(

u(Ωi( j))
ℓ = H1|H1

) n

∏
m=i+1

P(u(Ωi( j))
m = H0|H1)

}

(2.34)

whereP(u(Ωi( j))
ℓ = H1|H1) is the probability that at theℓ-th sensor, in theΩi( j)-th

combination, a correct decision is made whenH1 has happened.

Decision Threshold Selection at the Sensors

In the literature, it is shown that using the same threshold at all sensors is an asymp-

totically optimal solutionif and only if the SNR at the sensors is constant [118]. In

the currently considered scenario (with different SNRs at the sensors), it is not reaso-

nable to use the same threshold at all sensors. Therefore, one needs to choose another

criterion for local decisions at the sensors.

In this section, we consider alocally optimaldecision scheme.8 In other words,

each sensor makes a binary decision which minimizes, for thecorresponding SNR,

its probability of (local) error—this corresponds to aperson-by-person optimization

(PBPO) approach to distributed detection [119]. The optimal value for the threshold

τi is such that

p(τi |H1)P(H1) = p(τi |H0)P(H0). (2.35)

In general, the computation of the probability of decision error, based on the evalua-

tion of (2.33) and (2.34), depends on (i) the chosen value fork, (ii) the sequence of the

detected phenomenon amplitudes{si} at the sensors, (iii) the sequence of noise va-

riances{σi}, and (iv) the sequence of thresholds{τi}. Recalling the Gaussian model

8We are implicitly assuming that each sensor estimates its own observation SNR.
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for the observable in (2.1), one can obtain [117]

P(uℓ = H1|H) = 1−Q

(
τℓ−sℓ ·H

σℓ

)

= 1−Q



1
2

√
SNR(ℓ)

sensor+
1√

SNR(ℓ)
sensor

ln
p0

1− p0
−
√

SNR(ℓ)
sensorH



 .

As expected, the probability of decision error does not depend on the sequences{si}
and{σi} separately but, rather, only on the sequence of ratios{si/σi}, i.e., on the

sequence of sensor SNRs. In other words, the probability of decision error depends

on the sensorSNR profile{SNR(i)
sensor}. Therefore, evaluating the system performance

of the sensor network as a function of the sensor SNR profile isa meaningful problem.

2.4.2 Noisy Communication Links

Let us denote byp the cross-over probability of the BSCs (the same for all noisy com-

munication links). In this case, the decision made at theℓ-th sensor, i.e.,uℓ, might be

“flipped,” with probability p, by the communication link. In particular, the component

conditional probabilities in (2.5) depend onp. For instance, the conditional probabi-

lity (2.33) has to be modified by replacing the decisions madelocally by the sensors

with the correspondingreceiveddecisions:

P(Ĥ = H1|H0) =
n

∑
i=k

(n
i)

∑
j=1

{
i

∏
ℓ=1

P
(

u(Ωi( j))−rec
ℓ = H1|H0

)

·
n

∏
m=i+1

P
(

u(Ωi( j))−rec
m = H0|H0

)}

(2.36)

where u(Ωi( j))−rec
ℓ and u(Ωi( j))−rec

m are the received versions of the local decisions

u(Ωi( j))
ℓ andu(Ωi( j))

m , respectively. The conditional probability (2.34) has to be modi-

fied similarly. A generic term in (2.36) can then be expressedas follows:

P(urec
ℓ = H1|H0) = (1− p)Q

(
τl

σl

)
+ p

[
1−Q

(
τl

σl

)]
. (2.37)
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Figure 2.20: Illustrative sensor SNR profile: (a) realisticand (b) reordered with non-

increasing values of the SNRs. In particular, in (b) four possible interpolating profiles

(linear, quadratic, cubic, and hyperbolic) are shown.

Since we are considering locally optimal selection of the decision thresholds at

the sensors, there is no difference (in terms of the decisionstrategy at the sensors)

between a scenario with ideal communication links and a scenario with noisy com-

munication links. Therefore, the derivation considered inSection 2.4.1 for sensor

threshold selection holds in this case as well.

2.4.3 Sensor SNR Profiles

As observed in Section 2.4.1, the probability of decision error ultimately depends

on thesensor SNR profile{SNR(i)
sensor}. A generic example of sensor SNR profile is

shown in Figure 2.20 (a): the sensor SNRs are generally not monotonically ordered.

However, since it is always possible to reorder the sensor SNRs from highest to lo-

west, as shown in Figure 2.20 (b), without loss of generality, one can restrict his/her

attention to a scenario where the sensor SNR profile isnon-increasing.

Based on the observation in the previous paragraph, in orderto characterize non-

increasing sensor SNR profiles we consider four possible cases (the SNRs are ex-
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pressed in dB):

Linear profile: SNRi = SNR0−c· i

Quadratic profile: SNRi = SNR0−c· i2

Cubic profile: SNRi = SNR0−c· i3

Hyperbolic profile: SNRi =
SNR0

1+c· i

(2.38)

where:i = 0, . . . ,n−1; n is the number of sensors; SNR0 is the highest sensor SNR;

andc is a suitable constant which uniquely characterizes the sensor SNR profileslope.

For this reason, we denotec asslope coefficient. A large value ofc corresponds to

a scenario where the sensor SNRs decrease rapidly (i.e., thecorresponding realistic

non-ordered sensor SNR profile is highly varying), whereas asmall value ofc cor-

responds to a scenario where the sensor SNRs are similar (i.e., the corresponding

realistic non-ordered sensor SNR profile is almost constant). If c = 0, all profiles

degenerates to a constant profile, i.e., SNRi = SNR0, ∀i. In Figure 2.20 (b), illustra-

tive graphical examples of the four profiles are shown. In thefollowing, we will

restrict our attention to scenarios with convex SNR profiles(linear, quadratic, and

cubic), since concave profiles (e.g., hyperbolic) can be shown to lead to worse per-

formance [117]. As one can see, by suitably setting the values of SNR0 andc, a large

number of realistic sensor SNR profiles can be characterized. This underlines the ap-

plicability of our framework. In Section 2.4.5, we will propose a simple experiment

to characterize a realistic sensor SNR profile.

In (2.38), we have assumed that the maximum SNR and the slope coefficientc

are the same for all profiles. However, in this case the winning profile is always the

linear, since the sensor SNR at any position is higher than the corresponding one in

any other profile. In order to obtain a “fair” comparison between the various profiles,

one can impose that all the SNR profiles have the same average value, denoted as

SNR.

• By imposing that the slope coefficientc is the same for all profiles, after a few

manipulations one obtains that the maximum SNRs in the various cases need
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to be set as follows:

SNR0,l = SNR+c
n−1

2

SNR0,q = SNR+c
(n−1)(2n−1)

6

SNR0,c = SNR+c
n(n−1)2

4
.

(2.39)

• Specularly, imposing that the maximum SNR is the same for all the sensors,

the slope coefficient in the four considered cases need to be set in the following

way:

cl = (SNR0−SNR)
2

n−1

cq = (SNR0−SNR)
6

(n−1)(2n−1)

cc = (SNR0−SNR)
4

n(n−1)2 .

(2.40)

Finally, one should observe that in (2.40) it must hold that SNR0−SNR≥ 0.

We point out that throughout this section we make the implicit assumption that

the SNR profiles are perfectly known and available at the AP. This is expedient for

performance analysis. However, in a realistic scenario, the mechanisms to collect

SNR values from the resource-constrained sensors may not bevery accurate, and

relying too much on it may not be helpful. Collecting the values accurately is a chal-

lenging problem, which needs further investigation. For example, the SNR values

could be collected during atraining phase, when each sensor computes its local SNR

and send it to the AP. In Section 2.4.5, we propose a simple experimental validation

of our theoretical assumptions.

2.4.4 Numerical Results

Ideal Communication Links

Let us first consider a sensor network with ideal communication links from the sen-

sors to the AP. Moreover, the a priori probabilities of the phenomenon are such that
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Figure 2.21: Probability of decision error, as a function ofthe coefficientc, with SNR0

equal to 12 dB and 16 dB, respectively. Various values of the number of sensorsn

are considered, in a scenario withlinear sensor SNR profile. The lines correspond to

analytical results, whereas the symbols are associated with simulation results.

P(H0) = 10P(H1): this is meaningful for situations where a phenomenon is rare (e.g.,

the phenomenon under observation is an unusually high humidity level).

The following question is meaningful: for a given value of SNR0, what are the

conditions under which the use of a limited number of sensors(lower, for instance,

thann) is the winning strategy? In order to answer this question, in Figure 2.21 the

probability of decision error is shown, as a function of the coefficientc, in a scena-

rio with linear SNR profile. The lines correspond to analytical results, whereas the

symbols are associated with Monte Carlo simulation results. Two possible values for

the highest sensor SNR, i.e., SNR0, are considered: 12 dB and 16 dB, respectively.

For each value of the sensor SNR, various numbers of sensors are considered. Ob-

viously, the curves corresponding to scenarios with onlyn = 1 sensor are constant

with respect toc. The impacts of the parametersc and SNR0 can be characterized as

follows.

• For smallvalues ofc, i.e., in a scenario with almost constant SNR profile, the
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best performance is obtained usingall sensors, regardless of the value of SNR0.

For large values ofc (i.e., irregular sensor SNR profile before monotonic re-

ordering), the best performance is obtained using only the sensors withhighest

SNRs. Note that the best asymptotic performance (c → ∞) is obtained using

only thesensor with highest SNR (SNR0): however, the probability of decision

error might be intolerably high.

• For low values of SNR0, the impact ofc is “mild,” whereas for high values of

SNR0 the impact ofc is relatively stronger. This behavior can be interpreted

as follows. Ifat leastone sensor is highly accurate, i.e., SNR0 is high, then in

order to optimize the network performance the right subset of sensors should

be carefully chosen. In other words, the higher is the sensitivity of at least

one sensor in observing the phenomenon, the more accurate the selection of a

suitable subset of sensors has to be carried out.

As one can observe from Figure 2.21, for a given value ofc, the best performance

is obtained selecting a specific number of sensors—those with highest SNRs, starting

from the one with SNR0. In order to characterize this behavior in more detail, in

Figure 2.22 the optimal value of the number of sensors to be selected is shown, as

a function ofc, for various values of SNR0. The results in Figure 2.22 show that

(i) the optimal number of sensors is a decreasing function ofc, and (ii) the lower is

SNR0, the faster the optimal number of sensors decreases for increasing values of

c. A careful reader might wonder, at this point, why the optimal number of sensors

does not reduce by one in correspondence with each vertical (decreasing) step. This

behavior is due to the fact that the decision thresholdτi at thei−th sensor is computed

according to (2.35), which represents alocally optimal threshold selection strategy.

Therefore, one can conclude that such a threshold selectionstrategy is notglobally

optimal (from the entire distributed decision process), as alreadyobserved in [120].

The individuation of globally optimal decision thresholdsat the sensors in a scenario

with non-constant sensor SNR profile is currently under investigation.
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Figure 2.22: “Optimal” number of sensors (for minimizing the probability of decision

error) as a function of the coefficientc, in a scenario withlinear sensor SNR profile

andP(H0) = 10P(H1). Three values for SNR0 are considered.

Noisy Communication Links

While in the previous section we have considered a scenario with ideal communica-

tion links, we now extend the previous analysis in order to evaluate the impact of the

sensor SNR profile in the presence of noisy communication links. More precisely, in

a simple network scenario withn = 3 sensors, we compare directly the performance

with linear, quadratic, and cubic sensor SNR profiles. We do not consider the hy-

perbolic profile, since we have shown in Section 2.4.4 that the overall performance

with this profile is worse than that with the other profiles—infact, in the presence of

a hyperbolic profile the average sensor SNR has to be very highin order to obtain

an acceptable performance level. We evaluate the probability of decision error in a

scenario withall noisy communication links (considering two values for the cross-

over probabilityp, equal to 10−3 and 10−1, respectively) and, for comparison, in a

scenario with all ideal links.

In Figure 2.23, the probability of decision error is shown, as a function of the

slope coefficientc, in various scenarios with SNR0 = 16 dB andP(H0) = 10P(H1).
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Figure 2.23: Probability of decision error, as a function ofthe coefficientc, in a

scenario withn = 3 sensors. The common value of the maximum sensor SNR is

SNR0 = 16 dB. Three possible scenarios are considered: (i) all ideal links (p = 0),

and all noisy links with (ii)p= 10−3 and (iii) p= 10−1, respectively. For comparison,

the performance withn = 1 sensor is also shown (horizontal solid line).

In Figure 2.24, the same sensor network scenario is considered, but theaverage

sensor SNR is kept constant toSNR= 16 dB—for each value ofc, the corresponding

value of SNR0 is determined according to (2.39). On the basis of the results shown

in Figure 2.23 and Figure 2.24, it is possible to characterize, performance-wise, the

interaction between the sensor SNR profile and the communication noise as follows.

• In a scenario withcommonvalue of SNR0, the impact of the sensor SNR pro-

file is very similar in scenarios with ideal communication links and with noisy

communication links. For the same value ofc, the probability of decision error

increases if the profile changes from linear to cubic. Obviously, for c = 0 the

performance with the three profiles coincides. Moreover, asymptotically (for

large values ofc) the probability of decision error is the same regardless ofthe

profile. Therefore, it is possible to identify a critical value ofc beyond which
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Figure 2.24: Probability of decision error, as a function ofthe coefficientc, for the

same scenario of Figure 2.23 and a commonaveragevalue of the sensor SNR equal

to SNR= 16 dB.

the impact of the sensor SNR profile is the highest.

The impact of the noise is strong for small values ofc, whereas it becomes

negligible for large values ofc. In fact, for any given profile, the curves asso-

ciated with ideal links and those associated with noisy links tend to coincide

for increasing values ofc. In other words, the less regular is the sensor SNR

profile (i.e., the larger isc), the milder is the impact of the noise in the commu-

nication links. On the other hand, if the sensor SNR is very similar across the

sensors, then the noise in the communication links has a severe impact of the

network performance. This latter scenario is analyzed in detail in [21].

• In a scenario with a common value ofSNR, rather than a common maximum

sensor SNR, thePe− c curves do not tend to coincide for large values of the

slope coefficientc. In other words, the impact of value ofc in a scenario with

commonSNR is stronger than in a scenario with common SNR0. On the other

hand, for small values of the slope coefficientc, the performance in a scenario

with commonSNR is similar to that in a scenario with common SNR0.



68 Chapter 2. Distributed Detection of Spatially Constant Phenomena

From the results in Figure 2.24, one can also make another observation. In

the presence of ideal communication links, for increasing values ofc the best

performance is obtained by quadratic and cubic profiles. On the opposite, in

the presence of noisy communication links, for increasing values ofc the best

performance is given by a linear sensor SNR profile.

2.4.5 Experimental Validation

In this section, we show experimental results relative to the SNRs measured at the

sensors, in order to validate the theoretical models proposed in this section. In par-

ticular, we evaluate theReceived Signal Strength Indication(RSSI) in order to obtain

sensor SNR-likeprofiles. Equivalently to the RSSI, one could also use thePath Loss

indicator. In fact, the following equation (in logarithmicscale) holds:

Pt = RSSI+PathLoss

wherePt is the transmit power (dimension: [dBm]) and Path Loss is thepower re-

duction incurred by propagation (dimension: [dB]). Since in our experiments we set

Pt = 0 dBm, one easily obtains:

RSSI= −PathLoss.

The main idea of our experiments is the following. A mobile mote sends perio-

dically a message, calledbeacon, whereasn remote nodes, at fixed positions with

respect to the mobile mote, receive the beacon and store the received power. Finally,

a vector ofn power levels is obtained, and an SNR-like profile can be derived. The

experimental set-up9 is schematically shown in Figure 2.25, from (a) practical and

(b) logical viewpoints, respectively. We deploy four MicaZnodes at the vertices of a

square area of 90x90 cm2, and the remaining mobile (beacon) mote acts as the event

“generator” and is denoted asfiring mote(fm). As shown in Figure 2.25, four nodes

are placed at the vertices of the network surface. The fm moves inside the network,

9Since our experiments are developed in a laboratory environment, there is furniture all around the

square area where the sensors are deployed. However, we can consider the reflected signals negligible.
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Figure 2.25: Experimental set-up: (a) practical scheme with five motes (one “fi-

ring/beacon node” and four fixed nodes), deployed over a square network surface

with area equal to 90x90 cm2, and (b) its corresponding logical scheme. The con-

sidered platforms are constituted by MicaZ motes using a communication protocol

compliant with the IEEE 802.15.4 standard.

sending messages to the fixed nodes. Note that in the considered experimental set-up,

the observed phenomenon corresponds to the message sent by the mobile node. In

order to replicate the theoretical analysis, after receiving the message from the fm,

the four fixed nodes should take a decision (e.g., based on thereceived power), and

send their decisions to an AP. Since our goal, in this section, is to characterize the

sensor SNR profile, we do not consider the communication phase from the sensors to

the AP.

Two experiments have been run:

• the fm, which sends the beacon, is very close to one of the remote (fixed) nodes;

• the fm is in the middle between the network center and one of the four vertices

of the square network surface, i.e., a fixed node.

In Figure 2.26, the Path Loss is shown, as a function of the remote node IDs

(indicated in Figure 2.25 (a)), in two different scenarios:(a) the fm is very close to
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Figure 2.26: Path Loss profiles in the presence of four MicaZ motes sensing a firing

mote (fm). The fm is placed either (a) very close to one of the vertices or (b) between

the center of the area and one of the vertices.

one of the fixed nodes, and (b) the fm is in the middle between the network center

and one of the fixed nodes. As one can see from Figure 2.26 (a), the lowest Path

Loss is obtained, as expected, in correspondence to the nearest remote node. In this

case, the profile described is aheavyside-likefunction, since only the fixed node

closest to the fm senses a high RSSI (or, equivalently, a low Path Loss), while the

others do the opposite. In Figure 2.26 (b), the fm is in a more central region and,

therefore, the measured power profile is, as expected, smoother than that observed in

Figure 2.26 (a).

Rearranging the values in Figure 2.26 (b) in an increasing order, one can obtain a

decreasing profile, as described in the previous sections, of Path Loss or RSSI mea-

sures. In Figure 2.27, thePath Lossprofile is shown, as a function of the mote ID,

for the four different cases (relative to the position of themobile mote) considered

in Figure 2.26 (b). As one can observe, on the average, the profile is approximately

linear.
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Figure 2.27: Reordered Path Loss profiles in the scenarios considered in Fi-

gure 2.26 (b).

2.5 On the Interplay Between Decoding and Fusion

2.5.1 Distributed Channel Coding and Detection/Decoding/Fusion Strate-
gies

In Figure 2.28, a pictorial description of the considered sensor network model is

shown. There are source nodes (the sensors), which observe (in a noisy manner) a

spatially constant phenomenon and send their decisions to the AP, possibly using

channel coding. The presence of a relay is also considered and a simple relaying stra-

tegy is proposed. The impact of multiple access interference is not investigated here:

in other words, we assume orthogonal transmissions to the AP(e.g., perfect trans-

mission scheduling between the sensors and, if present, therelay). The AP performs

the following operations:

• detectionof the observables, taking into account their statistical characteriza-

tion;
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Figure 2.28: Pictorial description of the considered sensor network schemes. Solid

lines are associated withmandatoryelements (either blocks or connections), whereas

dashed lines are associated withoptionalelements.

• decodingof the embedded error correction code (when used);

• fusion of the decoded data to estimate the status of the phenomenon under

observation.

Note that some of the elements in Figure 2.28 are present onlyin specific scenarios—

for instance, the relay node and the decoding block in the AP appear only in coded

scenarios.

Repetition Coded Sensor Network

A sensor network with multiple observations (M consecutive and independent ob-

servations of the same phenomenon) can be interpreted as a system embedding a

repetition code(with code rate 1/M) at each sensor. In this case, redundant informa-

tion is not sent by a relay, but from the sensors themselves throughM consecutive

transmission acts per sensor.

Systematic Block Coded Sensor Network

In order to embed asystematicblock channel code into a sensor network, we pro-

pose a simple relaying strategy. More precisely, we assume that each sensor transmits
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its (uncoded) decision to the AP and, owing to the broadcast nature of the wireless

medium, also to the relay. Upon reception of the decisions from the sources, the re-

lay, by using a systematic block code, generates parity bitsand sends them to the

AP. For example, a(ncod,n) = (7,4) systematic Hamming code [121, p. 562] can

be embedded into a sensor network withn = 4 sensors and one relay, which ge-

neratesncod− n = 3 bits according to the parity-check equations of the Hamming

code. Assuming (as mentioned) that each sensor can reach both the AP and the relay

in a single transmission act, the total number of transmission acts in the proposed

sensor network isncod. The equivalent code rate of this distributed coded scheme is

Rc = n/ncod = 4/7. Note, however, that the connections between the sensors and the

relay have to beideal (i.e., with no communication noise) in order for the proposed

schemes to be applicable. This assumption is reasonable provided that, for example,

the relay is relatively closer to the sensors than the AP is. In Section 2.5.4, we will

comment on the impact of the noise in the communication linksfrom the sensors to

the relay.

With a slight abuse of notation, in the following we will denote a scenario as

“coded” only if a block channel code is embedded into the network structure, in order

to distinguish it from a scenario with multiple observations (i.e., repetition coded).

Communication Schemes

In a coded scenario with binary phase shift keying (BPSK) andRayleigh faded links,

the observable at the output of the communication channel can be expressed as

r i = fi(2ci −1)
√

Ec +wi i = 1, . . . ,ncod (2.41)

whereci ∈ {0,1} is the symbol transmitted from either a sensor (ci is an information

bit, i = 1, . . . ,n) or the relay (ci is a parity bit,i = n+ 1, . . . ,ncod), {wi} are statisti-

cally independent AWGN samples with the same distributionN (0,N0/2), N0 being

the single-sided noise power spectral density,Ec , RcEb is the energy per coded bit,

Eb being the energy per information bit, andfi is a random variable with Rayleigh

distribution—perfectly coherent demodulation is considered. Under the assumptions
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of independence between consecutive fading samples (e.g.,through the use of chan-

nel interleaving) and thatE[| fi |2] = 1, the BER at the output of the detector at the AP

is [122]

pRayleigh=
1
2

[

1−
√

Rcγb

1+Rcγb

]

(2.42)

γb , Eb/N0 is the SNR at the AP. A scenario with AWGN communication linkscan

be modeled using (2.41), by imposingfi = 1 (i = 1, . . . ,ncod). In this case, the bit

error rate (BER) at the output of the detector at the AP can be written as [122]

pAWGN = Q
(√

2Rcγb

)
. (2.43)

In general, one can denote asp the BER at the output of the detector, wherep

has a specific expression (either (2.43) or (2.42)), depending on the communication

channel and the detection strategy. For simplicity, we assume thatp is the same for

all sensor-AP links.

In all above communication schemes, the probability of decision error at the AP

can be evaluated by computing the conditional probabilities P(Ĥ = Hi|H = H j) in

(2.5) (i, j = 0,1, i 6= j). These values depend on the presence/absence of channel

coding and on the detection/decoding/fusion strategy at the AP, as will be described in

the following sections, distinguishing on the basis of the observations at the sensors.

2.5.2 Ideal Observations at the Sensors

In order to obtain performance benchmarks, we first considerscenarios where the

spatially constant phenomenonH is detected by the sensors ideally. In this case,

we distinguish between AP structures where the decoding andfusion operations are

either separate or joint.

Separate Decoding and Fusion

When the decoding and fusion operations are separate, assuming majority-like fu-

sion the conditional probabilities at the right-hand side of (2.5) can be computed as
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follows:

P(Ĥ = H1|H = H0) =
n

∑
i=k

(
n
i

)
(pideal

ch )i(1− pideal
ch )n−i (2.44)

P(Ĥ = H0|H = H1) =
k−1

∑
i=0

(
n
i

)
(1− pideal

ch )i(pideal
ch )n−i (2.45)

where the repeated trials formula has been used [94],k (i.e., the majority decision

threshold) is
⌊

n
2

⌋
+1, and the probabilitypideal

ch depends on the noisy communication

link model and the specific distributed channel coding strategy. Note that the upper

index of the sum in (2.44) isn (and notncod) also in coded scenarios, since the in-

formation from the relay (i.e., the parity bits) is not used in thefusionprocess (only

the systematic bits are used). The parity bits are used only in thedetection/decoding

process.

Since the local sensors’ decisions are error-free,pideal
ch and 1− pideal

ch in (2.44) and

(2.45) correspond to the probabilities of error and correctdecision at the detector out-

put, respectively. In an “uncoded scenario” (i.e.,ncod= n), it holds thatpideal
ch = p. In a

scenario with multiple observations, the AP preliminary decides for the phenomenon

status at each sensor through a majority fusion rule over theM consecutive decisions

sent by that sensor. In this case,pideal
ch can be expressed, similarly to (2.44), as

pideal
ch =

M

∑
i=kNC

(
M
i

)
pi(1− p)M−i (2.46)

wherekNC , ⌊M
2 ⌋+1. In a coded scenario and for sufficiently small values ofp, the

following approximation holds [121]:

pideal
ch ≃

(
ncod−1

t

)
pt+1

wheret = (dmin−1)/2 is the number of errors which can be corrected by a code with

minimum distancedmin [121, 123]. We point out that, provided that 1/M = n/ncod,

the comparison between coded schemes and schemes with multiple observations is

consistent from an energetic viewpoint.
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Joint Decoding and Fusion

In a scenario with multiple (M) independent observations at the sensors, joining the

decoding and fusion operations consists in adopting a majority fusion rule over all

then×M bits sent from the sensors to the AP. In this case, the probability of decision

error becomes

Pmult.obs.
e =

1
2

[
n×M

∑
i=kM

(
n×M

i

)
pi(1− p)n×M−i +

kM−1

∑
i=0

(
n×M

i

)
(1− p)i pn×M−i

]

(2.47)

wherekM ,
⌊

n×M
2

⌋
+1 is the majority decision threshold.

In a coded scenario, the receiver with joint decoding and fusion can be designed

as follows. Since the considered sensor networks embedsystematiccodes, we denote

as[u( j)
1 , . . . ,u( j)

n ,b( j)
1 , . . . ,b( j)

ncod−n] ( j = 0,1) the entire sequence of bits transmitted by

the sensors (u( j)
i from sensori) and the relay ({bi}ncod−n

i=1 from the relay) in correspon-

dence to the phenomenon statusH j . Note that in the current case with a spatially

constant binary phenomenon and ideal observations at the sensors,(u1, . . . ,un) is ei-

ther(0, . . . ,0) or (1, . . . ,1). In other words, in the presence ofidealobservations, only

two codewords, denoted asccc(0) andccc(1), are allowed—this does not hold with noisy

observations, as will be shown in Section 2.5.3. In particular,ccc(0) = (0, . . . ,0). In all

cases considered in this section, it will also hold thatccc(1) = (1, . . . ,1).

Given that decoding and fusion are joint, two possible detection strategies at the

AP can be devised:

• hard-output detection is followed by (hard-input) joint decoding/fusion;

• detection, decoding, and fusion are all joined together.

In the former case, the maximum a posteriori probability (MAP) joint decoding/fusion

strategy can be formalized as

Ĥ = argmax
j=0,1

P
(

ccc( j)|cccrx

)
= argmax

j=0,1
P
(
cccrx|ccc( j)

)
P(ccc( j)) (2.48)

wherecccrx is the codeword at the output of the detector at the AP. Since only two

codewordsccc(0) andccc(1) are used, the a priori probability of the sequenceccc( j) is equal
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to the a priori probability of the phenomenon statusH j , i.e., P(ccc( j)) = p j = 1/2.

Owing to the independence of the communication channels (conditionally on the

transmitted bits), the MAP decoding/fusion strategy in (2.48) can be rewritten as

Ĥ = argmax
j=0,1

p j

ncod

∏
i=1

P
(

ci,rx|c( j)
i

)
. (2.49)

After a few manipulations, the MAP decoding/fusion strategy in (2.49) can be finally

formulated as (
1− p

p

)2ϑ (1,cccrx)−ncod H0
>
<
H1

1. (2.50)

whereϑ(1,cccrx) is the number of 0’s incccrx.

At this point, one can evaluate the probability of decision error in (2.5). In par-

ticular, the terms
{

P(Ĥ = Hi|H = H j)
}

(i, j = 0,1, i 6= j) can be computed from the

decision rule (2.50). After a few manipulations, one obtains:

Pe =
1
2

[
ncod

∑
k=k∗

(
ncod

k

)
pk(1− p)ncod−k +

k∗−1

∑
k=0

(
ncod

k

)
(1− p)kpncod−k

]

where we have used the fact thatϑ(1,cccrx) is a binomial random variable with para-

metersncod andp, ccc(1) = 111, andk∗ is defined as follows:

k∗ = min{1, . . . ,ncod}

s.t.

(
1− p

p

)2k∗−ncod

> 1.

In the case with joint detection/decoding/fusion, we first consider a scenario with

Rayleigh faded links, and we denote byfff = [ f1, . . . , fncod] the fading samples and

by rrr = [r1, . . . , rncod] the observables at the output of the communication links. Un-

der the assumption of perfect channel state information at the AP, the MAP dete-

ction/decoding/fusion strategy can be formulated as10 [123]

Ĥ = argmax
j=0,1

p
(

rrr|ccc( j), fff
)

P
(

ccc( j)| fff
)

= argmax
j=0,1

p j

ncod

∏
i=1

p
(

r i |c( j)
i , fi

)
(2.51)

10In (2.51) and in the remainder of this section, the uppercaseP is used to denote the probability of

an event, whereas the lowercasep is used to denote the conditional probability density function (PDF)

of a random variable.
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where we have used the facts that the observables are conditionally independent given

{c( j)
i } and the coded bitc( j)

i is independent of the fading samplefi. Discardingp j =

1/2, from (2.51) one can derive, after a few manipulations, thefollowing decision

rule:
ncod

∑
i=1

r i fic
(1)
i

H1
>
<
H0

0. (2.52)

On the basis of (2.52) and recalling that a linear combination of Gaussian random

variables is still a Gaussian random variable [94], after a few manipulations the pro-

bability of decision error at the AP (2.5) becomes

Pe =
1
2



Q



2

√
RcEb∑ncod

i=1 fic
(1)
i√

N0∑ncod
i=1 f 2

i (c(1)
i )2



+ Φ



−2

√
RcEb∑ncod

i=1 fi(2c(1)
i −1)c(1)

i√
N0∑ncod

i=1 f 2
i (c(1)

i )2









(2.53)

whereΦ(x) , 1−Q(x). Observe that (2.53) depends on the particular sequence of

fading samples{ fi}.

An expression for the probability of decision error in the case with AWGN links

can be directly obtained from (2.53) by imposingfi = 1 (i = 1, . . . ,ncod). In particular,

in the presence of a code withccc(1) = 111 (recall that, in all cases,ccc(0) = 000) it can be

shown that

Pe = Q
(√

2ncodRcγb

)
= Q

(√
2nγb

)
.

2.5.3 Noisy Observations at the Sensors

We now extend the derivation presented in Section 2.5.2 to encompass the presence

of observation noise.

Separate Decoding and Fusion

In the case with separate decoding and fusion, only the expressions of the probabil-

ities pideal
ch in (2.44) and (2.45) need to be modified. In particular, by using the total
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probability theorem [94], one can write

pnoisy
ch = P(ci,rx = 1|Hℓ) i = 1, . . . ,n

= pideal
ch [1−Q(τ −s· ℓ)]+ (1− pideal

ch )Q(τ −s· ℓ)

where the sensors’ decisions{c(ℓ)
i } are done as outlined in Section 2.2.1 andpideal

ch is

the final BER, which depends on the presence/absence of distributed channel coding,

as shown in Section 2.5.2.

In a scenario withM observations at each sensor, expression (2.46) forpideal
ch has

to be similarly modified. In particular, one obtains:

pnoisy
ch =

M

∑
i=kNC

(
M
i

)
[g(p, ℓ)]i [1−g(p, ℓ)]M−i (2.54)

whereg(p, ℓ) , p[1−Q(τ −s· ℓ)]+ (1− p)Q(τ −s· ℓ).

Joint Decoding and Fusion

In the case with hard-output detection followed by joint decoding/fusion, expression

(2.48) for the phenomenon estimate in a scenario with multiple observations at the

sensors has to be modified, similarly to (2.54), as follows:

Pmult.obs.
e,noisy =

1
2

n×M

∑
i=kM

(
n×M

i

)
[g(p,1)]i [1−g(p,1)]n×M−i

+
1
2

kM−1

∑
i=0

(
n×M

i

)
[1−g(p,0)]i [g(p,0)]n×M−i .

We now derive the MAP decoding/fusion strategy for the codedscenarios in the

presence of noisy observations at the sensors. In the case with hard-output detection

followed by (hard-input) joint decoding/fusion, in order to take into account the ob-

servation noise statistics expression (2.48) has to be modified as follows:

Ĥ = argmax
j=0,1

P(H j |cccrx) = argmax
j=0,1

ncod

∏
i=1

P(ci,rx|H j) (2.55)
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where the irrelevant termP(H j) = p j = 1/2 has been discarded and the probability

P(ci,rx|H j) can be written, after a few manipulations, as

P(ci,rx|H j) =





(1− p) [1−Q(τ −s· j)]+ pQ(τ −s· j) if ci,rx = 0

p[1−Q(τ −s· j)]+ (1− p)Q(τ −s· j) if ci,rx = 1.

In a coded scenario with joint detection/decoding/fusion,the MAP estimation

strategy (2.51) has to be modified as follows:

Ĥ = argmax
j=0,1

ncod

∏
i=1

P(r i |H j , fi)

which can be rewritten, after a few manipulations, as

∏ncod
i=1 ϒ(0, r i , fi)

∏ncod
i=1 ϒ(1, r i , fi)

H0
>
<
H1

1

where

ϒ(m, r i , fi) , Φ(τ −m·s)exp

(
−2

r i fi
√

Ec

N0

)
+[1−Φ(τ −m·s)]exp

(
2

r i fi
√

Ec

N0

)
.

2.5.4 Impact of Noisy Communication Links Towards the Relay

The previous derivations in coded scenarios are based on theassumption of ideal

communication links between the sensors and the relay. In this section, we briefly

discuss on the impact ofnoisycommunication links between the sensors and the relay.

No analytical derivation nor numerical results will be presented. The considerations

which will be carried out are simply meant to give some guidelines on the benefits

brought by the distributed use of properly designed block error correction codes.

We first consider the case withideal observations at the sensors. In Figure 2.29,

we give a pictorial description of how the communication noise influences data trans-

mission to the relay. As previously seen, two possible codewords are selected at the

sensors and relay, namelyccc(0) andccc(1), which are shown, in Figure 2.29, as a filled

circle and an empty circle, respectively.
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Figure 2.29: Codebook perspective on the considered distributed detection schemes:

(a) ideal commnunication links between sensors and relay and (b) noisy communica-

tion links. In each case, on the left the two possible codewords at sensors and relay

are shown, whereas on the right possible received words at the AP are shown.

• In the scenario with no communication noise between the sensors and the relay

(case (a)), we denote the Hamming distance between the two codewords asd.

If ccc(0) = 000 andccc(1) = 111, thend = ncod. The presence of noisy communication

links from the sensors and the relay to the AP is such that the word cccrx (one

of the 2ncod possible binary sequences of lengthncod) received at the AP may

be different from the codeword transmitted by the sensors and the relay. In

particular,cccrx may not even be a codeword. Decoding and fusion at the AP cor-

responds to associating the received word to one of the information sequences

000 or 111. It is intuitive that the larger isd, the more robust is the system against

communication noise in the links to the AP.

• In the presence of communication noise between the sensorsand the relay

(case b), the latter may receive a sequence of bits which differs from that sent

by the sensors. Therefore, the parity bits generated by the relay may lead to the

association ofH0 andH1 to two codewordsccc(0)′ andccc(1)′ which are at a distance
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d′ < d. As a consequence of this decreased distance, the system performance

will be worse than in the previous scenario, since the probability of associating

(through decoding and fusion) the received word to the wrongphenomenon

status will increase. This can be understood from the codebook scenario at the

AP, where the received word at the AP might belong to the portion of the signal

space which is associated (by decoding and fusion) to the wrong phenomenon

status.

The presence ofnoisyobservations may lead to the association of the phenome-

non statusesH0 andH1 to two codewordsccc(0)′′ andccc(1)′′ at a distance smaller than

d. In particular, in the presence of both (i) observation noise and (ii) communication

noise from the sensors to the relay, when the intensities of these two noises are suffi-

ciently small, their negative effects tend to add, so that the distanced
′′

betweenccc(0)′′

andccc(1)′′ might be even smaller thand′.

Obviously, an open problem is to quantify precisely the decrease of the error cor-

rection capabilityt of the code in the presence of noisy communication links between

the sensors and the relay. In fact, the parametert depends on the particular structure

(codebook) of the considered error correction code. An interesting research direc-

tion is the design of robust (fault tolerant) error correcting codes for the proposed

distributed detection schemes.

2.5.5 Numerical Results

We resort to Monte Carlo simulations to evaluate the probability of decision error

with the devised MAP detection/decoding/fusion strategies presented in Section 2.5.2

and Section 2.5.3.

In order to make the detection/decoding process at the inputof the AP more

effective,soft-inputdecoding/fusion (either separate or joint), rather than hard-input

decoding/fusion, can be considered. In Figure 2.30, the probability of decision error is

shown, as a function of the SNR at the AP, in a scenario withn= 16 sensors, AWGN

communication links (similar results can be obtained in scenarios with Rayleigh

faded communication links), anderror-free observations at the sensors. Six coding
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Figure 2.30: Probability of decision error, as a function ofthe SNR at the AP, in a sce-

nario withn= 16 sensors, AWGN communication links, anderror-freephenomenon

observations. Various coding strategies are considered.

strategies are considered: (i) uncoded, (ii) (31,16) BCH [123, p. 438] (the corre-

sponding BCH code hast = 3)11 coded with hard-input and separate decoding/fusion,

(iii) (31,16) BCH coded with soft-input and joint decoding/fusion, (iv) with M = 2

observations and joint decoding/fusion, (v) withM = 3 observations and separate de-

coding/fusion, and (vi) withM = 3 observations and joint decoding/fusion. One can

observe that the probability of decision error in coded scenarios shows a “waterfall”

behavior, which is due to the concatenation of the decoding and fusion operations.

However, the improvement brought by the presence of distributed channel coding,

with respect to schemes with multiple observations, becomes apparent at very low

probabilities of decision error, which may not be of practical interest One can ob-

serve that the coded network with soft-input and joint decoding/fusion at the AP has

a performance significantly better than that associated with the schemes with hard-

input and separate decoding/fusion. This is to be expected,since in a scenario with

11We remark that the BCH is one of the block channel codes that itis possible to consider. However,

the same results would be asymptotically obtained with any code witht = 3.
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Figure 2.31: Probability of decision error, as a function ofthe BERp at the output of

he detector, in a scenario withn = 16 sensors andnoisyphenomenon observations.

Two values for the observation SNR are considered: (a) 20 dB and (b) 10 dB. Various

sensor network architectures are considered.

soft-input decoding no information is lost upon reception of the observables from the

communication links. Note, however, that in this case as well the proposed coded

scheme outperforms a scheme with multiple observations only at very low values of

the probability of decision error.

In Figure 2.31, the probability of decision error is shown, as a function of the

BER p at the output of the AP detector, in a scenario withn = 16 sensors andnoisy

phenomenon observations. Two values for the observation SNR are considered: (a)

20 dB and (b) 10 dB. The performance is evaluated with six sensor network architec-

tures: (i) uncoded, (ii) (31,16) BCH coded with separate decoding/fusion, (iii) (31,16)

BCH coded with joint decoding/fusion, (iv) withM = 2 observations and joint deco-

ding/fusion, (v) withM = 3 observations and separate decoding/fusion, and (vi) with

M = 3 observations and joint decoding/fusion. In the case with high observation SNR

(e.g., in Figure 2.31 (a)), the phenomenon observations at the sensors are practically

error-free and, therefore, the network performance is similar to that in Figure 2.30.

When the observation SNR decreases (e.g., in Figure 2.31 (b)), instead, the proposed

detection/decoding/fusion strategies are not effective,since the quality of the sensors’
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observations heavily affects the system performance, and this is more pronounced in

the presence of joint decoding/fusion. One can observe thatthe probability of deci-

sion error curve reaches a floor, due to the observation noise(which is independent

of the communication noise). As before, the schemes with multiple observations at

the sensors outperform those with block channel coding.

Finally, we investigate the performance of the proposed distributed schemes in

large scalesensor networks, by using an LDPC code and the sum-product (SP) de-

coding algorithm. In particular, we consider a (3,6) regular and systematic LDPC

code: the systematic bits of the codeword correspond to then decisions sent by the

sensors, whereas thencod−n parity bits are generated by the relay node. The LDPC

code is constructed in arandomfashion, according to an algorithm, which exploits

an idea similar to the progressive edge growth (PEG) algorithm presented in [124].

In Figure 2.32, the probability of decision error is shown, as a function of the SNR

at the AP, in a scenario withn = 100 sensors, AWGN communication links, and

noisyphenomenon observations. Three sensor network architectures are considered:

(i) LDPC coded with standard SP decoding [1,125], (ii) LDPC coded withenhanced

(as described in the following) channel log-likelihood ratios (LLRs), and (iii) with

M = 2 observations and separate decoding/fusion. Two values for the observation

SNR are considered: (i) 10 dB (dashed lines) and (ii) 20 dB (solid lines). While in the

LDPC coded case with standard SP decoding the channel LLRs (input at the variable

nodes of the LDPC bipartite graph) do not take into account the observation noise,

in the enhanced SP decoding case the channel LLRs are modifiedby properly taking

into account the observation noise. The modified channel LLRs can be expressed as

follows:

L
(i)
ch−enhanced= Lch+L

(i)
a−priori i = 1, . . . ,ncod

where

Lch , ln
p(r i |ci = 0)

p(r i |ci = 1)
=

r i

N0

and

L
(i)
a−priori , ln

P(ci = 0)

P(ci = 1)
=





ln ϒ(0,−r i ,1)

ϒ(1,−r i ,1) if i = 1, . . . ,n

0 if i = n+1, . . . ,ncod
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Figure 2.32: Probability of decision error, as a function ofthe SNR at the AP, in a

scenario withn = 100 sensors, AWGN communication links, andnoisyphenomenon

observations. Two values for the observation SNR are considered: (i) 10 dB (dashed

lines) and (ii) 20 dB (solid lines). Various sensor network architectures are conside-

red.

whereϒ has been defined in Section 2.5.3. From the results in Figure 2.32, one can

observe that the use of multiple observations is still the winning strategy also in

a large-scale sensor network.12 However, the enhanced LPDC coded scheme (with

modified channel LLRs) outperforms the LDPC coded scheme at large observation

SNRs, since a statistical knowledge of the observation noise helps the decoding pro-

cess. In fact, when the communication noise level is too high, a communication error

might compensate an error in the phenomenon estimation at the sensors (due to a too

high observation noise level). On the other hand, when the communication links to

the AP are reliable (i.e., the communication noise is sufficiently small) an error in

the phenomenon estimation might not be compensated and, therefore, the AP might

not be able to correctly reconstruct the phenomenon status.Finally, note that in the

standard LDPC coded case the performance with an observation SNR equal to 10 dB

12Note that in Figure 2.32 only the curve with observation SNR equal to 10 dB is shown in the case

with multiple observations. The curve associated with an observation SNR equal to 20 dB and multiple

observations is even lower.
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is better than that associated with an observation SNR equalto 20 dB when the SNR

at the AP is sufficiently low. This is due to the fact that for small values of the ob-

servation SNR a larger number of codewords is actually used by the sensor network

and, consequently, the error correction capabilities of the LDPC code are better ex-

ploited. However, when the SNR at the AP increases, the “beneficial” impact of the

observation noise is reduced by the presence of reliable communication links.

2.6 Concluding Remarks

In this chapter, we have characterized the performance of sensor networks where a

spatially constant phenomenon is under observation. First, we have characterized the

behavior of clustered sensor networks with distributed detection in the presence of

multi-level majority-like information fusion. Upon the derivation of a communication-

theoretic analytical framework, we have shown that, in the considered scenarios,

uniform clustering, i.e., balanced tree network architectures, leads to a lower pro-

bability of decision error than non-uniform clustering, i.e., unbalanced tree network

architectures. In the former case, the probability of decision error dependsonly on

the number of decision levels andnot on the specific clustering configuration. An

information-theoretic perspective has also been presented. Then, the impact of noisy

communication links has then been investigated. Our results show that the presence

of noise in the communication links has a strong bearing on the ultimate achievable

performance.

Then, an analytical framework to compute thenetwork lifetimeof clustered sen-

sor networks subject to a physical layer-oriented QoS condition has been derived. In

the presence of ideal reclustering, the network lifetime isthe longest possible. On the

other hand, in the presence of a fixed clustered configuration, our results show that

the number of clusters has a strong impact on the network lifetime. More precisely,

the network lifetime is maximized if there are afew large clusters(at most four). In

all cases, the QoS condition has a strong impact on the network lifetime: the more

stringent is this condition, the shorter is the network lifetime. We have also evaluated

the cost associated with the reclustering procedure, from both time delayandenergy
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consumptionperspectives. Our results show that reclustering is not useful when phe-

nomenon observations arerare, since the network spends more time in transferring

control messages than useful data. The impact of noisy communication links, mo-

deled as BSCs, on the network lifetime has also been investigated, showing that the

higher is the noise level, the shorter is the network lifetime. However, in this scenario

as well reclustering can prolong the network lifetime.

Although the previous analysis was based on the assumption of constant sensor

SNR across the sensors, we have proposed an analytical framework to take into ac-

count different observation SNRs not known at the AP. In order to model this scena-

rio, four possible sensor SNR profiles (linear, quadratic, cubic, and hyperbolic) have

been introduced and we have characterized them by using aslope coefficientand the

maximum sensor SNR. For increasing steepness of the (ordered) sensor SNR profile,

i.e., for an increasingly irregular realistic sensor SNR profile, the best performance

is obtained by selecting a lower and lower number of sensors (those with highest

SNRs). In a scenario with commonaveragesensor SNR, the profile which guaran-

tees the best performance is thecubic. This is due to the fact that it corresponds to the

profile with the largest (in relative terms) number of sensors with SNR higher than

the average value. Therefore, a general conclusion is that,for a givenaverage sensor

SNR, the best performance is obtained when the variance of the sensor SNR is large,

i.e., the sensor SNR profile is irregular. The presence of noisy communication links

has also been considered. In this case, we have shown that themore irregular is the

sensor SNR profile, the milder is the impact of the noise levelin the communication

links.

The analytical framework has been enriched with simulationand experimental

results (in terms of probability of decision error, throughput, and delay) relative to

Zigbee and IEEE 802.15.4-based clustered sensor networks with information fusion.

The obtained results confirm the validity of our analytical framework in realistic net-

working scenarios. Moreover, it has been possible to characterize realistic SNR pro-

files.

Finally, we have studied how to combine detection, decoding, and fusion at the

AP in sensor networks for distributed detection of a spatially constant binary phe-
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nomenon. To this end, we have embedded simple distributed channel codes (either

block or repetition) into sensor network architectures. The performance of the pro-

posed schemes has been analyzed in scenarios with noisy observations and commu-

nications. In all cases, the use ofmultiple observations(i.e., repetition coding) gua-

rantees the best performance, with respect to simple systematic block coding strate-

gies, for practical values of the probability of decision error. This leaves the design

of powerful distributed channel codes an open problem. Considering scenarios with

distributed LDPC coding, our results show that knowledge, at the AP, of the observa-

tion noise can significantly improve the decoding process, i.e., it can help in reducing

the negative effects of the communication noise.





Chapter 3

Distributed Detection of Spatially

Non-Constant Phenomena

3.1 Introduction

In this chapter, we study sensor networks with distributed detection of aspatially

non-constantphenomenon. In particular, we considerbinary phenomena characteri-

zed by a generic number of status changes (from state “0” to state “1” or vice-versa)

across the sensors. We first derive the MMSE fusion algorithmat the AP. Then, we

propose simplified (sub-optimum) fusion algorithms at the AP, with a lower com-

putational complexity. While we first consider a scenario with ideal communication

links between the sensors and the AP, we then extend our framework to scenarios

with noisycommunication links.

The structure of this chapter is the following. In Section 3.2, we derive MMSE

and simplified fusion rules at the AP in a scenario with ideal communication links

and both single and multi-boundary phenomena. In Section 3.3, we extend the previ-

ous fusion rules by taking into account the noise in the communication links between

the sensors and the AP. In Section 3.4, numerical results on the performance of the

proposed fusion algorithms are presented. In Section 3.5, the computational com-

plexity of the proposed algorithms, in terms of the number ofrequired operations, is
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presented. Finally, concluding remarks are given in Section 3.6.

3.2 Ideal Communication Links

In this section, we focus on a network scenario where the status of the phenome-

non under observation is characterized by ageneric and a priori known number

nbs of boundaries. For the ease of simplicity, the status of the phenomenon will be

supposed independent from sensor to sensor. The existence of correlation between

sensors would require an extension of the derived algorithms. This extension is in-

vestigated in Chapter 4. Moreover, the proposed simplified algorithms do not require

the knowledge of a possible correlation among the sensors. In particular, we prelimi-

nary investigate the performance when the communication links between the sensors

and the AP areideal, i.e., no noise is introduced during data transmission.

Denote the overall phenomenon status asHHH = [H1, . . . ,Hn] with Hi = H0 or Hi =

H1 (i = 1, . . . ,n). For the ease of simplicity, we suppose thatH0 = 0 andH1 = 1. As

in Chapter 2, the signal observed at thei-th sensor can be expressed, according to the

observable model in (2.1), as

r i = cE,i +ni i = 1, . . . ,n

and the common SNR at the sensors can be defined as follows:

SNRsensor=
s2

σ2 .

Each sensor processes (through proper quantization) the observed signal and the

value output by thei-th sensor is denoted asdi , fquant(r i), where the functionfquant(·)
depends on the specific quantization strategy. In the following, we consider (1) binary

quantization and (2) absence of quantization. In [126], theproposed analytical frame-

work is extended to scenarios with multi-level quantization at the sensors. Upon the

reception of the messages sent by the sensors, the goal of theAP is to reconstruct,

through an MMSE or simplified fusion strategy, the status of the distributed binary

phenomenonHHH. More precisely, in the considered setting the AP needs to estimate

correctly the position of the boundary.
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3.2.1 MMSE Fusion Rule

The following assumptions are expedient to simplify the derivation of the MMSE

detection strategy:

• changes of the phenomenon status are not admitted in correspondence to the

first and last sensors: the number of boundaries must then be such that 1≤
nbs≤ n−2 (in particular,Hn = Hn−1);

• the phenomenon status is perfectly known at the first sensor. In particular, we

assumeH1 = 0.

According to the above assumptions, thenbs boundaries{α1, . . . ,αnbs} have to simul-

taneously satisfy the following inequalities:

2≤ α1 < α2 < .. . < αk−1 < αk < .. . < αnbs ≤ n−1. (3.1)

Therefore: between 1 andα1−1 the phenomenon status is “0;” betweenα1 andα2−1

the phenomenon status is “1;” and so on. In order for the boundary distribution to be

realistic, the following conditions must necessarily hold:

αk−1 < αk ≤ (n−1)− (nbs−k) = n−nbs+k−1 k = 2, . . . ,nbs. (3.2)

For each value ofk, condition (3.2) formalizes the intuitive idea that thek-th boun-

dary cannot fall beyond the(n−1−nbs+ k)-th position, in order for the successive

(remaining)nbs−k boundaries to have admissible positions.

Binary Quantization

In this scenario, thei-th sensor makes a decision comparing its observationr i with a

threshold valueτi, and computes a local binary decisiondi ∈ {0,1}, i.e., fquant(r i) =

U(r i − τi), whereU(·) is the unit step function. To optimize the system performance,

the thresholds{τi} need to be properly selected. As in a scenario with detectionof a

spatially constant phenomenon, a common valueτ at all sensors is considered. This

choice is intuitively motivated by the fact that the sensor SNR is constant across
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the sensors. In the presence of a spatially non-constant phenomenon, the thresholdτ
needs to be optimized in order to minimize the distance between the true phenomenon

and its estimate at the AP. Our results in [126] show that the optimized value ofτ
corresponds tos/2, for every value of the number of sensorsn.

Denoting asααα the sequence of boundaries(α1, . . . ,αnbs), the MMSE fusion stra-

tegy can be derived obtaininĝααα = E [ααα |ddd] [127]. Using the assumptions introduced

at the beginning of this section, the generic component of the vectorα̂αα can be written

as1

α̂k = E [αk|ddd] =
n

∑
αk=1

P(αk|ddd) =
n−nbs+k−1

∑
αk=k+1

αkP(αk|ddd) k = 1, . . . ,nbs (3.3)

where the upper and lower bounds of the sum in the last term areproperly modified in

order to take into account the constraint (3.2). The computation of (3.3) can be carried

out by applying the following approach. The probabilityP(αk|ddd) (k = 1, . . . ,nbs) can

be obtained by marginalizing the joint probabilities of proper boundaries’ sequences.

By applying the Bayes formula and the total probability theorem [94], after a few

manipulations the conditional probability mass function (PMF) ofααα can be expressed

as

P(ααα |ddd) = P(ddd|ααα)P(ααα)




n−nbs

∑
α1=2

. . .
n−nbs+k−1

∑
αk=k+1

. . .
n−1

∑
αnbs=nbs+1

P(ddd|ααα)P(ααα)




−1

. (3.4)

The first multiplicative term at the right-hand side of (3.4)can be written as

P(ddd|ααα) =
n

∏
i=1

P(di|ααα) =
α1−1

∏
i=1

P(di |ααα)︸ ︷︷ ︸
Hi=0

α2−1

∏
j=α1

P(d j |ααα)
︸ ︷︷ ︸

H j=1

· · ·
n

∏
q=αnbs

P(dq|ααα)
︸ ︷︷ ︸
Hq=0 or 1

(3.5)

where we have used the fact that the sensors’ decisions are conditionally independent.

Note that, in the lastn−αnbs + 1 terms,Hi = 0 if nbs is even, whereasHi = 1 if nbs

1For ease of notational simplicity, in (3.3) we use the same symbol αk to denote both the random

variable (in the second term) and its realization (in the third and fourth terms). The same simplified

notational approach will be considered in the remainder of Section 3.2.1. The context should eliminate

any ambiguity.
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is odd. The component conditional probabilities at the right-hand side of (3.5) can be

written as

P(di |ααα) =






P

(
ni

di = 0
<
>

di = 1

τ

)
if i ∈ I0(ααα)

P

(
ni

di = 0
<
>

di = 1

τ −s

)
if i ∈ I1(ααα)

=





(1−di)

[
1−Φ

( τ
σ
)]

+diΦ
( τ

σ
)

if i ∈ I0(ααα)

(1−di)
[
1−Φ

( τ−s
σ
)]

+diΦ
( τ−s

σ
)

if i ∈ I1(ααα)

where

Iℓ(ααα) , {indexesi such thatHi = ℓ|ααα} ℓ = 0,1

andΦ(x) has been introduced in (2.53).

The second multiplicative term at the right-hand side of (3.4) can be written,

using the chain rule [94], as

P(ααα) =
nbs

∏
i=1

P(αi |αi−1, . . . ,α1) =
nbs

∏
i=2

P(αi |αi−1)P(α1) (3.6)

where we have used the fact that the position of thei-th boundary depends only on

the position of the (previous)(i − 1)-th boundary. The multiplicative terms at the

right-hand side of (3.6) can be evaluated by observing that each boundary is spatially

distributed according to the constraints in (3.2). In particular, by using combinatorics,

one obtains

P(α1) =
1

n−nbs+1

P(αk|αk−1) =
1

n−nbs+k−αk−1
k = 2, . . . ,nbs.

The last term at the right-hand side of (3.4) (i.e., the denominator) can be easily

computed by observing that it is composed by terms similar tothose evaluated in

(3.5) and (3.6).
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Finally, the a posteriori probabilities of the boundaries’positions in (3.3) can be

obtained by proper marginalization of the joint conditional PMF in (3.4):

P(αk|ddd) = ∑
∼{αk}

P(α1, . . . ,αnbs|ddd) k = 1, . . . ,nbs

where∑∼{yi} f (y1,y2, . . . ,yn) is a short-hand notation for

∑y1
· · ·∑yi−1 ∑yi+1

· · ·∑yn
f (y1,y2, . . . ,yn) [1].

Absence of Quantization

In this case, the observations at the sensors are not quantized and a local likelihood

value, such as the conditional probability density function (PDF) of the observable,

is transmitted from each sensor to the AP. Obviously, this isnot a realistic scenario,

since an infinite bandwidth would be required to transmit a PDF value. However,

investigating this case allows to derive useful information about the limiting perfor-

mance of the considered distributed detection schemes, since transmission of the PDF

of the observables does not entail any information loss at the sensors. The estimated

boundaries can be written, according to the assumptions outlined at the beginning of

Section 3.2, as

α̂k = E [αk|rrr ] =
n−nbs+k−1

∑
αk=k+1

αkP(αk|rrr) k = 1, . . . ,nbs. (3.7)

The probabilities in (3.7) can be obtained, as in Section 3.2.1, through proper margi-

nalization of joint conditional probabilities of the following type:

P(ααα |rrr) = p(rrr |ααα)P(ααα) ·




n−nbs

∑
α1=2

. . .
n−nbs+i−1

∑
αi+1

. . .
n−1

∑
αnbs=αnbs−1+1

p(rrr |ααα)P(ααα)




−1

.

Under the assumption of independent sensors’ observations, it holds that

p(rrr |ααα) =
n

∏
i=1

p(r i |ααα)
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where

p(r i |ααα) =





pN (r i) if i ∈ I0(ααα)

pN (r i −s) if i ∈ I1(ααα)
(3.8)

andpN (u) , 1√
2πσ2

exp(− u2

2σ2 ).

3.2.2 Simplified Fusion Rule with a Single Boundary

Since the computational complexity of the MMSE fusion strategy rapidly increases

with the number of sensors [58], in this section we derive, under the assumption of

single boundary phenomena, a simplified low-complexity fusion algorithm. The key

idea of this simplified algorithm consists in approximatingthe MMSE boundary esti-

mateα̂ = E[α |ddd], which involves astatisticalaverage, with a simplerdeterministic

expression. Note that the proposed approach relies on the fact that our goal is to

estimate asingleboundary.

Binary Quantization

In this case, the boundary position is estimated as follows:

α̂ ≃ argmin
1≤ j≤n

{
j−1

∑
i=1

|di |2 +
n

∑
i= j

|di −1|2
}

. (3.9)

The intuition behind the estimation strategy in (3.9) is based on the fact that there is a

single boundary: the initial sensors’ decisions (from the 1-st to the( j −1)-th sensor)

are compared with “0,” whereas the others (from thej-th to then-th sensor) are

compared with “1.” The estimated boundary minimizes the simplified cost function

|ddd−ddd j |2, whereddd j , [0, . . . ,0, 1︸︷︷︸
jth position

, . . . ,1], over all possible values ofj ∈ {1, . . . ,n}.

Absence of Quantization

In this scenario, thea posterioriprobabilities of the two hypotheses at each sensor,

conditionally on the observables, can be used to derive the proper objective function
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to be maximized. In this case, one can write2

α̂ ≃ argmax
1≤ j≤n

{
j−1

∑
i=1

P(Hi = 0|r i)+
n

∑
i= j

P(Hi = 1|r i)

}

(3.10)

where, using Bayes formula and assumingP(Hi = 0) = P(Hi = 1) ∀i,

P(Hi = ℓ|r i) =
p(r i |Hi = ℓ)

p(r i |Hi = 0)+ p(r i |Hi = 1)
=

pN (r i − ℓ ·s)
pN (r i)+ pN (r i −s)

ℓ = 0,1.

3.2.3 Simplified Fusion Rule with Multiple Boundaries

Obviously, the computational complexity of the MMSE distributed detection strategy

in scenarios with an arbitrary number of phenomenon boundaries increases more

rapidly than in scenarios with a single phenomenon boundary(see Section 3.5 for

more details). Therefore, the derivation of simplified fusion algorithms with low com-

plexity (but limited performance loss) is crucial.

A first possible choice is a direct extension of the sub-optimal approach in Sec-

tion 3.2.2 for scenarios with a single phenomenon status change. However, this class

of simplified fusion algorithms is not efficient in a scenariowith multiple boundaries,

since the number of comparisons with all possible sequencesof boundaries increases

exponentially with the number of sensors. Therefore, we nowintroduce another class

of reduced-complexity fusion algorithms, which do not makeuse of these compa-

risons. As before, we distinguish between two possible quantization strategy at the

sensors.

Binary Quantization

Define the following function:

fbq(k,ddd
k
1) ,

k

∑
i=1

[P(Hi = 0|di)−P(Hi = 1|di)] k = 1, . . . ,n (3.11)

2Note that in (3.10) the “argmax” function is used, instead ofthe “argmin” function used in (3.9),

since the objective function needs to be maximized.



3.2. Ideal Communication Links 99

wheredddk
1 = (d1, . . . ,dk). The key idea of our approach is the following. The func-

tion fbq(k,dddk
1) is monotonically increasing (or decreasing), with respectto k, while

the phenomenon does not change its status. In correspondence to each change of the

phenomenon status, the functionfbq(k,dddk
1) changes its monotonic behavior. More

precisely, a phenomenon variation from “0” to “1” corresponds to a change, trend-

wise, from increasing to decreasing; a phenomenon variation from “1” to “0” corre-

sponds to a change, trend-wise, from decreasing to increasing. Therefore, by detect-

ing the changes of the monotonic behavior offbq one can estimate the positions of

the boundaries. A graphical description of the behavior offbq is shown in Figure 3.1,

where the phenomenon under observation and the functionfbq in equation (3.11) are

shown, together with the estimated boundaries. In this pictorial example, the esti-

mated phenomenon coincides with the observed phenomenon.

Note that the proposed algorithm (3.11) does not take into account the number

of boundariesnbs in the observed phenomenon. However, as we will highlight in

Section 2.5.5, our numerical results show that the algorithm estimates accurately the

number of boundaries for sufficiently high values of the sensor SNR, i.e., when the

quality of the sensors’ observations is sufficiently high. Obviously, one may modify

the estimation strategy in order to take into account the value ofnbs. This will lead to

an improvement for small values of the sensor SNR, i.e., a scenario which is not of

interest for practical applications. The same considerations on possible refinement of

the estimation strategy also hold in the presence of multi-level or in the absence of

quantization.

The probabilityP(Hi = ℓ|di) (ℓ = 0,1; i = 1, . . . ,n) in (3.11) can be written, by ap-

plying the Bayes formula and following an approach similar to that in Section 3.2.2,

as

P(Hi = ℓ|di) =
P(di |Hi = ℓ)

P(di |Hi = 0)+P(di |Hi = 1)
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Figure 3.1: Illustrative example: the phenomenon under observation (solid line with

circles) and the corresponding functionfbq in (3.11) (dashed arrows). The estimated

boundaries are indicated by vertical arrows.

where we have used the fact thatP(Hi = 0) = P(Hi = 1) and

P(di |Hi = ℓ) =





P(s· ℓ+ni < τ) = P(ni < τ −s· ℓ) if di = 0

P(s· ℓ+ni > τ) = P(ni > τ −s· ℓ) if di = 1

= (1−di)Φ
(

τ −s· ℓ
σ

)
+di

[
1−Φ

(
τ −s· ℓ

σ

)]
. (3.12)

Absence of Quantization

In the absence of quantization at the sensors, one can introduce the following func-

tion:

fnq(k,rrr
k
1) ,

k

∑
i=1

[P(Hi = 0|r i)−P(Hi = 1|r i)] k = 1, . . . ,n

whererrrk
1 = (r1, . . . , rk) and

P(Hi = ℓ|r i) =
p(r i |H = ℓ)

p(r i |H = 0)+ p(r i |H = 1)
l = 0,1; i = 1, . . . ,n

with p(r i |H = ℓ) = pN (r i − ℓ ·s). The fusion algorithm at the AP is then identical to

that presented in the case with binary quantization, but forthe use offnq at the place

of fbq.



3.3. Noisy Communication Links 101

3.3 Noisy Communication Links

In this section, we investigate the impact of noisy communication links (between

the sensors and the AP) on the structures and performance of the proposed fusion

algorithms. In particular, we focus on scenarios withmulti-boundaryphenomena,

since the fusion rules for the scenarios with single boundary phenomena and noisy

communication links can be easily derived from the equivalent scenarios with ideal

communication links.

3.3.1 MMSE Fusion Rule

Binary Quantization

In this case, the noisy communication links between the sensors and the AP are mo-

deled as independent BSCs. Here, we denote asddd the sequence of binary decisions

at the sensors (as in Section 3.2.1) and asdddAP the sequence of binary decisions re-

ceived at the AP. Because of the presence of BSCs, the received decisionsdddAP might

differ from ddd (there could be “bit-flipping” in some of the links). In this scenario, the

MMSE estimation strategy at the AP becomes:

α̂αα = E
[
ααα |dddAP] .

The analytical framework described in (3.3)-(3.6) can be applied to this scenario as

well, by replacingddd with dddAP. In particular, thei-th decision received at the AP can

be expressed, using the BSC model, as

dAP
i =





di with probability (1− p)

1−di with probability p
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where p is the cross-over probability of the BSC. After a few manipulations, one

obtains:

P(dAP
i |ααα) = p+(1−2p)P



ni

dAP
i = 0
<
>

dAP
i = 1

τ −s· ℓ



 if i ∈ Iℓ(ααα)

= p+(1−2p)

{
(1−dAP

i )Φ
(

τ −s· ℓ
σ

)
+dAP

i Q

(
τ −s· ℓ

σ

)}
if i ∈ Iℓ(ααα)

with ℓ = 0,1.

Absence of Quantization

In a scenario with the absence of quantization, i.e., the sensors transmit real numbers

(the likelihood values) to the AP, the BSC model for noisy communication links does

not apply. In order to obtain results comparable with those associated with a scenario

with binary quantization, we consider AWGN communication links. In other words,

the i-th observable at the AP (i = 1, . . . ,n), denoted asrAP
i , can be written as

rAP
i = rsensor

i +ncomm
i (3.13)

wherersensor
i is the observable transmitted by thei-th sensor andncomm

i has a Gaussian

distribution N (0,σ2
comm). The value ofσ2

comm is set in order to be consistent with

the value of the cross-over probabilityp in the scenario with BSCs. In particular, in

the case with uncoded BPSK transmission over AWGN links, thefollowing relation

holds [123]:

p = Q

(√
Eb

σ2
comm

)
. (3.14)

Therefore, the value ofσ2
commcorresponding to a given value of the cross-over proba-

bility p of the equivalent BSC can be obtained from (3.14). This will allow to make a

fair performance comparison between the cases with binary quantization and without

quantization.
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After a few manipulations, one can conclude that the fusion rule described in

Section 3.2.1 still holds, by replacing the conditional PDFin (3.8) with the following:

p(r i |ααα) =





pcomm(r i) if i ∈ I0(ααα)

pcomm(r i −s) if i ∈ I1(ααα)
i = 1, . . . ,n

wherepcomm(r) , 1√
2π(σ2+σ2

comm)
exp
[
− r2

2(σ2+σ2
comm)

]
.

3.3.2 Simplified Fusion Rule

Binary Quantization

In order to extend the reduced-complexity fusion algorithmintroduced in Section 3.2.3

for a scenario with ideal communication links to a scenario with BSCs, the objective

function in (3.11) must be properly modified. In particular,the following expression

for the objective function can be derived:

fbq(k,ddd
AP
k , p) , (1−2p)

k

∑
i=1

[P(Hi = 0|dAP
i )−P(Hi = 1|dAP

i )] k = 1, . . . ,n.

(3.15)

As one can see, the only difference between (3.11) and (3.15)lies in the term(1−2p).

Sincep∈ (0,0.5), it follows that the term(1−2p) is always positive. Therefore, this

term does not influence the monotonic behavior of the sum at the right-hand side of

(3.15) and can be neglected without changing the behavior offbq. Finally, the condi-

tional probabilities in (3.12) can be extended to a scenariowith BSC communication

links as follows:

P(dAP
i |Hi = ℓ) = p+(1−2p)P



ni

dAP
i = 0
<
>

dAP
i = 1

τ −s· ℓ





= (1−dAP
i )

[
p+(1−2p)Φ

(
τ −s· ℓ

σ

)]
+dAP

i

{
p+(1−2p)Q

(
τ −s· ℓ

σ

)}
.

As shown in Section 3.2.3, the evaluation of these conditional probabilities is suffi-

cient for the implementation of the reduced-complexity fusion algorithm illustrated

in Figure 3.1.
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Absence of Quantization

As previously stated in Section 3.3.1, the fusion rule derived for a scenario with ideal

communication links in Section 3.2.3 still applies in the current scenario with noisy

communication links, but for the replacement ofP(Hi = ℓ|r i) with P(Hi = ℓ|rAP
i )(i =

1, . . . ,n; ℓ = 0,1), whererAP
i is defined in (3.13). After a few simple manipulations,

one obtains:

P(Hi = ℓ|rAP
i ) =

pcomm(rAP
i −s· ℓ)

pcomm(rAP
i )+ pcomm(rAP

i −s)
i = 1, . . . ,n ℓ = 0,1.

3.4 Numerical Results

We now analyze, through Monte Carlo simulations, the performance of the distribu-

ted detection schemes previously introduced. We denote asD the following quadratic

distance between the observed phenomenonHHH and its estimatêHHH:

D(HHH,ĤHH) ,
∣∣∣< (HHH ⊕ĤHH);(HHH ⊕ĤHH) >

∣∣∣
2

(3.16)

where the notation⊕ stands for bit-by-bit ex-or and̂HHH is the estimated phenomenon,

directly derived from the estimated boundaries’ positionsα̂αα . We will simply refer to

D as “distance.” note that expression (3.16) for the distancereduces toD(HHH,ĤHH) =

|α − α̂|2 in the case of single-boundary phenomena.

The Monte Carlo simulation results are obtained through thefollowing steps:

1. the number of boundaries and their positions are randomlygenerated according

to a uniform distribution3 (in the case of a single boundary, only its position is

randomly generated);

2. the sensors’ decisions (or the PDFs of the observables, according to the chosen

quantization strategy at the sensors) are transmitted to the AP;

3Obviously, after the position of a boundary is extracted, the following boundary position is ran-

domly chosen among the remaining positions. After all the boundary positions are extracted, they are

ordered. This implies that the multiple conditions in (3.1)are satisfied.
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3. the AP estimates the boundaries’ positions through either MMSE or simplified

fusion algorithms previously proposed;

4. the distanceD (between the true phenomenon and its estimate) is evaluated, on

the basis of the estimated sequence of boundaries;

5. steps 1÷4 are repeated a sufficiently large number of times, by generating dif-

ferent numbers of boundaries during each simulation run;

6. the average distanceD is finally computed as the arithmetic average of the

distances computed at the previous iterations (in step 4 at each iteration).

We point out that the proposed performance analysis leads tothe “average” perfor-

mance over all possible numbers of boundaries. Should one limit the analysis to a

fixednumber of boundaries, it is expected that the performance will either improve

(if the fixed number of boundaries is small) or worsens (if thefixed number of boun-

daries is large).

3.4.1 Ideal Communication Links

In Figure 3.2, the distanceD is shown, as a function of the sensor SNR, in a scenario

with single boundaryphenomena and ideal communication links. Two possible va-

lues for the numbern of sensors are considered: (i) 16 and (ii) 32. The results with

both absence of quantization and binary quantization at thesensors are presented.

One can observe that the distance reduces to zero for increasing values of the sensor

SNR in all considered scenarios; this is to be expected, since the sensors’ observations

and, consequently, the data sent to the AP are more and more reliable. For low values

of the sensor SNR, instead, the distance increases for increasing values of the number

of sensors, since larger values for the estimated boundary are possible and, therefore,

the distance may become larger. Note, also, that the performance degradation in-

curred by the use of quantization, with respect to the unquantized case, increases for

increasing numbers of sensors. No result in the case of multi-level quantization is

reported here. However, the results in [126] show that the use of higher-level quanti-

zation (e.g., 2 or 3 quantization bits) leads to a minor performance gain. Finally, the
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Figure 3.2: Distance, as a function of the sensor SNR, in a scenario withsingle boun-

daryphenomena and ideal communication links. Two possible values for the number

n of sensors are considered: (i) 16 and (ii) 32. The results with both absence of quan-

tization and binary quantization at the sensors are shown.

scheme with simplified fusion rule at the AP has a performanceworse than that of

the scheme with the MMSE fusion rule at the AP. However, the performance of the

simplified fusion algorithm is close to that of the MMSE fusion rule in the region of

interest (SNRsensor≥ 0 dB) and the performance loss reduces to zero for large values

of the sensor SNR.

In order to evaluate the loss incurred by the use of the simplified fusion algorithm,

it is expedient to introduce the following percentage loss:

P ,

√√√√√√
D

simp−D
MMSE

D
MMSE

︸ ︷︷ ︸
Term1

· D
simp−D

MMSE

n2
︸ ︷︷ ︸

Term2

. (3.17)

The intuition behind the definition ofP in (3.17), corresponding to the geometric

average of Term1 and Term2, is the following. Term1 represents the relative loss of

the simplified fusion rule with respect to the MMSE fusion rule. However, using

only this term could be misleading. In fact, for high sensor SNRs, the termsD
simp
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Figure 3.3: Percentage loss, as a function of the sensor SNR,in a scenario with a

single boundaryphenomenon and simplified fusion algorithm at the AP. The com-

munication links are ideal. Three different values for the numbern of sensors are

considered: (i) 8, (ii) 16, and (iii) 32. The performance in the presence of no quan-

tization (solid lines) is compared with that using binary quantization at the sensors

(dashed lines).

and D
MMSE

are much lower thann2 (the maximum possible distance). Therefore,

even ifD
simp

> D
MMSE

(for example,D
simp

= 4 andD
MMSE

= 1 with n = 32), both

algorithms might perform very well. The introduction of Term2 eliminates this am-

biguity, since it represents the relative loss (between MMSE and simplified fusion

algorithms) with respect to the maximum (quadratic) distance, i.e.,n2. In Figure 3.3,

the behavior ofP is shown as a function of the sensor SNR. In the region of interest

(SNRsensor≥ 0 dB), one can observe thatP is lower than 15%, i.e., the proposed sim-

plified fusion algorithm is effective. Note that the same considerations can be carried

out in a scenario with noisy communication links.

In Figure 3.4, the distance is shown, as a function of the sensor SNR, in scenarios

with multi-boundary phenomena and ideal communication links, withn = 8 sensors.

no quantization is considered at the sensors and the performance with the simplified

fusion algorithm at the AP is compared directly with that obtained using the MMSE
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Figure 3.4: Distance, as a function of the sensor SNR, in a scenario with amulti-

boundary phenomenon, consideringn = 8 sensors and absence of quantization

(MMSE and simplified fusion algorithms at the AP are considered). The commu-

nication links are ideal.

fusion rule. As expected, the distanceD reduces to zero for increasing values of the

sensor SNR and the performance with the MMSE fusion algorithm is better than

that with the simplified fusion algorithm. We recall that theperformance with the

MMSE fusion rule can be evaluated only in scenarios with a number n of sensors

not larger than 8, since the computational complexity becomes unbearable for values

of n larger than 8 (the simulations are too lengthy). In order to investigate scenarios

with larger numbers of sensors, the use of the reduced-complexity simplified fusion

algorithms derived in Section 3.2.3 is mandatory. Our results presented in [126] show

that the proposed simplified fusion rule is effective for allthe considered values of

the number of sensorsn, i.e., the distance reduces to zero for large values of the

sensor SNR. Moreover, the performance does not improve by using more than one

quantization bit at the sensors. It remains to be investigated what would be the relative

loss of the simplified fusion algorithm, with respect to the MMSE fusion algorithm,

in scenarios with multi-boundary phenomena. The fact that the quantization strategy

at the sensors has little impact seems to suggest that this relative loss mightnot be
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Figure 3.5: Distance, as a function of the cross-over probability p, in a scenario

with n = 8 sensors, binary quantization, and noisy communication links (modeled

as BSCs). Three values for the sensor SNR are considered: (i)-10 dB, (ii) 0 dB, and

(iii) 10 dB. Both MMSE and simplified fusion algorithms at theAP are considered.

negligible.

3.4.2 Noisy Communication Links

We finally investigate the impact of noisy communication links on the system perfor-

mance. In Figure 3.5, the distance is shown, as a function of the cross-over probability

p, in a scenario withn= 8 sensors and binary quantization—in this case, the commu-

nication links are modeled as BSCs. Three values for the sensor SNR are considered:

(i) -10 dB, (ii) 0 dB, and (iii) 10 dB. Both MMSE and simplified fusion algorithms

at the AP are considered. As previously observed in Figure 3.4, the use of the sim-

plified fusion algorithm at the AP leads to a performance worse than that with the

MMSE fusion algorithm. However, the higher is the sensor SNR, the lower is the dif-

ference between the performance of the two algorithms. Moreover, one can observe

that the distance might not converge to zero, due to the presence of twoindependent

noise components (i.e., observation and communication noises). For a sufficiently
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Figure 3.6: Distance, as a function of the sensor SNR, in a scenario withn = 8 sen-

sors, binary quantization, and noisy communication links (modeled as BSCs). Four

different values of the cross-over probabilityp are considered: (i) 0.1, (ii) 0.2, (iii)

0.3, and (iv) 0.4. Both MMSE and simplified fusion algorithmsat the AP are consi-

dered.

high value of the sensor SNR, however, the distance reduces to zero whenp tends to

zero (as confirmed by the results in Figure 3.4).

In Figure 3.6, the distanceD is shown, as a function of the sensor SNR, in a sce-

nario withn = 8 sensors, noisy communication links (modeled as BSCs), andbinary

quantization at the sensors. Four different values of the cross-over probabilityp are

considered: (i) 0.1, (ii) 0.2, (iii) 0.3, and (iv) 0.4. The performance with both MMSE

and simplified fusion algorithms at the AP is investigated. Unlike the results pre-

sented in Section 3.4.1 for a scenario with ideal communication links, there appears

to be a distance floor (higher than zero) for larger and largervalues of the sensor SNR.

This is to be expected, since the communication noise (independent of the observa-

tion noise at the sensors) prevents the AP from correctly recovering the data sent by

the sensors. In particular, when the cross-over probability is sufficiently high (e.g.,

p = 0.4), the performance does not depend on the value of the sensorSNR, since

the noisy communication links make the data sent by the sensors very unreliable. Fi-
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Figure 3.7: Distance, as a function of the sensor SNR, in a scenario withn = 8 sen-

sors, absence of quantization, and noisy communication links (modeled as AWGN

channels). Two different values of the equivalent bit errorrate p (corresponding to

different values ofσ2
comm according to (3.14)) are considered: (i) 0.1 and (ii) 0.2.

Both MMSE and simplified fusion algorithms at the AP are considered.

nally, one can observe that, for low values of the sensor SNR,the simplified fusion

algorithm shows a non-negligible performance loss with respect to the MMSE fusion

algorithm. This loss reduces to zero, for increasing valuesof the sensor SNR,only

for sufficiently small values ofp. In other words, if the communication links are not

reliable, then increasing the accuracy of the observationsat the sensors is useless.

Finally, in Figure 3.7 the distanceD is shown, as a function of the sensor SNR,

in a scenario withn = 8 sensors, absence of quantization, and noisy communication

links (modeled as AWGN channels). Two different values of the bit error ratep (cor-

responding to different values ofσ2
comm according to (3.14)) are considered: (i) 0.1

and (ii) 0.2. The performance of both MMSE and simplified fusion algorithms at the

AP is evaluated. One can observe that, unlike the case with binary quantization at the

sensors, the distance reduces to zero when the sensor SNR increases, i.e., no floor

appears. Moreover, the distance with the simplified fusion rule at the AP approaches
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that with the MMSE fusion rule, i.e., it reduces to zero. Thismeans that the proposed

simplified fusion algorithm is (asymptotically) effective. Obviously, this is only a

theoretical performance limit. In fact, even if the communication links were noisy,

the transmission of the “exact” observables (requiring an infinite bandwidth) from

the sensors would allow a correct estimation of the true phenomenon. This cannot

happen in realistic scenarios with limited transmission bandwidths.

3.5 Computational Complexity

It is now of interest to evaluate the improvement, in terms ofcomputational com-

plexity reduction with respect to the MMSE fusion rule, brought by the use of the

simplified fusion algorithms. As complexity indicators, wechoose the numbers of

additions and multiplications (referred to asns andnm, respectively) required by the

considered fusion algorithms, evaluated as functions of the number of sensorsn. The

following considerations are carried out referring to the formulas relative to the fu-

sion algorithms for the scenario with ideal communication links (i.e., the derivations

in Section 3.2). However, the same conclusions still hold for scenarios with noisy

communication links, since the structures of the proposed fusion algorithms are the

same in both scenarios (i.e., only the expression of the usedprobabilities and PDFs

change).

The numbers of operations (in terms of additions and multiplications) required by

the MMSE fusion algorithm arenopt
s = Θ(n2nbs) andnopt

m = Θ(n2nbs+1), respectively—

recall thatnbs is the number of boundaries. The notationf (n) = Θ(g(n)) means

that there exists ann0 such that forn > n0, ∃c1 ∈ (0,1), c2 > 1 such thatc1g(n) ≤
f (n) ≤ c2g(n) [128]. As described at the beginning of Section 2.5.5, in theconsi-

dered simulation set-up the numbernbs of boundaries is randomly chosen between

1 andn− 2. Therefore, one can assume that the phenomenon is characterized, on

average, byn−2
2 boundaries. Under this assumption, the numbers of additions and

multiplications required by the MMSE fusion algorithm would be nopt
s = Θ(nn−2)

andnopt
m = Θ(nn−1). On the other hand, the reduced-complexity fusion algorithm re-

quires onlyn additions, since no multiplication has to be performed. Therefore, the
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computational complexity of the proposed simplified fusionalgorithm is characte-

rized bynsub−opt
m = 0 andnsub−opt

s = n, showing a significant complexity reduction

with respect to the MMSE fusion algorithm—this also justifies the non-negligible

performance loss at small values of the sensor SNR.

3.6 Concluding Remarks

In this chapter, we have analyzed the problem of distributeddetection of spatially

non-constant binary phenomena, i.e., phenomena with statuses characterized by sin-

gle or multiple boundaries. We have proposed an analytical framework considering

various quantization strategies at the sensors: (i) no quantization at the sensors and

(ii) binary quantization. In all cases, the MMSE fusion algorithm at the AP has been

derived and the impact of relevant network parameters (e.g., the sensor SNR, the

communication noise level, and the number of sensors) has been investigated. Then,

low-complexity fusion rules for scenarios with single-boundary and multi-boundary

phenomena have been derived. We have shown that the performance penalty intro-

duced by the simplified fusion algorithms is asymptotically(for high sensor SNR and

low communication noise level) negligible. Finally, we have quantified the computa-

tional complexity reduction brought by the use of the simplified fusion algorithm with

respect to the MMSE algorithm. Our results underline that this complexity reduction

is pronounced in scenarios with multi-boundary phenomena.





Chapter 4

Distributed Detection of

Correlated Sources

4.1 Introduction

In this chapter, we study the performance of non-cooperative wireless multiple access

systems with noisy separated channels, where a generic number ofcorrelatedsources

communicate to an AP. Besides considering a “classical” scenario where the sources

are directly connected to the AP, the presence of a relay is taken into account and

its impact on the system performance is investigated. In both cases, scenarios with

block-faded links are considered. Our goal is to explore thepotential benefits which

can be obtained when channel coding is used and source correlation is exploited only

at the AP (and not at the sources). The AP feeds back to the transmitters simple power

control commands in order to counter-act the effects of fading. We consider LDPC-

coded communications, and compare different systems (withand without relaying)

by keeping fixed the overall coding rate. In relayed scenarios, we develop a novel

low-complexity joint detection/decoding iterative algorithm, and the impact of noisy

source-relay links on the overall performance is also takeninto account. Finally, two

simple feedback power control strategies are considered and a simulation-based per-

formance analysis is carried out.
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This chapter is structured as follows. In Section 4.2, preliminaries are given. In

Section 4.3, the LDPC-coded communication schemes of interest, with and without

relaying, are accurately described. In Section 4.4, simplepower control strategies are

proposed in a scenario with two correlated sources. The performance of the conside-

red schemes is evaluated in Section 4.5, and conclusions aredrawn in Section 4.6.

4.2 Preliminaries

Considern spatially distributed nodes which detect binary information signalsxxx(k) =

[x(k)
0 , . . . ,x(k)

L−1], wherek = 1, . . . ,n and L is the signals’ length (the same for all

sources). The information signals are assumed to be temporally white with P(x(k)
i =

0) = P(x(k)
i = 1) = 0.5 and the following simple additive correlation model is consi-

dered:

x(k)
i = bi ⊕z(k)

i i = 0, . . . ,L−1 k = 1, . . . ,n

where{bi} are independent and identically distributed (i.i.d.) binary random varia-

bles and{z(k)
i } are i.i.d. binary random variables with probabilityρ to be 0 (and 1−ρ

to be 1). Obviously, ifρ = 0.5 there is no correlation between the binary information

signals{xxx(k)}n
k=1, whereas ifρ = 1 the information signals are identical. According

to the chosen correlation model, the a-priori joint probability mass function (PMF)

of the information signals at the input of the sources at epoch i, with i = 0, . . . ,L−1,

can be computed. After a few manipulations, one can show that[94]

p(xxxi) = p(xxxi|bi = 0)p(bi = 0)+ p(xxxi|bi = 1)p(bi = 1)

=
1
2

[
ρnb(1−ρ)n−nb +(1−ρ)nbρn−nb

]
i = 0, . . . ,L−1 (4.1)

wherexxxi = (x(1)
i , . . . ,x(n)

i ) andnb = nb(xxxi) is the number of zeros inxxxi.

The information signals{x(k)
i } have to be delivered to an AP. In order to derive

more insights into the benefits of exploiting source correlation at the AP, besides

scenarios where the sources transmit directly to the AP, we also consider scenarios

with an intermediate node which acts as arelay between the sources and the AP. The
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use of a relay allows to increase the transmit diversity, under the assumption that the

AP can receive information from the sources and the relay. Although we preliminary

assume that the communication links between the sources andthe relay areideal—

this is reasonable, provided that the relay is relatively close to the sources—we then

generalize our approach to scenarios with noisy source-relay links.

In the presence of ideal source-relay links, the relay recovers, without errors,

the binary information signals{xxx( j)}n
j=1, with xxx( j) = [x( j)

0 , . . . ,x( j)
L−1]. For ease of un-

derstanding, we denote as “nodes” both the sources and the relay. In general, the

proposed scenario may includen+1 nodes, where the sources are indexed from 1 to

n and the relay is indexed byn+1.

Referring to the equivalent low-pass signal representation, we denote assss(k) the

complex samples transmitted by thek-th node (either a source or the relay) and as

N(k) the length ofsss(k). In Figure 4.1, we show a pictorial description of the proposed

scenario. Byfff (k) = [ f (k)
0 , . . . , f (k)

N(k)−1
] we denote the complex gain vector over thek-

th link, which encompasses both path loss and fading, andnnn(k) = [n(k)
0 , . . . ,n(k)

N(k)−1
]

is a complex AWGN vector. Regarding the fading affecting thecommunication links

from the nodes to the AP, we assume that the fading isconstantfor the entire duration

of a transmission, i.e.,f (k)
i = f (k) for i = 0, . . . ,N(k)−1, so that the channel link gain

can be perfectly estimated at the AP. The fading coefficients{ f (k)} are assumed to

vary independently over consecutive transmitted packets.Moreover, the channel gain

is assumed to be Rayleigh distributed (under perfect phase recovery) withE[| f (k)|2] =
1.

The transmitting rates at the nodes (both at the sources and the relay) depend on

the distributed coding strategy: if no relay is used, then the transmitting rate at thek-th

source ish(k) = L/N(k), for k = 1, . . . ,n; if the relay is used, then the transmitting rate

at each source node is 1 and the transmitting rate at the relayis h(n+1) = L×n/N(n+1).

In general, there can be distributed channel coding both at the sources and at the

relay, so that the network can be characterized byn+1 transmitting rates{h(k)}n+1
k=1.

We denote asννν(k) = [ν(k)
0 , . . . ,ν(k)

N(k)−1
] the binary (not modulated) codeword (ν(k)

i ∈
{0,1}) generated at thek-th node.

For simplicity, BPSK is used, i.e.,s(k)
i = y(k)

i

√
E(k)

c , wherey(k)
i = 2ν(k)

i −1 = ±1
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Figure 4.1: Proposed multi-access communication scenario: n source nodes (SNs)

communicate directly, and, possibly through a relay node (RN), with the AP.
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andE(k)
c is the energy per coded bit transmitted by thek-th node. Therefore, for the

sources’ transmitters (i.e., fork = 1, . . . ,n) yyy(k) = [y(k)
0 , . . . ,y(k)

N(k)−1
] is a function of

the information signalxxx(k), while for the relay node transmitter (if present)yyy(n+1)

is a function of all the information signals{xxx(k)}n
k=1. Assuming a perfect channel

estimator at the receiver, the real observable at the AP, after matched filtering and

carrier-phase estimation, can be expressed as

r(k)
i = | f (k)|

√
E(k)

c y(k)
i + η (k)

i i = 0, . . . ,N(k)−1 k = 1, . . . ,n (4.2)

whereη (k)
i is an AWGN variable with zero mean and varianceN0/2.

4.3 LDPC-Coded Communication Schemes with and with-

out Relaying

Recent results show clearly that exploiting the source correlation at the receiver leads

to an implicit diversity effect which improves the performance in block faded scena-

rios [129]. Since the use of arelay further increases the diversity degree, it is then of

interest to evaluate the relative impact of the exploitation of the source correlation in

this scenario, and compare directly the obtained performance with that in a scenario

without relay.

4.3.1 Scenarios with No Relay

In scenarios with no relay, the information sequences are separately encoded using

identical LDPC codes and transmitted over the communication links. In this case,

N(k) = N (k = 1, . . . ,n), and we assume that the common coding rate at the sources is

L/N = 1/2. The proposed iterative decoding scheme at the AP is shown in Figure 4.2,

where an LDPC decoder per source is considered and the trajectory of the iterative

decoding process among these source decoders is highlighted—this decoding scheme

is an extension of those, relative to two sources, discussedin [76, 77]. Each LDPC-

coded sequence is decoded by using the classical sum-product algorithm [1]. Under
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Figure 4.2: Iterative decoding scheme of correlated data inthe absence of relay.

Each component decoder DECi , (i = 1, . . . ,n) is an LDPC decoder, which receives

both the channel LLRs and a priori probabilities obtained byproperly processing

the soft-output reliability values generated by the other decoders. These process-

ing/combining operations are carried out in the central block denoted as “COMB.”

the assumption of perfect channel state information (CSI) at the receiver, the channel

LLR at the input of thei-th variable node [1] can be expressed as

L
(k)
i,ch = ln

p(r(k)
i |y(k)

i = 1, f (k)
i )

p(r(k)
i |y(k)

i = −1, f (k)
i )

=
2r(k)

i

√
E(k)

c

∣∣∣ f (k)
i

∣∣∣
σ2 (4.3)

whereσ2 = N0/2. The maximum number ofinternal decoding iterations in each

component LDPC decoder is denoted asnint−max
it .

The a priori information about the correlation between the sources is exploited

by applying the followingexternaliterative decoding steps between the component

LDPC decoders: (i) the a posteriori reliability (i.e., the LLR) on theinformation1 bits

1Note that only the information bits are considered in the exchange of reliability information bet-

ween the component LDPC decoders, since the coded bits are not directly correlated.
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of the j-th decoder is properly modified, taking into account the correlation (as will

be explained later), and used as a priori reliability for theinformation bits at the input

of theℓ-th decoder (j 6= ℓ); (ii) at the first external iteration, the a priori reliability on

the information bits at the input of theℓ-th decoder is obtained by properly modifying

the a posteriori reliability of thej-th decoder (j < ℓ); (iii) the algorithm stops when a

maximum number of external iterations (denoted asnext
it ) is reached.

The total LLR at the input of each variable node of the factor graph underlying

theℓ-th LDPC decoder can be expressed as follows:

L
(ℓ)
i,in =





L

(ℓ)
i,ch+L

(ℓ)
i,ap i = 0, . . . ,L−1

L
(ℓ)
i,ch i = L, . . . ,N−1.

In other words, the LLR at the input of the variable nodes associated with the infor-

mation bits (i = 0, . . . ,L−1) includes, besides the channel reliability value expressed

as in (4.3), the “suggestion” (given by the soft reliabilityvalueL
(ℓ)
i,ap) obtained from

a posteriori reliability values output by the other decoders. In particular, the a priori

component of the LLR at the input of theℓ-th decoder can be written as

L
(ℓ)
i,ap = ln

P(y(ℓ)
i = 1)

P(y(ℓ)
i = −1)

i = 0, . . . ,L−1

whereP(y(ℓ)
i = ±1) are derived from the soft-output values generated by the other

decoders, as follows. In a straightforward manner, one can rewriteP(y(ℓ)
i ) as

P(y(ℓ)
i ) =

1
n−1

[
P(y(ℓ)

i )+ . . .+P(y(ℓ)
i )
]

︸ ︷︷ ︸
n−1 times

. (4.4)

Using Bayes’ theorem [94], the probabilityP(y(ℓ)
i ) can be expressed as

P(y(ℓ)
i ) = ∑

y(k)
i =±1

P(y(ℓ)
i ,y(k)

i ) = ∑
y(k)

i =±1

P(y(ℓ)
i |y(k)

i )P(y(k)
i ) k= 1, . . . ,N & k 6= ℓ.

(4.5)

Approximating the a priori probabilityP(y(k)
i ) in (4.5) with thea posteriorireliability

value, denoted aŝP(y(k)
i ), output by thek-th decoder (k 6= ℓ), from (4.5) one obtains:

P(y(ℓ)
i ) ≃ ∑

y(k)
i =±1

P(y(ℓ)
i |y(k)

i )P̂(y(k)
i )
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where

P̂(y(k)
i ) =






e
L

(k)
i,out

1+e
L

(k)
i,out

if y(k)
i = +1

1

1+e
L

(k)
i,out

if y(k)
i = −1.

At this point, we evaluate the conditional probabilityP(y(ℓ)
i |y(k)

i ) in (4.5) using thea

priori distribution (rather than a posteriori reliability values). By using Bayes’ theo-

rem, it follows that

P(y(ℓ)
i |y(k)

i ) =
P(y(ℓ)

i ,y(k)
i )

P(y(k)
i )

= 2P(y(ℓ)
i ,y(k)

i )

where we have used the fact thatP(y(k)
i =−1) = P(y(k)

i = +1) = 1/2, since the BPSK

symbols are supposed to bea priori equiprobable. Finally, (4.4) can be approximated

as

P(y(ℓ)
i ) ≃ 2

n−1

n

∑
k=1
k6=ℓ

∑
y(k)

i =±1

P̂(y(k)
i )

︸ ︷︷ ︸
[from decoderk]

· P(y(k)
i ,y(ℓ)

i )
︸ ︷︷ ︸

[a priori source correl.]

(4.6)

whereP(y(k)
i ,y(ℓ)

i ) can be obtained by marginalization of then-th dimensional a-priori

joint PMF {P(y(1)
i ,y(2)

i , . . . ,y(n)
i )} of the information sequences at the input of the

sources.2 The intuition behind (4.6) consists in modifying the input apriori probabi-

lity of a single bit by taking into account, through a weighted average, the reliability

values (on the same bit) generated by the other decoders. In particular, the weight

of the reliability value generated by thek-th decoder is given by the joint a priori

probability between theℓ-th and thek-th decoders.

4.3.2 Scenarios with a Relay andIdeal Source-Relay Links

In a scenario with a relay, the uncoded information sequences are transmitted by

the sources, and channel coding is considered only at the relay. As anticipated in

2Since the a priori probabilities need to be evaluated for thesystematic bits, in this caseν(k)
i =

x(k)
i and, therefore,{P(y(1)

i ,y(2)
i , . . . ,y(n)

i )} = {P(2x(1)
i −1,2x(2)

i −1, . . . ,2x(n)
i −1)}. The joint PMF of

{y(k)
i }n

k=1 can then be obtained directly from (4.1). Note that equation(4.6) is an approximation since,

heuristically, the first probability in the summation at theright-hand side is obtained from the reliability

values generated by the other decoder, whereas the second probability is a priori.
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Figure 4.3: Decoding scheme in the presence of two sources and a relay. The modified

factor graph for the (2,4) LDPC code presented in [1] is considered.

Section 4.2, due to the broadcast nature of the communication from the sources, we

assume that the information sequences are also received by the relay. At this point, the

relay multiplexes the data received from the sources to forman information sequence

xxx, encodes it using a systematic LDPC code, and sends the parity bits of the codeword

to the AP. While the decoding structure proposed in the remainder of this subsection

is rigorously valid for error-free source-relay links, in Section 2.5.5 the impact of

noisy source-relay links will be evaluated.

At the AP there is a single LDPC decoder. However, the channelLLRs have

to be properly modified to take into account the correlation at the sources. A pic-

torial description of the modified factor graph for the (2,4)LDPC code presented

in [1] is shown in Figure 4.3. In particular, there are two sources generatingL = 2

information bits each and the relay uses a code with rate 1/2.As one can see from

Figure 4.3, the factor graph is modified so that the variable nodes corresponding to

correlated (information) bits are connected. We now characterize this “connection”

in a general scenario withn sources. Sincey(k)
i (for the k-th source) is correlated

to {y(ℓ)
i } (ℓ = 1, . . . ,k−1,k+ 1, . . . ,n), it follows thaty(k)

i depends on{r(ℓ)
i }n

ℓ=1: on

(r(1)
i , . . . , r(k−1)

i , r(k+1)
i , . . . , r(n)

i ) through (y(1)
i , . . . ,y(k−1)

i ,y(k+1)
i , . . . ,y(n)

i ) and onr(k)
i
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directly. The LLR at the input of each variable node can be written as

L
(k)
i,in = ln

P(y(k)
i = 1|rrr i , fff i)

P(y(k)
i = −1|rrr i , fff i)

whererrr i = (r(1)
i , . . . , r(n)

i ) and fff i = ( f (1)
i , . . . , f (n)

i ) are the vectors of the observables

and the links’ gains on which thek-th information symbol depends. The generic term

P(y(k)
i |rrr i , fff i) can be computed, by using the total probability theorem and the Bayes

formula [94], as3

P(y(k)
i |rrr i , fff i) = ∑

y(1)
i =±1

· · · ∑
y(k−1)

i =±1

∑
y(k+1)

i =±1

· · · ∑
y(n)

i =±1

P(yyyi |rrr i , fff i)

=
P( fff i)

p(rrr i, fff i)︸ ︷︷ ︸
Ωi

·



 ∑
y(1)

i =±1

· · · ∑
y(k−1)

i =±1

∑
y(k+1)

i =±1

· · · ∑
y(n)

i =±1

p(rrr i|yyyi, fff i)P(yyyi)





= Ωi ∑
y(1)

i =±1

· · · ∑
y(k−1)

i =±1

∑
y(k+1)

i =±1

· · · ∑
y(n)

i =±1

P(yyyi)
n

∏
ℓ=1

p(r(ℓ)
i |y(ℓ)

i , f (ℓ)
i ) (4.7)

whereyyyi = (y(1)
i , . . . ,y(n)

i ), the conditional independence ofr(k)
i and r(ℓ)

i (k 6= ℓ) has

been used, andΩi does notdepend onyyyi. After a few manipulations, one obtains

L
(k)
i,in =





L

(k)
i,ch+L

(k)
i,corr i = 0, . . . ,L−1

L
(k)
i,ch i = L, . . . ,N−1.

whereL
(k)
i,ch is defined as in (4.3) and

L
(k)
i,corr = ln

∑y(1)
i
· · ·∑y(k−1)

i
∑y(k+1)

i
· · ·∑y(n)

i
P(y(1)

i , . . . ,y(k)
i = 1, . . . ,y(n)

i )

∑y(1)
i
· · ·∑y(k−1)

i
∑y(k+1)

i
· · ·∑y(n)

i
P(y(1)

i , . . . ,y(k)
i = −1, . . . ,y(n)

i )

+ ln
∏n

ℓ=1
ℓ 6=k

p(r(ℓ)
i |y(ℓ)

i = +1, f (ℓ)
i )

∏n
ℓ=1
ℓ 6=k

p(r(ℓ)
i |y(ℓ)

i = −1, f (ℓ)
i )

.

3Note that only the LLRs at the input of the variable nodes associated with the information bits has

to be modified in order to take into account the correlation between source nodes.
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4.3.3 Scenarios with a Relay andNoisy Source-Relay Links

The analysis of relayed scenarios has been carried out, so far, in the presence of

noiseless links between the sources and the relay. We now generalize this scenario

introducingnoisysource-relay communication links. In this case, we consider two

possible relaying strategies: (i) the relay uses the proposed LDPC-coded strategy and

adds parity bits,regardlessof the status of the source-relay links; (ii) the relay is

“genie-aided” and adds parity bitsonly if there is no error in the source-relay links;

otherwise, no parity bit is added and the AP receives only theinformation bits from

the source. While the system performance with the first strategy (non-genie-aided

relay) can be evaluated directly through simulations, in the following paragraph we

propose a simple semi-analytical approach to estimating the BER performance with

the second strategy (genie-aided relay). We remark that a genie-aided scheme could

be implemented by using cyclic-redundancy check (CRC) codes in the transmission

from the sources. These codes achieve a very low detection error rate, and its influ-

ence on the BER at the AP can be neglected. However, should these codes be used,

the overall coding rate would be influenced (reduced) by them. For the sake of sim-

plicity, we simply assume that there is a “genie.”

Since we are considering packetized transmissions, we define asPpck−corr the pro-

bability of correct reception of an information data packet(of L bits) by the relay. As-

suming, for simplicity, memoryless4 source-relay channels with binary modulations

(e.g., strong line-of-sight communication channels) and that the relay does not ex-

ploit the source correlation, it follows thatPpck−corr = (1−BERs−r)
L, where BERs−r

depends on the type of source-relay link: for example, in thecase of AWGN links,

BERs−r = Q(
√

2SNRs−r), where SNRs−r is the SNR at the relay. Given the indepen-

dence between different source-relay links, the probability of correct reception of all

the information packets from all sources is thenPcorr = (Ppck−corr)
n. The BER at the

AP can then be expressed as follows:

BER= BER1 × Pcorr+BER2 × (1−Pcorr)

4Our approach can be extended to the case of block-faded source-relay links, by properly evaluating

the packet error probability.
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where BER1 is given by the BER (previously evaluated through simulations) in the

presence of ideal source-relay communication links and BER2 is the BER influenced

by the presence of noise in the source-relay communication links. The value BER2
depends on the detection strategy followed by the relay, either genie-aided or not. In

the presence of errors in the source-relay links, the genie-aided relay does not add

any redundancy, so that BER2 = BERunc, where BERunc is the BER with uncoded

transmission from sources to AP: if the correlation source is not exploited at the AP,

then BERunc = 0.5× [1−
√

SNRs−r/(1+SNRs−r)]; if the correlation is exploited

at the AP, then BERunc can be obtained as shown in [129]. In the presence of a non-

genie-aided relay, BER2 is obtained by simulations, using the same iterative decoding

strategy developed in the case with ideal source-relay links. Obviously, the AP is

assumed to be aware of the coding/no-coding choice of the relay.

4.4 Power Control for Distributed Detection of Correlated

Sources

We now focus on scenarios withn = 2 spatially correlated sources. As discussed in

Section 4.3, we assume that the AP can estimate perfectly thefading coefficients of

the wireless links, i.e.,f (1), f (2), and, in the presence of a relay,f (3). Considering

packetized transmissions, with fading constant for a packet duration, we assume that

the fading coefficients are estimated before the transmission of each data packet—

for example, through the use of pilot symbols. On the basis ofthis estimation and a

proper decision rule, the AP feeds back to thei-th transmitter (i = 1,2,3) a power

control command. The feedback is assumed to be ideal, i.e., afeedback power con-

trol command is received without error. Our approach can be directly extended to

scenarios with noisy feedback.

Two possible feedback power5 control strategies are considered.

• Balanced SNRs power control strategy. In this case, the same reference SNR

5The control power rule can be equivalently expressed as a transmit energy control rule, by taking

into account the symbol time interval.
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Table 4.1: Balanced SNRs feedback power control strategy. Depending on the value

of the instantaneous SNRγ(k)
b−inst. at the end of thek-th link, the AP sends a command

(expressed in terms of bit energy correction) to thek-th node.

γ(k)
b−inst. ∆Eb

[dB] [dB]

(γref +2.5,+∞] -3

(γref +1.5,γref +2.5] -2

(γref +0.5,γref +1.5] -1

(γref−0.5,γref +0.5] 0

(γref−1.5,γref−0.5] +1

(γref−2.5,γref−1.5] +2

(−∞,γref−2.5] +3

value, denoted asγref, is considered for all links and is set equal to the com-

mon average SNRγb. Then, depending on the value of the instantaneous6 SNR

γ(k)
b−inst., the power control strategy shown in Table 4.1 is applied: depending on

the relative values ofγ(k)
b−inst. andγref, a power control command (expressed in

terms of bit energy correction) is chosen.

• Unbalanced SNRs power control strategy. In this case, the AP compares the

instantaneous SNRs of the links and ranks them from maximum to minimum.

Defining kmax = argmaxk{γ(k)
b−inst.}, kmin = argmink{γ(k)

b−inst.}, and, in the case

with a relay,kinterm as the index of the link with intermediate SNR, the AP

assigns different reference SNR values{γ(k)
ref } to the various links. Then, for

the k-th link the same power control strategy shown in Table 4.1 isapplied,

replacingγref with γ(k)
ref .

By trial and error, we found that: in the case without relay, the optimized un-

balanced reference SNRs areγ(kmax)
ref = γb +1.6 dB andγ(kmin)

ref = γb−1.6 dB; in

6We are implicitly assuming that the AP knows the AWGN variance.
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the case with a relay, the optimized unbalanced reference SNRs areγ(kmax)
ref =

γb +1.8 dB,γ(kinterm)
ref = γb, andγ(kmin)

ref = γb−1.8 dB.

In both the power control strategies outlined above, 7 feedback commands are con-

sidered per link. For example, these commands could be implemented considering

a 3-bit feedback. For simplicity, we will refer to this case as 3-bit feedback. In Sec-

tion 4.5, for comparison we will also consider a scenario with infinite-bit feedback

commands, i.e., perfect fading compensation.

4.5 Numerical Results

The considered coding schemes are as follows: (i) in scenarios with no relay, each of

the source sequences is encoded using a regular (3,6) LDPC code with rate 1/2 and

L = 1000, and each component decoder performs a maximum numbernint−max
it of in-

ternal iterations set to 50, whereas the numbernext
it of external iterations between the

two decoders is set to 20; (ii) in scenarios with a relay, eachof the source sequences

has a lengthL = 1000 and the relay uses a regular (3,6) LDPC code with rate 1/2

(the corresponding single LDPC decoder performs a maximum numbernint−max
it of

iterations set to 50) and information sequence length givenby n×1000, so that com-

parisons between scenarios with and without relay are carried out for the same infor-

mation rate. The LDPC code is constructed in the samerandomfashion previously

explained in Chapter 2.

In Figure 4.4, the BER is shown, as a function of the SNR at the AP. Various

systems are considered: (i) without relay, without exploiting the correlation at the AP

(W/O R, W/o c); (ii) without relay, exploiting the correlation (W/o R, W c); (iii) with

relay, without exploiting the correlation (W R, W/o c), (iv)with relay and exploiting

the correlation (W R, W c). In the relayed scenarios, the source-relay links are ideal.

The correlation coefficientρ is set to 0.95. The bit energyE(k)
c is set equal to a

common valueEc for all the links. Different values for the numbern of sources are

considered: 2, 3, and 4. As expected, relayed schemes have a higher transmit diversity

and, therefore, the performance is better than that in scenarios with no relay. In fact, in

relayed scenarios, even if one link is heavily faded, there might be two other reliable
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Figure 4.4: BER, as a function of the SNR at the AP, in a scenario with source-

AP links with block-constantRayleigh fading (independent from link to link). The

correlation coefficientρ is set to 0.95. Various systems are considered.

communication links available to the AP, allowing the latter to successfully recover

the information sequences by exploiting their correlation. On the other hand, in the

scenario with no relay, if one link is heavily faded, only onesupplementary reliable

link could be available and this could not be sufficient for the AP.

In Figure 4.5, the SNR required to achieve a BER equal to 10−4 is shown, as

a function of thecorrelation coefficientρ , in various LDPC-coded scenarios. In the

relayed cases, the source-relay links are ideal. The numberof sourcesn is either 2

or 4. For comparison, the SNR required when the source correlation is not exploited

is also shown, both in the presence and in the absence of a relay. As one can see, in

thepresenceof a relay the performance improvement is “smoother” than inthe case

without a relay and, for any value ofρ , there is approximately the same SNR gain

when the numbern of sources increases from 2 to 4. In theabsenceof a relay, while

the SNR gain is negligible for values ofρ lower than 0.8, for higher values ofρ the

gain is more pronounced than in the presence of a relay. In theabsence of a relay,

however, the number of sources seems to have a limited impacton the SNR gain.

In Figure 4.6, we evaluate the impact of noisy source-relay communication links,
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Figure 4.5: SNR, as a function of thecorrelation coefficientρ , required to achieve

a BER equal to 10−4 in an LDPC coded scenario with block-faded links. Various

systems are considered.
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Figure 4.6: Impact of the noise in the source-relay links on the BER performance

(at the AP) in scenarios with a relay and (a)n = 2 or (b) n = 4 sources. The BER

at the end of the noisy source-relay links is set to 10−4. The correlation coefficient

is set toρ = 0.95. For comparison, the performance in the ideal case with noiseless

source-relay links is also shown.
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in scenarios with a relay and (a)n= 2 or (b)n= 4 sources. The correlation coefficient

is set toρ = 0.95. As a reference, the performance results in the case of noiseless

source-relay links (from Figure 4.4) are also shown. The performance results in the

presence of a genie-aided relay correspond to a scenario with BERs−r = 10−4. As

one can see, besides a relevant loss, the slope of the BER curves reduces, since the

use of the relay is limited only to the cases without source-relay link errors, i.e.,

the diversity degree reduces. In the same figure, the Monte Carlo simulation results

without genie-aided relay selection are shown, considering a source-relay BER equal

to 10−4. It can be observed that in the considered SNR range the performance of the

coded (with non-genie-aided relay) schemes is better than that of the schemes with a

genie-aided relay. However, the BER of the coded schemes reaches a floor, regardless

of the use of correlation, equal to BERs−r = 10−4, for both considered values ofn.

This can be explained as follows. For large values ofγb, the AP receives correctly

the information bits (transmitted by the sources) and the parity bits (transmitted by

the relay). If there is a single bit error in the source-relaylinks, since a (3,6) LDPC

code is used, 3 parity bits generated by the relay are “flipped” and received by the AP.

At high SNRs, in the LDPC decoder, instead of correcting the three erroneous parity

bits, inverts the correct information bit, since the three parity bits have a stronger

influence in the message passing-based decoding process. Therefore, at high SNRs

the BER at the AP is equal to the probability of bit error in thesource-relay links, i.e.,

BERs−r. Therefore, in the presence of a high noise level in the source-relay links, it

follows that the use of a relay is detrimental.

In order to understand further the impact of the noise over the source-relay links,

in Figure 4.7 the BER at the AP is shown as a function of the source-relay link

BER, considering (a) a coded scheme (with non-genie-aided relay) and (b) a scheme

with genie-aided relay. In both cases, the number of sourcesis set to 2 or 4, and

two possible values of the source/relay-AP link SNR are considered. The correlation

coefficient is set toρ = 0.95. As one can see comparing Figure 4.7 (a) with Fi-

gure 4.7 (b), while for low values of BERs−r the performance of the schemes which

make always use of the distributed LDPC coding scheme is better, when the source-

relay links become very noisy (for instance, BERs−r > 10−2) then the genie-aided
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Figure 4.7: BER at the AP, as a function of the source-relay BER, in relayed scenarios

(a) with fixed (non-genie-aided) coding at the relay and (b) with the genie-aided

approach. In each case, two values of the SNRγb at the AP are considered, namely

10 dB and 15 dB, and the number of sourcesn is either 2 or 4. The correlation

coefficient is set toρ = 0.95. In all cases, the performance is evaluated exploiting or

not the source correlation at the AP.

scheme is preferable. This result suggests that, in order tooptimize the performance

of the considered multiple access schemes, an “adaptive” relayed scheme should be

used, such that the relay decides which strategy should be adopted depending on the

noise level in the source-relay links. In particular, in Figure 4.7 (b) the limiting per-

formance curve in the presence of coding (non-genie-aided)is shown: as one can see,

the “switching” point from non-genie-aided to genie-aidedcorresponds to a scenario

in which BER≃BERs−r. In other words, if BERs−r < BER, then the coded scheme is

robust, i.e., the use of a relay leads to a performance improvement; if BERs−r > BER,

then the use of a relay is detrimental.

As intuitively expected, the relay should be used only when the quality of the

source-relay links is better than the quality of the direct source-AP (and relay-AP)

links. While we consider the introduction of redundancy only at the relay, in the

presence of noisy source-relay links it is expected that thesystem performance could

be optimized considering also the use of proper channel coding in the source-relay
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Figure 4.8: BER, as a function of the SNR at the AP, in scenarios (a) without a relay

and (b) with a relay. The correlation coefficientρ is set to 0.95, and the performance

is analyzed exploiting or not the correlation at the AP. In the case of feedback, theba-

lancedSNRs power control strategy is considered. For comparison,the performance

with infinite-bit feedback is also considered.

transmissions, with rate adaptation on a link basis. This goes beyond the scope of our

chapter, but represents an interesting extension.

In Figure 4.8, the BER is shown, as a function of the average SNR at the AP,

in scenarios (a) without a relay and (b) with a relay. The system performance is ana-

lyzed exploiting or not the correlation at the AP. In the caseof feedback, thebalanced

SNRs power control strategy is considered: for each value ofthe average SNR, the

associated BER is obtained after feedback power control. Asone can see, the use of

3-bit feedback leads to a performance improvement for sufficiently high values of the

average SNR, both with and without the exploitation of the correlation at the AP. In

particular, the performance improvement, in terms of average SNR, is approximately

3 dB, and for all values of the average SNR the energy saving isbetween 0.4 dB and

0.6 dB. The energy saving is more pronounced in a scenario with no relay (0.45 dB

without and 0.59 dB with exploitation of the correlation at the AP, respectively) with

respect to a scenario with relay (0.39 dB without and 0.38 dB with exploitation of

the correlation at the AP, respectively). As one can see comparing the results in Fi-
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Figure 4.9: BER, as a function of the SNR at the AP, in scenarios (a) without a

relay and (b) with a relay, consideringunbalancedSNR power control strategy. For

comparison, the performance results in the presence of abalancedSNRs feedback

strategy (from Figure 4.8) are also shown. The correlation coefficientρ is set to 0.95,

and the performance is analyzed exploiting or not the correlation at the AP.

gure 4.8 (a) with those in Figure 4.8 (b), the benefits of the use of feedback are slightly

reduced in the scenario with a relay. In both subfigures, for comparison, the perfor-

mance with infinite-bit feedback is also shown. The obtainedresults correspond to

those in a scenario with AWGN communication links, i.e., where the fading has been

perfectly recovered.

In Figure 4.9, the BER is shown, as a function of the SNR at the AP, in scenarios

(a) without a relay and (b) with a relay, considering anunbalancedSNRs 3-bit feed-

back power control strategy. For comparison, the performance in the presence of a

balanced SNRs feedback power control strategy (from Figure4.8) is also shown. As

one can see from the case (a), the use of an unbalanced SNRs rule leads to slightly

better performance for low values of the average SNR, and to slightly worse perfor-

mance for high values of the average SNR. In this case, the energy saving depends on

the considered scenario; in particular, there is a gain of 0.15 dB, with respect to the

balanced SNRs strategy, in a scenario without exploitationof the correlation at the

AP, whereas there is a negligible gain when the correlation is exploited at the AP. In
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the case with infinite-bit feedback, the performance with the unbalanced SNRs rule

(not reported here for lack of space) is very similar to that shown in Figure 4.8. Unlike

the scenario with no relay considered in Figure 4.9 (a), in the presence of a relay the

unbalanced SNRs feedback rule leads to a performance improvement, with respect

to the balanced SNRs feedback rule, for all the values of the average SNR. However,

unlike the scenario with no relay, the unbalanced SNRs feedback rule leads to an en-

ergy loss, with respect to the balanced SNRs rule, for all thevalues of average SNRs.

Although this loss is negligible for low values of the SNR, itbecomes larger (about

1 dB) for higher values of the SNR (around 10 dB). Therefore, in coded schemes

with a relay and a limited feedback, novel feedback power control strategies have to

be devised, taking into account the code characteristics (for example, protecting more

the parity bits stream, rather than the systematic bit stream).

4.6 Concluding Remarks

In this chapter, we have analyzed wireless multiple access communication systems

where a generic number ofcorrelatedsources communicate, through separated block-

faded channels, to an AP, with or without an intermediate relay. LDPC-codedtrans-

missions have been considered, and we have derived effective iterative receiver struc-

tures at the AP to exploit the source correlation. In particular, the novel iterative

receiver for relayed scenarios has a complexity significantly lower than that of the

iterative receiver for scenarios with no relay. The impact of noisy source-relay links

in relayed coded schemes has also been evaluated. The obtained results show that the

relay should add redundancy only if the quality of the source-relay links is better than

that of the direct source-AP (and relay-AP) links.

Finally, we have evaluated the impact of feedback. We have considered two sim-

ple feedback power control strategies, denoted as balancedSNRs (the quality of all

links tend to be equalized to the average link quality) and unbalanced SNRs (the

quality of the best link is improved, and viceversa for the worst link). Our results

show that the improvement brought by the use of balanced SNRs3-bit feedback is

similar both in the presence or absence of a relay, although the energy savings are



136 Chapter 4. Distributed Detection of Correlated Sources

more pronounced in a scenario with no relay. In the case of unbalanced SNRs 3-bit

feedback strategy, in the coded case the performance improvement, with respect to

the balanced SNRs feedback strategy, is limited in a scenario without a relay and dis-

appears in a scenario with a relay. This suggests that novel feedback power control

strategies, with respect to the simple ones proposed in thisthesis, should be devised

in the presence of a relay.



Chapter 5

Concluding Remarks and Future

Work

In this thesis, we have investigated how to incorporate the structural properties of the

physical phenomenon under observation into the design of distributed detection algo-

rithms for sensor networks. In particular, three differentmodels have been considered

for characterizing the phenomenon under observation.

First, phenomena with the same status across all sensors have been analyzed. In

this scenario, distributed detection in the presence of multi-level majority-like infor-

mation fusion has been proposed, deriving both a communication-theoretic and an

information-theoretic analytical framework. We have shown that uniform clustering

leads to a lower probability of decision error than non-uniform clustering. The impact

of noisy communication links has then been investigated andthe analytical results

have been confirmed by simulation results. In this scenario,the presence of a non-

constant SNR profile at the sensors and the use of a joint detection/decoding/fusion

strategy at the AP has been properly taken into account in thedesign of distributed de-

tection techniques. Our results suggest that the use of repetition codes (i.e., multiple

observations) is often the winning choice. The design of more powerful distributed

channel codes is an open issue.

In the presence of spatially constant phenomena, an analytical framework to com-
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pute thenetwork lifetimeof clustered sensor networks has also been derived. Reclu-

stering techniques for maximizing the network lifetime have been explored, also eva-

luating the cost associated with this procedure. The impactof noisy communication

links on the network lifetime has also been investigated, showing that the higher is

the noise level, the shorter is the network lifetime. However, in this scenario as well

reclustering can prolong the network lifetime.

Then, scenarios with phenomenon status independent from sensor to sensor has

been considered. We have proposed an analytical framework considering different

quantization strategies at the sensors. In all cases, the MMSE fusion algorithm and

low-complexity fusion rules at the AP have been evaluated inscenarios with single-

boundary and multi-boundary phenomena. We have shown that the performance pe-

nalty introduced by the simplified fusion algorithms is asymptotically (for high sen-

sor SNR and low communication noise level) negligible. At the same time, howe-

ver, we have shown that the computational complexity reduction, with respect to the

MMSE algorithm, brought by the use of the simplified fusion algorithm is significant.

Our results underline that this complexity reduction is pronounced in scenarios with

multi-boundary phenomena.

Finally, the presence of spatial correlation among the sensors has been investi-

gated. LDPC-coded transmissions have been considered, deriving effective iterative

receiver structures at the AP to exploit the source correlation, for both scenarios with

and without a relay. In the presence of a relay, a novel very effective iterative de-

coding algorithm with very limited complexity has been proposed. In particular, our

results suggest that the relay should add redundancy only ifthe quality of the source-

relay links is sufficiently high. We have also evaluated the impact of feedback. Our

results suggest that properly unbalancing the SNRs in the communication links leads

to energy savings for a given performance level. In all cases, the performance im-

provement brought by the exploitation of source correlation at the AP with respect to

scenarios with DSC is limited. Therefore, the design of moreefficient channel codes

for this scenario will be subject of further investigation.
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