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In Budapest I lived at Eötvös József Collegium and my neighbours was
Marie-Laetitia and Bertrand. With them I felt at home. In a perfect random
order I also cite other people linked to my Magyar experience: Benjamin,
Karolin, George, Katalin, Csilla, Kati Csepi, Noémi, Vera, Zsófia and Szilvia.
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1

Introduction

1.1 The long history of food webs

Within ecosystems, species interact in various ways (e.g. predator-prey,
plant-seed disperser, host-parasite, plant-pollinator, plant-ant). Types and
strengths of interaction change through time and space, varying between
individuals that are subject to the rules of natural selection and genetic drift.
In community ecology, food relations are certainly the most investigated
ones. Dealing with the whole bunch of trophic interactions is possible by
graph theory. So ecosystems become set of nodes (species or trophospecies)
connected by a suite of edges (trophic relations). From this idea, two types
of tools have come about: food webs and ecological networks. The former
list feeding relations among species in a qualitative way (presence/absence);
the latter include also the magnitude of the interactions, in terms of amount
of matter (or energy) that is exchanged in a given time period.

Nowadays, food webs are widely applied but the idea of mapping trophic
interactions with graphs is quite old. It traces back to the pioneering re-
search of Camerano (1880), and its revisitation as the food chain descrip-
tion (Elton, 1927). The linear trophic chain depicted biological communities
through feeding habits, according to the perceived flow of energy that was
identified as a main path from producers to various consumers. This led to
see the energy passage as composed by discrete steps called trophic levels.
Although appealing, discrete trophic levels failed to aptly describe multi-
trophic and complex interactions. Then, the focus shifted from linear trophic
chains to food webs, studying relations between complexity of flow struc-
ture and ecosystem stability (MacArthur, 1955; Hutchinson and MacArthur,

8



The long history of food webs 9

1959).
Until 1970s, ecologists accepted the generalization based on arguments

by Elton (1958), stating that “complex ecosystems are more stable”. They
thought that richer networks of interactions, with many species, were bet-
ter able to withstand disturbance, either human or natural created, but
May (1972, 1973) demonstrated the shortcomings of such general proposi-
tion. However, real ecosystems, being the product of evolutionary processes,
are clearly different from randomly assembled networks (Erdös and Rényi,
1960) and further studies on their regularities (Cohen and Newman, 1985;
Pimm, 1980, 1982; Pimm and Lawton, 1978, 1980) were stimulated by the
publication of the first collection of food webs (Cohen, 1978).

Beside emerging patterns revealed in the 1980s, increasing sample efforts
provided better data that partially contradicted theoretical advances (Cohen
and Newman, 1991; Cohen et al., 1990, 1993a,b; Pimm et al., 1991). The
focus of food web theory switched from arithmetic properties such as number
of connections, number of trophic levels and omnivory (Pimm, 1982; Cohen
et al., 1990; Havens, 1992) to structural indices. This shift was promoted
by advances in statistical physics and to the application of network theories
to Internet, motorways, telephonic connections, social communities, sexual
contacts and power grids (Watts and Strogatz, 1998; Liljeros et al., 2001;
Girvan and Newman, 2002).

Ecologists have revisited complexity/stability question by exploring the
dynamics of interactions, examining the properties of more realistic food
web configurations and adding hierarchical structure to food webs (McCann
et al., 1998). Still, a lot of interest towards structure and mechanisms of
functioning is revealed by current works and publications (May, 2006; Pas-
cual and Dunne, 2006; Allesina and Bodini, 2005; Garlaschelli et al., 2003).

In particular, many works on food webs and ecological networks focussed
on models characterizing their structure. The basic statistic used to compute
the structure of a large network is its degree distribution p(i), the probabil-
ity that a randomly chosen node is linked to i other nodes. The binomial
distribution of Erdös-Rényi random graph is the oldest and best studied
network model, with S nodes connected by randomly placed links between
pairs of them (Newman, 2003). As asserted by May (1973), real food webs
are not randomly assembled, but an active and still controversial area of
theoretical ecology is dealing with patterns of variation of trophic links per
node as regards to species in a web (May, 1983; Paine, 1988). Although it
has been shown that connections increase with species (Cohen and Briand,
1988), the rate of increase is not clear (Martinez, 1992, 1993; Paine, 1988;
Schoener, 1989; Pimm et al., 1991).
Recently, ecological networks have been compared to other types of com-
plex networks that are “small-world” (Strogatz, 2001; Albert and Barabási,
2002). In “small-world” networks most nodes are not neighbors of one an-
other, but most nodes can be reached from every other by a small number of
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steps. There are few nodes highly connected (hubs) and the remaining nodes
with low connectivity (power-law distribution). Such networks are large and
complex, exhibiting a highly clustered structure into sub-graphs (strongly
connected components) and small diameter (maximum length of shortest
paths connecting two nodes). Food webs partially act as “small world”
graphs, showing short paths between species (Williams et al., 2002), but
unlikely other networks have low clustering and high link densities (Dunne
et al., 2002a). In general, food webs with a uniform degree distribution are
associated to relatively high connectance, exponential distribution is corre-
lated to middle connectance, while power-law or partial power-low are dis-
played by webs with very low connectance (Montoya and Solé, 2002, 2003;
Dunne et al., 2002a; Camacho et al., 2002a). As well as identifying link
distribution and structure, within food web theory the larger amount of
studies are addressed at the whole system level (McCann, 2000): (a) esti-
mating chain length (Post, 2002) and number of trophic levels (Pimm and
Lawton, 1977); (b) measuring indices based on information theoretical anal-
ysis (Bondavalli et al., 2006); (c) detecting mechanisms linking structural
complexity and ecosystem stability (Montoya et al., 2006; Yodzis, 1981; Po-
lis, 1994); (d) simulating structural robustness to species loss (Dunne et al.,
2002b, 2004; Allesina et al., 2006; Tilman and Downing, 1994); (e) defining
simple models capturing food web patterns (Stouffer et al., 2006; Cattin
et al., 2004; Williams and Martinez, 2000; Cohen et al., 1990).

Few publications contribute to the quantification of key players in ecosys-
tem, introducing sociometrical methods in ecology (Jordán and Scheuring,
2002; Jordán et al., 1999, 2006; Vasas and Jordán, 2006).

To systematically carry out analysis and description of complicated net-
works (food webs with weighted trophic links), a collection of quantitative
methods has been developed and widely applied: ecosystem network analy-
sis (ENA; Ulanowicz, 1986). It has been introduced in ecology by Hannon
(1973) that translated economic analysis (i.e. the structural analysis; Leon-
tief, 1963) into ecological terms. In a few years the technique was extended
to include more ecologically significant results thanks to the prominent con-
tributions of Finn (1976), Ulanowicz (1980), Patten (1982) and many others.
During the last decade, many papers on ENA have been published in top
ecological journals (Bersier et al., 2002; Krause et al., 2003) and the impor-
tance of studying weighted food web data stimulates its application.

As suggested by Margalef (1968, 1991), multi-species trophic interac-
tions can be analyzed using a network perspective. Then, natural systems
are described as directed networks of species connected by weighted or bi-
nary trophic relations. The innovative feature of this work is represented by
the analysis of the contribution of single compartments (species or trophos-
pecies) in respect of food web properties. Then, in opposition to the sys-
tem approach common to all the studies cited in the above review of food
webs and network ecology, I explored the effects of each species as a conse-
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quence of its position within the ecosystem. I adopted the methodological
approach of ENA and reviewed fundamental aspects of food web theory and
ecosystem network analysis. New techniques detecting peculiar aspects of
ecosystems, and investigating regularities emerging from their topology and
trophic structure, were proposed.
In the next paragraph a brief summary of the thesis is given.

1.2 Overview of the thesis

In Chapter 2, ecosystem network analysis procedures are briefly de-
scribed. Indices and measures that take into account both structure of
networks (link distribution) and weight of interactions (their intensities)
were summarized. The following chapters illustrate my contributions to the
development of the discipline. All these accomplishments are coupled with
ad-hoc software ameliorations that can deeply impact the results and the
way of doing research on ecological networks.

Trophic position is often used in ecology as a synthetic index character-
izing species activity in flow networks. It measures average distance of each
node from the external source of energy, defining species roles from primary
producers to consumers. Within ENA, the suite of matrix manipulations
called canonical trophic aggregation (CTA) apportions each species feeding
activity to a series of discrete trophic levels sensu Lindeman, allowing the
calculus of trophic positions. Despite some drawbacks, this procedure is
widely applied. In Chapter 3 I propose an extended version of CTA, resolv-
ing its major ambiguities and defining the computation of effective trophic
positions in ecological acyclic networks. In particular, mathematical details
with examples are provided and addressed to: (a) including migratory im-
port with trophic position far from zero (i.e. input to non-primary producer
nodes); (b) making CTA scale-insensitive (avoiding biases such as different
trophic position for the same node when calculated at different scale of reso-
lution); (c) resolving inconsistencies when flows are measured using different
currencies.

Chapters 4, 5 and 6 are strongly focussed on relations between whole net-
work properties and relative contribution of single species. Although widely
acknowledged, few studies explored and defined quantitative relationships
linking flow structure and trophic hierarchy in food webs. In Chapters 5 and
6, weighted food webs were analyzed using species trophic position (TP ), to
characterize the trophic hierarchy, and single species average mutual infor-
mation (AMI·j) as a measure of the link density that combines the number
of interactions pertaining each node and their magnitude (see Chapter 4).

The sign of the statistical correlation between the two indices is con-
stantly positive across all the systems investigated. This reveals a charac-
teristic pattern that, according to the meaning of the whole average mutual
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information (AMI), suggests how link density becomes rarer towards the
top of the trophic hierarchy. Accordingly, trophic hierarchy seems to ex-
plain the topological configuration of links in food webs. Thus, my analysis
indicates that species feeding at higher position tend to trophic specializa-
tion and a more generalist alimentary behaviour characterizes species at the
bottom of the trophic hierarchy.
Linear correlation between TP and AMI·j is preserved within taxonomic
subgroups, pointing out how members of one taxon may occupy different
roles in the same ecosystem. When coefficients are ranked, subgroups ag-
gregate into three main clusters in accordance with phylogenetic and evolu-
tionary schemes.
Analyzing weighted food webs I included functional information in addition
to topological one, identifying trophic hierarchy as a key factor in energy
delivery. The results allow to extend the discussion about certain key eco-
logical issues such as the relation between weak and strong interactions in
ecosystems, the role of omnivory and the connections characterizing func-
tional and taxonomic features of species in ecological networks.
Moreover, the relationships between trophic position and link distribution
observed with weighted and unweighted data add another evidence about
the potential of niche and cascade models described in Chapter 4, empha-
sizing the potential of these extremely simple architectures that are able to
capture the very essence link arrangements in food webs.

Finally, patterns between species trophic positions and topological cen-
tralities were detailed in Chapter 7, while effects of weighting links when
identifying keystone species in different ecological networks are investigated
in Chapter 8. Studying centralities and trophic positions opens new perspec-
tives towards the identification of potential biases in finding high centrality
nodes among basal, intermediate and top species. Observed features could
lead to intriguing consequences on ecosystem functioning.

Estimating the importance of weighting links respect to centrality indices
(direct or indirect), evolutionary stability of interaction types (e.g. predator-
prey, plant-pollinator, plant-seed disperser, plant-ant and host-parasite) and
network size were unveiled. I found that: (a) weighting affects node order-
ing very seriously; (b) food webs fundamentally differ from other network
types in this respect, (c) direct and indirect indices provide fairly different
results but indirect effects are similar if longer than two steps; (d) the ef-
fect of weighting depends on the number of network nodes in case of direct
interactions only.



2

Ecosystem Network Analysis

2.1 Why ecosystem network analysis?

The ever increasing interest towards ecosystem status and performance,
and the need to approach complex environmental problems, stimulate the
application of tools for whole-system assessment (NSF, 1999). The most
common method for quantifying system level events is simulation modeling
that implies five main steps: (a) identifying relevant taxa; (b) defining the
significant interactions among those taxa; (c) modeling such interactions;
(d) calibrating and validating the model; (e) making predictions.
Despite successful models describing the dynamics of one or a few subjects,
mathematical modeling appears complicated when their number increases
(Platt et al., 1981). As a consequence, to bypass the above mentioned in-
consistencies in applications to system ecology, MacArthur (1955) and Platt
et al. (1981) suggested an alternative approach paying more attention to
processes (flows) than concentrating on what can be inferred from identi-
fication and analysis of single objects (stocks). In this conceptual frame-
work, a prominent collection of quantitative methods consists of ecosys-
tem network analysis (ENA; Ulanowicz, 1986; Wulff and Ulanowicz, 1989;
Ulanowicz, 2004). The basic assumption behind ENA is that topology (stat-
ical graph configuration associated to trophic links between species) reveals
much about history, current status and functioning of ecosystems.

13
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2.2 Describing flow networks

An ecological network is a representation of the significant taxa or nodes
comprising the ecosystem. It answers two questions: (a) who eats whom?,
and (b) at what rate? Systems are depicted as directed graphs, or digraphs,
with nodes (compartments) as boxes, vertices or points connected by arrow-
head arcs portraying trophic relations (exiting the prey items and entering
the predator). In addition, being ecological networks open systems exchang-
ing material and energy with their surroundings, exogenous transfers are
classified as: (a) input (e.g. primary production, immigration or inbound
advection of material or energy), arrows that originate out of no visible taxon
and terminate (with an arrowhead) into the receiving node; (b) export (e.g.
emigration, harvesting by humans, and advection out of the system), arrows
of useful matter or energy exiting from a node and pointing out to empty
space; (c) respiration (e.g. energy dissipated into heat or material degraded
into its lowest-energy form as denitrification to N2), represented as “ground
symbols” leaving compartments. Trophic links in these networks stand for
energy flows (e.g. kcal m−2 yr−1) or nutrient transfers of different curren-
cies (e.g. carbon - mgC m−2 yr−1; nitrogen - mgN m−2 day−1; phosphorus
- gP m−2 yr−1). ENA allows only one medium per network, although in
other works several are included (Hannon et al., 1991).
Setting ecosystem boundaries and the level of resolution are still open ques-
tions. Recent works evaluated effects of taxa aggregation in trophospecies
or trophic roles (Yodzis and Winemiller, 1999; Abarca-Arenas and Ulanow-
icz, 2002; Luczkovic et al., 2003; Krause et al., 2003) and consequences of
including non-living compartments (Allesina et al., 2005b). Generally, deci-
sions about the degree of resolution are driven by the amount of available
information and purpose of the study (Jordán, 2003).
As an example of ecological network, a schematic picture of the total suite of
energy flows occurring in the Cone Spring ecosystem (Tilly, 1968) is drawn
in Figure 2.1.

Beside the more intuitive graphical scheme, link topology can also be
represented using linear algebra. The maximal amount of internal links in
an ecosystem of S taxa is S2 (S ·S), to which add an upper limit of 3S flows
across system bound (S inputs + S exports + S respirations). Whenever S
exceeds about 20, the number of realized transfers usually falls well below
the maximal limit of S2 + 3S.

The flows depicted in Figure 2.1 can be expressed in matrix notation of
order S as: ⎡

⎢⎢⎢⎢⎣
Plants

Bacteria
Detritus Feeders

Carnivores
Detritus

⎤
⎥⎥⎥⎥⎦
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Plants Detritus
Detritus
Feeders

Carnivores

Bacteria

11184

300

2003

8881

860 635

167

3109

200

2309

203

370

1814

75

3275

1600

5205

255

Figure 2.1: Cone Spring ecosystem is composed of 5 compartments (Plants, Bacteria,
Detritus Feeders, Carnivores and Detritus) and it shows: 2 imports (green), 3 exports
(red), 5 dissipations (blue) and 8 intercompartmental exchanges (black). Flows are ex-
pressed as kcal m−2 yr−1.

T =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 8881
0 0 75 0 1600
0 0 0 370 200
0 0 0 0 167
0 5205 2309 0 0

⎤
⎥⎥⎥⎥⎦

Z =

⎡
⎢⎢⎢⎢⎣

11184
0
0
0

635

⎤
⎥⎥⎥⎥⎦

E =

⎡
⎢⎢⎢⎢⎣

300
255
0
0

860

⎤
⎥⎥⎥⎥⎦R =

⎡
⎢⎢⎢⎢⎣

2003
3275
1814
203
3109

⎤
⎥⎥⎥⎥⎦

[T ] represents the adjacency matrix with link strength at non-zero en-
tries: the rate of the intercompartmental transfer from row (prey) taxon i
to column (predator) node j is denoted as tij. Exogenous flows are classified
as input (Z), export (E) and respiration (R) vectors, which elements zi, ei

and ri signify: (a) rate of external import to taxon i; (b) amount of loss of
useful medium from taxon i to the outside world; (c) dissipation from node
i.
ENA requires systems at steady state, that is, for each compartment i, the
sum of all the inputs exactly balances the sum of all the outputs
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S∑
k=1

tki + zi =
S∑

j=1

tij + ei + ri (2.1)

or

T·i + zi = Ti· + ei + ri (2.2)

since

S∑
v=0

Tiv = Ti· (2.3)

S∑
r=0

Trj = T·j (2.4)

Because of different methods used for quantifying flows in network con-
struction (e.g. sampling and direct observation, literature screening of metabolic
parameters and growth function of single compartments, contacting experts
on specific taxa), many ecological networks appear, at first glance, unbal-
anced. Steady state condition can be achieved applying different balancing
methods (Parker, 1977; Polovina, 1984; Allesina and Bondavalli, 2003).

Once we focus on ecological networks, matrix and vector manipulation
adopted by ENA procedures allows to stress: (a) input-output analysis; (b)
trophic structure analysis; (c) assessment of indirect effects using the mixed
trophic impact; (d) cycling analysis and (e) estimation of whole-system and
information-theoretic indices. The latter two aspects do not require that
components be balanced.

2.2.1 Input-output analysis

Partial feeding matrix

While matrix of transfers [T ] describes absolute amount of matter or en-
ergy flowing between compartments, partial feeding matrix [G] is estimated
normalizing these connections by the total intake of each receiving node

gij =
tij

T·j + zj
(2.5)

Columns of [G] (G·j , henceforth) sum to 1 in absence of exogenous input
and to 0 ≤ G·j < 1 in all the other cases. Reading down j columns, a
picture of relative percentages that each dietary taxa i constitutes of the
full intake by j is supplied. Diet composition expressed by [G], and its
algebraic powers [G]m, provide details on the fraction of flows moving from
row-compartment to column taxa, through m steps (e.g. [G]2 = [G] × [G]
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shows, in every non-zero element, relative contribution of i node to j diets,
up to 2 steps).

Leontief structure matrix

In particular, being the gij ≤ 1, Simon and Hawkins (1949) demonstrated
how the series of matrices

[I] + [G] + [G]2 + [G]3 + [G]4 · · · → [I − G]−1 (2.6)

converges to the finite limit [I − G]−1 = [S], the Leontief structure
matrix (Leontief, 1951) where [I] = [G]0 stands for the identity matrix with
elements equal to 1 along the diagonal (δii = 1) and to 0 elsewhere (δij = 0,
if i �= j). Elements of [S] summarize the fraction of matter/energy flowing
from row-compartments to column-nodes over pathways of all lengths, per
unit of final demand. Diagonal coefficients (sii) greater than 1 indicate
compartments involved in cycles.

Total dependency matrix

Szyrmer and Ulanowicz (1987) used the Leontief structure matrix to
derive the total dependency matrix [D], which dij coefficients represent the
fraction of diet of j that passes through i, scaled by their throughflows

dij = (sij − δij)
(

Ti·
sii T·j

)
(2.7)

where sij is the corresponding coefficient in [S], sii is a diagonal element
of [S], δij is the identity matrix element, Ti· and T·j are throughflows of
donor and receiving nodes, respectively.

Feeding and dependency analysis in Cone Spring

Using data of Cone Spring ecosystem (see Figure 2.1), the associated
partial feeding [G], Leontief structure [S] and total dependency [D] matrices
are:

G =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0.773
0 0 0.031 0 0.139
0 0 0 1 0.017
0 0 0 0 0.015
0 1 0.969 0 0

⎤
⎥⎥⎥⎥⎦

S =

⎡
⎢⎢⎢⎢⎣

1 0.933 0.933 0.933 0.933
0 1.169 0.201 0.201 0.169
0 0.039 1.039 1.039 0.039
0 0.018 0.018 1.018 0.018
0 1.207 1.207 1.207 1.207

⎤
⎥⎥⎥⎥⎦
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D =

⎡
⎢⎢⎢⎢⎣

0 0.933 0.933 0.933 0.933
0 0.145 0.172 0.172 0.145
0 0.037 0.037 1.000 0.037
0 0.017 0.017 0.017 0.017
0 1 1 1 0.171

⎤
⎥⎥⎥⎥⎦

Partial host matrix

Analogously to the [G] matrix obtained normalizing each tij element
by the total input of the corresponding column node j, a matrix of host
coefficients [F ] is computed as the ratio between each tij element and total
flows exiting the row node i. Then, the fraction of the total activity of i
that flows directly to taxa j is

fij =
tij

Ti· + ei + ri
(2.8)

Output structure matrix

Augustinovic (1970) formulated the output structure matrix [Σ] = [I −
F T ]−1 from which the total activity of each compartment j, generated by a
unitary input to i, is estimated (σij).

Total contribution matrix

Finally, the total contribution matrix [C] is calculated weighting each
σij element by throughflows of corresponding row and column nodes

cji = (σij − δij)
(

T·j
σii Ti·

)
(2.9)

One may regard the elements of the total contribution matrix as the
efficiencies with which medium flows from any one compartment to any
given other.

Host and contribution analysis in Cone Spring

Partial host [F ], output structure (or Augustinovic) [Σ] and total con-
tribution [C] matrices for the example of Cone Spring network (see Figure
2.1) would be:

F =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0.794
0 0 0.014 0 0.307
0 0 0 0.155 0.084
0 0 0 0 0.451
0 0.453 0.201 0 0

⎤
⎥⎥⎥⎥⎦



Describing flow networks 19

Σ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0.434 1.169 0.084 0.247 0.547
0.199 0.092 1.039 0.113 0.251
0.031 0.014 0.161 1.018 0.039
0.958 0.374 0.186 0.545 1.207

⎤
⎥⎥⎥⎥⎦

C =

⎡
⎢⎢⎢⎢⎣

0 0.371 0.192 0.030 0.794
0 0.145 0.089 0.014 0.310
0 0.072 0.037 0.158 0.154
0 0.211 0.109 0.017 0.451
0 0.468 0.241 0.038 0.171

⎤
⎥⎥⎥⎥⎦

Input and output analysis

Output (Augustinovic) and input (Leontief) structure matrices are start-
ing tools for I/O analysis as well as for dependency and contribution studies.
Assessing the proportions of any internal exchanges ascribed to a unitary
input (or output) of matter/energy flows is the aim of I/O analysis. For ex-
ample, to know the fate of 1 kcal m−2 yr−1 input on plants, internal flows
are defined multiplying the output structure matrix by a column vector with
1 in the first row (standing for plants) and 0 elsewhere

Σ[,1] =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0.434 1.169 0.084 0.247 0.547
0.199 0.092 1.039 0.113 0.251
0.031 0.014 0.161 1.018 0.039
0.958 0.374 0.186 0.545 1.207

⎤
⎥⎥⎥⎥⎦×

⎡
⎢⎢⎢⎢⎣

1
0
0
0
0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1
0.434
0.199
0.031
0.958

⎤
⎥⎥⎥⎥⎦

Then, multiplying each row of the host coefficient matrix [F ] by the
corresponding throughput in Σ[, 1], direct flows from inputs on plants [TI1]
are found

TI1 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0.794
0 0 0.006 0 0.134
0 0 0 0.031 0.017
0 0 0 0 0.014
0 0.434 0.193 0 0

⎤
⎥⎥⎥⎥⎦

The fate of a single arbitrary unit of energy entering in the plant com-
partment of Cone Spring network is depicted in Figure 2.2

The same procedure can be applied to input structure [S] and partial
feeding [G] matrices, to estimate origins, and trace direct exchanges within
the system, of a unitary output flow.



Describing flow networks 20

Plants Detritus
Detritus
Feeders

Carnivores

Bacteria

1

0.027

0.179

0.794

0.072

0.014

0.259

0.017

0.193

0.017

0.031

0.151

0.006

0.273

0.134

0.434

0.021

Figure 2.2: Description of internal direct Cone Spring flows, respirations and exports
for a 1 kcal m−2 yr−1 input set on plants (green arrow).

2.2.2 Trophic structure

The trophic status of ecological networks can be unveiled either by ap-
portioning each species feeding activity to a series of discrete trophic levels
(TLs) sensu Lindeman (1942) and by computing the effective (non-integer)
trophic position (TP ) of each compartment. In the former case, the intri-
cacy of the whole ecosystem flows is transformed into a simple linear chain
composed of discrete trophic levels. In the latter, effective trophic position
is computed as the sum of the fractions of trophic activity that each species
performs at different trophic levels.

In the absence of non-living nodes and cycles between living taxa, TPs of
each i species could easily be defined by the ith column sum of the Leontief
structure matrix (Levine, 1983). Unfortunately cycles are the rule in nature
and ecological networks often include non-living compartments. A widely
applied alternative method to calculate TPs and dealing with this problem
is called canonical trophic aggregations (CTA; Ulanowicz and Kemp, 1979;
Ulanowicz, 1995). Basic tool of CTA is the trophic transformation matrix
[A], built up with a row by row procedure.

The method, based on trophic transformation matrix [A], requires one
to assign trophic positions to compartments according to diet composition.
The first line of [A] is the transposed normalized input vector (N)T , where
a1j elements are computed as

a1j = nj =
zj

T·j
(2.10)

Nodes receiving imports act as primary producers (with theoretical im-
port TL = 0); if a compartment relies only on import, its TP will be 1.
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Three main cases can be distinguished: (a) when nj = 0, the compartment
j does not receive input from the outside; (b) if nj = 1, node j depends only
on input; (c) with 0 < nj < 1, the node j receives medium both from the
outside and the internal exchanges.
To compute the following rows of [A], the matrix of partial feeding coefficient
[G] and the normalized import vector (N) are required:

A[i, ] = (N)T × [G]i−1 with i > 1 (2.11)

where A[i, ] is the ith row of the matrix, and powers of [G] are defined
as repeated product of [G] by itself: [G]0 stands for identity matrix (usually
called [I]), [G]1 = [G], [G]2 = [G] × [G], and so forth.
In [A] each column sums to 1, satisfying the first law of thermodynam-
ics (total input, throughput, export and respiration remain invariant under
transformation), and all the resultant respirations are positive (in accor-
dance with the second law of thermodynamics).

Besides computing TPs, CTA can also be used to ascertain the portions
of all flows which are the same number of steps from any external input,
defining the linear trophic chain of ecosystems. The composition of the ith

trophic level can be read along the ith row of [A], while the trophic behaviour
of each jth species can be inferred by the elements of the j column of [A].
Non-integer TPs emerge as the result of a weighted mean of different trophic
behaviours. In fact, each TPj of the trophic position row vector (TP ) is
defined as

TPj =
S−1∑
i=1

aij · i (2.12)

Cycles impose constraints to the transformation of ecological networks
into linear trophic chains. Dealing with cyclic networks, powers of [G] form
an infinite sequence, and it is not clear how and where to interrupt the num-
ber of [A] rows.
In presence of cycles, Ulanowicz (1995) suggested to split a system into two
constitutive networks: one containing cyclic paths, and another depicting
only once-through flow. Cycles are removed by a simple procedure (Ulanow-
icz, 1983): (a) listing all the simple directed cycles; (b) finding the weakest
arc for every cycle (the one with the minimum flow); (c) grouping the cy-
cles sharing the same weakest arc (also called nexus); (d) removing cycles
according to their probabilities, making the nexus=0.
When cycles are widespread, a large amount of information about total sys-
tem activity is lost during network decyclization, resulting in distorted values
of calculated trophic efficiencies. However, as Pimm (1982) and May (1983)
remark, feeding cycles between living compartment are rare (this is not true,
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anymore, when considering detritus and nutrient pools), and networks of-
ten embed compartments as detritus and nutrient pools (non-living nodes).
Non-living nodes have no trophic position, but they influence TPs of liv-
ing compartments apportioning on them. In this case, submatrices [T ]living

and [G]living, accounting only for exchanges between living compartments
with scarcity of cycles, are isolated (Ulanowicz, 1995). As a consequence,
applying the decyclization algorithm to living subsystems with few cycles
does not distort CTA and the aggregation of the feeding web into discrete
trophic levels.

Due to difficulties related to TP calculation in presence of migratory
imports (with TP far from 0) and multiple non-living nodes (with TP = 1
or TP=0), the entire procedure is reviewed and amended, by an extended
version of CTA, in Chapter 3.

As it is not possible to compute the matrix [A] for the Cone Spring
ecosystem (because of cycles and presence of detritus bridging “Plants”
compartment and the other living nodes), CTA is now applied to the hypo-
thetical network of Figure 2.3

A

B

D

C

80

20

120

20

60

20

20

60

20

40

Figure 2.3: Hypothetical system made by 4 living compartments. Compartment A is a
primary producer (TP = 1), relying only on imports, while B, feeding exclusively on A,
is a herbivore (TP = 2). C shows an intermediate TP , since its diet is composed of A
(primary producer) and B (herbivore). Non-integer TP is exhibited by D that prey upon
C.

for which flow matrices are:

T =

⎡
⎢⎢⎣

0 80 20 0
0 0 60 0
0 0 0 60
0 0 0 0

⎤
⎥⎥⎦
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Z =

⎡
⎢⎢⎣

120
0
0
0

⎤
⎥⎥⎦

E =

⎡
⎢⎢⎣

0
0
0
40

⎤
⎥⎥⎦R =

⎡
⎢⎢⎣

20
20
20
20

⎤
⎥⎥⎦

The associated normalized import vector (N) and partial feeding matrix
[G] are

N =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦G =

⎡
⎢⎢⎣

0 1 0.25 0
0 0 0.75 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

giving rise to the following trophic transformation matrix [A] and trophic
position vector (TP )

A =

⎡
⎢⎢⎣

1 0 0 0
0 1 0.25 0
0 0 0.75 0.25
0 0 0 0.75

⎤
⎥⎥⎦TP =

⎡
⎢⎢⎣

1
2

2.75
3.75

⎤
⎥⎥⎦

Reading down the columns of [A], A receives energy from outside and
acts like a primary producer, with TP = 1 (TP1 = a11 ·1 = 1·1 = 1); B feeds
exclusively on A and is set to TP = 2 (TP2 = a22 · 2 = 1 · 2 = 2); C shows a
fractionary trophic position (TP = 2.75), as the weighted effects of two dif-
ferent trophic behaviours (TP3 = a23 ·2+a33 ·3 = 0.25·2+0.75·3 = 2.75); D,
preying on C, has TP = 3.75 (TP4 = a34 ·3+a44 ·4 = 0.25·3+0.75·4 = 3.75).

Conversely, [A] can be used to distribute each compartment trophic ac-
tivity into integer TLs, obtaining a Lindeman spine for a complex network
(see Figure 2.4). Then, A is the only primary producer (first line of [A]), her-
bivore behaviour (second line of [A]) is displayed by B (1/(1+0.25)=80%)
and C (0.25/(1+0.25)=20%), primary consumer TL (third line of [A]) in-
cludes both C (75%) and D (25%) activities, while D is the only node with
a partial secondary consumer diet composition (100%).

2.2.3 Mixed trophic impact and indirect effects

Conventional I/O and trophic analysis are often criticized because they
pertain to steady-state or temporally-averaged configurations, dealing only
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Figure 2.4: Flows along the trophic chain associated to the network depicted in Figure
2.3. While primary producer and secondary consumer include single species activity (A
and D, respectively), herbivore and primary consumer behaviours are shared by multiple
nodes. In the first case, both B (outside → A → B: 80/80 = 100%) and C (outside →
A → C: 20/80 = 25%) feed at TL = 2; in the latter, C (outside → A → B → C: 60/80 =
75%) and D (outside → A → C → D: 15/60 = 25%), act as a primary consumer (TL = 3).
Trophic efficiencies between TLs are estimated as usable energy fraction transferred in each
step (i.e. 120 unit of energy entering primary producer and 100 unit flowing to herbivore
= 100/120 = 83.33% of efficiency). Efficiencies measured in this trophic chain are: (a)
83.33% primary producer → herbivore; (b) 75.00% herbivore → primary consumer; (c)
60.00% primary consumer → secondary consumer.

with positive flows of medium. Ulanowicz and Puccia (1990) adopted an
alternative approach for measuring direct and indirect trophic impacts from
trophic flow data. Positive impact of prey i upon predator j is quantified by
partial feeding coefficient (gij), defined as the proportion of i within the diet
of j (see equation 2.5); the negative effect of predator j on its prey i (fij)
is measured introducing an amended version of the equation 2.8, with tij
normalized by the net output from i (flows to living members =

∑living
z=1 tiz),

excluding exports (ei) and respiration (ri)

f∗
ij =

tij∑living
z=1 tiz

(2.13)

The net impact of i upon j, accounting for one-step (direct) effect, is
defined as

qij = gij − f∗
ji (2.14)

where −1 < qij < +1 are constitutive elements of the net impact matrix
[Q]. Net impacts upon x steps are measured by [Q]x matrix and, in almost
all instances (with non-singular [I − Q] matrix), the powers of [Q] give rise
to a convergent series (Hannon, 1973)

[I] + [Q] + [Q]2 + [Q]3 + [Q]4 · · · → [I − Q]−1 (2.15)

The total (direct and indirect) effects are calculated introducing the
matrix [M ]
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[M ] =
∞∑

x=1

[Q]x = [I − Q]−1 − [I] (2.16)

By [M ] matrix one identifies species that have a disproportionate effect
on the environment relative to their abundance (keystone species; Paine,
1995) and ranking the whole impacts exerted on a given taxa is possible
(Bondavalli and Ulanowicz, 1999). Vasas and Jordán (2006) proposed to
sum absolute values of mij elements of [M ], unveiling both positive and
negative effects displayed by each species (otherwise strong negative and
strong positive impacts might result masked in an effect around zero).

Similar analysis has been developed by Fath and Patten (1998). They
demonstrated that the elements of [M ] tend to be more positive than the
direct effects [Q], with this trend strongly affected by the way they used to
normalize tij. In fact, they adopted the equation (2.8) rather than (2.13),
dividing each transfer from node i, by the full amount of its outflows (Ti·).

2.2.4 Cycling analysis

Energy cycling is relevant to ecosystem properties: (a) residence time
of nutrients (Herendeen, 1989); (b) buffering fluctuations in energy supply
(Loreau, 1994); (c) augmenting stability (DeAngelis, 1980). Because of this,
cycles have been deeply studied in ecological networks (Ulanowicz, 1983;
Patten and Higashi, 1984; Christian and Thomas, 2003).

Within ENA, quantifying the fraction of total energy/matter recycled
and describing paths involved in cycling (number of steps and compart-
ments) are main targets. Finn (1976) dealt with the former issue and for-
mulated a measure of it (Finn’s cycling index, FCI). It accounts for the
fraction of all the fluxes generated by cycling. Ulanowicz (1983) aimed to
identify the structure of network cycles, characterizing the major pathways
that recycle energy/matter .

The amount of cycling in flow networks

After Hannon (1973) introduced I/O analysis into ecology, attempts to
quantify cycling were developed (Patten et al., 1976; Finn, 1976). Because
in the Leontief structure matrix [S] each diagonal element sii relates to the
probability that a quantum of medium visits the designated compartment
more than once, the amount of throughflow due to cycling is

Tc,i = T·i
(

sii − 1
sii

)
(2.17)
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where T·i is the throughflow of node i. FCI is then obtained summing
the contribution to cycling of each taxa and dividing this value by the total
system throughput (TST ).

FCI =
1

TST

S∑
i=1

Tc,i (2.18)

being S the number of compartments (both living and non-living) and
TST the sum of all the flows (Ulanowicz, 1986; Patten and Higashi, 1984),
as detailed below:

TST =
S∑

i=1

S∑
j=1

tij +
S∑

i=1

(zi + ei + ri) (2.19)

Szyrmer and Ulanowicz (1987) proposed a revised form of FCI, replac-
ing the use of Leontief structure matrix [S] with total dependency [D] or
total contribution [C] matrices. In fact, they noticed how diagonal elements
of [D] and [C] are identical, representing a more detailed probability that
a given quantum of currency leaves a particular taxon and returns to it.
Han (1997), independently, achieved the same results. Finally, Allesina and
Ulanowicz (2004) implemented FCI and its improved versions, describing
how cycling flows in ecosystems were underestimated. Simple cycles (simple
paths in which the starting and the ending node coincide) and compound
cycles (repeated cycles) are accounted by FCI, but the contribution of com-
pound paths (paths with repeated compartments) remains unexplored (see
Figure 2.5). Allesina and Ulanowicz (2004) overcame this drawback with a
comprehensive cycling index (CCI). The strong linear relationship between
FCI and CCI (CCI = FCI · 1.142) and the enormous amount of time re-
quired to compute the latter suggested to approximate the effective amount
of cycling (CCI) simply by inflating the FCI by some 14.2%.

To calculate the cycling index for Cone Spring network (see Figure 2.1),
Leontief structure matrix [S], effective amount of flows attributable to cy-
cling (Tc) and TST have been employed

S =

⎡
⎢⎢⎢⎢⎣

1 0.933 0.933 0.933 0.933
0 1.169 0.201 0.201 0.169
0 0.039 1.039 1.039 0.039
0 0.018 0.018 1.018 0.018
0 1.207 1.207 1.207 1.207

⎤
⎥⎥⎥⎥⎦
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Tc =
5∑

i=1

T·i
(

sii − 1
sii

)

= 11184
(

1 − 1
1

)
+ 5205

(
1.169 − 1

1.169

)
+ 2384

(
1.039 − 1

1.039

)

+ 370
(

1.018 − 1
1.018

)
+ 11483

(
1.207 − 1

1.207

)
= 2817 kcal m−2 yr−1 (2.20)

TST =
5∑

i=1

5∑
j=1

tij +
5∑

i=1

(zi + ei + ri)

= 18807 + 11819 + 1415 + 10404
= 42445 kcal m−2 yr−1 (2.21)

yielding to FCI = 6.63%

FCI =
Tc · 100
TST

= 6.63% (2.22)

This value is different from the 9.20% calculated by Finn (1980) because,
in that original formulation, TST ∗ stood for the sum of internal transfers
plus imports

TST ∗ =
5∑

i=1

5∑
j=1

tij +
5∑

i=1

zi (2.23)

= 30626 kcal m−2 yr−1 (2.24)

FCI∗ =
Tc · 100
TST ∗ = 9.20% (2.25)

The structure of network cycles

Ulanowicz (1983, 1986) devised a procedure to extract cycles from the
network and compare their activities with the remaining unidirectional flows.
He adopted a backtracking algorithm to find all the simple cycles (Mateti
and Deo, 1976), increasing its efficiency with a suitable pruning method
(Knuth, 1973). The whole process can be summarized as follows: (a) a
preliminary depth-first search to count the number of cycle arcs incident
to each node; (b) ordering nodes by decreasing number of incoming cycle
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(a)

(c)

(b)

(d)

Figure 2.5: Pathways can be classified into four categories (Allesina and Ulanowicz,
2004): (a) simple paths; (b) simple cycles; (c) compound paths; (d) compound cycles.
Excluding the first, remaining structures constituted cycled flows. While FCI exclusively
consider (b) and (d), its amended version (CCI) also includes (c). Dotted lines stand for
repeated transfers.

arcs (compartments with no cycle arcs are eliminated from further anal-
ysis); (c) scrutinizing each cycle in search for the smallest cycle arc; (d)
identifying if this cycle link is common to other cycles and grouping cycles
sharing it (nexus); (e) starting backtracking algorithm to delete the nexus
and distribute its magnitude among member cycles (in proportion to circuit
probabilities and magnitudes of links). Finally, the acyclic residual once-
through flow web (tree, in graph theory) and the aggregated network of
cycled medium result as two separated parts of the whole network.

The separation of cyclical transfers from the complementary web of once-
trough flow are depicted for Cone Spring in Figure 2.6

2.2.5 Information-theoretic indices

1The ever increasing interest towards ecosystem status and performance
stimulates the application of tools for whole-system assessment. The ap-
paratus of ENA comprises indices, derived from information theory, that
quantify global attributes. Total system throughput (TST ) and average mu-
tual information (AMI) are basal indices advocating a systemic approach
(Ulanowicz, 2004). Ascendency (A), development capacity (C), overhead
(Φ) and redundancy (ΦR) are measures combining the total activity, or

1Published section: Scotti, M., in press. Ecological Indicators: Development Capacity
and Overhead. For Jørgensen, S. E., Encyclopedia of Ecology - Elsevier.
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Figure 2.6: Cone Spring (see Figure 2.1) is decomposed into two constitutive compo-
nents (Ulanowicz, 1983): (a) the residual acyclic network; (b) five simple directed cycles.
Summing these complementary topologies yields the whole system structure. Flows are
measured as kcal m−2 yr−1.

power of the system, with the organization by which the component pro-
cesses are linked (Latham and Scully, 2002). To facilitate their computation,
a graphical scheme based on a (S + 3) × (S + 3) extended transfer matrix
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[T ]∗ can be introduced (Figure 2.7). Each t∗ij element describes an outflow
from row-compartment i to column-node j. First row stands for imports
from outside to the column compartments, and the last two columns list
exports and respirations from any row compartment. The internal S × S
sub-matrix reports internal exchanges.
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Figure 2.7: Graphical example of [T ]∗ matrix for a generic S-compartment ecosystem,
with size = (S + 3) × (S + 3). Imports to system nodes are summarized in the first row,
exports and dissipations are set in the last two columns and the internal S × S matrix
shows transfers between system compartments. This model of [T ]∗ matrix is adopted,
below, for Cone Spring.

T∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 11184 0 0 0 635 0 0
0 0 0 0 0 8881 300 2003
0 0 0 75 0 1600 255 3275
0 0 0 0 370 200 0 1814
0 0 0 0 0 167 0 203
0 0 5205 2309 0 0 860 3109
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Total system throughput

The total amount of flows occurring in the system is called total system
throughput (TST ), and for Cone Spring is equal to 42445 kcal m−2 year−1.

TST =
S+2∑
i=0

S+2∑
j=0

t∗ij = T·· (2.26)
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TST defines ecosystem activity (size) and it conceptually corresponds to
what in economy is known as gross national product (GDP ), an indicator
of economic community size.

Average mutual information

Ecosystem development is connected to flow organization and it increases
when uncertainty is diminishing. Mathematically, uncertainty (H) is related
to a distribution of probability over n categories (with scalar constant K)
and is equivalent to

H = −K
n∑

i=1

pi log pi (2.27)

System flow disorganization is measured by uncertainty and its amount
can be distinguished into output H(a) and input H(b) contributions.

H(a) = −K
S+2∑
i=0

p(ai) log p(ai) (2.28)

H(b) = −K

S+2∑
j=0

p(aj) log p(aj) (2.29)

With completely independent events, total system uncertainty becomes
H(a) + H(b). However, inputs and outputs in ecosystems are not always
independent and the associated uncertainty can be computed adopting joint
probabilities p(ai, bj)

H(a, b) = −K
S+2∑
i=0

S+2∑
j=0

p(ai, bj) log p(ai, bj) (2.30)

Therefore, with inputs and outputs that are not completely independent

H(a, b) < H(a) + H(b) (2.31)

and, in this case, the degree of system organization is defined as

A(a; b) = H(a) + H(b) − H(a, b) (2.32)

yielding to

A(a; b) = K
S+2∑
i=0

S+2∑
j=0

p(ai, bj) log
p(ai, bj)

p(ai)p(bj)
(2.33)

because
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p(ai) =
S+2∑
j=0

p(ai, bj) (2.34)

p(bj) =
S+2∑
i=0

p(ai, bj) (2.35)

To measure transfer uncertainty with network analysis notation, the
probability that a quantum of matter (or energy) would flow from com-
partment i to j becomes

p(ai, bj) ∼=
t∗ij
T··

(2.36)

with output and input probabilities that can be written as marginal sums
of joint probabilities

p(ai) ∼=
S+2∑
j=0

t∗ij
T··

(2.37)

p(bj) ∼=
S+2∑
i=0

t∗ij
T··

(2.38)

The average mutual information (AMI) is the index measuring system
organization (ecosystem development intended as flow articulation). Using
the expressions provided by formulas (2.36), (2.37) and (2.38) into (2.33),
one obtains, after some algebraic manipulations, the following:

AMI =
K

TST

S+2∑
i=0

S+2∑
j=0

t∗ij log

[
t∗ij TST∑S+2

r=0 t∗rj

∑S+2
v=0 t∗iv

]
(2.39)

Ascendency and development capacity

Ascendency, being the product of TST by AMI, takes the following
mathematical form

A = AMI · TST =
S+2∑
i=0

S+2∑
j=0

t∗ij log

[
t∗ij TST∑S+2

r=0 t∗rj

∑S+2
v=0 t∗iv

]
(2.40)

Assessing ecosystem growth and development can be done by comparing
ascendency with its maximum and minimum limits. Ascendency (A), as
obtained from TST and AMI, shows a minimum value of 0 (when output
and input flow probabilities are completely independent, see Figure 2.8a),
whereas the upper boundary is defined as development capacity (C).
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For each ecosystem, the development capacity depends on the constraints
established by real network topology. When the number of compartments
(S) and TST are assigned, the highest development capacity is associated
to a wholly connected and balanced network, decreasing when flows become
more articulated (its minimum value is achieved with closed linear chain
topology, when it corresponds to system ascendency - see Figure 2.8 and
Table 2.1).
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Figure 2.8: Hypothetical networks with four compartments and TST = 48 energy units:
(a) is the more unarticulated topology with minimum AMI and ascendency values (both
equal to 0) and maximum development capacity (192); (b) and (c) are intermediate con-
figurations showing increasing AMI and A; C is lower than that observed for the first
network; in (d) is depicted a closed and linear chain (maximally articulated flows) with
highest AMI (2) and ascendency equal to development capacity (96).

In what follows, minimum and maximum ascendency are explained through
a probabilistic approach. The lowest ascendency value is associated to fully
connected topology, that is when input and output flow probabilities are
completely independent:

p(ai, bj) = p(ai)p(bj) (2.41)

Substituting this relation into equation (2.33) yields
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Network topology C
Fully connected (a) 192
Intermediate I (b) 144
Intermediate II (c) 137
Linear and closed chain (d) 96

Table 2.1: Development capacity (C) calculated for the hypothetical networks depicted
in Figure 2.8; the values of C are decreasing when the network topology becomes more
articulated.

A(a; b) = K

S+2∑
i=0

S+2∑
j=0

p(ai)p(bj) log
p(ai)p(bj)
p(ai)p(bj)

= K

S+2∑
i=0

S+2∑
j=0

p(ai)p(bj) log(1) = 0 (2.42)

Conversely, under minimum uncertainty conditions, ascendency can be
inferred setting each inflow and outflow probabilities as mutually determined
(when the output ai coincides, exclusively, with the input bj)

p(ai, bj) = p(ai) = p(bj) (2.43)

and the consequent development capacity is

C = K

S+2∑
i=0

p(ai) log
p(ai)

p(ai)p(ai)
= −K

S+2∑
i=0

p(ai) log p(ai) (2.44)

C = K

S+2∑
j=0

p(bj) log
p(bj)

p(bj)p(bj)
= −K

S+2∑
j=0

p(bj) log p(bj) (2.45)

or, in terms of energy (or matter) transfers (with K = TST )

C = −
S+2∑
i=0

S+2∑
j=0

t∗ij log
t∗ij

TST
(2.46)

The more articulated topology (Figure 2.8d), with receiving node always
determined by the knowledge of the donor compartment, implies that C =
A. In general

C ≥ A ≥ 0 (2.47)
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System overhead (Φ) measures the degree of freedom in flow organization
preserved by an ecosystem. It is estimated from the not negative difference
between development capacity and ascendency.

Φ = C − A (2.48)

Ascendency and system overhead are usually scaled with development
capacity to define them as percentage of the theoretical upper bound on
organization.

A(%) =
100 · A

C
(2.49)

Φ(%) =
100 · Φ

C
(2.50)

System overhead and its constitutive terms

Path multiplicity and a low level of flow organization, giving rise to over-
head (Φ), can be interpreted as system inefficiency in processing material
and energy but, in case of stress and perturbations, they represent an advan-
tage in terms of system adaptability to new threats. The system overhead
can be divided into four separate contributions, each related to a certain
form of multiplicity of pathways: input from outside (overhead on imports,
ΦI), exports to other systems (overhead on exports, ΦE), respirations (dis-
sipative overhead, ΦD) and internal transfers (redundancy, ΦR).

Φ = ΦI + ΦE + ΦD + ΦR (2.51)

ΦI = −
S∑

j=1

t∗0j log

[
t∗20j∑S

r=0 t∗rj

∑S
v=1 t∗0v

]
(2.52)

ΦE = −
S∑

i=1

t∗i,S+1 log

[
t∗2i,S+1∑S

r=1 t∗r,S+1

∑S+2
v=1 t∗iv

]
(2.53)

ΦD = −
S∑

i=1

t∗i,S+2 log

[
t∗2i,S+2∑S

r=1 t∗r,S+2

∑S+2
v=1 t∗iv

]
(2.54)

ΦR = −
S∑

i=1

S∑
j=1

t∗i,S+2 log

[
t∗2ij∑S

r=0 t∗rj

∑S+2
v=1 t∗iv

]
(2.55)

where tij stands for a transfer from compartment i to j; t0j depicts
imports to j; ti,S+1 and ti,S+2 denote, respectively, export and respiration
flows from node i.
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Overhead on inputs summarizes the fraction of “flow inefficiency” related
to number and intensities of flows coming from the outside environment.
When the number of inputs increases and becomes more evenly distributed,
overhead on imports increases, signifying a higher inefficiency in getting us-
able matter beyond the system boundaries. Nevertheless, the maintenance
of an adequate portion of overhead on imports become essential for the sys-
tem to survive. In fact, a system depending only on one input would be
extremely efficient (in this case overhead on imports is minimized and equal
to 0, regardless of the magnitude of the flow) but too fragile, showing risks
of catastrophic extinctions in case of collapse of the external source. Over-
head on exports quantifies the multiplicity of pathways that medium takes
to exit the system in a usable form. Like the overhead on inputs, it ranges
from a minimum of 0, when all the matter (or energy) leaving the system is
concentrated on a single node, to a maximum value in case of exports evenly
distributed among all the compartments. When the topology of exports and
their relative importance are assigned, this overhead component tends to in-
crease with higher amount of matter exported. The dissipative overhead is
related to the fraction of medium that is modified by internal processes (i.e.
respiration in ecosystems) and exiting the system in an unusable form (flows
that do not connect boxes). It increases with dissipation intensity and be-
cause of thermodynamic and ecological constraints its value must be greater
than 0. The fourth component of overhead is related to the redundancy of
pathways within the system. It is a contribution to disorder (inefficiency
- disorganization) because sending medium over diverse routes costs more
in terms of dissipation than channeling it over few efficient pathways; nev-
ertheless it becomes absolutely essential to system survival whenever an
unexpected perturbation occurs. Under these circumstances, redundancy
reflects “strength in reserve” from which the system can draw to adapt to
the new conditions. The lower limit for redundancy is 0 when no uncer-
tainty is preserved by internal flow structure (this is the unlikely case of a
linear chain - see Figure 2.8d), while the value of its upper bound depends
on TST and is associated to a completely connected topology (maximum of
flow uncertainty - see Figure 2.8a).

Table 2.2 summarizes, for 14 real ecosystems, the values of development
capacity, ascendency and overhead, with this latter separated into its four
constitutive components. Values are also given as percentage of the devel-
opment capacity.

Additionally, one can also compute an internal development capacity
(IC), considering only intercompartmental exchanges. This form finds its
counterparts in other internal indices such as internal ascendency (IA) and
internal redundancy (IR). Final results will be measured as percentage of
the maximum upper bound (internal capacity - see Table 2.3).
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C A ρI ρE ρD ρR

Charca de Masp. 39886000 16871000 2755700 906760 5538700 13814000
42.30% 6.91% 2.27% 13.89% 34.63%

Chesapeake Bay Meso. 19655000 8593800 1702300 79705 3565200 5714500
43.72% 8.66% 0.41% 18.14% 29.07%

Crystal River C. (c) 70712 28340 3205 6193 18408 14566
40.08% 4.53% 8.76% 26.03% 20.60%

Crystal River C. (dT) 56315 22434 2588 3892 15030 12372
39.84% 4.60% 6.91% 26.69% 21.97%

Everglades Gram. (ws) 79572 38643 11391 675 10181 18682
48.56% 14.32% 0.85% 12.79% 23.48%

Florida Bay (ws) 18540 7004 2064 53 2629 6791
37.78% 11.13% 0.29% 14.18% 36.63%

L. Chesapeake Bay 7713700 2966500 633140 81527 1271200 2761400
38.46% 8.21% 1.06% 16.48% 35.80%

M. Chesapeake Bay 9328300 3872600 634340 37609 1548700 3235000
41.51% 6.80% 0.40% 16.60% 34.68%

U. Chesapeake Bay 4583700 1822300 387190 15984 791020 1567200
39.76% 8.45% 0.35% 17.26% 34.19%

St. Marks River 11264 3726 1488 353 2267 3432
33.08% 13.21% 3.13% 20.12% 30.47%

Lake Michigan 140690 65649 10409 1814 12013 50805
46.66% 7.40% 1.29% 8.54% 36.11%

Mondego Estuary 39126 16547 4799 500 6932 10347
42.29% 12.27% 1.28% 17.72% 26.45%

Final Narragansett 20464000 7506700 586940 360110 2742100 9268300
36.68% 2.87% 1.76% 13.40% 45.29%

Ythan Estuary 23397 8663 1845 1363 4158 7368
37.02% 7.89% 5.82% 17.77% 31.49%

Table 2.2: 14 ecosystem networks are listed with their values of development capacity
(C), ascendency (A) and overhead (ρI , ρE, ρD, ρR). Data are obtained from Prof. Ulanow-
icz database (datall.dat) and processed with NETWRK 4.2b software. Flows are measured
in mgC m−2 d−1 (Charca de Maspalomas, Crystal River Creek control and delta temp.,
St. Marks River and Lake Michigan), mgC m−2 sum−1 (Chesapeake Bay Mesohaline,
Lower, Middle and Upper Chesapeake Bay), gC m−2 yr−1 (Everglades Graminoids - wet
season, Florida Bay - wet season, and Ythan Estuary), mgC m−2 yr−1 (Final Narra-
gansett) and gAFDW m−2 yr−1 (Mondego Estuary).

IC = −
S∑

i=1

S∑
j=1

t∗ij log
t∗ij

TST
(2.56)

IA = −
S∑

i=1

S∑
j=1

t∗ij log
t∗ij TST∑S+2

r=0 t∗rj

∑S+2
v=0 t∗iv

(2.57)

IR = IC − IA (2.58)

IA(%) =
100 · IA

IC
(2.59)

IR(%) =
100 · IR

IC
(2.60)
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IC IA IR IA(%) IR(%)
Charca de Masp. 25147000 11333000 13814000 45.07 54.93
Chesapeake Bay Meso. 11584000 5869700 5714500 50.67 49.33
Crystal River C. (c) 26223 11657 14566 44.45 55.55
Crystal River C. (dT) 21267 8895 12372 41.83 58.17
Everglades Gram. (ws) 34090 15407 18682 45.20 54.80
Florida Bay (ws) 11291 4500 6791 39.85 60.14
L. Chesapeake Bay 4782000 2020500 2761400 42.25 57.75
M. Chesapeake Bay 5867500 2632500 3235000 44.87 55.13
U. Chesapeake Bay 2862600 1295400 1567200 45.25 54.75
St. Marks River 5507 2075 3432 37.68 62.32
Lake Michigan 71540 20735 50805 28.98 71.02
Mondego Estuary 14285 3938 10347 27.57 72.43
Final Narragansett 13929000 4661100 9268300 33.46 66.54
Ythan Estuary 12805 5437 7368 42.46 57.54

Table 2.3: Internal capacity (IC), internal ascendency (IA) and internal redundancy
(IR) for the 14 ecosystems extracted from Prof. Ulanowicz database. The last two
columns show the percentage of internal ascendency and internal redundancy respect to
internal capacity.

Internal capacity aims to define the upper limit to intercompartmental
flow organization. While internal redundancy (IR) and redundancy (ΦR)
coincides, we get a further detail estimating internal ascendency (IA), that
is the fraction of rigidly linked flows between system nodes respect to the
whole ascendency (A).



3

Trophic positions

3.1 Effective trophic position in ecology

1The trophic-level ideal of a simple linear chain of energy passages had
great appeal as an easy and intuitive description of complex energy-based
ecosystem processes. Further, this approach has inspired several applica-
tions in ecology and management such as the cascade trophic interaction
theory (Carpenter et al., 1986; Carpenter and Kitchell, 1993) and the asso-
ciated biomanipulation idea (Gophen, 1990; Shapiro, 1990). On the other
hand, the structural intricacy (e.g. richness and topology of connections be-
tween species) of food webs gives rise to a vast array of functional behaviours
that do not easily accommodate into the framework of the “green world”
theories (Polis and Strong, 1996). Donor-controlled diffuse omnivory, for
example, shunts the flow of matter and energy away from adjacent trophic
components thus challenging the idea that populations aggregate into dis-
crete homogeneous trophic levels each of which receives energy solely from
its adjacent level nearer the ultimate source of energy (the outside or abi-
otic environment) and passes it to the next (Vadas Jr., 1990; Winemiller,
1990; Polis, 1991, 1994). The “...hawk that feeds at five trophic levels...”
(Cousins, 1985, 1987) embarrasses less the ecologists now that the trophic-
dynamic description of the ecosystem needs not exclude the reticulate con-
nections between the diversity of consumers and resources. Mapping energy
movements according to feeding relation in complex ecological communities

1Published Chapter: Scotti, M., Allesina, S., Bondavalli, C., Bodini, A., Abarca-
Arenas, L. G., 2006. Effective trophic positions in ecological acyclic networks. Ecological
Modelling, 198(3-4):495-505.
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yields to ecological flow networks (Ulanowicz, 1986), from which one can ap-
preciate the continuum of trophic positions of the species in the ecosystem.
Matrix manipulation on flow coefficients allows one to calculate trophic po-
sitions: while some species do behave as obligate autotrophs or herbivores,
many heterotrophs assume fractional trophic position, as the result of their
feeding at multiple levels (Christian and Luczkovich, 1999). This scenario
remains problematic to many, essentially because the recognition of trophic
levels implies the acceptance of the tropho-dynamic viewpoint of ecosystem
organization (Cousins, 1987; Oksanen, 1991). The more realistic notion of
trophic position or trophic role has gained ground among ecologists because
of its potential both for conceptual developments and practical applications
(Burns, 1989; Pauly et al., 1998; Luczkovic et al., 2003). In particular,
investigating trophic position allows insights into trophic transfer efficien-
cies (Christensen and Pauly, 1993), the overall energy budget in ecosystems
(Wulff and Ulanowicz, 1989; Burns et al., 1991; Gaedke and Straile, 1997)
and ecosystem response to stress (Ulanowicz, 1996; Bondavalli et al., 2006).
The emphasis in all of these studies has been at the ecosystem level but
effective trophic position can be used also to infer controlling factors in eco-
logical communities (Christian and Luczkovich, 1999), showing the potential
of the concept for community-level investigations. At present, the bulk of
ecological trophic analysis conducted in the framework of ecosystem network
analysis (Ulanowicz and Kay, 1991; Christensen and Pauly, 1993; Christian
and Luczkovich, 1999) makes use of the canonical trophic aggregation (CTA;
Ulanowicz and Kemp, 1979; Ulanowicz, 1995) a matrix-based algorithm that
defines trophic positions as the weighted average distance of the compart-
ment from the ultimate source of energy (Imports - outside environment).
When analyzed in detail, however, we found that this method can give rise to
some inconsistencies. In particular, we noted that: (a) there are ambiguities
for the role of migratory imports (inflows to the system coming from another
ecosystem); (b) there is scale dependency (e.g. a species trophic position
varies when one considers just a subset of the original network); (c) the com-
putation can lead to ecologically unrealistic values for trophic position when
performed on networks that use currencies others than carbon (e.g. phos-
phorous and nitrogen), or from multiple non-living nodes (nutrient pools,
detritus, etc.). In this work we present a natural extension of the original
formulation of the CTA algorithm (Ulanowicz and Kemp, 1979; Ulanowicz,
1995) for computing trophic positions, showing how all the inconsistencies
vanish after its implementation. In what follows, we briefly describe the
method proposed by Ulanowicz and Kemp (1979) (detailed information can
be found in the Appendix TPs) and the possible drawbacks. Finally, we
explain in detail how this procedure can be generalized, and contrast the
two approaches.



Canonical trophic aggregation 41

3.2 Canonical trophic aggregation

Ecosystem network analysis (Ulanowicz, 1986; Baird and Ulanowicz,
1989; Fath and Patten, 1999; Christensen and Pauly, 1992) is a technique
that depicts ecosystems as composed of compartments (that represent species
or aggregates of species, nutrient pools, etc.) exchanging flows (that can
stand for energy or matter nutrients) with each others. One can discriminate
between several types of fluxes: inter-compartmental fluxes denote internal
exchanges (tij that stands for a flux from compartment i to compartment j),
while exchanges with the external world can be divided into imports from
the outside (zj indicates an external input flow to compartment j), exports
to the outside (ej indicates an outflow from compartment j), and respira-
tions (symbolized, for the compartment j, as rj). Such scheme is given in
matrix form with three column vectors, namely (Z) - Import, (E) - Export
and (R) - Respiration and the matrix [T ] of internal exchanges. All vectors
will have S coefficients, where S is the number of compartments, and the
matrix [T ] will have dimension S · S. As an example, consider the network
depicted in Figure 3.1.
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Figure 3.1: Hypothetical 5 species network showing: 5 inter-compartmental exchanges,
2 imports (on species A and B), 3 exports (on species C, D and E) and 5 respiration flows
(one for each compartment). Link strength is quantified by numbers next to arrows and
“ground symbols” (respirations).

The 5 compartment network of Figure 3.1 can be represented in matrix
form as:

T =

⎡
⎢⎢⎢⎢⎣

0 300 0 0 200
0 0 0 0 150
0 0 0 40 0
0 0 0 0 0
0 0 100 0 0

⎤
⎥⎥⎥⎥⎦Z =

⎡
⎢⎢⎢⎢⎣

1000
10
0
0
0

⎤
⎥⎥⎥⎥⎦E =

⎡
⎢⎢⎢⎢⎣

0
0
20
10
100

⎤
⎥⎥⎥⎥⎦R =

⎡
⎢⎢⎢⎢⎣

500
160
40
30
150

⎤
⎥⎥⎥⎥⎦

Effective trophic position is defined as the weighted average length of
all the pathways that originate from outside the system and reach a given
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compartment. Autotrophs will have distance (and therefore TP - trophic
position) equal to 1, herbivores 2 and so on. Usually TPs are fractionary:
for a species that bases half of its diet on primary producers and the other
half on herbivores, the TP will be 2·0.5+3·0.5 = 2.5 (one pathway of length
2: outside → primary producers and one of length 3: outside → primary
producers → herbivores). Organisms feeding on this latter species would
have TP = 3.5 and so forth. If one considers the network in Figure 3.1, it
is clear that species A receives flows just from the outside, having therefore
TP = 1. Computing the other TPs is more difficult, as there are multiple
pathways connecting the external environment to each compartment. After
some computation, we see that species B is almost herbivore (TP = 1.968),
as the energy (or matter) it receives from the outside (10) is much smaller
than the amount it gets from species A (300). So it acts as a primary pro-
ducer by a 3.22% (10/(10+300)) and for the remaining 96.78% as a primary
consumer. Computation yields to 0.0322 · 1 + 0.9678 · 2 = 1.968. Similarly,
one can compute the trophic positions of all species in the network. When
the network under examination comprises non-living compartments, such as
detritus and nutrient pools, the classical analysis considers only the sub-
system formed by the ensemble of living compartments. Non-living nodes
are then assigned to trophic level 1, equiparating their outflows as imports
to the living subsystem. Even though this is the most common procedure
(Cousins, 1985; Baird and Ulanowicz, 1989), other studies calculate trophic
positions of non-living compartments as the number of transfers required
to reach the given node starting from the outside (imports) (Burns et al.,
1991; Higashi et al., 1989, 1991, 1992; Whipple and Patten, 1993; Whipple,
1998). Cycles embedded in the network would therefore imply an infinity of
pathways connecting any two nodes in the same strongly connected compo-
nent (Allesina et al., 2005a), making the actual trophic level computation
more complicated. The vast majority of cycles, however, involves non-living
compartments as an intermediate step (Pimm, 1982; May, 1983; Ulanowicz,
1983, 1995): removing the non-living nodes would therefore leave just a few
residual cycles. Nevertheless, recent studies highlight the presence of cycles
involving only living compartments (Dunne et al., 2002a, 2004; Williams and
Martinez, 2000). According to these evidences, while we leave to a more de-
tailed study the problem of assigning trophic positions in the presence of
cycles, in what follows we discuss the question in the framework of CTA
by analyzing simple networks, both hypothetical and extracted from real
ecosystems, in which living compartments do not form cycles.

3.2.1 Drawbacks of CTA

Having sketched the basic idea behind CTA, we can discuss some general
drawbacks:
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Migratory Imports

In CTA, as it was initially conceived, all imports, corresponding to inputs
from outside the system, are assigned to virtual trophic position 0, thus
considering them as nutrients received by primary producers. But this is not
always true. When individuals of a prey species migrate from another area
(e.g. think about stream - forest ecosystems) there is an import with effective
trophic position different from 0. Therefore, setting these inflows to trophic
level 0 will affect the final outcome of trophic aggregation and the trophic
positions of the various compartments are likely to be underestimated. The
principal software packages for network analysis are NETWRK (Ulanowicz
and Kay, 1991), WAND (Allesina and Bondavalli, 2004) and ECOPATH
(Pauly et al., 2000; Christensen et al., 2005). The first version of NETWRK
set all imports to trophic level 0, while a more recent one (Ulanowicz, 2002)
assigns migratory inputs to heterotrophs to the same trophic position of the
receiving node, whereas imports to primary producers are set to TP = 0.
WAND and ECOPATH use an approach similar to the older NETWRK
version.

Scale dependency

Assigning external input to trophic level 0, trophic positions of network
compartments are sensible to scale. If a compartment is computed to have
a trophic position equal to, say, x, considering a sub-network, “external
environment” boundary changes and some intercompartmental flows in the
original network appear now as import flows, that will be assigned to trophic
level 0. Recomputing the trophic position of the compartment yields to a
value y ≤ x. The lack of a clear procedure for handling migratory imports
makes the computation of trophic positions scale-dependent.

Non-living compartment trophic level

In carbon based networks primary producers receive their requisite medium
from outside the system in form of atmospheric carbon dioxide and their TP
is 1. Considering different currencies, such as nitrogen or phosphorous, or
also multiple non-living nodes (e.g. nutrient pool and detritus) in a carbon
based-network, the calculation is not that straightforward. To include the
contribution of non-living components to the budget of the other nodes in
the network one could either decide to assimilate inflows coming from these
nodes to imports (that is to say assigning a virtual trophic position 0 to
non-living compartments), or treat those inflows, as suggested by Ulanow-
icz (1995), as primary production (assigning virtually detritus and nutrient
pools to level 1). The latter approach is axiomatically utilized in NETWRK
(Ulanowicz and Kay, 1991) and ECOPATH (Pauly et al., 2000) software, be-
cause: “...it’s sometime difficult to separate living from dead plant tissue...”



Extending CTA 44

(Kay et al., 1989). It is clear that assimilating inflows from non-living nodes
as of level 1 does not always hold. In the case of nitrogen, in fact, this would
lead to an unfeasible TP = 2 for primary producers. The same problem may
arise in carbon based network with multiple non-living nodes (e.g. nutrient
pool, suspended POC, sediment POC - see Table 3.4). This problem has
been analyzed in detail by Gaedke and Straile (1997). They compared four
different definitions for the trophic position of dead autochthonous organic
material, from a logical and descriptive point of view, suggesting to allocate
all the dead organic material to the “zeroth” trophic level. In what follows,
we will describe a procedure able to cope with migratory imports. The out-
flows of non-living compartments will be considered to be imports with: (a)
TP = 0 when non-living nodes apportion flows to, at least, a primary pro-
ducer; (b) TP = 1 when non-living nodes act as autotrophic compartments
and exclusively show outflows to heterotrophs.

3.3 Extending CTA

To deal with all the above inconsistencies we extended canonical trophic
aggregation introducing multiple imports of different trophic position. The
new algorithm naturally extends the one presented by Ulanowicz (1995).
We define an import vector (Z)0 (energy or nutrients to plants) of trophic
level 0, and an import vector (Z)α for any trophic position α different from
0. Also we define a [T ]living sub-matrix that accounts only for exchanges
between living compartments (species or group of species), while non-living
nodes become imports aggregated in a non-living import vector (K)α. In the
next paragraphs we present the building blocks of the algorithm and in the
last paragraph of this section we assemble them into a general framework.

3.3.1 Partial feeding matrix

If we divide every non-zero coefficient in the [T ]living matrix by the col-
umn sum plus all the imports to that column compartment we obtain a
partial feeding matrix [G]living that specifies the fractionary diet of each
compartment. The columns of [G]living will sum to 1 in case the compart-
ment does not receive imports, and to less than 1 elsewhere:

gij =
tij∑living

v=1 tvj + zj + kj

(3.1)

where (Z) is an undifferentiated vector with zj coefficient that sums all
the external imports (zα,j), and (K) is a vector with kj coefficient that sums
all the flows from non-living nodes (kα,j).

For the network in Figure 3.1, [G]living becomes:
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Gliving =

⎡
⎢⎢⎢⎢⎣

0 0.968 0 0 0.571
0 0 0 0 0.429
0 0 0 1 0
0 0 0 0 0
0 0 1 0 0

⎤
⎥⎥⎥⎥⎦

The powers of [G]living are defined as repeated product of [G] by itself:
[G]0living stands for the identity matrix [I], [G]1living = [G]living, [G]2living =
[G]living × [G]living , and so forth. These powers account for the fraction of
matter flowing from the row compartment to the column compartment in
exactly x steps, being x the exponent of the [G]living matrix.

3.3.2 Normalized import vectors

These vectors (N)α quantify what amount of the flows to a given com-
partment comes from external subsidies. They are expressed similarly to
[G]living coefficients. If a compartment j bases its diet only on external in-
flows of trophic position α, then nα,j will be 1. Conversely, a value of 0
means that the compartment is not directly connected to the surrounding
system; if 0 < nα,j < 1 the node j receives matter, or energy, both from
outside and from internal exchanges. Then we may calculate normalized
import vectors (N)α, using

nα,j =
zα,j∑living

v=1 tvj + zj + kj

(3.2)

In the example network there is an import to plants (node A) which can
be classified as of trophic level 0 (α = 0). Plus, an additional import to
node B (omnivores) exists. For the sake of the methodological explanation
this matter/energy is assumed to be at trophic position 2.825 (α = 2.825).
We get now

N0 =

⎡
⎢⎢⎢⎢⎣

1.000
0
0
0
0

⎤
⎥⎥⎥⎥⎦N2.825 =

⎡
⎢⎢⎢⎢⎣

0
0.032

0
0
0

⎤
⎥⎥⎥⎥⎦

3.3.3 Normalized non-living import vectors

These vectors (W )α are obtained with the same procedure used for nor-
malized import vectors. The coefficients of normalized non-living import
vectors (W )α are computed as:

wα,j =
kα,j∑living

v=1 tvj + zj + kj

(3.3)
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where the trophic position α is set to 0 when non-living compartments
apportion to primary producers, and 1 elsewhere. The Figure 3.1 network
does not have non-living imports, but the calculation is straightforward once
one know how to compute normalized vector of living matter.

3.3.4 Trophic Positions

Two types of trophic transformation matrices (Ulanowicz, 1995) can be
computed: [A]α, that considers imports of living matter with various trophic
positions, and [B]α that refers to non-living compartments. Computation
can be conducted one row at a time, using the formulas

aα,i = (Nα)T × Gi−1
living (3.4)

bα,i = (Wα)T × Gi−1
living (3.5)

where i stands for the row number and the superscript T stands for trans-
pose form. Putting the rows together we define the final form of matrices
[A]0 and [A]2.825 for the example network of Figure 3.1:

A0 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0.968 0 0 0.571
0 0 0.571 0 0.415
0 0 0.415 0.571 0
0 0 0 0.415 0

⎤
⎥⎥⎥⎥⎦

A2.825 =

⎡
⎢⎢⎢⎢⎣

0 0.032 0 0 0
0 0 0 0 0.014
0 0 0.014 0 0
0 0 0 0.014 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

Therefore there are two vectors of trophic positions (TP )0,j and (TP )2.825,j

whose coefficients (e.g. trophic positions) are computed as:

TP0,j =
living−1∑

i=1

a0,ij · i (3.6)

TP2.825,j =
living−1∑

i=1

a2.825,ij · (i + 2.825) (3.7)

yielding to:
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TP0 =

⎡
⎢⎢⎢⎢⎣

1
1.935
3.373
4.359
2.387

⎤
⎥⎥⎥⎥⎦TP2.825 =

⎡
⎢⎢⎢⎢⎣

0
0.123
0.081
0.095
0.067

⎤
⎥⎥⎥⎥⎦

The final vector of trophic positions results from the sum of (TP )0 and
(TP )2.825:

TPFinal =

⎡
⎢⎢⎢⎢⎣

1
2.058
3.454
4.454
2.454

⎤
⎥⎥⎥⎥⎦

This procedure can be generalized into

TPF inal =

(
q∑

i=1

(αi ·�1 + [ 1 2 3 4 5 ]) × [M ]α,i

)T

(3.8)

This relation allows computing the trophic position in the system with
different types of import flows. In particular, αi represents the scalar TP
of the ith import and q the total number of imports (including non-living
compartments). [M ]αi is the trophic transformation matrix associated to
the input with TP αi. In our example q = 2, in fact we have α1 = 0,
and α2 = 2.825. The number of nodes in the system is 5, and the trophic
transformation matrices are: [M ]α1 = [A]0, and [M ]α2 = [A]2.825. So, for the
5-species system of Figure 3.1 the compact representation becomes explicit
as follows:

TPF inal =
(
(0 ·�1 + [ 1 2 3 4 5 ]) × [A]0

)T
+

+
(
(2.825 ·�1 + [ 1 2 3 4 5 ]) × [A]2.825

)T

3.4 Applying “extended” CTA

3.4.1 Crystal River network with multiple migratory im-
ports

We now apply the “extended” CTA to the Crystal River Creek ecosys-
tem (Homer and Kemp, unpublished ms; see also Ulanowicz, 1983; Ulanow-
icz, 1986), to highlight differences in trophic positions of each compartment
respect to the outcomes obtained with “classical” CTA. In this example
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Figure 3.2: Crystal River Creek network. Nodes exhibiting different TPs are drawn vary-
ing colors (e.g. microphytes and macrophytes with TP = 1 are yellow while sheepshead
killifish, in red, is associated to TP = 2.109).

(Figure 3.2) flows are measured in mgC m−2 day−1, and there are 21 com-
partments: 20 living nodes (mainly vertebrate fishes) and 1 non-living com-
partment (detritus).

The network consists of 6 imports (to compartment microphytes, macro-
phytes, bay anchovy, needlefish, gulf killifish and pinfish), 20 exports (one
for each compartment, excluding microphytes), 21 respiratory flows and 82
internal exchanges. Although much currency cycles between detritus and
various living compartments, there is no need for decyclization because our
trophic analysis treats non-living nodes (detritus) like exogenous inputs.
Therefore we carry out “extended” CTA on 20 living compartments. The
new subsystem (Figure 3.2) is comprised of: 2 imports of light or energy
(to microphytes and macrophytes), 4 migratory imports (to bay anchovy,
needlefish, gulf killifish and pinfish), 20 exports, 21 respiratory flows, 52
internal exchanges, 10 non-living imports from detritus to living compart-
ments (zooplankton, benthic invertebrates, striped anchovy, bay anchovy,
sheepshead killifish, goldspotted killifish, silverside, moharra, silver jenny
and mullet) and 20 exports from living nodes to detritus. We consider im-
ports to primary producers (microphytes and macrophytes) as light or en-
ergy with trophic level equal to 0, while other imports are migratory income
with trophic position far from 0 because they are directed to fish. There
is no logic to think of these imports to fishes as light or energy. To fishes
components receiving migratory imports in Crystal River Creek network, we
assign the following trophic positions, according to the Florida Bay network
dataset (Ulanowicz et al., 1998):
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• TP import to bay anchovy = 2.55

• TP import to needlefish = 2.9

• TP import to gulf killifish = 2.24

• TP import to pinfish = 2.07

The trophic position of migrating prey is estimated by subtracting 1 from
the average trophic position of the receiving compartment. This method is
what we recommend to apply. The average trophic position of a compart-
ment should be obtained from existing datasets and literature (e.g. FishBase
database available on the web site www.fishbase.org, Florida Bay network
dataset), or should be estimated diminishing by one unit the trophic posi-
tion of the receiving node without the contribution of the imported prey.
The trophic level of imports from detritus, in Crystal River Creek ecosys-
tem, is fixed to 1 because this compartment does not show flows directed to
primary producers.

3.4.2 Comparison with “classical” CTA

We stress now the differences between the trophic positions of species in
Crystal River Creek determined using our “extended” CTA with respect to
those computed with the “classical” CTA (see Table 3.1).

Species CTA “extended” CTA Variation (%)
Microphites 1.000 1.000 0.000
Macrophites 1.000 1.000 0.000
Zooplankton 2.000 2.000 0.000
Benthic invertebrates 2.000 2.000 0.000
Blacktip shark 3.000 3.000 0.000
Stingray 3.833 3.847 0.364
Striped anchovy 2.667 2.667 0.000
Bay anchovy 2.020 3.138 55.373
Needlefish 3.438 3.949 14.864
Sheepshead killifish 2.109 2.109 0.000
Goldspotted killifish 2.446 2.446 0.000
Gulf killifish 3.392 3.531 4.105
Longnosed killifish 3.000 3.000 0.000
Silverside 2.937 2.937 0.000
Moharra 2.859 2.859 0.000
Silver jenny 2.846 2.846 0.000
Sheepshead 2.500 2.500 0.000
Pinfish 3.225 3.706 14.930
Mullet 2.000 2.000 0.000
Gulf flounder 3.820 4.155 8.759

Table 3.1: Trophic positions for living compartments in Crystal River Creek, calculated
according to “classical” CTA (CTA) and its extended version (“extended” CTA).

It is evident that microphytes and macrophytes conserve the same trophic
level of 1 both in “classical” and in “extended” CTA because their inflows
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are exclusively external inputs that maintain trophic level 0 in both the
methods. Also zooplankton, benthic invertebrates and mullet maintain their
trophic level (2) since they are strictly herbivores depending on microphytes
(primary producers) and detritus (placed to trophic level 1 as default in
both CTA versions in this case). Longnosed killifish and blacktip shark
maintained their trophic level (3), being placed in a hypothetical linear
chain without other inflows (detritus → benthic invertebrates → longnosed
killifish, and microphytes → mullet → blacktip shark), playing the role of
primary carnivores. Migratory imports that change their trophic values from
0 to a scalar number α, in the “extended” CTA, affect directly bay anchovy,
needlefish, gulf killifish and pinfish, and indirectly gulf flounder (that feeds
on bay anchovy and on pinfish), and stingray (that feeds on gulf killifish). It
is interesting to notice that with the exception of the bay anchovy the oth-
ers compartments show both direct and indirect dependence on migratory
imports: needlefish that feeds on bay anchovy and pinfish; gulf killifish and
pinfish that feed on bay anchovy. The last column of the Table 3.1 presents
the percentage of variation produced by considering the trophic position
of imports with a scalar number α far from 0 respect to what happens in
“classical” CTA. The percentage of variation is calculated as the difference
between the trophic position obtained considering migratory import trophic
positions different from 0 and the trophic position calculated setting all the
imports to 0, divided by the latter and multiplied by 100.

3.4.3 Sensitivity analysis of migratory imports

Prey migration counts for about 49% (1.57/(1.57+0.64+1)) of bay an-
chovy diet, while other species rely less on external inputs: needlefish =
1.3%; gulf killifish = 2.4%; pinfish = 3.4%. Bay anchovy distributes its out-
flows in some intra-compartmental exchanges (to needlefish, gulf killifish,
pinfish and gulf flounder), and it is more connected than needlefish, gulf kil-
lifish and pinfish. Therefore we decided to perform a sensitivity analysis on
migratory imports to bay anchovy. We carry out 10,000 random samplings
of migratory import amounts to bay anchovy, into a range that is ±50% its
original value, obtaining the following interval: 0.755 mgC m−2 day−1 ≤
1.57 mgC m−2 day−1 ≤ 2.355 mgC m−2 day−1. The relative impor-
tance of prey migration flow with respect to total inflows into bay an-
chovy, in this simulation, varies between 32% (0.785/(0.785+1+0.64) and
59% (2.355/2.355+0.64+1). For each value sampled, considered as a possi-
ble amount of prey migration, we apply the “extended” CTA to calculate
trophic positions of different compartments and their confidence interval at
95% and 99% (see Table 3.2).

Only compartments that are directly (bay anchovy) or indirectly (stingray,
striped anchovy, needlefish, gulf killifish, silverside, silver jenny, pinfish and
gulf flounder) affected by the prey migration to bay anchovy, show a con-
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Species 95% 99%
Microphytes 1.000 ± 0.000e+00 1.000 ± 0.000e+00
Macrophytes 1.000 ± 0.000e+00 1.000 ± 0.000e+00
Zooplankton 2.000 ± 0.000e+00 2.000 ± 0.000e+00
Benthic invertebrates 2.000 ± 0.000e+00 2.000 ± 0.000e+00
Blacktip shark 3.000 ± 0.000e+00 3.000 ± 0.000e+00
Stingray 3.844 ± 3.028e-05 3.844 ± 4.542e-05
Striped anchovy 2.667 ± 8.882e-18 2.667 ± 1.332e-17
Bay anchovy 2.708 ± 3.990e-03 2.708 ± 5.986e-03
Needlefish 3.767 ± 1.681e-03 3.767 ± 2.522e-03
Sheepshead killifish 2.109 ± 0.000e+00 2.109 ± 0.000e+00
Goldspotted killifish 2.446 ± 0.000e+00 2.446 ± 0.000e+00
Gulf killifish 3.498 ± 3.028e-04 3.498 ± 4.542e-04
Longnosed killifish 3.000 ± 0.000e+00 3.000 ± 0.000e+00
Silverside 2.937 ± 8.882e-18 2.937 ± 1.332e-17
Moharra 2.859 ± 0.000e+00 2.859 ± 0.000e+00
Silver jenny 2.846 ± 8.882e-18 2.846 ± 1.332e-17
Sheepshead 2.500 ± 0.000e+00 2.500 ± 0.000e+00
Pinfish 3.548 ± 1.462e-03 3.548 ± 2.193e-03
Mullet 2.000 ± 0.000e+00 2.000 ± 0.000e+00
Gulf flounder 4.034 ± 1.124e-03 4.034 ± 1.686e-03

Table 3.2: Trophic position sensitivity analysis for migratory imports to bay anchovy
(Crystal River Creek ecosystem): confidence interval at 95% and 99%.

fidence interval around their mean values. Confidence intervals are bigger
for bay anchovy, needlefish, gulf killifish, pinfish and gulf flounder, because
these nodes are closer to prey migration than others.

3.4.4 Scale independence

Trophic positions of compartments depicted in Figure 3.2 are summa-
rized in the column labeled “extended′′ CTA of Table 3.1. If we selected
a subsystem (Figure 3.3) composed by gulf killifish and longnosed killifish,
CTA would treat inflows to these nodes from benthic invertebrates, bay
anchovy, sheepshead killifish, goldspotted killifish, silverside, moharra and
mullet as energy fluxes with trophic level equal to 0, while our “extended”
CTA allows to maintain the same trophic positions they had in the whole
network.

In Table 3.3 results of “extended” CTA are compared with those of
“classical” CTA. The trophic position of gulf killifish and longnosed killifish
remains the same in the whole network and in the selected subsystem when
using “extended” CTA.

The role of inorganic nutrients

“Extended” CTA permits to consider flows from non-living nodes of a
system as inputs from outside. We may set non-living nodes trophic position
to 0 when primary producers (plants, phytoplankton, etc.) receive flows
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Figure 3.3: Crystal River Creek: a sub-network. Flows from benthic invertebrates,
bay anchovy, sheepshead killifish, goldspotted killifish, silverside, moharra and mullet are
migratory imports with TPs far from 0.

Gulf killifish Longnosed killifish
whole network “classical” CTA 3.392 3.000
whole network “extended” CTA 3.531 3.000

subsystem “classical” CTA 1.005 1.000
subsystem “extended” CTA 3.531 3.000

Table 3.3: Gulf killifish and longnosed killifish trophic positions investigated with “clas-
sical” and “extended” CTA, at different scale levels (Crystal River Creek ecosystem).

from them, or 1 elsewhere. Here follows an application to Ythan estuary
ecosystem (Baird and Milne, 1981), whose scheme is depicted in Figure 3.4.

Flows are measured in gC m−2 yr−1. There are 13 compartments: 10
living (benthic macrophytes, phytoplankton, benthic microflora, herbivorous
birds, zooplankton, invertebrate suspension feeders, meiofauna, invertebrate
deposit feeders, carnivorous birds and carnivorous fish) and 3 non-living
(nutrient pool, suspended POC, and sediment POC). Non-living nodes ap-
portion to living ones as follows:

• Nutrient pool → benthic macrophytes, phytoplankton and benthic mi-
croflora (three primary producers).

• Suspended POC → zooplankton and invertebrate suspension feeders.

• Sediment POC → meiofauna and invertebrate deposit feeders.

The network consists of 2 imports into nutrient pool and suspended
POC, 10 exports (from benthic macrophytes, phytoplankton, zooplankton,
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invertebrate suspension feeders, meiofauna, invertebrate deposit feeders, car-
nivorous birds, carnivorous fish, nutrient pool and suspended POC), 12
respiration flows (one for each node, excluding nutrient pool) and 40 in-
tercompartmental exchanges. We isolated a sub-network that includes only
living compartments, using flows from non-living nodes as imports. We set
to 1 the trophic level of suspended POC and sediment POC, while to 0
the trophic level of the nutrient pool flowing to primary producers (benthic
macrophytes, phytoplankton and benthic microflora). The “living subsys-
tem” that we isolated from the whole network is comprised of: 7 imports
(formerly flows from non-living to living nodes), 8 exports, 10 respiratory
flows, 12 internal exchanges and 17 “non-living exports” (formerly flows
to non-living compartments). Results after applying CTA and “extended”
CTA are summarized in Table 3.4.

“Classical” CTA yields to strange results: primary producers appear
at trophic level 2 (benthic macrophytes, phytoplankton and benthic mi-
croflora), with a consequent shift in the trophic position of herbivorous birds,
that now feed at trophic level 2. These incongruities arise because in the
“classical” trophic analysis all the non-living nodes are positioned at trophic
level 1, including those that contribute to primary producers (nutrient pool).
In “extended” CTA we distinguish the trophic level of non-living nodes (0
if the compartment outflows flux to primary producers, and 1 elsewhere).
Trophic positions of the Ythan estuary sub-network are ecologically consis-
tent when computed using “extended” CTA:

• Benthic macrophytes, phytoplankton and benthic microflora (primary
producers) = TP 1.

Benthic Macrophytes

Phytoplankton

Benthic Microflora

Herbivorous Birds

Zooplankton

Invertebrate Suspension Feeders

Meiofauna

Invertebrate Deposit Feeders

Carnivorous Birds

Carnivorous Fish

Nutrient Pool

Suspended POCSediment POC

Figure 3.4: Ythan estuary ecosystem. Primary producers (TP = 1) are drawn in yellow
and herbivores (TP = 2) in green. Invertebrate deposit feeders (TP = 2.004), carnivorous
fish (TP = 3.003) and carnivorous birds (TP = 3.030), with non-integer TPs, are colored
in red, blue and pink, respectively. Non-living nodes are set to TP = 1 (suspended POC
and sediment POC, in orange) and TP = 0 (nutrient pool, in white).
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Species CTA “extended” CTA Variation (%)
Benthic macrophytes 2.000 1.000 50.000
Phytoplankton 2.000 1.000 50.000
Benthic microflora 2.000 1.000 50.000
Herbivorous birds 3.000 2.000 33.333
Zooplankton 2.143 2.000 6.667
Invertebrate susp. feed. 2.151 2.000 7.006
Meiofauna 2.049 2.000 2.411
Invertebrate dep. feed. 2.053 2.004 2.411
Carnivorous birds 3.125 3.030 3.047
Carnivorous fish 3.062 3.003 1.918

Table 3.4: Trophic positions in the Ythan estuary living sub-network, calculated accord-
ing to “classical” CTA (CTA) and its extended version (“extended” CTA).

• Herbivorous birds = TP 2.

Applying the “extended” CTA instead of the “classical” approach, these
nodes largely change their trophic position. The other compartments (zoo-
plankton, invertebrate suspension feeders, meiofauna, invertebrate deposit
feeders, carnivorous birds and carnivorous fish) present a lower variation.

3.5 Trophic position in acyclic networks

Canonical trophic aggregation is a matrix-based device that has been
developed for ecosystem trophic analysis. One of its outcomes is the trophic
position that species occupy in an ecosystem (Kercher and Shugart, 1975;
Levine, 1983; Higashi et al., 1989; Christian and Luczkovich, 1999; Heymans
et al., 2002). In the algorithm for calculus, inputs from outside the system
are all allocated to the “zeroth” trophic level. The consequences of this
assumption is that organisms first assimilating this energy are allocated to
trophic level 1. In doing so, however, the procedure completely excludes
from the analysis the question of ecosystem subsidies, that is, imports of
energy and nutrients from other ecosystems (Polis and Hurd, 1996). There
is a vast array of publications that highlight the importance of ecosystem
subsidies (Polis et al., 1997; Polis et al., 2004 and citations therein) and
others address the problem of the import of nutrients or non-living organic
matter (Gaedke and Straile, 1997). Whereas non-living imports can easily
be treated in the “classical” canonical trophic aggregation, the many other
forms of living material exchanges between ecosystems, such as immigration,
prey migration and so forth, still need to be accommodated in the CTA. Liv-
ing imports and their effect on the trophic position of species has not been
treated extensively in the literature. Gaedke and Straile (1997) consider
this as a scale problem, stating that “...If physical ecosystem boundaries are
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chosen in such a way that species immigrating from other systems consti-
tute major prey items, we suggest that they maintain the trophic position
they had in their previous food web, and that this number is included into
the calculations...”. However, they do not treat the question in detail and
restricted their analysis to dead material. In this paper, while we generalize
the CTA procedure by including any kind of import (i.e. living and non-
living), we also show how this approach can overcome the difficulties posed
by ecosystem boundaries and related scale problems. The “extended” CTA
allows, in fact, to maintain the same trophic position when sub-models of
the original food web are analyzed. Often, incidentally, the trophic position
of an immigrating prey is not known. In those cases it is not possible to cal-
culate exactly the trophic position of the species that receive this incoming
energy (detailed information on simulation approaches can be found in the
Appendix TPs). However, in this respect a reasonable guess can be made
considering the type of organism and its ecology, by taking into account that
no organism can efficiently combine different ways of energy intake (Oksa-
nen, 1991). Although the main object of investigation of this work are im-
port flows, the “extended” CTA provides insight into the problem of trophic
position as related to flows from inorganic nutrients and non-living organic
matter present in the system. Assigning all non-living organic matter to
the first trophic level like autotrophs (Pimm, 1988; Wulff and Ulanowicz,
1989) raises the problem of having plants feeding at trophic level 2 when
the currency is inorganic nutrients. Gaedke and Straile (1997) criticized this
approach and emphasized that the trophic position of the various species is
largely independent from the currency (organic or inorganic) when all the
non-living organic material is considered as system input. Accordingly, pri-
mary producers and bacteria would be allocated to trophic level 1; we think
that this assumption underestimates the trophic role played by bacteria
that can perform either as autotrophs and heterotrophs (Azam et al., 1983;
Pomeroy, 1984; Bratbak, 1987; Sherr et al., 2003; Bennett et al., 1990).
The “extended” CTA results show that bacteria can be allocated either at
trophic level 1 or higher according to their function but this requires that
non-living material be allocated: (a) to trophic level 1 if bacteria act as
heterotrophs; (b) to trophic level 0 when bacteria are autotrophs. Through
the “extended” CTA we have been able to solve some ambiguities related to
trophic position in the presence of multiple non-living nodes connected to
living compartments. Instead of considering non-living matter as part of the
system, we propose to place it as import flows (see Figure 3.4). Setting the
nutrient pool trophic level to 0 avoids the strange trophic position 2 that
happens to characterize benthic macrophytes, phytoplankton and benthic
microflora, changing it to a more reasonable first level (Table 3.4). Con-
versely, if suspended POC and sediment POC trophic levels are equal to
1 we obtain ecologically robust outcomes for meiofauna, zooplankton and
invertebrate feeders (herbivores with trophic level 2). What comes out from
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suspended POC and sediment POC (Figure 3.4) substantially corresponds
to what Gaedke and Straile (1997) call autochthonous dead organic matter.
Although our choice of considering suspended POC and sediment POC as
inflows into the system matches with their “biospheric point of view” that
abolish the distinction between allochthonous and autochthonous material,
still a difference remains in assigning these compartments to a trophic level.
We set up these flows (to herbivores) at trophic level 1, whereas the above
cited authors keep them at trophic level 0. Their approach seems bene-
ficial for the clarity and meaningfulness of various trophic measures such
as trophic position as indicative of number of assimilation events, transfer
efficiency between trophic levels, homogeneity of trophic level composition.
However, it seems that the same achievements could be obtained by setting
up dead organic material (irrespective of its endogenous or exogenous ori-
gin) to trophic level 1 or to the respective trophic position of its sources,
as likely, what matters in their context is the difficulty of treating dead
organic material as part of the system. We reiterate, however, that dead
organic material, as external source of energy (e.g. inorganic nutrients),
should be allocated to trophic level 0 if inconsistencies involving the trophic
positions of plants have been noticed, while it should be set up to 1 when
it just apportions its outflows to heterotrophic compartments. Lindeman
(1942) allocated dead organic material at trophic level 1, and this choice
was criticized as an arbitrary convention (Cousins, 1987). However, while
we show that in doing so one avoids many inconsistencies in the trophic ag-
gregation scheme and that the entire CTA acquires internal coherence, we
also point out that a distinction should be made between detritus (i.e. sus-
pended POC and sediment POC in our example) and dead organic material.
In many cases detritus includes living organisms and in this case particu-
lar attention should be devoted in separating living from non-living things
before calculating the trophic position of this entity (Gaedke and Straile,
1997). The same authors draw their conclusion discussing the trophic posi-
tion of autochthonous dead organic material from a logical-empirical point
of view. They make evident how the various approaches used in the lit-
erature to calculate trophic position in ecosystems generate inconsistencies
when dead organic material is included in the computation and show how
these inconsistencies can be resolved. Although they provide a logical -step
by step- reconstruction of the potential consequences of the different as-
sumptions concerning the trophic position of the dead organic matter, they
do not generalize their point of view in a rigorous procedure for calcula-
tion. Because we developed our arguments within the canonical trophic
aggregation framework, which is basically manipulation of ecosystem flow
matrices, our outcomes are fairly general. Despite the fact that conclusions
drawn in this paper differ from Gaedke and Straile’s, rather than seeing the
two approaches in contrast with one another we perceive the potential for
their integration. In recent times, the shift of emphasis from local stability
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dynamics towards a more comprehensive analysis of ecosystem persistence
and nonlinear dynamics, has allowed to reconsider the importance of cy-
cles in networks. As a consequence, the fact that we used simple acyclic
ecosystem models to derive our “extended” CTA may cast doubts on the
realism of our approach. We stress, however, that our aim was to resolve
the inconsistencies arising in CTA. Therefore, we started from the very same
set of assumptions (Ulanowicz, 1995, 2004), and we treated flows from non-
living compartments as imports to living. The choice of using an acyclic
model is coherent within this framework. Since cycles play a major role in
ecosystems, and recent studies show a greater evidence of cycles involving
living nodes (Dunne et al., 2002a, 2004; Williams and Martinez, 2000), next
amendment to CTA should deal with them, replacing decyclization routine
that over simplifies the networks. We have not tested the consequences of
our approach on the trophic attributes of real ecosystems such as efficiency
of transfer, trophic pyramids, interpretation of analysis of the overall energy
flow. Applications to real ecosystems are required to perform these inves-
tigations, and they will certainly be carried out in the near future. Also a
more functional CTA should explore the effect of cycling but this is a ques-
tion that we inherited from the original formulation of the canonical trophic
aggregation. Whether the concept of trophic position has resolved many
ambiguities associated with that of trophic level, this latter idea remains as
a reference point because the calculation of the trophic position is made in
relation to a classification scheme that sets plants as the first level.
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3.6 Appendix TPs

3.6.1 TPs and canonical trophic aggregation

In ecosystem network analysis (ENA) the effective trophic position of
each compartment is calculated using canonical trophic aggregation (CTA),
starting from the so-called trophic transformation matrix [A] (Ulanowicz
and Kemp, 1979; Ulanowicz, 1995). The method is based on the trophic
transformation matrix [A] and requires one to assign trophic positions to
compartments according to their diet composition. Consider the hypothet-
ical simple 5-species system depicted in Figure 3.1.The corresponding [T ]
matrix, and (Z), (E) and (R) vectors, will be:⎡

⎢⎢⎢⎢⎣
Species A
Species B
Species C
Species D
Species E

⎤
⎥⎥⎥⎥⎦T =

⎡
⎢⎢⎢⎢⎣

0 300 0 0 200
0 0 0 0 150
0 0 0 40 0
0 0 0 0 0
0 0 100 0 0

⎤
⎥⎥⎥⎥⎦

Z =

⎡
⎢⎢⎢⎢⎣

1000
10
0
0
0

⎤
⎥⎥⎥⎥⎦E =

⎡
⎢⎢⎢⎢⎣

0
0
20
10
100

⎤
⎥⎥⎥⎥⎦R =

⎡
⎢⎢⎢⎢⎣

500
160
40
30
150

⎤
⎥⎥⎥⎥⎦

and the matrix of diet coefficients (also called partial feeding coefficients)
[G] becomes:

G =

⎡
⎢⎢⎢⎢⎣

0 0.968 0 0 0.571
0 0 0 0 0.429
0 0 0 1 0
0 0 0 0 0
0 0 1 0 0

⎤
⎥⎥⎥⎥⎦

The matrix of partial feeding coefficients [G] and a normalized import
vector (N) are the basic tools for the CTA. The normalized import vector
elements (nj), can be computed as:

nj =
zj

T·j
(3.9)

where

T·j = zj +
k∑

i=1

tij (3.10)
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and T·j is an element of the inflow vector (T·j), which, for each node,
represents the sum of the correspondent column fluxes in [T ] plus the inputs
from outside the system (zj); k is the number of compartments. Assuming
the theoretical trophic level for imports to be 0, we can distinguish between
three main cases: (a) when nj is 0 the compartment j does not receive input
from the outside; (b) if nj is equal to 1 the node j depends only on imports;
(c) with 0 < nj < 1 the node j receives inputs both from outside the system
and from internal exchanges. For our 5-species system we obtain:

N =

⎡
⎢⎢⎢⎢⎣

1.000
0.032

0
0
0

⎤
⎥⎥⎥⎥⎦

The next step is to compute the trophic transformation matrix [A] using
a row by row procedure. Every row is computed as

ai = NT × Gi−1 (3.11)

where T superscript stands for transpose, and powers of [G] are defined
as repeated product of [G]: [G]0 stands for identity matrix [I], [G]1 = [G],
[G]2 = [G] × [G], and so on. The matrix [A] in our example is:

A =

⎡
⎢⎢⎢⎢⎣

1 0.032 0 0 0
0 0.968 0 0 0.585
0 0 0.585 0 0.415
0 0 0.415 0.585 0
0 0 0 0.415 0

⎤
⎥⎥⎥⎥⎦

The trophic behaviour of each jth species can be inferred by the elements
of the j column of [A], where the trophic position of the jth species (TPj)
is:

TPj =
k−1∑
i=1

aij · i (3.12)

Accordingly, trophic positions in the model of Figure 3.1 are

• Species A: TP1 = 1 · 1 = 1

• Species B: TP2 = 0.032 · 1 + 0.968 · 2 = 1.968

• Species C: TP3 = 0.585 · 3 + 0.415 · 4 = 3.415

• Species D: TP4 = 0.585 · 4 + 0.415 · 5 = 4.415
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• Species E: TP5 = 0.585 · 2 + 0.415 · 3 = 2.415

Transposing the row vector (TP ) we get:

TP =

⎡
⎢⎢⎢⎢⎣

1
1.968
3.415
4.415
2.415

⎤
⎥⎥⎥⎥⎦

In the presence of cycles, CTA becomes difficult because the powers of
[G] form an infinite sequence, and it is not clear how and where to trun-
cate the number of rows in [A]. Ulanowicz (1995) proposes to resolve the
system into two constitutive networks, one containing cyclic paths and an-
other with only once-through flows, using only the latter for CTA. If cycles
constitute a large amount of total system activity, information is lost dur-
ing network decyclization. This inaccuracy may result in distorted values of
trophic positions. Generally detritus and nutrient pools appear in ecological
flow networks as non-living nodes. The distinction between living and non-
living components allows to identify [T ]living and [G]living sub-matrices that
account only for exchanges between living compartments. CTA considers
that in living sub-networks cycles are scarce, as the bulk of cycling involves
non-living components (Pimm, 1982; May, 1983; Ulanowicz, 1995). The dis-
tortion imposed by the decyclization algorithm would be, in this case, some-
how marginal. However, recent studies (Dunne et al., 2002a, 2004; Williams
and Martinez, 2000) highlight the presence of simple cycles between living
compartments. In this perspective, do not treat cycles excluding non-living
nodes, and applying decyclization algorithms (Ulanowicz, 1983), seems a
weak point in CTA procedure that should be implemented in future studies.
In the present work we focussed on a general framework for CTA, and there-
fore we treat non-living nodes as imports to living subsystem. Ulanowicz
(1995) assimilates inflows coming from these nodes to primary production
assigning virtually all inputs to trophic level 0 and, consequently, detritus
and nutrient pools to level 1 (Kay et al., 1989). Other studies treat inflows
from non-living nodes as imports, with virtual trophic position 0 (Gaedke
and Straile, 1997), or include non-living compartments in the network un-
folding procedure, to obtain the corresponding trophic macrochains. In the
latter case, trophic positions of non-living (and living) nodes may count
both trophic and non-trophic flows (Higashi et al., 1989, 1991, 1992), or
exclusively transfers among compartments with energy assimilation (Burns
et al., 1991; Whipple and Patten, 1993; Whipple, 1998).
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3.6.2 Limitations of the CTA

Migratory imports

As already explained in CTA all the imports are assigned to trophic
level 0, as they were assimilated to energy or nutrients received by primary
producers, but this is not always the case. When preys migrate from another
area to the system, the inflows should be considered with effective trophic
level greater than 0. Therefore, to settle all the inflows from outside the
system to trophic level 0, will affect the results.

Consider the simple 2-species system in Figure 3.5,

500

400

100

300

200

200

A B

Figure 3.5: A simple 2 node network.

where the import to species B (henceforth called B) is made up of indi-
viduals that feed at a trophic level equal to, say, 3. We might simply derive
its trophic position (TPB):

TPB =
100
400

· 2 +
300
400

· 4 = 0.25 · 2 + 0.75 · 4 = 3.5 (3.13)

Using CTA one obtains:[
A
B

]
T =

[
0 100
0 0

]

Z =
[

500
300

]
E =

[
0

200

]
R =

[
400
200

]

N =
[

1
0.75

]
G =

[
0 0.25
0 0

]

A =
[

1 0.75
0 0.25

]
TP =

[
1

1.25

]

Calculation yields trophic positions 1.25 for B, underestimating its trophic
position. This problem arises because both imports are assigned to trophic
level 0.
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Scale dependency

Inconsistencies emerge also when computing the effective trophic posi-
tion of compartments in a portion of a known network. In this situation all
flows to the nodes comprised in the selected subsystem, coming from other
compartments not included, become imports. Even if these latter compart-
ments possess a defined and known trophic position, flows coming out from
them are assimilated to external input and allocated to trophic level 0. Con-
sider the example given in Figure 3.1, trophic positions of the compartments
are ⎡

⎢⎢⎢⎢⎣
Species A
Species B
Species C
Species D
Species E

⎤
⎥⎥⎥⎥⎦TP =

⎡
⎢⎢⎢⎢⎣

1
1.968
3.415
4.415
2.415

⎤
⎥⎥⎥⎥⎦

Focussing on the sub-network made up of C and D (Figure 3.6), the 100
carbon units formerly flowing from E to C become now external input to
C. We then apply CTA to this subsystem and the outcomes are:

100

40

20

40

30

10C D

Figure 3.6: Subsystem of the Figure 3.1 network.

[
C
D

]
T =

[
0 40
0 0

]

Z =
[

100
0

]
E =

[
20
10

]
R =

[
40
30

]

N =
[

1
0

]
G =

[
0 1
0 0

]

A =
[

1 0
0 1

]
TP =

[
1
2

]

C and D are assigned, respectively, to trophic level 1 and 2, whereas,
when considering the whole system these numbers were larger; results are
summarized in Table 3.5.
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Node TPwhole TPsub

C 3.415 1
D 4.415 2

Table 3.5: Trophic positions calculated, using “classical” CTA, in the network of Figure
3.1 (TPwhole), and in the subsystem of Figure 3.6 (TPsub).

Non-living compartment trophic levels

Trophic level assigned to non-living nodes may affect the trophic position
of living compartments. Ulanowicz (1995) places non-living components to
trophic level 1; this choice does not influence the trophic position of living
components when the inorganic nutrients are not included in the network.
This is often the case when currency is carbon. In doing so, plants, that
receive inputs only from outside the system, remain at trophic level 1; non-
living nodes, usually detritus, provide matter to detritivores and bacteria
that, accordingly, occupy trophic level 2. In a nitrogen (or phosphorus)
based network, non-living compartments, such as inorganic nutrients, are
included, providing inputs to primary producers. In this case setting non-
living trophic level to 1 increases plant trophic level to 2, shifting the whole
trophic positions along grazing chain. Consider the whole simple linear
nitrogen based system in Figure 3.7

200

100 50

Dissolved
Nitrogen

Plants Herbivores

25

50100 25

Figure 3.7: Hypothetical linear chain starting with a non-living node (dissolved nitrogen)
preceding a primary producer (plants).

[T ] matrix, (Z), (E) and (R) vectors, are:

⎡
⎣ Plants

Herbivores
Dissolved Nitrogen

⎤
⎦T =

⎡
⎣ 0 50 0

0 0 0
100 0 0

⎤
⎦

Z =

⎡
⎣ 0

0
200

⎤
⎦E =

⎡
⎣ 0

25
0

⎤
⎦R =

⎡
⎣ 50

25
100

⎤
⎦

Discriminating between living and non-living compartments we set the
trophic level of non-living ones (Dissolved Nitrogen in our example) to 1
(Ulanowicz, 1995). We define vector (N)living , matrix [G]living and the as-
sociated matrix [A]living, which gives rise to (TP ):
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Nliving =
[

0
0

]
Gliving =

[
0 1
0 0

]

Aliving =
[

0 0
0 0

]
TP =

[
0
0

]

This illogical situation derives from imports that are exclusively located
on non-living nodes. But, by definition, CTA sets the trophic position of
non-living compartments to 1. As a consequence, the correct trophic trans-
formation matrix becomes:

Aliving =
[

1 0
0 1

]

Since non-living node (Dissolved Nitrogen) shows a trophic position
equal to 1, the one of the following compartment should be 2. It results
that the suitable formula to derive trophic position of each jth species is:

TPj =
k−1∑
i=1

aij · (i + 1) (3.14)

where TPj is the trophic position of jth species, k is the number of living
compartments and [A] is the trophic transformation matrix. In equation
(3.14) the second term of the product (i) is increased by 1 unit (i+1) because
the linear chain starts with a non-living node (TP = 1). Applying equation
(3.14) to the network 3.7 we calculated the vector of trophic positions:

TP =
[

2
3

]

Obtaining an ecologically unlikely result: Plants are apportioned to
trophic level 2 and Herbivores are allocated at trophic level 3.

3.6.3 Solving incongruities by “extended” CTA

Migratory imports and sensitivity analysis

The “extended” CTA allows to consider the effective trophic position of
various imports, taking into account the difference between input of energy
or inorganic matter (trophic level 0) and prey migration (with an effective
trophic position far from 0). Nevertheless, it is not likely to know the trophic
level of the immigrant prey; to work out this problem we presume a range
of trophic position in which this species is likely to feed and we carry out
10,000 random samplings into this interval. For each sampled value, consid-
ered as a possible trophic position for the import, we apply the “extended”
CTA, to calculate trophic positions of the different compartments of the
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system depicted in Figure 3.1. As an example, consider an import flow of
10 gC m−2 yr−1 to compartment B, assuming this inflow having a trophic
position between 2 and 3. Table 3.6 shows that the effect of this import im-
pacts the system in two ways: it has a direct consequence on the receiving
compartment (species B), and indirect effects on the other compartments,
that depend directly (species E) and indirectly (species C and D) on B.

A B C D E
Min. 1 2.032 3.442 4.442 2.442
1st Qu. 1 2.041 3.446 4.446 2.446
Median 1 2.048 3.449 4.449 2.449
Mean 1 2.049 3.449 4.449 2.449
3rd Qu. 1 2.057 3.453 4.453 2.453
Max. 1 2.065 3.456 4.456 2.456

µ 1 2.049 3.449 4.449 2.449
sd 0 0.009 0.004 0.004 0.004
CV 0 0.451 0.115 0.089 0.162

Table 3.6: Trophic position sensitivity analysis in network 3.1, related to migratory
imports to B, where µ stands for average values, sd is the standard deviation and CV is
the coefficient of variation.

Compartment A, which receives an import with trophic level equal to 0,
is not affected (µ = 1, sd = 0 and CV = 0). Standard deviation is bigger
for B (0.009) than for the other compartments (0.004). This difference
depends on the relative magnitude of the incoming flow in relation with
the compartment throughput (10/310). Then this effect is passed along the
linear chain B → E → C → D, but its relative contribution is further
modified by the presence of an extra inflow to E coming from A. Dividing
each flow by the total throughput (350) we define the effect of A and B
on the trophic position of E. The weight of B → E is equal to 0.429
(wBE = 150/350), while A → E is 0.571 (wAE = 200/350). E standard
deviation then becomes (sdE):

sdE = sdB · wBE + sdA · wAE (3.15)

sdE = 0.009 · 0.429 + 0 · 0.571 = 0.004 (3.16)

where sdE , sdB and sdA are, respectively, trophic level standard devia-
tions of E, B and A. Species C and D totally depend on E for their requisite
medium: the former directly, and the latter indirectly; their standard devi-
ations are

sdC = sdE · wEC = 0.004 · 1 = 0.004 (3.17)
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sdD = sdC · wCD = 0.004 · 1 = 0.004 (3.18)

Moving along the chain B → E → C → D the effect of prey migration
on trophic positions decreases and this is highlighted by the reduction of
the coefficients of variation (CV ). To complete our analysis we vary the
magnitude of the flow. For each inflow we repeat 10,000 random samplings as
explained before. Here we discuss two extreme situations: (a) all the excess
import to B (with respect to the starting condition of 10 gC m−2 yr−1) is
dissipated as respiration by B (option called dissipative simulation); (b) all
the excess import is passed along the pathway B → E → C → D until it
goes out as export from D (called maximum efficient option). Outcomes
are depicted in Tables 3.7 and 3.8.

A B C D E
10 gC m−2 yr−1

mean 1 2.049 3.449 4.449 2.449
sd 0 0.009 0.004 0.004 0.004
CV 0 0.451 0.115 0.089 0.162
20 gC m−2 yr−1

mean 1 2.094 3.469 4.469 2.469
sd 0 0.018 0.008 0.008 0.008
CV 0 0.863 0.223 0.173 0.314
40 gC m−2 yr−1

mean 1 2.176 3.504 4.504 2.504
sd 0 0.034 0.015 0.015 0.015
CV 0 1.572 0.418 0.325 0.585
100 gC m−2 yr−1

mean 1 2.376 3.590 4.590 2.590
sd 0 0.072 0.031 0.031 0.031
CV 0 3.043 0.863 0.675 1.196
200 gC m−2 yr−1

mean 1 2.600 3.686 4.686 2.686
sd 0 0.115 0.049 0.049 0.049
CV 0 4.442 1.343 1.056 1.843
280 gC m−2 yr−1

mean 1 2.724 3.739 4.739 2.739
sd 0 0.139 0.060 0.060 0.060
CV 0 5.113 1.597 1.260 2.180
350 gC m−2 yr−1

mean 1 2.810 3.776 4.776 2.776
sd 0 0.156 0.067 0.067 0.067
CV 0 5.538 1.766 1.396 2.403

Table 3.7: Trophic position sensitivity analysis, in network 3.1, related to migratory
imports to B. All inputs dissipated as respirations in compartment B.

Considering species B, all coefficients do coincide in the two cases, irre-
spective of the magnitude of the import. Compartment B, as entry point
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A B C D E
10 gC m−2 yr−1

mean 1 2.048 3.449 4.449 2.449
sd 0 0.009 0.004 0.004 0.004
CV 0 0.458 0.117 0.090 0.164
20 gC m−2 yr−1

mean 1 2.097 3.486 4.486 2.486
sd 0 0.018 0.008 0.008 0.008
CV 0 0.864 0.231 0.179 0.323
40 gC m−2 yr−1

mean 1 2.176 3.557 4.557 2.557
sd 0 0.034 0.016 0.016 0.016
CV 0 1.569 0.455 0.355 0.633
100 gC m−2 yr−1

mean 1 2.375 3.750 4.750 2.750
sd 0 0.072 0.039 0.039 0.039
CV 0 3.037 1.049 0.828 1.430
200 gC m−2 yr−1

mean 1 2.599 4.007 5.007 3.007
sd 0 0.116 0.073 0.073 0.073
CV 0 4.455 1.819 1.456 2.424
280 gC m−2 yr−1

mean 1 2.724 4.168 5.168 3.168
sd 0 0.138 0.093 0.093 0.093
CV 0 5.064 2.242 1.808 2.950
350 gC m−2 yr−1

mean 1 2.809 4.285 5.285 3.285
sd 0 0.156 0.111 0.111 0.111
CV 0 5.562 2.590 2.100 3.378

Table 3.8: Trophic position sensitivity analysis, in network 3.1, related to migratory
imports to B. All inputs dissipated along the chain B → E → C → D.

of the import, is not affected by the form in which this energy leaves the
compartment. For the other species, coefficients are always higher in the
maximum efficient option. To understand this outcome it is useful to com-
pare inflows to E, C and D with the ones resulting from the first simulation
(with an import on B equal to 10gC m−2 yr−1). In the dissipative simu-
lation the amount that reaches species E does not change because all the
excess import to B is dissipated. It increases in the maximum efficient op-
tion. In both dissipative simulation and maximum efficient option, for every
different import to B, no variations in standard deviations are observed for
species C, D and E (but obviously values differ between the two simula-
tions). On the contrary, the coefficients of variations change because mean
values also vary.
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Scale independence

In Figure 3.1, single compartment trophic positions are:

⎡
⎢⎢⎢⎢⎣

Species A
Species B
Species C
Species D
Species E

⎤
⎥⎥⎥⎥⎦TP =

⎡
⎢⎢⎢⎢⎣

1
1.968
3.415
4.415
2.415

⎤
⎥⎥⎥⎥⎦

If we select a subsystem made up of compartments C and D (Figure
3.6) “extended” CTA imposes that we maintain for the inflow to C (which
now appears like imports from outside) the same trophic position it had in
the whole network, that is 2.415 (it comes from species E). The calculation
yields: [

C
D

]
T =

[
0 40
0 0

]

Z2.415 =
[

100
0

]
E =

[
20
10

]
R =

[
40
30

]

N2.415 =
[

1
0

]
G =

[
0 1
0 0

]

A2.415 =
[

1 0
0 1

]
TP2.415 =

[
3.415
4.415

]

The vector (TP )2.415 confirms that “extended” CTA computes trophic
positions as scale independent features: C and D occupy the same trophic
positions in the 5-species network and in 2-species sub-network. Table 3.9
shows trophic positions for C and D in the two cases.

Node TPwhole TPsub

C 3.415 3.415
D 4.415 4.415

Table 3.9: Trophic positions calculated, using “extended” CTA, in the network of Figure
3.1 (TPwhole), and in the subsystem of Figure 3.6 (TPsub).

Non-living compartment trophic levels

The connection between living and non-living compartments may heavily
affect the trophic positions of living nodes, depending on the identity of non
living compartments included in the system. “Extended” CTA overcomes
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this difficulty by considering non-living compartments as input source for
the system, setting their trophic level to 1, in case they do not apportion
outflows to primary producers, or to 0 when representing inorganic nutrients.

Considering the simple nitrogen based system of Figure 3.7 we can write
the following [T ]living matrix, (K)0, (E) and (R) vectors:

[
Plants

Herbivores

]
Tliving =

[
0 50
0 0

]

K0 =
[

100
0

]
E =

[
0
25

]
R =

[
50
25

]

The normalized (W )0 vector and [G]living matrix are

W0 =
[

1
0

]
Gliving =

[
0 1
0 0

]

We finally calculate [B] matrix and the vector (TP )0:

B0 =
[

1 0
0 1

]
TP0 =

[
1
2

]

from which plants and herbivores assume a trophic position coherent
with ecological conventions.



4

Decomposing system
complexity

The following is a bridge chapter introducing the topic of species con-
tribution to flow topology and consequent characteristics. Only theoretical
and methodological premises are given, without any results and conclusions.

4.1 The average mutual information

The question whether complexity affects ecosystem stability has long
been central in ecology. MacArthur (1955) applied Shannon’s information
measure to the flows in ecosystem networks, with S species, as

H = −k
S∑

i=1

S∑
j=1

tij
T··

log2

(
tij
T··

)
(4.1)

where H is the diversity of flows in the network, k is a scalar constant, tij
denotes flows from node i to node j and T·· is the total system throughput
(TST )

TST =
S∑

i=1

S∑
j=1

tij = T·· (4.2)

The increasing consensus around this index stimulated its application to
the more accessible stocks of biomass, shifting the discussion on diversity
and stability to effects of biomass diversity. Unfortunately, May (1972)

70
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demonstrated that a higher biodiversity in linear dynamical systems was
more likely to result in instability than in the reverse. Thereafter, ecologists
quickly abandoned their interest towards information theory, maintaining
the same prejudice even after Rutledge et al. (1976) applied a Bayesian
emendation of Shannon’s measure to MacArthur’s index of flow diversity.
Rutledge et al. (1976) employed the notion of conditional probability to
decompose MacArthur’s index into two complementary terms. In particular,
the joint probability that an arbitrary quantum both leaves i and enters j
can be estimated by the quotient tij/T··. The conditional probability that
a quantum proceeds to compartment j, when it already left i, is defined
by equation (4.3); similarly, the equation (4.4) summarizes the conditional
probability associated to a flow exiting the node i respect to the total input
to compartment j.

tij∑S
v=0 tiv

=
tij
Ti·

(4.3)

tij∑S
r=0 trj

=
tij
T·j

(4.4)

The measure of total flow diversity can be amended as follows

H = AMI + Hc (4.5)

where the average mutual information (AMI) quantifies the amount of
diversity that is encumbered by structural constraints

AMI = k
S∑

i=1

S∑
j=1

tij
T··

log2

(
tij T··
Ti· T·j

)
(4.6)

and Hc represents the amount of “choice” (residual diversity/freedom)
pertaining to both the inputs and outputs of an average node in the network.

Hc = −k

S∑
i=1

S∑
j=1

tij
T··

log2

(
t2ij

Ti· T·j

)
(4.7)

Therefore, the overall complexity of the flow structure, as measured by
the MacArthur’s index, can be resolved into two components: (a) AMI that
estimates how orderly and coherently the flows are connected; (b) Hc that
gauges the disorder and freedom that is preserved.
Rutledge et al. (1976) proposed Hc as a more appropriate measure of ecosys-
tem maturity as conceived by Odum (1969), than the MacArthur’s ambigu-
ous index, but further studies (Atlan, 1974; Ulanowicz, 1980) suggested that
AMI is more indicative of the developmental status of an ecological network.
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However, Ulanowicz and Wolff (1991) adopted Hc as a tool to estimate ef-
fective connectance per node in ecosystems. In particular, dividing Hc into
two terms reveals more about its mathematical meaning

Hc = −
S∑

i=1

S∑
j=1

tij
T··

log2

(
tij
Ti·

)
−

S∑
i=1

S∑
j=1

tij
T··

log2

(
tij
T·j

)

=
S∑

i=1

Ti·
T··

⎡
⎣− S∑

j=1

tij
Ti·

log2

(
tij
Ti·

)⎤⎦+
S∑

j=1

Tj·
T··

[
−

S∑
i=1

tij
T·j

log2

(
tij
T·j

)]

=
S∑

i=1

Ti·
T··

Hi· +
S∑

i=j

T·j
T··

H·j (4.8)

with output diversity at node i (Hi·) and input diversity at node j (H·j)
calculated as

Hi· = −
S∑

j=1

tij
Ti·

log2

(
tij
Ti·

)
(4.9)

and

H·j = −
S∑

i=1

tij
T·j

log2

(
tij
T·j

)
(4.10)

Average diversity of the biomass going to consumers, weighted by total
outputs (Ti·), and average diversity of inflows, weighted by total inputs (T·j),
are the constitutive terms of equation (4.8), with the average diversity over
both input and output that can be written as Hc/2. Since the diversity of
pathways through a decision tree is an exponential function of the number
of branch points that generate the tree, the mean number of flows from a
typical node in the network should be

m = 2Hc/2 (4.11)

Similarly to what proposed by Ulanowicz and Wolff (1991), Bersier et al.
(2002) applied the diversity of input and output biomass flows to compute
a sort of effective connectance index called link density (LD).
First, they introduced the equivalent numbers of consumers for taxon i (ni·)
and preys for taxon j (n·j), computed as the reciprocals of Hi· and H·j,
respectively

ni· =
{

2Hi·

0 if Ti· = 0
(4.12)
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n·j =
{

2H·j

0 if T·j = 0
(4.13)

These equivalent numbers of consumers and preys represent the number
of events that, occurring in equal proportion, would produce the same values
of outflow and inflow diversity measured in a given ecosystem.
The link density is then computed averaging the equivalent numbers of con-
sumers and preys over all the species and weighting their values by relative
outflows and inflows

LD =
1
2

⎛
⎝ S∑

i=1

Ti·
T··

2Hi· +
S∑

i=j

T·j
T··

2H·j

⎞
⎠ (4.14)

Then, the difference between the effective connectance (m) proposed by
Ulanowicz and Wolff (1991) and the link density (LD) formulated by Bersier
et al. (2002) resides solely in the weighting which applies, in the first case,
to outflow and inflow diversities, and to taxa’s equivalent numbers of con-
sumers and preys in the latter. In particular, the effect of weighting is larger
when m is computed, being applied to diversities used as exponents in the
geometric mean of the input and output effective connectances.
Therefore, both the applications developed by Ulanowicz and Wolff (1991)
and Bersier et al. (2002) derived from output (4.9) and input (4.10) diver-
sities, aiming to identify average connectance per node. In particular, they
refer to the equation (4.7), employing information on residual diversity (Hc)
for total equivalent links (both entering and exiting each node).

Here we discuss an alternative approach, focussing on average mutual
information (4.6) which accounts for constraints in the flow structure. We
broke up the whole index into the relative contribution of flows entering in
each node, weighting their effect by the corresponding throughput (T·j)

AMI·j =
1

T·j

(
S∑

i=1

tij log2

(
tij T··
Ti· T·j

))
(4.15)

The information, supplied as bit, is correlated to the level of input flow
articulation, for each node j.
In general, in the presence of a generalist trophic behaviour, reflecting more
indeterminacy in flow structure, we expect lower AMI·j than in case of spe-
cialist diets. Since the catalyst for the formulation of AMI·j is the Shannon
measure of entropy (Shannon, 1948), AMI·j reaches its minimum when all
the input flows to node j occur in equal intensity, while the maximum is a
function of the energy/matter distribution in each event. Moreover, AMI·j
and its contribution to the whole AMI depend on the fraction of throughput
processed by each node j (T·j) respect to TST (T··)
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AMI =
S∑

j=1

T·j
T··

AMI·j

=
S∑

j=1

T·j
T··

1
T·j

[
S∑

i=1

tij log2

(
tij T··
Ti· T·j

)]

=
S∑

i=1

S∑
j=1

tij
T··

log2

(
tij T··
Ti· T·j

)
(4.16)

4.2 Food web models

Within the simple topological descriptions of ecological communities as
food webs illustrating “who eats whom”, information on diversity, species
composition, trophic structure, energy and material flows, and species in-
teraction are summarized (Williams and Martinez, 2000). For this reason,
discovering patterns in food web topology has long been a prominent topic
in ecology (Cohen, 1978) but to unveil mechanisms lying behind commu-
nity structure we are asked to identify general rules interpreting such ar-
chitectures. Progresses towards this knowledge would help advances on ap-
plied issues as understanding the potentially catastrophic consequences of
species loss on cascades of further extinctions (Pimm, 1980; Allesina and Bo-
dini, 2004) and predicting the direct and indirect impacts of invasive species
(Woodward and Hildrew, 2001).
The existence of these empirical patterns stimulated analysis to identify
mechanisms that underlie food webs. It has been shown unambiguously
that real food webs are different from randomly connected networks (Solow
and Beet, 1998) and several models, using only two input parameters as
species richness (S) and connectance (C = l/S2, where l is the total number
of directed trophic links), predict in detail many regularities of food web
topology (Cohen and Newman, 1985; Williams and Martinez, 2000; Cattin
et al., 2004; Stouffer et al., 2006).
In particular, two recent “static” models, the cascade model (Cohen et al.,
1990) and niche model (Williams and Martinez, 2000) estimates key struc-
tural properties of the most complex food webs in nature.

4.2.1 Cascade model

Cascade model assigns species a random value extracted uniformly from
the interval [0, 1]. Each taxa is ranked from x0 to xS−1 (S = total number of
species), with x0 identifying a primary producer and the remaining species
xi feeding on strictly previous taxa (x0, . . . , xi−1) with probability
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p =
2SC

S − 1
(4.17)

Diets of consumers are not restricted to contiguous range. As a conse-
quence, moving towards nodes with higher rank the number of preys con-
sumed increase (tendency to behave as top predators), while lower hierar-
chy taxa tend to be primary producers (without preys). Webs simulated by
this model show, at least, one primary producer (x0) and one top preda-
tor (xS−1). The diet of each node is composed of taxa with strictly lower
hierarchy position so, given two species of rank i and j, we can assume that

TPi < TPj with i < j (4.18)

with TPi and TPj as trophic positions (TPs) of nodes i and j (see Figure
4.1). Moreover, a taxa xi has a probability p = 2SC/(S − 1) of consuming
only species with rank values less than its own and an expected number of
preys Eprey(xi) = p(i−1). In conclusion, cascade model simulates food webs
characterized by nodes with an increasing number of topological connections
as the trophic position raises (e.g. top predators with higher rank are more
likely generalist than basal species).

X0 X1 X2 X3 X4 X5 X6

0 1

Figure 4.1: Cascade model. Species are ranked from x0 (primary producers) to x6 (top
predator). Each taxa can exclusively consume preys with values less than its own. The
diet of species x5 (black triangle) is composed of nodes x1, x3 and x4 (red triangles). Food
webs generated by this model are not strictly interval (e.g. the diet of x5 is not restricted
to a contiguous range, since x2 is excluded).

4.2.2 Niche model

The niche model assigns to each species i a niche value ni uniformly
drawn from the interval [0, 1] and a parameter wi extracted from a beta
distribution with

p(w) = β(1 − w)(β−1) with 0 ≤ w ≤ 1 (4.19)

Species i consumes all taxa falling in a range

ri = niwi (4.20)
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with centre ci randomly chosen from a uniform distribution [ri/2, ni].
This restricts diets to being contiguous, allowing cannibalism and looping
(since up to half a consumer’s range could include species with higher niche
values). Although Williams and Martinez (2000) chosen the functional equa-
tion (4.19), Camacho et al. (2002b) demonstrated how the predictions of the
model are robust to changes in the specific form of p(w). Linkage density
(z = l/S) and directed connectance (C = l/S2), derived from parameters
β = (1/2C) − 1 and S, give rise to the analytical expression for the distri-
bution number k of preys

pprey(k) =
1
2z

E1

(
k

2z

)
for S � 1 and C � 1 (4.21)

where E1(x) is the exponential-integral function (Gradstheyn and Ryzhik,
2000).
For large S, we can calculate that the preys of a species i are ki = Sri, so
that the expected number of preys is given directly by the distribution of ri

and, as a consequence of equation (4.20), it depends on the niche value ni.
Specifically, with higher ni, there is a proportional increase for ri and the
related number of preys consumed Eprey(ni) ∝ (ni).
As showed by Figure 4.2, species can be ordered according to their niche
value, n0 < n1 < . . . < nS−1, that is, the niche values form a totally ordered
set, and the range ri constrains all consumers to eat within a contiguous in-
terval a fixed sequence of species (generating the so called “interval” webs).
Contiguity of consumers diets, absence of weighting (constructed food webs
are binary) and the condition

ci < ni (4.22)

permit to outline a good relation between niche values and tropic posi-
tions.
In conclusion, assemblages of species simulated by the niche model exhibit
more generalist diets with higher trophic positions.

4.3 Connectivity and energy flow constraints

In the next chapter, 26 ecological networks are analyzed to estimate
trophic position and contribution to the whole average mutual information
of each species.
Average constraints displayed by inflows to ecosystem nodes (AMI·j), dis-
tinguishing relative importance of each link by means of weighting, have
been considered. We emphasize the complementary character of this in-
dex in respect to previously introduced measures of effective connectance
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n 0 n 1 n 2 n 3 n 4 n 5 n 6

0 1

c
5

5r

Figure 4.2: Niche model. Here species are ranked using their niche value (ni), with
interval diets (species consuming preys set in a contiguous interval) defined by a range
(ri) and its corresponding centre (ci). Species with niche value n5 preys upon taxa n2, n3

and n4 falling into the range r5 with centre c5.

and link density (Ulanowicz and Wolff, 1991; Zorach and Ulanowicz, 2003;
Bersier et al., 2002). Both m and LD identify, in different ways, the aver-
age number of connections per node. These approaches yield a refined and
amended version of the degree centrality (Wassermann and Faust, 1994):
(a) using Shannon’s information formula (Shannon, 1948); (b) weighting in-
put flows to each taxa by its specific throughput. While previous studies
derived geometric means of input and output connectances from the resid-
ual diversity of flow structure (the conditional entropy Hc), here we gauged
the amount by which constraints encumber the potential complexity of total
inflows to each node (AMI·j).

Moving from primary producers to higher trophic positions we identi-
fied increasing values of AMI·j . This trend highlights the importance of
weighting trophic links in food webs, unveiling an otherwise hidden pattern.
Moreover, AMI·j is not a simple weighted version of in-degree centrality, but
also considers the relative importance of constraints associated to through-
flow of node j respect to TST processed by the whole system.
Our analysis seems to describe higher specialization for top predators and
a shift to more generalist behaviours proceeding towards species with lower
trophic positions (see Chapters 5 and 6).

Despite many structural features identified using unweighted trophic
links (Solé and Montoya, 2001; Dunne et al., 2002b, 2004), other studies
put in evidence the importance of weighting in food webs (Paine, 1992; Mc-
Cann et al., 1998; Jordán et al., 2006; Vasas and Jordán, 2006). However,
webs generated by cascade (Cohen and Newman, 1985) and niche models
(Williams and Martinez, 2000) powerfully predict main topological proper-
ties (e.g. the fractions of top, intermediate and basal species; the mean and
standard deviation of food chain lengths and the fraction of species that
are cannibals), using only qualitative data and two empirical parameters:
species number (S) and connectance (C).
In our study on trophic networks (Chapters 5 and 6), we found an increasing
tendency to specialistic behaviour moving from herbivores to top predators.
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Despite its relevance, this linear correlation accounting for constraints to
matter (or energy) flow could remain masked by the exclusive use of raw
binary data. In this sense, while cascade and niche models are useful to
describe topological structure of real ecosystems, they underestimate the
effective specialistic activity of species at higher trophic positions, without
considering the higher degree of freedom displayed by flows at the beginning
of trophic chain.
We do not think that our results contradict premise on which simulated
food webs are built on by cascade and niche models, but we stress the im-
portance of quantifying link strengths to better understand consequences
of ecosystem topology on functioning. Moreover, having measure that are
sufficiently sensitive to provide key patterns of natural ecosystem is a fun-
damental target and, often, ...current measures of food web topology lack
sensitivity because they take the form of averages, sums, standard deviations
or proportions, calculated across all species or across subparts of a web...”
(Fox, 2006). Then, AMI·j and its logarithmic formulation appears as an eco-
logically sound index combining both structural and energetic constraints.

As suggested by Dunne et al. (2004), we perceive the need of strengthen
structural studies measuring interaction intensities. In fact, when we are an-
alyzing a weighted network we are including “functional” information in ad-
dition to the topological one and this functional information can obscure sig-
nificantly the topological characteristics of the network. As a consequence,
we could put further efforts to extend the original formulation of cascade and
niche models on qualitative food webs, including details on link strength.

4.4 Number of roles and development capacity

1Number of nodes, flow organization and transfer intensities are strongly
affected by the level of network detail. Therefore, indices as TST , AMI,
A, and C depend on arbitrary choices taken when an ecosystem network is
built. For instance, if we are interested in decomposition activities, we will
emphasize resolution of microbial and non-living nodes while to evaluate
the susceptibility to environmental conditions (water and nutrient availabil-
ity, solar radiation, temperature, wind intensity, salinity levels, etc.), each
compartment will group species showing the same behaviour.

To define development capacity variations as a function of the network
framework, the connectivity (χ), calculated as flows per node, and the num-
ber of roles (ρ) are introduced

χ =
f

S
(4.23)

1Published section: Scotti, M., in press. Ecological Indicators: Development Capacity
and Overhead. For Jørgensen, S. E., Encyclopedia of Ecology - Elsevier.
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ρ =
S

χ
=

S2

f
=

f

χ2
(4.24)

with S = number of nodes and f = total number of flows.
It appears evident how connectivity and number of flows are directly affected
by network topology and, in what follows, as an alternative way to define
whole-system indices are proposed.

Although the concept of role has been fundamental to develop ecolog-
ical niche idea and food web research, it has never been formally defined.
Trophic position (computed as the sum of the fractions of trophic activity
that each species performs at different trophic levels), trophic niche (the
“ecological function” carried out by species in a given ecosystem), ecological
guild (two species belong to the same ecological guild when they exploit the
same class of environmental resources and in a similar way) and trophos-
pecies (recently interpreted as a set of species with similar diet or predators)
describe, in a slightly different way, the trophic role in an ecosystem, but
none is completely satisfactory in wholly capturing relation respect to food
and enemies. An effective definition can be obtained adopting concepts
from social network analysis, where the role is seen as a specialized function
joining structurally equivalent nodes. In the framework of ecological flow
networks this means that species belonging to the same role take input from
one source and show outflows to a single destination. Then, in a recursive
definition, two species (or group of species) are regular equivalent, exhibiting
the same role, when eaten from and feeding on equivalent species. Never-
theless, when role is calculated as a function of connectivity and number
of flows (4.23) remains a different concept respect to regular equivalence.
Rather than considering the two approaches in contrast with one another it
is interesting to stress the potential for their integration. The relationship
between regular equivalence and number of roles is clearest when the net-
work contains no cycles. In a linear chain with S nodes we identify S roles,
while in a fully connected topology of S compartments there is only one role
(see Figure 4.3).

The example of Figure 4.3 represents two hypothetical unweighted net-
works, not really suitable to describe the real world. In what follows, a
method to extend the role calculation when dealing with real ecosystems
(where flows have unequal size, with sometimes extraordinary differences)
is suggested. In weighted networks, the effective connectivity is estimated
accounting for the weights of flows and the portion of TST processed by
each node. Applying a weighted geometric mean, connectivity (χ) and total
system flows (f) become

χ =
S+2∏
i=0

S+2∏
j=0

(
t∗2ij∑S+2

r=0 t∗rj

∑S+2
v=0 t∗iv

)−(1/2)·(t∗ij/TST )

(4.25)
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f = 16
S = 4

= 4
= 1

χ
ρ

(a) (b)

A B
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A B

CD

f = 4
S = 4

= 1
= 4

χ
ρ

Figure 4.3: (a) The fully connected topology with 4 compartments (S = 4) and 16 flows
(f = 16): in this case we calculated an average number of 4 flows per node (χ = 4), with
only one role (ρ = 1). (b) The more articulated network with S = 4 nodes, f = 4 flows,
connectivity χ = 1 flow per node, number of roles = S = 4 (ρ = S = 4).

f =
S+2∏
i=0

S+2∏
j=0

(
t∗2ij

TST

)−(t∗ij/TST )

(4.26)

and the derived number of roles (ρ) is

ρ =
f

χ2
=

S+2∏
i=0

S+2∏
j=0

(
t∗2ij TST∑S+2

r=0 t∗rj

∑S+2
v=0 t∗iv

)(t∗ij/TST )

(4.27)

The logarithm of ρ can also be a convenient value to measure AMI and
ascendency of the system

log(ρ) =
K

TST

S+2∑
i=0

S+2∑
j=0

t∗ij log

[
t∗ijTST∑S+2

r=0 t∗rj

∑S+2
v=0 t∗iv

]
= AMI (4.28)

A = TST · log(ρ) (4.29)

The concept of role establishes a relationship between number of nodes,
connectivity and information theory indices (AMI, A and C).

Given the relation (4.28), when AMI of a system is known, the cor-
responding number of roles is deduced from the AMI power of e (Nepero
number). As a consequence, with assigned ascendency and TST , the num-
ber of roles results rising e to the power of A/TST . Moreover, dividing the
value of C by TST , it is also possible to infer the logarithm of roles when the
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maximum development is reached and, accordingly, the associated number
of roles (ρC)

ρ = eAMI (4.30)

ρ = e
A

TST (4.31)

ρC = e
C

TST (4.32)

In Table 4.1, TST , AMI, ascendency, development capacity and number
of roles (corresponding to A and C) in real ecosystems are summarized.

TST AMI A C RolesA RolesC
Charca de Masp. 7496600 2.250 16871000 39886000 9.492 204.495
mgC m−2 d−1

Chesapeake Bay Meso. 4116200 2.088 8593800 19655000 8.067 118.514
mgC m−2 sum−1

Crystal River C. (c) 22420 1.264 28340 70712 3.540 23.4289
mgC m−2 d−1

Crystal River C. (dT) 18050 1.243 22434 56315 3.466 22.645
mgC m−2 d−1

Everglades Gram. (ws) 19949 1.937 38643 79572 6.939 53.989
gC m−2 yr−1

Florida Bay (ws) 3459 2.025 7004 18540 7.573 212.578
gC m−2 yr−1

L. Chesapeake Bay 1451200 2.044 2966500 7713700 7.723 203.445
mgC m−2 sum−1

M. Chesapeake Bay 1879000 2.061 3872600 9328300 7.854 143.237
mgC m−2 sum−1

U. Chesapeake Bay 854330 2.133 1822300 4583700 8.440 213.846
mgC m−2 sum−1

St. Marks River 2064 1.805 3726 11264 6.079 234.293
mgC m−2 d−1

Lake Michigan 36985 1.775 65649 140690 5.900 44.879
mgC m−2 d−1

Mondego Estuary 10852 1.525 16547 39126 4.594 36.797
gAFDW m−2 yr−1

Final Narragansett 4611300 1.628 7506700 20464000 5.093 84.588
mgC m−2 yr−1

Ythan Estuary 5440 1.592 8663 23397 4.915 73.744
gC m−2 yr−1

Table 4.1: Total system throughput (TST ), average mutual information (AMI), ascen-
dency (A) and development capacity (C) are summarized for 14 ecosystems. Number of
roles related to ascendency and development capacity are computed (RolesA and RolesC ,
respectively) adopting formula (4.29) as a reference.

For the 14 ecosystems of Table 4.1, when the number of roles is computed
starting from the ascendancy, through formula (4.31), it ranges between
3.466 (Crystal River Creek - delta temp.) and 9.492 (Charca de Maspalo-
mas), with an average value of 6.405. These data confirm how the concept
of role shows several relationship to that of trophic position (TP ), since
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both these indices are limited by the maximum number of passages that
energy can experience from the ultimate source of energy (imports - outside
environment). Values of 10% ÷ 20% are rather accepted as average living
compartment efficiency in processing food, setting to 6 ÷ 8 the maximum
number of energy steps (corresponding to TPs) in real networks. While TP
is a property depending exclusively on compartment feeding activity, both
prey items and predators affect the role that is assigned to each node. In
ecosystems, even though procedures computing TPs and roles slightly differ,
they are deeply settled by energy and efficiency constraints. Therefore, it
appears evident how the number of roles computed through the develop-
ment capacity (4.32) is overestimated (min = 22.645; max = 234.293; mean
= 119.320), being associated to an ecologically unfeasible topology that does
not consider constraints to energy transfer efficiency in natural systems.



5

Trophic positions and flow
structure

5.1 The higher the better?

1Food webs are complex networks of trophic interactions among diverse
species in ecosystems. Ecologists have expended much effort to explore and
understand this complexity. Empirical patterns and trends (e.g. preda-
tor/prey ratio, fraction of species that occupy definite trophic positions,
number of connections per species, food chain length, to cite a few) emerged
from the analysis of food web data (Cohen et al., 1990; Cohen and Newman,
1991) and this phenomenology was explained through general models that
reproduce those regularities (Cohen et al., 1990; Williams and Martinez,
2004; Cattin et al., 2004).

Such regularities depend on food web structure, that is how many links
are there and how they are distributed between the nodes. Accordingly, un-
veiling patterns of link arrangements may shed light on the ultimate cause of
these regularities, thus contributing to grasp essential organizing principles
of food webs and the relationship between their structure and functions.
Because number and distribution of links depend on species trophic habits,
investigating whether link organization can be associated to the trophic
structure of the food webs can help in this direction.

1“Poster session” Chapter: Scotti, M., Bondavalli, C., Bodini, A, 2007. Linking trophic
positions and flow structure constraints in ecological networks: efficiency or topology
effect? ECEM’07, Trieste, Italy.

83
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The relationship between species trophic activity and food web topology,
although implicitly acknowledged, has never been explored in detail. Null
models for food web structure (Cohen et al., 1990; Williams and Martinez,
2004; Cattin et al., 2004) postulate the existence of a niche axis that deter-
mines a hierarchy among the species composing a food web. In this hierar-
chy, for mere probability reasons, the higher the trophic level of a species,
the higher the number of prey it should have. In other words, species that
feed higher should contribute with more connections to the system topology.
This deductive outcome has inspired this research whose main objective is
to investigate whether web topology forms patterns throughout ecosystem
that can be explained by the species trophic position.

Models of food web structure are strictly qualitative in nature, as they
were developed considering only the presence/absence of links between species.
According to this, as a first step of investigation, we performed our analy-
sis using qualitative food webs to assess whether the relationship between
species trophic position and link distribution could be accommodated within
the logic that characterize food web models. On the other hand, link quan-
tification has been called for as an essential ingredient for a more rigorous
approach to food web analysis (Borer et al., 2002; Berlow et al., 2004) and
in this framework we performed a quantitative investigation of the same
relationship. The aim here was to see whether the criteria that comes out
from food web null models hold when quantification of links is included in
the analysis.

For this dual approach we used food webs extracted from 26 weighted
ecological flow networks, with links that are quantitatively expressed as ener-
getic contributions from resources to consumers. To conduct our analysis we
calculated the index of trophic position (TP ; Ulanowicz, 1995; Scotti et al.,
2006) for each species, as defined by network analysis. Also, we computed
an unweighted version for this index similar to the binary link-based struc-
tural index used in other contexts (Williams and Martinez, 2004; Dunne,
2006). The contribution to web topology is assessed by the average mutual
information (AMI, henceforth; Ulanowicz, 2004), another index taken from
the suite of network analysis indices. Its value depends on the multiplicity
of links targeted to each component weighted by their relative magnitude.
This index measures the contribution that each compartment, through its
trophic connections, gives to the organization of system connections. An
unweighted version of AMI have been calculated as well, assuming all the
links of the same magnitude.
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5.2 TPs and AMIs of single compartments

5.2.1 Weighted food webs

Weighted ecological networks of 26 ecosystems, at disposal in two web-
sites, were analyzed. One set (8 graphs) comes from the project site 2ATLSS
and the other 18 models are included in the Prof. 3Ulanowicz’s web page.
These two groups are identified, respectively, as ATLSS and NETWRK. List
and some description of the 26 networks are provided in Table 5.1.

Ecosystem S nl currency
NETWRK
Aggregated Baltic Sea 15 3 mgC m−2 day−1

Cedar Bog Lake 9 1 cal cm−2 year−1

Charca de Maspalomas 21 3 mgC m−2 day−1

Chesapeake Mesohaline Ecosystem 15 3 mgC m−2 day−1

Chesapeake Mesohaline Network 36 3 mgC m−2 summer−1

Crystal River Creek (control) 21 1 mgC m−2 day−1

Crystal River Creek (delta temp.) 21 1 mgC m−2 day−1

Lower Chesapeake Bay in Summer 34 3 mgC m−2 summer−1

St.Marks River (Florida) Flow Network 51 3 mgC m−2 day−1

Lake Michigan Control Network 36 1 gC m−2 year−1

Middle Chesapeake Bay in Summer 34 3 mgC m−2 summer−1

Mondego Estuary 43 1 gAFDW m−2 year−1

Final Narraganasett Bay Model 32 1 mgC m−2 year−1

North Sea 10 0 kcal m−2 year−1

Somme Estuary 9 1 gC m−2 year−1

Upper Chesapeake Bay in Summer 34 3 mgC m−2 summer−1

Upper Chesapeake Bay 12 2 gC m−2 year−1

Ythan Estuary 13 3 gC m−2 year−1

ATLSS
Cypress Wetlands dry season 68 3 gC m−2 year−1

Cypress Wetlands wet season 68 3 gC m−2 year−1

Marshes and Sloughs dry season 66 3 gC m−2 year−1

Marshes and Sloughs wet season 66 3 gC m−2 year−1

Florida Bay dry season 125 3 gC m−2 year−1

Florida Bay wet season 125 3 gC m−2 year−1

Mangroves dry season 94 3 gC m−2 year−1

Mangroves wet season 94 3 gC m−2 year−1

Table 5.1: List of the ecological networks considered in the analysis. Total number of
nodes (S) and number of non-living compartments (nl) are given. Flow intensities are
measured as energy (i.e. kcal m−2 year−1 or cal cm−2 year−1), carbon (i.e. gC m−2

year−1 or mgC m−2 summer−1) and ash-free dry weight (gAFDW m−2 year−1).

5.2.2 Trophic position

In ecosystem network analysis every species trophic position is computed
through a suite of matrix manipulations called canonical trophic aggregation
(CTA; Ulanowicz, 2002; Scotti et al., 2006). Simply put, every species
feeding activity is apportioned to a series of discrete trophic levels sensu

2Across Trophic Level System Simulation; http://www.cbl.umces.edu/∼atlss/
3http://www.cbl.umces.edu/∼ulan/
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Lindeman and the effective trophic position comes out as the sum of these
fractions. While the Chapter 3 provides essential mathematical details to
follow this discussion, suffice here to say that the effective trophic position
is defined as the weighted average length of all the pathways that originate
from the outside environment (primary source of energy) and reach a given
compartment. In other words, it is the weighted average distance of a given
node from the external source of energy. Accordingly, autotrophs will have
distance (and therefore TP ) equal to 1, herbivores 2 and so forth. Usually
TPs are fractionary: for a species that bases half of its diet on primary
producers and the other half on herbivores, the TP will be 2 × 0.5 + 3 ×
0.5 = 2.5 (one pathway of length 2: outside −→ primary producers −→
herbivore; one of length 3: outside −→ primary producers −→ herbivore −→
consumer). Organisms feeding on this latter species would have TP = 3.5.

Adopting this “flow-based” approach (Williams and Martinez, 2004), the
trophic position of the jth species is computed as

TPj = 1 +
S∑

i=1

TPi · pij (5.1)

where TPj and TPi are the trophic positions of species i and j, re-
spectively, S stands for the total number of compartments and pij is the
fraction that species i constitutes within the diet of species j. The un-
weighted counterpart is the “prey-averaged” trophic position (Williams and
Martinez, 2004), which assumes that a consumer feeds on all its prey species
equally. Then, in a S species network, the trophic position of a j species
(TPj) connected by lij = 1 with its mj preys is

TPj = 1 +
S∑

i=1

lij · TPi

mj
(5.2)

5.2.3 Average mutual information

The average mutual information (AMI) computes the average amount
of constraints exerted upon an arbitrary quantum of currency when passing
from any one compartment to the next (Rutledge et al., 1976; Ulanowicz,
1986). This depends on both the number of links and their magnitude and
can be explained using Figure 5.1 as reference.

The upper left configuration (Figure 5.1a) shows the maximally con-
strained distribution of the same total amount of currency (total system
throughput); no alternative routes exist to the movement of a quantum of
matter: it moves in an exactly predictable way. On the contrary, network
(d) possesses the most equivocal distribution of the 144 units of transfer
among the four system components. According to the meaning of this index
and the way it is computed, network (a) depicted in Figure 5.1 possesses
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Figure 5.1: Hypothetical networks depicted in 4 different topologies: (a) maximally
constrained (AMI maximum); (b) and (c) intermediate levels of constraints; (d) most
equivocal distribution of links (AMI = 0). Every node is at steady state and the total
system throughput is preserved (TST = 144).

the highest AMI, whereas the lowest is for network (d) (see Chapter 4 for
details).

This example shows the intrinsic whole-system character of this index.
However, Ulanowicz (unpublished manuscript) has shown how the individ-
ual contribution of the compartments can be estimated summing up all the
terms generated by inflows to each of them, and dividing this value by the
corresponding throughput (sum of all inflows to a given compartment). In
particular, each compartment contribution to the system flow structure is
estimated in terms of inflow topology, scaled by the ratio of total system
throughput (TST ) processed. This index represents a measure that is sim-
ilar, although complementary, to effective connectance (m; Ulanowicz and
Wolff, 1991) and link density (LD; Bersier et al., 2002) previously proposed
(see Chapter 4, section 4.1). In the present chapter, the contribution of each
species to the whole AMI is denoted with AMI·j, adopting it as a proxy of
the flow structure.
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5.2.4 Statistical analysis of food web structure

We calculated the trophic position (TP ) and the average mutual informa-
tion (AMI·j) for each of the living components in the 26 weighted food webs
and their corresponding unweighted versions (imposing magnitude equal to
1 to all links). Then we evaluated the correlation between the two indices
using the the Pearson’s product-moment correlation (ρ). Differences in the
correlation coefficients obtained for the two groups of networks (NETWRK
and ATLSS) were studied by applying the Wilcoxon-Mann-Whitney test
(Wilcoxon, 1945; Mann and Whitney, 1947).

5.3 Comparing binary and weighted food webs

Table 5.2 reports the correlation coefficients between TP and AMI for
the 26 ecosystems under investigation.

Ecosystem ρq p ρQ p
NETWRK
Aggregated Baltic Sea -0.639 0.025 0.552 0.063
Cedar Bog Lake -0.858 0.006 0.811 0.015
Charca de Maspalomas -0.552 0.017 0.327 0.185
Chesapeake Mesohaline Ecosystem -0.681 0.015 0.527 0.079
Chesapeake Mesohaline Network -0.456 0.008 0.692 � 0.001
Crystal River Creek (control) -0.693 0.001 0.774 � 0.001
Crystal River Creek (delta temp.) -0.636 0.003 0.751 � 0.001
Lower Chesapeake Bay in Summer -0.220 0.233 0.442 0.013
St.Marks River (Florida) Flow Network -0.556 � 0.001 0.358 0.012
Lake Michigan Control Network -0.736 � 0.001 0.901 � 0.001
Middle Chesapeake Bay in Summer -0.537 0.002 0.715 � 0.001
Mondego Estuary -0.872 � 0.001 0.516 � 0.001
Final Narraganasett Bay Model -0.737 � 0.001 0.798 � 0.001
North Sea -0.577 0.081 0.976 � 0.001
Somme Estuary -0.930 0.001 0.836 0.010
Upper Chesapeake Bay in Summer -0.432 0.015 0.639 � 0.001
Upper Chesapeake Bay -0.440 0.203 0.832 0.003
Ythan Estuary -0.887 0.001 0.886 0.001
ATLSS
Cypress Wetlands dry season -0.794 � 0.001 0.719 � 0.001
Cypress Wetlands wet season -0.809 � 0.001 0.457 � 0.001
Marshes and Sloughs dry season -0.675 � 0.001 0.758 � 0.001
Marshes and Sloughs wet season -0.674 � 0.001 0.745 � 0.001
Florida Bay dry season -0.882 � 0.001 0.914 � 0.001
Florida Bay wet season -0.878 � 0.001 0.896 � 0.001
Mangroves dry season -0.821 � 0.001 0.657 � 0.001
Mangroves wet season -0.820 � 0.001 0.655 � 0.001

Table 5.2: Correlation coefficients for plots of TPs against AMIs in food webs (ρq) and
trophic networks (ρQ) with their p-values

Plots of the relationship between TP and AMI are organized in Figures
from 5.2 to 5.5.
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Figure 5.2: Florida Bay dataset, binary data.
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In particular, those classified as ATLSS are the most resolved networks
among the 26 we have examined and their plots are reproduced separately in
Figure 5.2 (qualitative) and Figure 5.3 (quantitative). For the networks of
the group NETWRK, characterized by more heterogeneous levels of resolu-
tion into trophic species, we summarized the results into two figures: one for
qualitative indices (Figure 5.4) and the other for quantitative ones (Figure
5.5).

When trophic position and average mutual information of each node were
computed and plotted for the food web version of analyzed ecosystems (flows
between species simply characterized as present or absent), a strong negative
correlation was estimated. All the 26 ecosystems but Lower Chesapeake
Bay in Summer (ρqualitative = −0.220, p = 0.233), North Sea (ρqualitative =
−0.577, p = 0.081) and Upper Chesapeake Bay (ρqualitative = −0.440, p =
0.203) showed significant correlation (µ = −0.720) and results were not
affected by systems belonging to different datasets (Z = 1.581, p > 0.05).

In ecological networks for which interaction strength were measured,
the positive correlation between TP and AMI is observed in 25 ecosystem
networks out of 26 (p � 0.05), with the exception of Charca de Maspalomas
(ρQ = 0.327, p = 0.185). Most (60%) of the correlation coefficients are
greater than 0.7, with a mean value equal to 0.712. No significant difference
was found between the two groups of networks (ATLSS and NETWRK) as
for correlation coefficients (Z = 0.146, p � 0.05).

For each ecosystem, we plotted the Pearson’s product-moment correla-
tion against the number of nodes (S) and no scale dependence has been
noticed both for unweighted and weighted data (see Figure 5.6: food webs,
R2 = 0.093; ecological networks, R2 = −0.036).
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Figure 5.6: Absence of scale dependence effect (linear regression line is depicted) when
the correlation coefficients of 26 whole ecosystems (ρ) are plotted against their number of
nodes (S), both using unweighted (on the left) and weighted (on the right) data.
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5.4 From topology to functioning

The relationship between trophic position and link distribution forms
defined patterns. By insisting on food web models (Cohen et al., 1990;
Williams and Martinez, 2004), the outcomes of the hierarchy they implicitly
assume, that is the higher the trophic level of a species the higher the number
of prey it will have, seems to be confirmed when the analysis of food webs
is conducted on binary (presence/absence of interaction) data. A negative
correlation, in fact, constantly emerge between TP and AMI and because
the latter index is inversely proportional to the randomness of flows, that is it
scores higher when connections entering a node are few, the result obtained
for the 25 systems tells us that the number of links would increase towards
the top of the food chain.

On the other hand, taking into account the magnitude of interactions
reverses this outcome. When link strength is included, the amount of infor-
mation grows with the trophic level of the species: this, in general, can be
obtained either by having a lower number of preys or a very skewed distribu-
tion of interactions; however, accounting for the results on binary webs, the
only possible explanation for this reversal remains the uneven distribution
of link intensity, whose effect remain masked by the exclusive use of raw
binary data.

Our results communicate the sobering message that in food webs top
species establish more interactions than basal species but most of these
interactions are weak. This supports the idea that these interactions prevail
in ecosystems, a point of view rather diffuse in the ecological literature,
and built up with contributions from different approaches: from energy flow
studies (de Ruiter et al., 1995; Raffaelli and Hall, 1996) to researches on food
web stability (McCann et al., 1998; Neutel et al., 2002) and investigations
involving field and lab experiments (Ives et al., 1999; Sala and Graham,
2002).

The outcomes presented here do not discard the validity of food web
models. On the contrary, from a pure topological approach this research
adds another evidence about the potential of these architectures, that are
extremely simple in their premises to capture the very essence link arrange-
ments in food webs. However, if one passes from the bare connective struc-
ture to a more functional characterization of ecosystems, the binary ap-
proach holds only marginally, if at all. Studies on network robustness and
secondary extinction (Dunne et al., 2002b; Allesina and Bodini, 2004) have
revealed that a pure topological approach provides average insight but fails
to make accurate predictions on the impact of species loss. Adding link
magnitude changes significantly the scenario (Allesina et al., 2006).

However, it must be considered that a functional characterization of food
webs depends very much on the way interaction strength is measured. Be-
cause this characterization refers to the functional role occupied by species,
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when link intensity is expressed as energy transfer from resources to con-
sumer, like in this work, keystone species are those that act as bottleneck
for energy delivery throughout the ecosystem (Allesina et al., 2006). On
the other hand, the same species may not be as important, say, in a top-
down perspective, in which other types of regulatory flows are at work in
ecosystems (Paine, 1980, 1992; Raffaelli and Hall, 1996). According to this,
despite its importance, including link quantification into food web analysis
will contribute to make progresses towards an insightful synthesis, only if all
the different aspects connected to link weighting will be taken into account
and accommodated in a coherent framework (Berlow et al., 2004).



6

Species trophic hierarchy

6.1 Trophic hierarchy as a criterion for link distri-

bution around the energy flow in ecosystems

The trophic level concept of a simple linear chain of energy passages that
had great appeal as an easy and intuitive description of complex commu-
nities has recently been challenged. The structural intricacy of food webs
(e.g. richness and topology of connections between species) would not easily
accommodate into the framework of the “green world” theories (Polis and
Strong, 1996). Spatial and temporal heterogeneity, diffuse omnivory and
nutrient cycling, shunt the flow of matter and energy away from adjacent
trophic components thus challenging the idea that populations aggregate
into discrete homogeneous trophic levels (Vadas Jr., 1990; Winemiller, 1990;
Polis, 1991, 1994), although recent investigations reevaluated the concept of
trophic level and its scientific utility (Williams and Martinez, 2004).

If the Lindeman tropho-dynamic sequence of discrete trophic levels is a
too rigid model to represent ecosystems, multiple interconnections between
species in food webs yield the perception that link topology is not organized
around the observed gradient of trophic positions (Ulanowicz, 1995; Scotti
et al., 2006), and trophic hierarchy seems not a criterion explaining patterns
of link distribution in food webs.

Nonetheless, links in food webs are representations of who eats whom in
ecosystems, and their topology is unequivocally determined by the species
feeding behaviour. Accordingly, if link distribution shows patterns that can
be put in relation with the gradient of trophic positions from producers to

96
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consumers, and holds across ecosystems, the trophic hierarchy becomes a
key to explain food web structure.

To search for one such relation is the objective of this paper. To pursue
it, we analyzed food webs extracted from 26 weighted ecological flow net-
works, with links quantitatively expressed as energetic contributions from
resources to consumers. In particular, in our analysis we considered species
trophic position (TP ; Ulanowicz, 1995; Scotti et al., 2006) as an index of
trophic classification for the various compartments, and the decomposition
of the average mutual information (AMI, henceforth; Ulanowicz, 2004), an-
other index taken from network analysis, as a metric of link density. Its
value depends on the multiplicity of links targeted to each node weighted by
their relative magnitude. This index measures the contribution that each
compartment, through its trophic connections and their relative importance,
gives to the organization of energy flow in ecosystems.
In particular, we address our objective by answering the following questions:
(a) is the density of links for each species related to its trophic position? (b)
if so, can patterns be identified among ecosystems? (c) is there evidence
that the attitude towards specialized or redundant connections is more a
taxonomically based attribute than a functional one?

Contrarily to most food web studies centred on topology (Montoya and
Solé, 2002; Dunne et al., 2002a,b; Allesina and Bodini, 2004)), here we use
directed, weighted food webs. This choice roots in the idea that crude
linkage density should be amended to include, besides the number of links,
also their contribution in terms of energy flow. Accordingly, many links with
same magnitude define higher linkage density than few links and uneven
distribution of medium among them (Ulanowicz, 1997). In doing this we
propose a shift in focus: from the bare connective structure to the function
associated to links, that is energy distribution.

6.2 TPs and AMIs of single compartments

6.2.1 Weighted food webs

In the present chapter we analyzed data described in Chapter 5, section
5.2.1 (see Table 5.1 for details).

6.2.2 TPs and AMIs

Descriptions of the indices measuring steps experienced by energy to
reach a given node (TP ) and contribution, of each species, to the flow struc-
ture (AMI·j), are summarized in Chapter 5, sections 5.2.2 and 5.2.3.
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6.2.3 Statistical analysis of food web structure

Trophic position (TP ) and average mutual information (AMI·j) for each
of the living components in the 26 weighted food webs were calculated.
Then, the correlation between the two indices has been evaluated using the
Pearson’s product-moment correlation (ρ) both for pooled data and for every
single ecosystem. Because the systems used in this analysis were extracted
from two datasets, it is likely that different rules of constructions were used
to assemble the networks. To verify whether this had some effect on the
final results (i.e. the correlation between TP and AMI·j), differences in the
correlation coefficients obtained for the two groups of networks were studied
by applying the Wilcoxon-Mann-Whitney test (Wilcoxon, 1945; Mann and
Whitney, 1947).
Correlation between TP and AMI·j for system subgroups including tax-
onomically related species was computed; they are: microfauna, macroin-
vertebrates, herpetofauna, fishes, avifauna and mammals. This was done in
order to observe whether values of correlation coefficients produced a pattern
reflecting taxonomic classification. These six subgroups represent a common
conventional subdivision of compartments for all the 26 networks; inclusion
of species or compartments in each group was decided according to taxo-
nomic classification provided by the authors who compiled the networks.
For these groups, Pearson’s product-moment correlations were ranked, then
their order has been compared applying the Kruskal-Wallis test (Kruskal
and Wallis, 1952).

6.3 Trophic hierarchy and flow structure

For ease of explanation, results in detail are presented only for the Florida
Bay (wet season) ecosystem, one of the 8 networks included in the ATLSS
database. This ecosystem is composed of 125 compartments of which 3
stand for non-living nodes (water POC, benthic POC and DOC). Focussing
on living nodes, there are 14 primary producers, 12 microfauna species, 27
macroinvertebrates, 48 fish, 4 herpetofauna species, 16 birds species (avi-
fauna) and 2 mammals. Each compartment name is detailed in Table 6.1
and, for each of them, trophic position (TP ) and average mutual informa-
tion (AMI·j) are summarized. Compartments are also ranked according to
the values of these two coefficients. The relationship between the two indices
is plotted in Figure 6.1.
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Figure 6.1: Plot of the distribution of the Florida Bay (wet season) compartments
according to their average mutual information (AMI) and trophic position (TP ). All the
14 primary producers share the same values (TP = 1 and AMI·j = 2.228). The Pearson’s
product-moment correlation is ρ = 0.896).

nodes TP AMI·j rank TP rankAMI·j
Primary producers

1 2um Spherical Phytoplankton 1.000 2.228 109 105
2 Synedococcus sp. 1.000 2.228 109 105
3 Oscillatoria sp. 1.000 2.228 109 105
4 Small Diatoms (¡20um) 1.000 2.228 109 105
5 Big Diatoms (¿20um) 1.000 2.228 109 105
6 Dinoflagellates 1.000 2.228 109 105
7 Other Phytoplankton 1.000 2.228 109 105
8 Benthic microalgae 1.000 2.228 109 105
9 Thalassia testudium 1.000 2.228 109 105

10 Halodule wrightii 1.000 2.228 109 105
11 Syringodium filiforme 1.000 2.228 109 105
12 Roots 1.000 2.228 109 105
13 Drift Algae 1.000 2.228 109 105
14 Epiphytes 1.000 2.228 109 105

Microfauna
15 Free Bacteria 2.000 4.382 100 78
16 Water Flagellates 2.092 2.671 98 102
17 Water Ciliates 2.555 2.009 75 120
18 Acartia tonsa 2.517 3.001 79 96
19 Oithona nana 2.517 3.000 77 98
20 Paracalanus crassirostris 2.517 3.000 78 97
21 Other Copepoda 2.507 3.048 81 92
22 Meroplankton 3.484 5.055 44 72

Continued on next page
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Continued from previous page
23 Other Zooplankton 2.531 3.003 76 95
24 Benthic Flagellates 2.000 2.536 100 103
25 Benthic Ciliates 2.450 2.306 84 104
26 Meiofauna 2.317 2.119 91 119

Macroinvertebrates
27 Sponges 2.140 3.461 96 83
28 Coral 3.293 5.910 61 68
29 Other Cnidaria 3.341 7.955 57 49
30 Echinodermata 2.375 4.588 87 77
31 Bivalves 2.199 3.418 95 84
32 Detritivorous Gastropods 2.024 3.102 99 89
33 Epiphyte Grazing Gastropods 2.000 4.975 100 73
34 Predatory Gastropods 3.415 11.480 53 6
35 Detritivorous Polychaetes 2.324 3.051 90 91
36 Predatory Polychaetes 3.154 4.705 69 76
37 Pelagic Feeding Polychaetes 2.201 3.294 94 85
38 Macrobenthos 2.476 3.031 83 94
39 Benthic Crustaceans 2.514 2.993 80 100
40 Detrivorous Amphipods 2.491 2.994 82 99
41 Herbivorous Amphipods 2.000 3.035 100 93
42 Isopods 2.000 3.177 100 87
43 Herbivorous Shrimp 2.000 4.848 100 75
44 Predaceous Shrimp 3.296 7.401 60 58
45 Pink Shrimp 2.390 1.920 86 121
46 Thor floridanus 2.000 4.975 100 73
47 Spiny Lobster 3.262 6.467 64 64
48 Detritivorous Crabs 2.332 3.576 89 82
49 Omnivorous Crabs 2.342 2.883 88 101
50 Predatory Crabs 3.379 10.172 55 22
51 Callinectes spp. 3.379 10.169 54 23
52 Stone Crab 3.828 6.911 26 61

Fishes
53 Sharks 4.521 14.759 3 1
54 Rays 3.457 8.494 48 45
55 Tarpon and Ladyfish 3.962 11.220 21 9
56 Bonefish 3.364 11.093 56 13
57 Sardines 3.314 7.544 58 55
58 Anchovies 3.525 7.116 40 60
59 Bay Anchovy 3.566 5.837 38 69
60 Lizardfish 3.887 9.618 24 29
61 Catfishes 3.466 8.592 46 42
62 Eels 3.905 10.669 23 16
63 Toadfish 3.669 9.562 30 31
64 Brotulas and Batfishes 3.494 9.228 43 40
65 Halfbeaks and Flyingfish 2.140 3.101 97 90
66 Needlefishes 4.012 10.734 20 14
67 Killifishes 3.151 7.579 70 53
68 Floridychthys carpio 3.447 7.506 49 57
69 Lucania parva 3.223 7.693 68 51
70 Snooks 3.887 9.895 25 25
71 Poecilids 2.000 3.933 100 80
72 Silversides 3.603 6.218 35 67
73 Seahorses and Pipefishes 3.287 9.170 62 41
74 Sygnathus scovelli 3.302 7.723 59 50
75 Hippocampus zosterae 3.257 9.488 65 33
76 Groupers 3.961 9.699 22 27
77 Jacks and Runners 4.029 9.637 19 28
78 Pompano and Permits 3.422 7.601 52 52
79 Snappers 3.619 9.331 32 38
80 Gray Snapper 3.772 9.462 28 34

Continued on next page
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Continued from previous page
81 Mojarras and Jennies 3.443 8.047 51 48
82 Grunts 3.444 6.408 50 66
83 Porgies 3.277 7.574 63 54
84 Pinfish 3.073 6.780 71 62
85 Sciaenid fishes 3.619 7.336 33 59
86 Spotted Seatrout 4.054 9.398 18 36
87 Red Drum 3.535 9.547 39 32
88 Spadefish 3.577 9.264 37 39
89 Parrotfishes 2.705 4.225 74 79
90 Mackerels 4.555 12.750 2 2
91 Mullets 2.205 1.836 92 122
92 Barracudas 4.422 11.964 6 5
93 Blennies 3.256 9.383 66 37
94 Code Goby 3.510 6.711 41 63
95 Clown Goby 3.506 6.416 42 65
96 Flatfishes 3.633 7.525 31 56
97 Filefishes and Trigger fishes 3.475 9.448 45 35
98 Puffers and Burrfishes 3.600 9.584 36 30
99 Other Pelagics 4.482 12.317 4 3

100 Other Demersals 2.865 5.314 73 71
Avifauna

101 Loons 4.311 10.729 10 15
102 Grebes 4.289 10.356 12 21
103 Pelicans 4.387 11.135 7 12
104 Cormorants 4.335 11.181 9 11
105 Big Herons and Egrets 4.258 10.075 14 24
106 Small Herons and Egrets 4.186 10.447 16 19
107 Ibis 4.078 9.866 17 26
108 Roseate Spoonbill 4.197 10.444 15 20
109 Herbivorous Ducks 2.399 3.796 85 81
110 Omnivorous Ducks 2.918 5.491 72 70
111 Predaceous Ducks 4.302 10.630 11 17
112 Raptors 4.599 12.007 1 4
113 Gruiformes 3.741 8.515 29 44
114 Small Shorebirdss 3.610 8.098 34 47
115 Gulls and Terns 3.798 8.591 27 43
116 Kingfishers 4.280 11.192 13 10

Herpetofauna
117 Crocodylus acutus 4.357 11.413 8 7
118 Caretta caretta 3.466 8.136 47 46
119 Chelonia mydas 2.000 3.152 100 88
120 Eretmochelys imbricata 3.235 10.587 67 18

Mammals
121 Tursiops truncatus 4.424 11.261 5 8
122 Trichechus manatus 2.203 3.289 93 86

Table 6.1: Results for Florida Bay (wet season) compartments: trophic position (TP ),
average mutual information (AMI·j) and compartment ranking for both indices.

At the lowest trophic position, as expected, ranked the 14 primary pro-
ducers (TP = 1). Minimum values of AMI·j are exhibited by mullets
(1.836), pink shrimp (1.920), water ciliates (2.009) and meiofauna (2.119).
The highest, both in the TP and AMI·j ranking, are performed by sharks,
mackerels, other pelagic fishes and raptors. Nodes called predatory gas-
tropods and tarpon and ladyfish (Megalops atlanticus and Elops saurus)
show high AMI·j values (they rank 6 and 9, respectively) but are not in-
cluded in the first 20 highest TP values (positions 21 and 53, respectively).
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Besides these latter nodes, the general tendency is that of a linear increase
in AMI·j with TP , according to the Pearson’s product-moment correlation
(ρ = 0.896, p � 0.05).
The same trend observed for the whole network appeared when indices are
plotted separately for the 6 subgroups (see Figure 6.2). Although the pat-
tern is preserved, the correlation increased from microfauna (ρ = 0.487,
p = 0.109) to avifauna (ρ = 0.993, p � 0.001).
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Figure 6.2: Florida Bay (wet season) data of TP and AMI·j are plotted into sepa-
rated graphs, according to taxonomic groups. Correlation coefficient for microfauna is the
lowest(ρ = 0.487, p = 0.109) and increases for macroinvertebrates (ρ = 0.772, p � 0.001),
fishes (ρ = 0.862, p � 0.001) and avifauna (ρ = 0.993, p � 0.001).

Positive correlation between TP and AMI·j observed for Florida Bay
(wet season) is confirmed in 25 ecosystem networks out of 26 (p � 0.05),
with the exception of Charca de Maspalomas (ρ = 0.327, p = 0.185; see ρQ

in Table 5.2). Most (68%) of the correlation coefficients are greater than
0.7, with a mean value equal to 0.735. No significant difference was found
between the two groups of networks (ATLSS and NETWRK) as for corre-
lation coefficients (z = 1.078, p � 0.05), although the values for the South
Florida networks are less dispersed (see Figure 6.3).
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Figure 6.3: Distributions of the significant correlation coefficients as boxplots: pooled
(left), NETWRK (centre) and ATLSS (right). Central values for the distributions are
(a) “NETWRK” median = 0.751 and µ = 0.706; (b) “ATLSS” median = 0.791 and
µ = 0.796. Inside the boxes, black thick lines show median values

As many as 77 subgroups (15 microfauna, 20 macroinvertebrates, 8 her-
petofauna, 18 fishes, 10 avifauna and 6 mammals) originated from the whole
database. The rank order correlation coefficients obtained for each group
produced the barplot of Figure 6.4. The most controversial results are
showed by microfauna, with 10 negative correlations coefficients out of 18.
The great majority of coefficients produced by the other groups are positive
with the exception of few cases: macrofauna (1), herpetofauna (1), fishes
(2) and avifauna (2).
The Kruskal-Wallis test applied to the subgroups was significant (χ2 =
18.969, p � 0.005) and microfauna appeared clearly separated from all
the other subsets (median = −0.387, µ = −0.096). As for the other groups,
correlation coefficients for macroinvertebrates (median = 0.826, µ = 0.741)
were different from those of herpetofauna (median = 0.724, µ = 0.656) and
avifauna (median = 0.806, µ = 0.454), but not from fish. The correlations
of the fish group (median = 0.826, µ = 0.672) were different from those
of herpetofauna and avifauna. The mammals subgroup (median = 0.857,
µ = 0.840) exhibited correlations not different from those of the other groups
but microfauna. However, a tendency of mammals to behave as macroin-
vertebrates and fishes (differing from herpetofauna and avifauna) can be
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outlined (see Figure 6.5). Subgroups seem to be split into 3 main clusters
(plus mammals) by these results: (a) microfauna; (b) herpetofauna and
avifauna; (c) macroinvertebrates and fishes.

Figure 6.4: Barplot showing the rank order of the Pearson’s product-moment correlation
estimated for microfauna (M, white), macroinvertebrates (K, yellow), herpetofauna (H,
grey), fishes (F, blue), avifauna (A, red) and mammals (S, green). The first 16 bars on
the left correspond to negative correlation coefficients and microfauna is the prevalent
subgroup.
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Figure 6.5: Distributions of estimated ρ coefficients for the taxonomic subgroups. Micro-
fauna (M, white) shows more dispersed coefficients and negative median and mean values
(median = −0.387, µ = −0.096). The other distributions are for macroinvertebrates (K,
yellow), fishes (F, blue), herpetofauna (H, grey), dispersed avifauna (A, red), mammals
(S, green).

6.4 Energy delivery as a functional issue

In all the networks but one (Charca de Maspalomas ecosystem) AMI·j
values increase from primary producers to top consumers. Because this in-
dex is inversely proportional to the randomness of flows, that is it scores
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higher when connections entering a node are few and/or total inflow is un-
evenly distributed among them, it follows that linkage density, as defined
by the AMI·j, is attenuated for species that feed higher in the food chain.
Thus, our analysis indicates that species feeding at higher position tend to
trophic specialization and a more generalist alimentary behaviour charac-
terizes species at the bottom of the trophic hierarchy.

Link density seems to form a pattern around the energy flow from re-
sources to consumers and the trophic hierarchy becomes a key lecture for
food web topology. Accordingly, although the concept of trophic level may
not be sufficient to explain ecosystem organization, and food web complex-
ity spreads the effects of productivity and consumption throughout the web
(Polis and Strong, 1996), such spreading would be constrained by the trophic
hierarchy expressed by the gradient of species trophic position.

The metric used for linkage density, the AMI·j , includes both the number
of links per node and their magnitude. We performed the same analysis
described here using a qualitative version of the index (see Chapter 5), that
is we considered only the number of connections as a measure of link density
(all the links were taken as equal to one).

Plotted against the species trophic position it yielded a negative correla-
tion. This means that by looking solely at the number of links, top species
seem to possess more connections than basal ones. However, if community
organization has to be considered in relation to energy distribution, what
really matters is what species receive as energy contribution and this jus-
tifies the need to pass from qualitative to quantitative analysis including
interaction strength (Berlow et al., 2004). In this perspective, our results
suggest that energy flows towards the top consumers are also unevenly dis-
tributed among the links. Evidences accumulated in the literature related to
the distribution of interaction strength are mostly in favour of a strong skew
towards weaker interactions (McCann et al., 1998; Sala and Graham, 2002;
Emmerson and Yearsley, 2004), which our results tend to confirm. However,
from what presented here, this distribution shows asymmetry within food
webs that seems to be in relation with the gradient of trophic positions.

The distribution of linkage density depends upon a trade-off between
specialization and generalization that is a complex matter to investigate.
This topic is intriguing and deserves further attention. In particular, it
would be interesting studying it in the light of evidences from previous
investigations on evolutionary patterns in diet specialization (Sih et al., 1998;
Rana et al., 2002). They hypothesized that trophic specialists would have
stronger interactions with individual prey species than more generalized
species. The results we obtained have indirect implications on the debate on
omnivory. The discussion about this alimentary behaviour focussed mainly
on its degree of occurrence in ecosystem food webs (Yodzis, 1984; Williams
and Martinez, 2004) and it has been fuelled by the difficulty to accommodate
it within the findings of local stability analysis (Pimm and Lawton, 1978;
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Pimm et al., 1991; Fagan, 1997). Nonetheless, in food web literature there
are studies exploring whether omnivory would be more common among taxa
at higher or lower trophic positions. We can find evidence for both points in
the literature, for example, studies on the Ythan estuary (Hall and Raffaelli,
1991; Raffaelli and Hall, 1996) showed that omnivory should be less common
towards the base of a community web because organisms feeding higher
would have more opportunity to feed at several trophic levels. On the other
hand, Yodzis (1984), by studying the 40 Briand’s food webs (Briand, 1983),
showed that the number of loop-forming omnivore links (both observed and
expected) decreased as the trophic position of the predators augmented.
More recently, other studies confirmed that omnivory tends to predominate
above the herbivore trophic level (Thompson et al., 2007). All the works
cited above analyzed pure qualitative food webs.

For our ecosystems the AMI·j values indicate more randomness of flows,
that is higher tendency to omnivory, at the bottom of the trophic hierarchy.
Once again quantification of links and the use of AMI·j combining both
structural and functional features may reveal patterns about omnivory that
would remain hidden in the qualitative approach.

With respect to the correlation between TP and AMI·j certain compo-
nents are outliers. These nodes show higher (or lower) contribution to the
whole system organization (AMI) than expected from the correlation with
trophic position. In the case of Florida Bay (wet season), AMI·j of herbiv-
orous shrimp and Thor floridanus is, respectively, 4.848 and 4.975. These
values are uncommonly high within herbivores, showing how these compo-
nents are characterized by more specialized trophic strategies (the latter
exclusively eats epiphytes whereas herbivorous shrimp diets is based on epi-
phytes - 89% and benthic microalgae - 11%). In a similar way, the selected
number of preys eaten by predatory gastropods and tarpon and ladyfish
more than compensate their intermediate efficiency of interactions, result-
ing in strong contribution to system organization. These results suggest
that, although ecologists have been more interested in organisms feeding at
the top of food chain than in those feeding at or near the bottom (e.g. all the
bulk of theory and experiments related to trophic cascade are based on top
species manipulation; Pace et al., 1999; Schmitz et al., 2000), there might
be species at intermediate trophic positions that, with their low degree of
connections, may represent bottlenecks for the flow of energy from producers
to consumers with, possibly, destabilizing effects if removed (Dunne et al.,
2004; Allesina and Bodini, 2004).

The extremely high linear correlations within subgroups are consistent
with the idea that trophically similar species do not cleanly split along tax-
onomic lines, such that members of one taxon may occupy different trophic
roles in the same ecosystem (Polis, 1984). Indeed, all subgroups but micro-
fauna showed a large range of tropic positions with associated skewed dis-
tribution of AMI·j values. The statistical difference separating microfauna
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(with a majority of negative correlation coefficients) from other subgroups
originates from: (a) the ever-coarser degree of node aggregation, and (b) the
tendency to occupy a low and narrowed trophic position range. Finally, the
three clusters in which subgroups (microfauna; herpetofauna and avifauna;
macroinvertebrates and fishes) seem to aggregate are in accordance with
well known phylogenetic and evolutionary schemes so that future and more
detailed studies should be conducted to demonstrate these patterns.

No scale dependence seems to characterize the relationship between TP
and AMI·j which, instead, might be affected by criteria of taxonomic aggre-
gation used to define network compartments. For example, in the Florida
Bay (wet season) the same level of resolution was applied to main ecosys-
tem subgroups (microfauna, macroinvertebrates, herpetofauna, fishes and
avifauna) and the correlation between the two indices was quite high (ρ =
0.896). On the contrary, a much lower correlation (ρ = 0.358) was found
for the St. Marks river ecosystem. Interestingly enough, different resolution
was used in parsing this network: a finer taxonomic resolution was applied
to create macroinvertebrate compartments, whereas other groups of species
(i.e. benthos-eating birds, fish-eating birds and fish & crustacean eating
bird) were assigned to a unique compartment.

More generally, the observed relation is not affected by species richness
(see Figure 5.6 in Chapter 5 for trophic networks), as noted for linkage
density and food chain length (Schoener, 1989; Cohen and Newman, 1991;
Hall and Raffaelli, 1991; Pimm et al., 1991; Martinez, 1991). However, it
seems sensitive to a common aggregation scheme within any single network.
The question whether the sensibility to trophic and functional rather than
taxonomic aggregations should be addressed in future studies, although we
hypothesize the correlation should be mainly biased by the latter option
because of the skewed distribution of AMI·j with increasing trophic posi-
tions. Food web analysis has shown how link topology presents patterns
that hold across various ecological systems (Camacho et al., 2002a; Dunne
et al., 2002a; Montoya and Solé, 2002; Williams and Martinez, 2004). Be-
cause structure and functions in ecosystems are inextricably interlinked,
there have been several attempts to understand such patterns in the con-
text of ecosystem stability (MacArthur, 1955; May, 1973; Yodzis, 1981; Mc-
Cann, 2000). By considering the energy delivery as a functional issue, we
highlighted that food web links are distributed in a characteristic pattern
along the flow of energy from producers to consumers. This suggests that
the trophic hierarchy, delineated by species trophic position, may become a
key that contributes reading ecosystem organization, representing not only
a heuristic concept. Furthermore, once topological attributes are considered
in relation to the different ecosystem functions there will be the opportunity
to shed further light on the principles of ecological organization.



7

Trophic positions and
keystone species

7.1 Are topological keystone species necessarily

top predators?

1The focus of conservation biology recently started to shift from identi-
fying rarity of species to characterizing their relative importance (keystone
species) and effects on ecosystem functioning.
In this context, studying the complexity of multi-species trophic interactions
through the network approach looks like a helpful perspective to identify
species roles and importance (e.g. centrality in the network, cf Margalef,
1991).
Since Lindeman (1942) introduced the concept of trophic level, food webs
have long interested ecologists. Trophic structure has been commonly stud-
ied as food chain length (Wulff and Ulanowicz, 1989; Bondavalli et al., 2006)
but other applications used effective trophic position (or trophic height) to
infer controlling factors at the whole system level (Christian and Luczkovich,
1999).
Beside trophic analysis, many recent investigations calculated local indices
specific to a single species as a function of its topological position (Jordán
et al., 2006, 2007). However, emerging patterns are often related to binary

1“Oral presentation” Chapter: Scotti, M., Jordán, F., 2007. On the relation between
centralities and trophic positions in ecological networks. “Marchetti Prize” at the Joint
AIOL-SItE meeting, Ancona, Italy.
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data (e.g. link distribution; Montoya and Solé, 2002; Dunne et al., 2002b;
Abarca-Arenas et al., 2007) and no relations between trophic structure and
centralities have been studied.
In the present work we studied 19 ecosystem networks, calculating trophic
positions and node centralities both in unweighted and weighted versions.
We aimed to clarify the following questions: (a) Are there general patterns
linking species feeding behaviour and their relative importance estimated
with centrality measures? (b) How are distributed species densities of fre-
quency as regards to centrality and trophic height values? (e.g. do prevail
nodes with lowest centrality or are they normally distributed with highest
frequencies in corresponding to intermediate values?) (c) Which are the ef-
fects of weighting on trophic heights and centrality indices?
Finally, we briefly sketched on consequences that centrality distribution
along trophic chain may have on ecosystem functioning.

7.2 TPs and centralities

Data

We analyzed 19 ecological networks based on predator-prey interactions.
Data are freely available at the CBL website2. In the studied webs, flow in-
tensities are measured as energy (i.e. kcal m−2 year−1 or cal cm−2 year−1)
or matter (gC m−2 year−1 or mgC m−2 summer−1). The number of com-
partments range from 21 (e.g. Charca de Maspalomas network) to 125 (e.g.
wet version of the Florida Bay network). Table 7.1 provides detailed infor-
mation on trophic networks.

Methods I - Trophic analysis

Ecological trophic networks describe ecosystems as boxes (species or trophos-
pecies) connected by weighted arrows (the amount of nutrients or energy
transferred by feeding relationships).
We applied ecosystem network analysis (ENA; Ulanowicz, 1986), a collec-
tion of quantitative methods mapping the intricacy of energy flows. Within
this framework we calculated trophic positions (TP ) by canonical trophic
aggregation (CTA; Ulanowicz and Kemp, 1979; Scotti et al., 2007), a suite
of matrix manipulations apportioning every species to a series of discrete
trophic levels sensu Lindeman (1942). The effective trophic position is de-
fined as the weighted average length of all the loopless pathways that origi-
nate from outside the system and reach a given living compartment (i.e. the
average weighted distance between producers and a given node, plus one).
Following this approach, primary producers (autotrophs) receiving energy

2www.cbl.umces.edu, collected mostly by R. E. Ulanowicz and colleagues
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Trophic network S nl l C currency
Charca de Maspalomas 21 18 55 0.125 mgC m−2 day−1

Chesapeake Mesohaline Network 36 33 122 0.094 mgC m−2 summer−1

Crystal River Creek (control) 21 20 82 0.186 mgC m−2 day−1

Crystal River Creek (delta temp.) 21 20 61 0.138 mgC m−2 day−1

Lower Chesapeake Bay in Summer 34 31 115 0.099 mgC m−2 summer−1

St. Marks River Flow Network 51 48 270 0.104 mgC m−2 day−1

Lake Michigan Control Network 36 35 172 0.133 gC m−2 year−1

Middle Chesapeake Bay in Summer 34 31 149 0.129 mgC m−2 summer−1

Mondego Estuary 43 42 348 0.188 gAFDW m−2 year−1

Final Narraganasett Bay Model 32 31 158 0.154 mgC m−2 year−1

Upper Chesapeake Bay in Summer 34 31 158 0.137 mgC m−2 summer−1

Cypress, Dry Season 68 65 554 0.120 gC m−2 year−1

Cypress, Wet Season 68 65 545 0.118 gC m−2 year−1

Everglades Graminoids, Dry Season 66 63 793 0.182 gC m−2 year−1

Everglades Graminoids, Wet Season 66 63 793 0.182 gC m−2 year−1

Florida Bay, Dry Season 125 122 1969 0.126 gC m−2 year−1

Florida Bay, Wet Season 125 122 1938 0.124 gC m−2 year−1

Mangrove Estuary, Dry Season 94 91 1339 0.152 gC m−2 year−1

Mangrove Estuary, Wet Season 94 91 1340 0.152 gC m−2 year−1

Table 7.1: For each trophic network we present the number of nodes (S) the number of
nodes representing living compartments (nl); the number of links (l); directed connectivity
(C = l/S2) and currency used to quantify flow intensities.

from outside the system are set to TP equal to 1, herbivores to 2 and so
forth. If we consider an omnivorous species with a fractionary diet based
for 10% on a primary producer and for 90% on a herbivore, its TP gives
rise from the composition of two pathways: (a) external source −→ primary
producer −→ omnivore (0.1 × 2 steps = 0.2); (b) external source −→ pri-
mary producer −→ herbivore −→ omnivore (0.9 × 3 steps = 2.7). The final
TP of the omnivore equals 2.9 (0.2 + 2.7 = 2.9).
Alternative version of the TP is the unweighted counterpart (unwTP ), es-
timated using only topological information, without considering weights on
trophic links. In this case, total inputs to a node are equally distributed be-
tween entering flows (in the previous example, TP = 2.5 for the omnivore).
Theoretically, also the shortest (unwTPmin) and longest (unwTPmax) en-
ergy pathways can be computed but here we have not used these indices.
Details on the four measures of trophic position are described in Figure 7.1
and Table 7.2.

Methods II - Centrality indices

Although trophic position is a property of a species in a directed trophic
network (representing flow of energy from producers to consumers), in order
to better understand the ecological role a species plays in a community we
may be interested also in the undirected network of interactions. Doing so,
we can evaluate the top-down and horizontal interaction structure of species
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Figure 7.1: Illustration of four different trophic positions of a node in a hypothetical
three-compartment network. Compartment A, receiving exclusively energy from outside,
is a primary producer (TP = 1), while B, feeding only on A, is a herbivore (TP = 2).
Node C, feeding both on A (10%) and B (90%), have a TP equal to 2.9 = 0.1 × 2 (as a
herbivore in 10%) + 0.9 × 3 (as a primary carnivore in 90%). In the unweighted form of
TP (unwTP ), C receives 50% of energy from A and 50% from B, and its unwTP is 2.5
(0.5× 2 + 0.5 × 3). Shortest pathway to C is 2 steps (outside −→ A −→ C) while longest
is 3 steps (outside −→ A −→ B −→ C): unwTPmin = 2, unwTPmax = 3.

Trophic position path calculus value
TP (9/10) outside −→ A −→ B −→ C 0.9 × 3 = 2.7 2.9

(is 90% a primary consumer)
(1/10) outside −→ A −→ C 0.1 × 2 = 0.2
(is 10% a herbivore)

unwTP (1/2) outside −→ A −→ B −→ C 0.5 × 3 = 1.5 2.5
(is 50% a primary consumer)
(1/2) outside −→ A −→ C 0.5 × 2 = 1
(is 50% a herbivore)

unwTPmin outside −→ A −→ C 2 steps 2

unwTPmax outside −→ A −→ B −→ C 3 steps 3

Table 7.2: Here we summarize, for the node C depicted in Figure 7.1, pathways (path)
and calculations (calculus) giving rise to different trophic positions (value), depending on
the form of trophic height considered (Trophic position).

(e.g. trophic cascade and apparent competition, respectively). Shortly, en-
ergy flows are represented by a digraph, while interspecific interactions must
be represented by an undirected graph (alternatively, by a digraph where
there are two arrows of different direction between each pair of nodes). There
is a wealth of topological indices for characterizing the centrality of nodes in
networks. Recently, these have been applied in ecological literature, in or-
der to outline a quantitative context for identifying keystone species (Jordán
et al., 1999, 2006, 2007; Estrada, 2007). Different centrality indices charac-
terize different aspects of node centrality, depending on the nature of the
network (Vasas and Jordán, 2006). Key nodes can be identified in both
directed and undirected, both weighted and unweighted, both signed and
unsigned networks, as well as either considering or not indirect effects. Here
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we used 13 measures of centrality as follows: degree centrality (D; Wasser-
mann and Faust, 1994), weighted degree centrality (wD; Wassermann and
Faust, 1994), betweenness centrality (BC; Wassermann and Faust, 1994),
undirected betweenness centrality (undBC; Wassermann and Faust, 1994),
topological importance index for n = 1, 2, 3 and 8 steps (TIn; Jordán et al.,
2003) and its weighted version for the same n values (WIn; Jordán et al.,
2003). Weight of links is considered by wD and WIn, direction of links is
considered by BC and indirect effects are considered by all except for D and
wD. For technical details, see also Jordán and Scheuring (2004). Centrality
values were normalized setting the maximal value to 1.

Methods III - Comparison of indices

First we plotted each centrality index against the two definitions of trophic
height adopted (TP and unwTP ), both for pooled data and single systems.
In this first step we investigated if centrality patterns are associated to par-
ticular feeding activities (e.g. are top predators more specialist than other
species? Are primary producers more central than omnivores?).
Then, for every network, we ranked nodes and extracted 3 species showing
highest values (doing so, we collected the TP values of 57 nodes for each
index). With TPs of selected compartments we constructed histograms of
density, estimating their functions of distribution along the trophic chain.
Fitting goodness were measured by Shapiro-Francia test (W index; Shapiro
and Francia, 1972), in case of normal distribution, or by χ2 otherwise (with
H0: the data follow a specified distribution; HA: the data do not follow the
specified distribution). In this way, we checked if more central nodes, for
different definitions of centrality: (a) are associated to basal, intermediate
or top species; (b) correspond to a well defined range of TP ; (c) display a
trend caused by trophic and energetic constraints.
Finally, using pooled data, we depicted histograms of density for all the
centralities and trophic heights. In particular, we used histogram of TPs,
in comparison to density patterns showed by more central nodes, to test if
there are significant differences between the distribution of whole database
TPs and that displayed by the 57 nodes with higher centralities. With
pooled data we also showed densities of nodes respect to each centrality in-
dex, studying their relative distribution in ecosystems (e.g. are more central
species rare? Are nodes normally distributed between the whole range of
normalized centrality values exhibited?).

7.3 Identifying keystone species

When centrality pooled data were studied respect to trophic heights, no
trends were identified. However, dealing with keystone species means to
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focus on nodes with higher centralities and we decided to extract, for each
ecosystem, subgroups of the 3 most central nodes, identifying their TPs. In
Table 7.3 and Figure 7.2 we illustrated this procedure applied to Crystal
River Creek “control”.
Despite scattered points plotted with pooled data, densities of TPs corre-
sponding to highly central nodes give rise to well defined trends (Figure
7.3): (a) considering wD and D, TP densities decrease with a negative
power function but highly represented species are at 1 < TP ≤ 2 in case
of wD, while central nodes are at 2 < TP ≤ 3 with the unweighted ver-
sion; (b) normal distribution well fits TP densities for BC computed with
directed and undirected data; (c) TP densities associated to higher TIs are
normally distributed and similarly happens for topological importance up
to more steps (TI2 - TI8); (d) WI does not show any trend of TP density
when indirect effects are computed up to shorter pathways (WI1 and WI2),
approaching the D distribution as indirect effects become longer.

Species D undBC TI1 WI8 TP
1 - Microphytes 0.417 0.267 0.396 0.945 1.000
3 - Zooplankton 0.583 0.367 0.603 1.000 2.000
4 - Benthic invertebrates 1.000 1.000 1.000 0.677 2.000
5 - Blacktip shark 0.083 0.000 0.065 0.048 3.000
6 - Stingray 0.417 0.075 0.269 0.019 3.862
7 - Striped anchovy 0.167 0.006 0.074 0.002 2.667
8 - Bay anchovy 0.500 0.117 0.280 0.127 3.537
9 - Needlefish 0.583 0.304 0.399 0.051 4.329
10 - Sheepshead killifish 0.417 0.087 0.235 0.014 2.109
11 - Goldspotted killifish 0.500 0.130 0.282 0.035 2.446
12 - Gulf killifish 0.750 0.444 0.543 0.191 3.623
13 - Longnosed killifish 0.250 0.004 0.110 0.160 3.000
14 - Silverside 0.583 0.212 0.345 0.528 2.937
15 - Moharra 0.500 0.117 0.280 0.145 2.859
16 - Silver jenny 0.167 0.006 0.074 0.003 2.846
17 - Sheepshead 0.167 0.012 0.093 0.007 2.500
18 - Pinfish 0.667 0.186 0.432 0.077 4.052
19 - Mullet 0.417 0.512 0.541 0.204 2.000
20 - Gulf flounder 0.333 0.013 0.197 0.004 4.455

Table 7.3: Normalized centralities (maximal value = 1) for 19 living nodes in Crystal
River Creek “control” network and their TP values. We excluded one node (2 - Macro-
phytes) because it showed no connections with other living compartments. For each
centrality index, the 3 nodes of highest values are highlighted: D in green, undBC in
orange, TI1 in light blue and WI8 in yellow.

We have also analyzed farness centrality in undirected networks but no
clear density distribution of TPs were detected. In particular, negative
power functions used with TP densities for more central nodes, in case of
wD (density = TP−2.505 + 0.25) and D (density = TP−1.25 − 1.830), are
significant: (a) wD, χ2 = 4 with p = 0.26; (b) D, χ2 = 6.7 with p = 0.35.
Normal distributions observed for TP histograms of density corresponding
to nodes with highest betwenness and topological importance centralities,
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Figure 7.2: Crystal River Creek “control”, 19 nodes. Nodes with a single color in Table
7.3 are colored; the figure helps understanding the indices: D in green (many neighbours)
= 18 - Pinfish; undBC in orange (many exclusive shortest pathways crossing) = 19 -
Mullet; TI1 in light blue (many low-degree neighbours) = 3 - Zooplankton; WI8 in yellow
(evidently big flows down there) = 1 - Macrophytes.

were always significant: BC (W = 0.963, p = 0.08), undBC (W = 0.960,
p = 0.06), TI1 (W = 0.960, p = 0.06), TI2 (W = 0.961, p = 0.06) and
TI8 (W = 0.960, p = 0.06). It is interesting to notice how central nodes do
not behave as others, showing different relative densities along the trophic
chain, respect to the whole number of species (Figure 7.4).

We repeated the same studies, plotting centralities against the unweighted
version of TP (unwTP ), focussing on the importance of weighting link
in trophic analysis. In Figure 7.5 histograms of unwTP densities are de-
picted for the same indices illustrated in Figure 7.3. In general, considering
topology structure without information on link strength, we observed that:
(a) negative power function characterizing degree centralities is preserved
with wD, becoming more confusing in D; nonetheless, more representa-
tive trophic height interval remain 1 < unwTP ≤ 2 for the first and
2 < unwTP ≤ 3 for the latter; (b) normal distribution of TP densities is
maintained by undBC and lost in case of BC, with most central nodes con-
fined to the interval 2 < unwTP ≤ 3.5; (c) with topological importance
up to n steps (n = 1, ..., 8), unwTP frequency distribution is normal, as with
TP , suggesting scarce effects of weighting connections; (d) weighted topo-
logical importance tends to be equally distributed when computed on few
steps (WI1 - WI3), while unwTPs = 2.5 are more central in case of longer
steps (WI8); also in this case, tendencies displayed by TPs are smoothed.

Finally, we used normalized pooled data to highlight which are frequency
distributions of nodes, using different definitions of centrality: (a) in case
of D, intermediate centralities tend to prevail; (b) wD, BC and undBC
showed a huge number of nodes with extremely low centralities and the
few remaining compartments with higher values, suggesting that key nodes
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Figure 7.3: Distribution of densities for the trophic positions (TP ) associated to the
57 nodes with the 3 highest centralities in the 19 ecosystems studied. Here we illus-
trated trends for unweighted degree centrality (D), betweenness centrality computed with
directed links (BC), topological importance index up to 1 step (TI1) and weighted topo-
logical importance up to 8 steps (WI8). Negative power function for D and Gaussian
curve describing BC and TI1 were added in red to histograms.

do not represent the total set of nodes; (c) topological importance indices
display a tendency of prevalence for nodes with low-intermediate values;
when increasing steps of indirect effects (moving from TI1 to TI8), there is
a shift, with intermediate and slightly higher centralities more represented;
(d) in the case of weighted version of TI, the number of nodes decreases
with a negative power law when centrality values are increasing. In Figure
7.6, frequency distributions for D, BC, TI1 and WI8 are shown.
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Figure 7.4: Relative distribution of all of the 1001 nodes in the 19 networks, in classes
of trophic position.

7.4 Species feeding behaviour and centralities

In general, we observed no regularities when centrality indices are stud-
ied as a function of trophic position (both TP and unwTP ), for the whole
number of food web species. However, theoretical ecology and conservation
biology aim to identify the most important species in ecosystems (Paine,
1969; Mills et al., 1993) and Jordán et al. (1999) and Jordán (2001) demon-
strated how network perspective and centrality measures can be fruitfully
adopted in this sense. We analyzed TP trends associated to more central
nodes, unveiling interesting features. As suggested by Scotti et al. (2007),
weighting links is particularly important in food webs for direct centrality
indices, and this is confirmed by the present work: (a) negative power distri-
bution describing TP densities of more central nodes is preserved, switching
from the weighted to unweighted version of trophic height, in presence of
wD but not with D; (b) the most representative TP classes of density are
different using the nodes with highest degree centralities (1 < TP ≤ 2
in case of wD and 2 < TP ≤ 3 with D), while they are the same with
indirect indices; (c) trends for histograms associated to TI are the same
with TPs and unwTPs. Still, at TP = 1 there is a prominent number of
central nodes for wD but none for D. This reflects a small number of huge
flows resulted from aggregation. Moreover, higher species are not very cen-
tral in the D case (for wD it is not surprising because of the small flows
up there; see Hairston Jr. and Hairston Sr., 1993), suggesting more con-
strained pathways characterizing top predators (they are more specialized
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Figure 7.5: The same histograms as in Figure 7.3 but for unweighted trophic position
(unwTP ) densities. Trends are similar to what displayed by TP densities for TI and WI ,
while the negative power function for D and the normal distribution for BC disappeared.

than highly connected intermediate nodes). The majority of nodes with
highest unweighted degree centralities have TPs included between 2 and 3
(both TP and unwTP ) and this is consistent with trend of patterns exhib-
ited by wasp-waist ecosystems (Jordán et al., 2005). Beside evidences on
weighting, histograms estimated for BC and undBC display how direction
is not so important when we use weighted data for trophic heights. We also
emphasized how topological importance tends to D with increasing number
of steps up to which is estimated, while weighted importance approaches
the wD distribution as indirect effects become longer (see Figure 7.6). Our
study contradicts the common idea identifying charismatic megafauna and
top predators as the main objectives of conservation ecology, setting many
basal and intermediate nodes as “keystone species” in natural systems. Fi-
nally, we propose that protection activities should focus their attention both
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on central and rare species, considering that TP distribution of key nodes
do not follow trends exhibited by the whole food web species.
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Figure 7.6: Relative distribution of densities when D, BC, TI1 and WI8 are calculated
for the 1001 living nodes included into the 19 ecosystems studied. While WI8 and BC are
centralities with few extremely central nodes and many less important, D displays a preva-
lence of compartments with intermediate values and TI tends to a normal distribution
with increasing number of steps up to which is measured.
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Centralities in ecological
networks

8.1 Network perspective and keystone species

1Conservation biology is being shifted from protecting species to protect-
ing interspecific interactions and communities. In order to better understand
the nature of interaction networks, we need comparative analysis of differ-
ent interaction types. Ecological complexity comprises the diversity of both
species and interspecific interactions. Different types of interactions, such
as predator-prey or plant-pollinator interactions are of different character
in their ecology and evolution (Thompson, 1991). Since the majority of
ecological networks studied so far are food webs (or trophic networks), we
should re-examine many classical questions for other network types as well.
These basic problems include the importance of weighting, the relevance of
indirect interactions and the scale dependence of network properties.

The systematic analysis of ecological networks involves three steps: (a)
data collection, (b) network construction and (c) network analysis sensu
stricto. A number of problems are relevant only to one of these steps, while
others bridge over the whole process. The mostly practical question whether
and how to consider weights on links (Ulanowicz, 1986; Baird and Ulanow-
icz, 1993; Paine, 1980) concerns step 1. The problems of aggregation, net-
work resolution and scale dependence (Martinez, 1991; Allesina and Bodini,

1Published Chapter: Scotti, M., Podani, J., Jordán, F., 2007. Weighting, scale de-
pendence and indirect effects in ecological networks: A comparative study. Ecological
Complexity, 4(3):148-159.
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2005; Allesina et al., 2005b) concern step 2. Finally, a possibly more tech-
nical question whether to neglect or explicitly study indirect interactions
spreading over these networks (Menge, 1995; Wootton, 1994) concerns step
3. Each problem has a long history and has been discussed by a number of
authors, and is typically investigated separately (but see Vasas and Jordán,
2006). In this paper, we demonstrate that these questions are intimately
related.

We studied the order of importance of nodes (corresponding mostly to
species) in 53 ecological interaction networks. First, topological importance
is quantified by degree centrality which measures the number of neighbours
(i.e. interacting species; see Jordán et al., 1999; Dunne, 2006; Dunne et al.,
2002b). Then, we compared these orders to others obtained by considering
(a) weights on links, (b) indirect effects and (c) both (see Figure 8.1, for our
scenario). Our questions are: (a) how important is to consider weighting
from the viewpoint of the centrality rank, (b) how important is to consider
indirect effects (and up to what length), (c) what is the relationship between
these approaches, (d) whether network size influences answers to the above
questions, and (e) what is the difference between various types of networks?
Our broader interest is to investigate how the results are related to the
evolutionary stability of these interaction types (Thompson, 1982, 1991).

8.2 Ecological networks

8.2.1 Data

We analyzed highly standardized data on ecological networks. The
ecological networks collected, freely available from the NCEAS data base
(www.nceas.ucsb.edu/interactionweb), are fairly homogeneous methodolog-
ically. We studied all of the weighted webs therein (except for “kat”, for
technical reasons). Since all plant-herbivore networks and food webs are of
binary nature in that source, so that none of them could be used in this
study, we decided to add 20 weighted food webs from another standard
source (www.cbl.umces.edu/∼ulan/ ). Finally, we had a total of 53 weighted
networks representing 5 host-parasite, 3 plant-ant, 20 plant-pollinator, 5
plant-seed disperser and 20 food webs (Table 8.1 provides the identification
number and name of the webs, the number of nodes and the currency for
weighting, while Appendix I - 53 ecological networks - summarizes the orig-
inal reference for each).

In the 5 host-parasite systems, weighted relations imply infection inten-
sity in terms of the average number of parasites per host individual (average
parasite load). Analogously, the currency used in plant-ant webs is the
number of visits of ant species to a given plant. In case of plant-pollinator
networks, the intensity of contacts may be measured as the number of indi-
viduals caught, the frequency of visits or the number of visits of each pol-
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Figure 8.1: Illustration of the logic of the present approach. In the simplest topological
case a node is characterized only by the number of its neighbours, i.e. its degree (D).
Pure topology was made more realistic by considering either weights on links or indirect
effects (up to n steps). The former case can be quantified by the weighted degree of nodes
(wD), while the latter is measured by the topological importance index (TIn). Their
combination is a weighted indirect positional measure (WIn). We can also compare the
TIn and WIn values for different values of n.

linator to a plant species. One of the networks (“vaz”: Evergreen Montane
Forest in Argentina) is a plant-pollinator system composed of 103 nodes but
split into 8 sub-networks. These 8 subsystems are studied separately and
together with the remaining 12 webs constitute the plant-pollinator dataset.
The number of visits and fruits removed are the two methods used to weight
links in plant-seed disperser systems. The currency commonly adopted in
food webs is carbon (expressed as mgC m−2 day−1 or gC m−2 year−1) or
energy flow (cal cm−2 year−1 and kcal m−2 year−1). For obtaining un-
weighted webs we simply replaced every non-zero weight by one.

8.2.2 Methods I - Network analysis

Since the ecological networks analyzed are of different size (defined as
the number of nodes in the network, representing either species or other
functionally relevant units), we made them comparable by calculating nor-
malized values for every measure (i.e. the rank of a node was divided by
the number of nodes in the network). We were interested in the centrality
rank of nodes in each network for each index, for both the weighted and the
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Web# S Currency
Host - Parasite webs (5)

1 Aishihik Lake 36 intensity of infection
2 Cold Lake 50 intensity of infection
3 McGregor River 65 intensity of infection
4 Parnsip River 70 intensity of infection
5 Small Wood Reservoir 31 intensity of infection

Plant - Ant webs (3)
6 Rainforest (Peru) 10 # of visits to each plant
7 Tropical Forest (Costa Rica) 24 # of visits to each plant
8 Amazon Rainforest 41 # of visits to each plant

Plant - Pollinator webs (20)
9 Boreal Forest (Canada) 114 individuals caught

10 Alpine Subartic Community (Sweden) 141 # of visits to each plant
11 Beech Forest (Japan) 133 individuals caught
12 Montane Forest (Australia) 147 # of visits to each plant
13 Medow (Bristol, U.K.) 104 frequency of visits
14 Arctic Community (Canada) 29 individuals caught
15 Deciduous Forest (U.S.A.) 57 # of visits to each plant
16 Coastal Forest (Mauritius Island) 27 # of visits to each plant
17 Rocky Cliff and Open Herb Community 22 # of visits to each plant
18 Upland Grassland (South Africa) 65 individuals caught
19 Maple-Oak Woodland (U.S.A.) 39 # of visits to each plant
20 Peat Bog (Canada) 47 individuals caught

21-28 Evergreen Montane Forest - 8 subwebs 104 total # of visits to each plant
Plant - Seed Disperser webs (5)

29 Forest (Papa New Guinea) 40 # of visit to each plant
30 Semideciduous Tropical Forest 24 fruits removed
31 Neotropical Forest (Trinidad) 79 # of visit to each plant
32 Neotropical Forest (Trinidad) 48 # of visit to each plant
33 Temperate Woodland (Britain) 25 # of visit to each plant

Food webs (20)
34 Aggregated Baltic Sea 15 mgC m−2 day−1

35 Cedar Bog Lake 9 cal cm−2 year−1

36 Charca de Maspalomas 21 mgC m−2 day−1

37 Chesapeake Mesohaline Ecosystem 15 mgC m−2 day−1

38 Chesapeake Mesohaline Network 36 mgC m−2 summer−1

39 Crystal River Creek (control) 21 mgC m−2 day−1

40 Crystal River Creek (delta temp.) 21 mgC m−2 day−1

41 Everglades Graminoids (wet season) 66 gC m−2 year−1

42 Florida Bay Ecosystem 125 gC m−2 year−1

43 Lower Chesapeake Bay in Summer 29 mgC m−2 summer−1

44 St. Marks River (Florida) Flow Network 51 mgC m−2 day−1

45 Lake Michigan Control Network 34 gC m−2 year−1

46 Middle Chesapeake Bay in Summer 32 mgC m−2 summer−1

47 Mondego Estuary 43 gAFDW m−2 year−1

48 Final Narraganasett Bay Model 32 mgC m−2 year−1

49 North Sea 10 kcal m−2 year−1

50 Somme Estuary 9 gC m−2 year−1

51 Upper Chesapeake Bay in Summer 33 mgC m−2 summer−1

52 Upper Chesapeake Bay 12 gC m−2 year−1

53 Ythan Estuary 13 gC m−2 year−1

Table 8.1: List of the studied webs. Here we summarize the names of the different types
of webs, classified into 5 subgroups, depending on the relations they account for (host -
parasite; plant - ant; plant - pollinator; plant - seed disperser and food webs). Then, for
each system, we present the number of nodes (S) and the currency used.
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unweighted case (Jordán et al., 2006, 2007; Estrada, 2007).
The simplest approach takes node degree (D) as the measure of cen-

trality. The rank order of D values for networks provides a very basic
quantification of the structural (topological) importance of nodes in the net-
work. Its weighted form (wD) also considers weights on links to neighbours.
Weighted degree provides information as to which nodes are characterized
by the largest flows (inflows plus outflows) or by the strongest direct effects
from and to other nodes (see Figure 8.2, for illustration; Figure 8.3 and 8.4
as actual examples; while Table 8.2 and Appendix II - Aishihik Lake species
- provide background information on the network exemplified).

Alternative indices characterizing positional importance of species in un-
weighted and weighted networks, considering maximum n-step long indirect
effects, are TIn and WIn, respectively (Jordán et al., 2003). This approach
is derived from the analysis of two-step long, horizontal, apparent competi-
tion interactions in weighted host-parasitoid networks (Müller et al., 1999).
In an unweighted network, we define an,ij as the effect of species j on species
i when i can be reached from j in n steps. The simplest mode of calculating
an,ij is if n = 1 (i.e. the effect of j on i in 1 step): a1,ij = 1/Di, where Di

is the degree of species i. When the effect of step n is considered, the effect
received by species i from all species in the same network is equal to 1 (i.e.
each species is affected by the same unit effect). Furthermore, we define the
n-step effect originated from species i by the following formula

σn,i =
S∑

j=1

an,ji (8.1)

where S is the number of species in the network. Effects originated
from different species are typically different. Here, we define the topological
importance of species i when effects “up to” n steps are considered as follows

TIn
i =

∑n
m=1 σm,i

n
=

∑n
m=1

∑S
j=1 am,ji

n
(8.2)

which is simply the sum of effects originated from species i up to n steps
(1+2+3+ . . . +n) averaged over the maximum number of steps considered
(i.e. n).

In our study, we extend the TI index to directed networks. In this case,
we define the direct effect of species j upon i as

a1,ij =
αij∑D

j=1 αij

(8.3)

where αij = 1/Di,out if species j is a predator and αij = 1/Di,in if node
j is a prey of i. In the equations Di,in is the number of i’s preys, Di,out is
the number of i’s predators and Di is their sum, while the other calculations
remain the same. The method assumes that the effects each species receives
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from its predators and preys are equal.
For a weighted network, all the effects are defined in the same way as

above with the exception of calculating αij , which is computed as:

αij =
εij

µi
(8.4)

where µi is the sum of strength values of links pointing to species i, if
species j is a prey of species i or the sum of the strength values of links
originated from species i, if species j is a predator of species i. εij is the
strength of the link connecting species i and j.

a b

c d

(a) (b)

(c) (d)

Figure 8.2: Illustration of the calculation of D, wD, TIn and WIn (for simplicity, links
are weighted by 1, 2 and 3, as shown by the different thickness of edges). In (a), the black
node has three red neighbours (D = 1+1+1 = 3). In (b), it has links of different strength
to its red neighbours (wD = 1 + 1 + 3 = 5). In (c), we also know the white neighbours of
its red neighbours (but forget about the weights; TI1 = 1 + 0.25 + 0.33 = 1.58). In (d),
we consider both weighting and indirect effects (WI1 = 3/3 + 1/7 + 1/4 = 1.4).

8.2.3 Methods II - Statistical analysis

We calculated the normalized values of D, wD, TI1, TI2, TI3, TI4, WI1,
WI2, WI3 and WI4 for all of the nodes in the 53 webs. Then, we ranked
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the nodes according to each normalized index in each web. We compared
weighted and unweighted ranks, direct and indirect ranks, as well as indirect
ranks of different lengths in case of every web. Also, we compared the five
types of networks.

Weighted and unweighted node rank orders for each network, based on
each index, were compared by the Goodman-Kruskal lambda (Goodman
and Kruskal, 1954; Podani, 2000). Based on each index, network types were
compared by the Kruskal-Wallis test (Sokal and Rohlf, 1981, pg. 429) to
see whether the types differ significantly in their average ranks. The perfor-
mance of the five indices was evaluated by standardized Principal Compo-
nents Analysis (PCA), performed by SYN-TAX 2000 (Podani, 2000, 2001).
In this analysis, the starting data matrix contained 53 columns, representing
networks, and 5 rows, each representing the rank correlations between the
networks based on the weighted and unweighted versions of a given index.

The scale dependence of lambda was evaluated graphically, by plotting
lambda against the number of nodes, such that linear regression lines were
added to enhance visual interpretation.

8.3 Central nodes in ecological networks

8.3.1 Lake Aishihik: a case study

The 7 hosts and 29 parasites in the Lake Aishihik community are of
different positional importance in the interaction network. The simplest
approach to quantifying this is based on degree (Figure 8.3a). This reveals
that the structural key species include three species of highest degree (D
= 16 for species #5, #6 and #7), while we may still mention species #2
(D = 15), #4 (D = 12) and #3 (D = 10; the D values are presented in
the first column of Table 8.2 and species names are given in Appendix II
- Aishihik Lake species). Some species have only a single neighbour (like
species #9). If we consider weights on links (reflecting intensity of infection,
Table 8.1), then a different rank order is provided (second column in Table
8.2, see also Figure 8.3b showing weights on links). In the weighted network,
some species are of higher importance than before (e.g. species #12 and
#16), while others are of lower importance (e.g. species #5 and #7). The
topological dominance of hosts (species from #1 to #7) has been changed
in the weighted network.

If indirect effects up to three steps are considered rather than weights,
a new importance rank is provided (third column in Table 8.2, see also
Figure 8.4a). Species #4 is of higher importance than species #2, compared
to the direct unweighted case, but otherwise the two rank orders are very
similar in case of this web. If indirect effects are considered and the web
is weighted, the most realistic results are obtained (last column of Table
8.2, see also Figure 8.4b). This rank order combines the effects of the two
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(a)

(b)

Figure 8.3: The Lake Aishihik host-parasite interaction network, containing 36 species
(7 hosts and 29 parasites). Figure (a) shows the unweighted (binary) web and the size
of nodes is proportional to the value of node degree D. Figure (b) shows the same web
weighted by intensity: the size of nodes is proportional to the value of weighted node
degree wD. All webs are drawn by UCINET (Borgatti et al., 2002).
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(a)

(b)

Figure 8.4: The Lake Aishihik host-parasite interaction network, containing 36 species
(7 hosts and 29 parasites). Figure (a) shows the unweighted (binary) web, the size of
nodes is proportional to the value of the TI3 topological importance index. Figure (b)
shows the web weighted by intensity: the size of nodes is proportional to the value of
the WI3 topological importance index. All webs are drawn by UCINET (Borgatti et al.,
2002).
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node D node wD node TI3 node WI3

5 16 16 1464.7 7 11.20 16 16.58
6 16 3 1079.4 5 10.10 6 14.50
7 16 4 924.7 6 10.10 3 14.23
2 15 12 879.6 4 9.90 2 10.85
4 12 6 681.9 2 9.42 4 8.60
3 10 2 420.9 3 8.41 7 7.68
1 7 24 417.1 1 5.88 24 5.75

16 7 7 211.0 16 3.43 12 5.46
19 7 15 152.9 18 3.43 5 5.22
31 7 29 138.1 19 3.43 1 3.92
18 7 5 80.8 31 3.43 15 2.71
24 6 32 77.6 15 2.80 29 2.42
15 6 22 55.0 24 2.80 32 1.36
32 6 20 25.4 32 2.80 22 1.34
29 5 10 25.2 29 2.28 13 1.18
10 4 26 24.7 33 1.75 8 1.00
22 4 27 22.3 10 1.64 10 0.72
27 4 13 20.5 21 1.64 23 0.60
21 4 1 19.8 22 1.64 14 0.47
33 4 14 16.6 27 1.64 19 0.45
28 3 9 12.1 28 1.24 20 0.44
20 3 21 11.2 20 1.19 27 0.43
14 2 19 11.0 14 1.02 31 0.40
26 1 31 10.0 8 0.64 18 0.34
11 1 11 8.9 23 0.64 21 0.33
25 1 18 8.0 9 0.59 11 0.24
17 1 28 6.7 17 0.59 36 0.18
34 1 36 6.3 25 0.59 28 0.16
35 1 8 5.8 12 0.56 33 0.15
36 1 33 5.8 26 0.56 26 0.15
12 1 30 4.1 30 0.56 9 0.08
13 1 23 3.0 11 0.45 30 0.02
30 1 17 2.0 36 0.45 34 0.02
23 1 35 1.9 34 0.40 17 0.01
8 1 34 1.0 13 0.40 35 0.01
9 1 25 1.0 35 0.40 25 0.01

Table 8.2: Positional importance ranks of nodes in the Lake Aishihik network. We
characterized positional importance of nodes by node degree (D), weighted node degree
(wD), the topological importance index for indirect effects up to three steps (TI3) and
its weighted form (WI3).
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different approaches. Species #16 is of the highest importance because of
its weights, while species #6 is ranked high because of the number of its
neighbours. We performed the same calculations for all of the 53 webs,
and studied also the pooled results for the five types of networks, beyond
comparing individual webs.

8.3.2 General results for 53 networks

Weighting always affects the ranking very seriously: the lambda mea-
sure of rank correlation is typically near zero or strongly negative for node
orderings based on the weighted and unweighted forms of the same index.
Positive correlations were very rare (10 out of 265, all insignificant). The
effect of weighting is the largest for food webs and the smallest for plant-
pollinator networks.

The rank order of 53 lambda values for five pairs of coefficients is visu-
alized by the barplots of Figure 8.5. Based on D and wD, food webs are
significantly different from the other network types (χ2 = 36, p � 0.05), as
also depicted by the first row of Figure 8.5.
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Figure 8.5: Bar plots showing the rank order of 53 networks according to the difference
between unweighted and weighted centrality indices. We present results for five pairs of
network indices (from the top: D and wD, TI1 and WI1, TI2 and WI2, TI3 and WI3

and TI4 and WI4). Network types are visualized by colours: white = food web; black =
plant-pollinator; red = plant-ant; yellow = plant-seed disperser; blue = host-parasitoid.
In webs on the left, the difference between the weighted and unweighted centrality ranks
is larger, i.e. in webs on the right weighting matters less. From the top down, the length
of indirect effects increases: although weighting is very important in evaluating direct
interactions in food webs (white squares are on the left in the top bar), it is much less
important for long indirect effects (they move to the right).
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Comparing TI1 and WI1 provides weaker results (χ2 = 10, p < 0.05),
such that there is no particular network type separated from all others al-
though a notable difference between food webs and host-parasite networks
is observed. Based on TI2 and WI2, there is significant difference between
food webs and host-parasite networks and food webs and plant-ant networks
(χ2 = 19, p < 0.05). Based on TI3 and WI3, food webs are significantly
different from the others, although this separation is weaker than for D
(χ2 = 15, p < 0.05). Finally, based on TI4 and WI4, there is significant
difference between network types (χ2 = 16, p < 0.05).
The first two PCA dimensions represent an overwhelming majority of vari-
ation in the lambda values, i.e. 70% and 21%, respectively. The biplot
(Figure 8.6) shows that the pair of local indices (D and wD) differs orthog-
onally from the indirect indices (TI1 and WI1, TI2 and WI2, TI3 and WI3

and TI4 and WI4). This means that considering indirect effects influences
greatly the effect of weighting. Among the indirect indices, the one-step
long index (TI1 and WI1) is separated a little bit while the others (TI2 and
WI2, TI3 and WI3, TI4 and WI4) behave very similarly, but the overall
similarity of all indirect indices is clear and there is practically nothing new
after two steps (see also Table 8.3).

Dimension 1
6543210-1-2-3

D
im

e
n
s
io

n
2

6

5

4

3

2

1

0

-1

-2

D–wD

TI1–WI1

TI4–WI4
TI2–WI2

TI3–WI3

Figure 8.6: Principal components ordination biplot of the five studied indices showing
that it does matter whether indirect effects are considered but there is no difference if
these are longer than two steps (1: D and wD, 2: TI1 and WI1, 3: TI2 and WI2, 4: TI3

and WI3, 5: TI4 and WI4). Symbols refer to the positions of the 53 networks: (�) host-
parasite webs, (�) plant-ant webs, (•) Plant-Pollinator webs, (�) Plant-Seed disperser
webs, (◦) Food webs.

The arrangement of the 53 networks in the biplot is also informative,
and provides a graphical summary of overall network relationships as de-
picted by the five index pairs. The group of food webs and plant-pollinator
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D vs. wD TI1 vs. WI1 TI2 vs. WI2 TI3 vs. WI3 TI4 vs. WI4

D vs. wD 1.0000
TI1 vs. WI1 0.1329 1.0000
TI2 vs. WI2 -0.0459 0.7067 1.0000
TI3 vs. WI3 -0.0150 0.7792 0.9323 1.0000
TI4 vs. WI4 -0.0411 0.6669 0.9400 0.9471 1.0000

Table 8.3: Correlation matrix for the 5 sets of Goodman-Kruskal lamba-values of rank
correlation between node orderings based on weighted and unweighted forms of the indices.
The direct index D is very different from the others. The indirect index considering one
step long effects is still different to some extent from the longer ones. Indirect indices of
length two or more are essentially similar, as shown by these correlations (all being > 0.93,
see also Figure 8.6).

networks are clearly recognizable on the plane, representing two endpoints
in a gradient along the second axis. This axis has a strong negative corre-
lation with network size (-0.48) showing that the smaller the network the
less the difference between the weighted and unweighted ranks. The other
three, smaller groups are positioned in between the two large groups. The
first, more important PCA dimension corresponds with the indirect indices
only and reflects increases of lambda within those. The large percentage is
explained by the fact that four such indices were included. In summary, the
lambda values are scale-dependent in case of the local index (D) but are
absolutely scale-independent for the indirect indices, as also shown by the
regression line superimposed over the point sets (Figure 8.7).

8.4 Weighting and indirect effects

Weighting links in ecological networks is costly and often problematic
methodologically. Still, it can be of high interest, since a topological view
on the network of interactions provides very limited information on function-
ality. Weights on links help us understand how the system really functions,
by adding information on the extent to which particular interactions are
“used”. The importance of weighting and its particular methodology (fre-
quency, normalized effect, etc.), however, depend on the actual problem. In
our considerably large data base we have found that node centrality ranks
are very different in weighted networks. This effect depends on network
type: considering weights on links is more important in food webs, while
there is no big difference between other kinds of interaction networks, es-
pecially in plant-pollinator networks. This finding may be related to the
nature of prey choice (and predator avoidance) strategies: consumers seem
to show strong preference for selected prey, making weights on their trophic
links more variable. On the contrary, pollination seems to be more like
a “yes or no” question, based on our analysis. This might be the reason
why weighted pollination networks have not been in the focus of commu-
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Figure 8.7: Scale dependence of lambda values (λ, characterizing the effect of weighting)
for different centrality indices (linear regression lines are shown). Full triangles and dotted
line correspond to direct interactions (D and wD), crosses and solid line correspond to
one-step indirect effects (TI1 and WI1), and open triangles and the dashed line correspond
to two-step indirect effects (TI2 and WI2). Indirect effects for three and four steps give
essentially the same line as in the last case (two steps), and are therefore omitted. Note
that the majority of lambda values are negative.

nity ecology for a long time. Also, these differences are more important if
exclusively direct interactions are considered. Thus, if we are able to trace
indirect effects in food webs, neglecting weights causes a smaller problem. It
is more difficult to understand the statistical differences between food webs
and host-parasitoid or plant-ant networks. Reasons can be similar to the
plant-pollinator case: parasitism and mutualism are evolutionarily more sta-
ble, long-lasting interactions, their existence being more characteristic than
their less variable strength (weight). Predation rates seem to be more flex-
ible and sensitive to actual conditions, resulting in a higher variability and
larger structural importance of weights. Food webs represent more transient
and more flexible relationships, this is why they typically differ from other
kinds of networks. Also, the effect of weighting is influenced by network
size in case of direct indices but no scale-dependence is reported for indirect
indices. All these imply that weighting ecological interactions is especially
important in case of food webs and direct interactions. Note that the major-
ity of recent papers on ecological networks characterize food web topology
by degree and link distribution (e.g. Solé and Montoya, 2001). Our results
support the surprising conclusion that weighting links is more important in
analyzing complex ecological networks but, for methodological reasons, our
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data bases are typically of binary nature for these complex webs - while we
have more data on weights in case of more aggregated webs, where it is less
important.

Our results may be in agreement with some classical questions related
to the evolution of ecosystems. Evolutionary ecological consequences of our
results concern the long-term changes in complex networks of interspecific
interactions. According to rules of thumb (based on a wealth of studies),
predation and competition are relatively short-lived interactions on evolu-
tionary time scales. Mutualism, and especially parasitism seem to hold much
longer for clear reasons: to change a prey is easier than to change a host
(Thompson, 1982). If these trends are correct, we may hypothesize that
the strengths of the evolutionarily more stable interactions are more negli-
gible, i.e. to consider weights in mutualistic and host-parasitoid networks is
less important than to consider weights in food webs. The latter represent
more transient and temporally flexible interactions, reflecting changes at
faster time-scales. Thus, trophic relationships seem to be more variable and
functionally weighted, while other interactions are better understandable on
topological grounds. We conclude that in case of more stable interactions
(host-parasite), topology is more characteristic, while in case of more tran-
sient and flexible interactions (predator-prey) the strength of links is more
important.

A practical consequence of our study is the suggestion that if no weights
are available (because of logistic considerations), we gain a more realistic
view if we consider indirect effects. This is in concert with several sugges-
tions by Ulanowicz and Puccia (1990) and Vasas and Jordán (2006).
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8.5 Appendix I - 53 ecological networks

Web# Web type and name Reference
Host - Parasite webs (5)

1 Aishihik Lake (Arthur et al., 1976)
2 Cold Lake (Leong and Holmes, 1981)
3 McGregor River (Arai and Mudry, 1983)
4 Parnsip River (Arai and Mudry, 1983)
5 Small Wood Reservoir (Chinniah and Threlfall, 1978)

Plant - Ant webs (3)
6 Rainforest (Peru) (Davidson et al., 1989)
7 Tropical Forest (Costa Rica) (Davidson and Fisher, 1991)
8 Amazon Rainforest (Fonseca and Ganade, 1996)

Plant - Pollinator webs (20)
9 Boreal Forest (Canada) (Barrett and Helenurm, 1987)

10 Alpine Subartic Community (Sweden) (Elberling and Olesen, 1999)
11 Beech Forest (Japan) (Kato et al., 1990)
12 Montane Forest (Australia) (Inouye and Pyke, 1988)
13 Medow (Bristol, U.K.) (Memmott, 1999)
14 Arctic Community (Canada) (Mosquin and Martin, 1967)
15 Deciduous Forest (U.S.A.) (Motten, 1982, 1986)
16 Coastal Forest (Mauritius Island) (Olesen et al., 2002)
17 Rocky Cliff and Open Herb Community (Olesen et al., 2002)
18 Upland Grassland (South Africa) (Ollerton et al., 2003)
19 Maple-Oak Woodland (U.S.A.) (Schemske et al., 1978)
20 Peat Bog (Canada) (Small, 1976)

21-28 Evergreen Montane Forest - 8 subwebs (Vázquez, 2002)
Plant - Seed Disperser webs (5)

29 Forest (Papa New Guinea) (Beehler, 1983)
30 Semideciduous Tropical Forest (Poulin et al., 1999)
31 Neotropical Forest (Trinidad) (Snow and Snow, 1971)
32 Neotropical Forest (Trinidad) (Snow and Snow, 1988)
33 Temperate Woodland (Britain) (Sorensen, 1981)

Food webs (20)
34 Aggregated Baltic Sea (Wulff and Ulanowicz, 1989)
35 Cedar Bog Lake (Lindeman, 1942; Williams, 1971)
36 Charca de Maspalomas (Almunia et al., 1999)
37 Chesapeake Mesohaline Ecosystem (Wulff and Ulanowicz, 1989)
38 Chesapeake Mesohaline Network (Baird and Ulanowicz, 1989)
39 Crystal River Creek (control) (Ulanowicz, 1986)
40 Crystal River Creek (delta temp.) (Ulanowicz, 1986)
41 Everglades Graminoids (wet season) (Ulanowicz et al., 2000)
42 Florida Bay Ecosystem (Ulanowicz et al., 1998)
43 Lower Chesapeake Bay in Summer (Hagy, 2002)
44 St. Marks River (Florida) Flow Network (Baird et al., 1998)
45 Lake Michigan Control Network Krause and Mason (in preparation)
46 Middle Chesapeake Bay in Summer (Hagy, 2002)
47 Mondego Estuary (Patŕıcio et al., 2004)
48 Final Narraganasett Bay Model (Monaco and Ulanowicz, 1997)
49 North Sea (Steele, 1974)
50 Somme Estuary Rybarczyk, H., unpublished ms.
51 Upper Chesapeake Bay in Summer (Hagy, 2002)
52 Upper Chesapeake Bay Osgood, A., unpublished ms. CBL
53 Ythan Estuary (Baird and Milne, 1981)

Table 8.4: References to networks analyzed in the present chapter.
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8.6 Appendix II - Aishihik Lake species

Host species
1 Catostomus catostomus
2 Coregonus clupeaformis
3 Cottus cognatus
4 Esox lucius
5 Prosopium cylindraceum
6 Salvelinus namaycush
7 Thymallus arcticus

Parasite species
8 Anonchohaptor anomalus
9 Dactylogyrus buddi

10 Discocotyle sagittata
11 Tetraonchus borealis
12 Tetraonchus monenteron
13 Tetraonchus variabilis
14 Allocreadium isosporum
15 Crepidostomum farionis
16 Diplostomum spathaceum (L)
17 Heterophyid meta (L)
18 Neascus
19 Tetracotyle sp. (L)
20 Cyathocephalus truncatus
21 Diphyllobothrium sp. (L)
22 Eubothrium salvelini
23 Glaridacris catostomi
24 Proteocephalus tumidocollus
25 Schistocephalus solidus (L)
26 Triaenophorus crassus
27 Triaenophorus crassus (L)
28 Capillaria salvelini
29 Cystidicola farionis
30 Raphidascaris acus
31 Raphidascaris acus (L)
32 Neoechinorhynchus tumidus
33 Piscicola milneri
34 Salmincola extensus
35 Salmincola edwardsii
36 Salmincola thymalli

Table 8.5: List of species for the Aishihik Lake network (Figures 8.3 and 8.4). Species
lists for the remaining webs are available at www.nceas.ucsb.edu/interactionweb.
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Conclusions

9.1 From system to compartments

Although network theory principles has been introduced in ecology many
years ago, advances exhibited by computer science during last decades stim-
ulated and supported their spread and applications.

Food webs describe feeding relationships between species, depicting road
maps for the flow of energy and matter in ecosystems. Information conveyed
by a food web ranges from a binary map of trophic connections (with ad-
jacency matrices associated to topological webs) to a functional description
of the relative importance of each trophic connection (weighting links to
quantify interaction strength). In the latter case, relative importance can
be represented in terms of either the impact of consumers on resource abun-
dance (e.g. gC m−2 yr−1; gN m−2 yr−1; number of fruits removed by
frugivore birds) or energy flows to a consumers (e.g. kcal m−2 yr−1 and
cal m−2 yr−1).

Few examples focussing on single species features, as emerging from roles
they play in complex systems, have been stressed. In particular, such works
involve topological centralities and only recent publications dealt with this
approach introduced from social network analysis. By this research, starting
from ENA procedure, I try to extend the knowledge on properties displayed
by the node in relation to whole system properties. Brand new aspects of
ecological network analysis stressed by the present work can be summarized
as follows:

• Improving existing algorithms to obtain ecologically sound outcomes
(“extended version” of CTA proposed in Chapter 3).

136



What next? 137

• Decomposing whole system indices into species contribution to flow
structure (AMI of each compartment in Chapters 4, 5 and 6).

• Exploring how species trophic position affects food web topology (ex-
tremely high positive linear correlations between trophic position and
single species AMI were found and described in Chapters 5 and 6).

• Evaluating distribution of trophic specialization and generalist trophic
behaviour towards the trophic chain and defining omnivory composi-
tion (Chapter 6).

• Assessing food web model capability of predicting key structural prop-
erties of real ecological networks (see Chapters 4 and 5 for comparison
of theoretical and empirical patterns of new indices introduced by my
thesis).

• Studying patterns linking indices extracted from different methodolo-
gies (trophic position estimated with CTA and centralities from social
analysis in Chapter 7).

• Tackling the problem of considering weights in ecological networks,
since dealing with unweighted graph we are simply paying attention
to the topological organization of nodes and links, while analyzing a
weighted network we are including functional information that can
obscure significantly the topological characteristics (food web proper-
ties were studied in Chapter 7 and a comparison between ecological
networks with different interaction types is performed in Chapter 8).

• Promoting graph theory approach to ecosystems (with the simultane-
ous use of weighted and directed data), paying attention to differences
between network application in ecology and other areas (e.g. social
networks, Internet, metabolic webs and motorways). All these accom-
plishment are achieved in the whole thesis.

9.2 What next?

A promising approach to recognize both direct and indirect ecological
interactions makes use of graph theory (Margalef, 1968, 1991). Within this
framework I explored and investigated properties of each species. Although
binary food webs have been deeply analyzed in recent years (Dunne et al.,
2002b, 2004; Stouffer et al., 2006; Williams and Martinez, 2000), many sci-
entists claimed the need of using weighted trophic links to unveil important
dynamics, such as role of skewed interaction strengths (e.g. many weak and
few strong links; Paine, 1992; McCann et al., 1998), or effects of species
with few but extremely strong trophic links on secondary extinction (Dunne
et al., 2002b).
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In the thesis I dealt with these issues focussing on functioning rather
than crude topology of trophic networks. Moreover, I demonstrated how the
importance of weighting may vary depending on interaction types (Chapter
8), with for food webs more affected in comparison to the other networks.
Despite link strengths vary considerably (Berlow et al., 2004), food web
analysis of real networks are still limited by data availability and new efforts
and expenses should be addressed to solve these inconsistencies (Cohen et al.,
1993a). When qualitative descriptors are analyzed, most of these indices
are extremely sensitive to different levels of sampling effort (Goldwasser
and Roughgarden, 1997; Martinez et al., 1999). In particular, Bersier et al.
(1999) showed how link density property tends to appear scale invariant in
intrinsically scale dependent system, when low sampling effort is applied.
Sampling effect is then a prominent problem inherent qualitative food webs.
As previously observed, distribution of link strength is likely to be uneven
(Paine, 1992; McCann et al., 1998) and the same weight assigned to each
link in qualitative food webs distorts the true picture of their structure
(Kenny and Loehle, 1991). These aspects emphasize the need of weighting
to achieve a more sensible description of food web structure (May, 1983;
Kenny and Loehle, 1991; Pimm et al., 1991; Cohen et al., 1993a; Bersier
et al., 1999) although many quantitative indices of complex systems have
been proposed (Ulanowicz, 1986, 1997; Hirata, 1995; Cattin et al., 2004).
Stressing consequences of weighting links, I do not discard the validity of all
the studies on binary data cited above; rather, I perceive the potential for
their integration and propose new quantitative methods targeting species as
a step ahead in the study of food webs.

Within my thesis, mathematical developments, algorithms and patterns
were tested and analyzed on real data (e.g. “extended version” of CTA
in Chapter 3; link and centrality distributions towards trophic hierarchy
in Chapters 5 and 6; effects of weighting depending on interaction type
and direct or indirect descriptors in Chapter 8) to stimulate collecting and
gathering new datasets on natural systems. However, advances of computer
science should continue corroborating the coupled action of empirical studies
and simulations (Allesina et al., 2006; Dunne et al., 2002b).

Beside the role of weighting, I focussed on single node properties as
emerging from their position in ecological networks. I decomposed indices
previously analyzed as system descriptors (e.g. AMI in Chapter 4) and
compared them to trophic positions (Chapters 5 and 6). Results allow to
extend the discussion about certain key ecological issues such as: (a) the
relation between weak and strong interactions in ecosystems (McCann et al.,
1998; Sala and Graham, 2002; Emmerson and Yearsley, 2004), observing
an asymmetry that seems to be in relation with the gradient of trophic
positions; (b) the role of omnivory that, in accordance with other studies
(Thompson et al., 2007; Yodzis, 1984), predominates above the herbivore
trophic level; (c) the relation between functional and taxonomic features of
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species in ecological networks is consistent with the idea that members of
one taxon may occupy different trophic roles in the same ecosystem (Polis,
1984).

In this framework, further studies should be addressed to solve draw-
backs that are common to other food web studies as exploring effects of
scale resolution (Allesina et al., 2005b), identifying the elements that com-
prise the ecosystem (Goldwasser and Roughgarden, 1997; Martinez et al.,
1999; Abarca-Arenas and Ulanowicz, 2002) and taking decisions about the
degree of resolution that, generally, is driven by the amount of available
information together with the purpose of the study (Jordán, 2003).

Comparison between structure and functioning, achievable by weighting
connections, has been stressed analyzing patterns of link density towards
trophic hierarchy (Chapters 5 and 6) and dealing with centrality indices to
detect keystone species (Chapters 7 and 8). This last issue represents an
emerging approach in theoretical ecology and identifying keystone species
(Paine, 1969, 1995; Mills et al., 1993; Power et al., 1996) may help ecologists
answering questions of conservation biology (Jordán and Scheuring, 2002;
Abarca-Arenas et al., 2007). Many recent studies discussed and adopted
centrality indices for evaluating the keystone role of a species in a commu-
nity (Solé and Montoya, 2001; Girvan and Newman, 2002; Jordán et al.,
2005; Abarca-Arenas et al., 2007). Within my thesis I compute centrality
values displayed by single nodes in real networks, exploring their patterns
as regards to energy flows in food webs (Chapter 7) and interaction types
(Chapter 8). Although sociometric indices resulted an important tool for
the analysis of ecosystems, one can not simply translate studies on the struc-
ture of social networks into their ecological counterpart without facing some
differences that make food webs peculiar (e.g. external source of energy to
primary producers; directional energetic flow from producers to consumers).
Nevertheless, keystone research in a network context is reasonable and the
network perspective will be operative in future applications (Jordán et al.,
1999; Jordán, 2000, 2001).
Centrality analysis poses important questions needing refinements. These
are discussed in Chapter 8 and permeate the thinking of many ecologists
in international publications: (a) depending on distance up to which di-
rect or indirect effects are estimated, should network indices account for lo-
cal, “meso” or global topological information (Jordán and Scheuring, 2002;
Estrada, 2007)? (b) Can network models be constructed including differ-
ent interaction types at the same time and how data should be processed
(Vasas and Jordán, 2006)? (c) Which is the real ecological meaning of each
centrality index (Jordán, 2001)? (d) If several centrality measures point to
different species as the most central node in a network, can a generalized
centrality index encompassing all the descriptors be used as a new variable
characterizing the importance of a species in a food web (Estrada, 2007)?



Bibliography

Abarca-Arenas, L. G., Franco-Lopez, J., Peterson, M. S., Brown-Peterson,
N. J., Valero-Pacheco, E., 2007. Sociometric analysis of the role of pe-
naeids in the continental shelf food web off Veracruz, Mexico based on
by-catch. Fisheries Research 87, 46–57.

Abarca-Arenas, L. G., Ulanowicz, R. E., 2002. The effects of taxonomic
aggregation on network analysis. Ecological Modelling 149, 285–296.

Albert, R., Barabási, A.-L., 2002. Statistical mechanics of complex networks.
Reviews of Modern Physics 74, 47–97.

Allesina, S., Bodini, A., 2004. Who dominates whom in the ecosystem?
energy flow bottlenecks and cascading extinctions. Journal of Theoretical
Biology 230, 351–358.

Allesina, S., Bodini, A., 2005. Food web networks: Scaling relation revisited.
Ecological Complexity 2, 323–338.

Allesina, S., Bodini, A., Bondavalli, C., 2005a. Ecological subsystems via
graph theory: the role of strongly connected components. Oikos 110, 164–
176.

Allesina, S., Bodini, A., Bondavalli, C., 2006. Secondary extinctions in eco-
logical networks: Bottlenecks unveiled. Ecological Modelling 194, 150–161.

Allesina, S., Bondavalli, C., 2003. Steady state of ecosystem flow networks:
a comparison between balancing procedures. Ecological Modelling 165,
221–229.

Allesina, S., Bondavalli, C., 2004. WAND: an ecological network analysis
user-friendly tool. Environmental Modelling & Software 19, 337–340.

Allesina, S., Bondavalli, C., Scharler, U. M., 2005b. The consequences of the
aggregation of detritus pools in ecological networks. Ecological Modelling
189, 221–232.

140



Bibliography 141

Allesina, S., Ulanowicz, R. E., 2004. Cycling in ecological networks: Finn’s
index revisited. Computational Biology and Chemistry 28, 227–233.

Almunia, J., Basterretxea, G., Aristegui, J., Ulanowicz, R. E., 1999. Benthic-
pelagic switching in a coastal subtropical lagoon. Estuarine Coastal and
Shelf Science 49, 363–384.

Arai, H. P., Mudry, D. P., 1983. Protozoan and metazoan parasites of
fishes from the headwaters of the Parsnip and McGregor Rivers, British
Columbia: a study of possible parasite transfaunations. Canadian Journal
of Fisheries and Aquatic Sciences 40, 1676–1684.

Arthur, J. R., Margolis, L., Arai, H. P., 1976. Parasites of fishes of Aishihik
and Stevens Lakes, Yukon Territory, and potential consequences of their
interlake transfer through a proposed water diversion for hydroelectrical
purposes. Journal of the Fisheries Research Board of Canada 22, 2489–
2499.

Atlan, H., 1974. On a formal definition of organization. Journal of Theoret-
ical Biology 45, 295–304.

Augustinovic, M., 1970. Methods of international and intertemporal compar-
ison of structure. Vol. 1. North-Holland, Amsterdam, Ch. Contributions
to Input-Output Analysis, pp. 249–269.

Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., Thingstad,
F., 1983. The ecological role of water-column microbes in the sea. Marine
Ecology Progress Series 10, 257–263.

Baird, D., Luczkovich, J. J., Christian, R. R., 1998. Assessment of spatial
and temporal variability in ecosystem attributes of the St Marks National
Wildlife Refuge, Apalachee Bay, Florida. Estuarine, Coastal, and Shelf
Science 47, 329–349.

Baird, D., Milne, H., 1981. Energy flow in the Ythan Estuary, Aberdeen-
shire, Scotland. Estuarine, Coastal and Shelf Science 13, 455–472.

Baird, D., Ulanowicz, R. E., 1989. The seasonal dynamics of the Chesapeake
Bay ecosystem. Ecological Monographs 59, 329–364.

Baird, D., Ulanowicz, R. E., 1993. Comparative-study on the trophic struc-
ture, cycling and ecosystem properties of 4 tidal estuaries. Marine Ecology
Progress Series 99, 221–237.

Barrett, S. C. H., Helenurm, K., 1987. The reproductive-biology of Boreal
Forest herbs. 1. Breeding systems and pollination. Canadian Journal of
Botany 65, 2036–2046.



Bibliography 142

Beehler, B., 1983. Frugivory and polygamy in birds of paradise. The Auk
100, 1–12.

Bennett, S. J., Sanders, R. W., Porter, K. G., 1990. Heterotrophic, au-
totrophic, and mixotrophic nanoflagellates: Seasonal abundances and bac-
terivory in a eutrophic lake. Limnology and Oceanography 35, 1821–1832.

Berlow, E. L., Neutel, A.-M., Cohen, J. E., de Ruiter, P. C., Ebenman,
B., Emmerson, M., Fox, J. W., Jansen, V. A. A., Jones, J. I., Kokkoris,
G. D., Logofet, D. O., McKane, A. J., Montoya, J. M., Petchey, O., 2004.
Interaction strengths in food webs: issues and opportunities. Journal of
Animal Ecology 73, 585–598.

Bersier, L.-F., Banasek-Richter, C., Cattin, M. F., 2002. Quantitative de-
scriptors of food-web matrices. Ecology 83, 2394–2407.

Bersier, L.-F., Dixon, P., Sugihara, G., 1999. Scale-invariant or scale-
dependent behavior of the link density property in food webs: A matter
of sampling effort? American Naturalist 153, 676–682.

Bondavalli, C., Bodini, A., Rossetti, G., Allesina, S., 2006. Detecting stress
at a whole ecosystem level. The case of a mountain lake: Lake Santo
(Italy). Ecosystems 9, 1–56.

Bondavalli, C., Ulanowicz, R. E., 1999. Unexpected effects of predators upon
their prey: The case of the American alligator. Ecosystems 2, 49–63.

Borer, E. T., Anderson, K., Blanchette, C. A., Broitman, B., Cooper, S. D.,
Halpern, B. S., Seabloom, E. W., Shurin, J. B., 2002. Topological ap-
proaches to food web analyses: a few modifications may improve our
insights. Oikos 99, 397401.

Borgatti, S. P., Everett, M. G., Freeman, L. C., 2002. Ucinet for Windows:
Software for Social Network Analysis. Harvard: Analytic Technologies.

Bratbak, G., 1987. Carbon flow in an experimental microbial ecosystem.
Marine Ecology Progress Series 36, 267–276.

Briand, F., 1983. Environmental control of food web structure. Ecology 64,
253–263.

Burns, T. P., 1989. Lindeman’s contradiction and the trophic structure of
ecosystems. Ecology 70, 1355–1362.

Burns, T. P., Higashi, M., Wainright, S. C., Patten, B. C., 1991. Trophic
unfolding of a continental-shelf energy-flow network. Ecological Modelling
55, 1–26.



Bibliography 143
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Montoya, J. M., Pimm, S. L., Solé, R. V., 2006. Ecological networks and
their fragility. Nature 440, 259–264.
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Montoya, J. M., Solé, R. V., 2003. Topological properties of food webs: from
real data to community assembly models. Oikos 102, 614–622.

Mosquin, T., Martin, J. E. H., 1967. Observations on the pollination biology
of plants on Melville Island, N.W.T., Canada. Canadian Field Naturalist
81, 201–205.



Bibliography 151

Motten, A. F., 1982. Pollination Ecology of the Spring Wildflower Commu-
nity in the Deciduous Forests of Piedmont North Carolina. Ph.D. thesis,
Duke University, Duhram, North Carolina, USA.

Motten, A. F., 1986. Pollination ecology of the spring wildflower community
of a temperate deciduous forest. Ecological Monographs 56, 21–42.

Müller, C. B., Adriaanse, I. C. T., Belshaw, R., Godfray, H. C. J., 1999. The
structure of an aphid-parasitoid community. Journal of Animal Ecology
68, 346–370.

Neutel, A., Heesterbeek, J. A. P., de Ruiter, P. C., 2002. Stability in real
food webs: weak links in long loops. Science 296, 1120–1123.

Newman, M. E. J., 2003. The structure and function of complex networks.
SIAM Rev. 45, 167–256.

NSF, 1999. Decision-making and Valuation for Environmental Policy. NSF
Bulletin 99-14, National Science Foundation, Ballston, VA.

Odum, E. P., 1969. The strategy of ecosystem development. Science 164,
262–270.

Oksanen, L., 1991. Trophic level and trophic dynamics: a consensus emerg-
ing? TRENDS in Ecology and Evolution 6, 58–60.

Olesen, J. M., Eskildsen, L. I., Venkatasamy, S., 2002. Invasion of pollina-
tion networks on oceanic islands: importance of invader complexes and
endemic super generalists. Diversity and Distributions 8, 181–192.

Ollerton, J., Johnson, S. D., Cranmer, L., Kellie, S., 2003. The pollination
ecology of an assemblage of grassland asclepiads in South Africa. Annals
of Botany 92, 807–834.

Pace, M. L., Cole, J. J., Carpenter, S. R., Kitchell, J. F., 1999. Trophic cas-
cades revealed in diverse ecosystems. TRENDS in Ecology and Evolution
14, 483–488.

Paine, R. T., 1969. A note on trophic complexity and community stability.
American Naturalist 103, 91–93.

Paine, R. T., 1980. Food webs: linkage interaction strength and community
infrastructure. Journal of Animal Ecology 49, 667–685.

Paine, R. T., 1988. Food webs: road maps of interactions or grist for theo-
retical development. Ecology 69, 1648–1654.

Paine, R. T., 1992. Food-web analysis through field measurement of per
capita interaction strength. Nature 355, 73–75.



Bibliography 152

Paine, R. T., 1995. A conversation on refining the concept of keystone
species. Conservation Biology 9, 962–964.

Parker, G. G., 1977. Understanding the inverse theory. Annual review of
Earth and Planetary Science 5, 35–64.

Pascual, M., Dunne, J. A., 2006. Ecological Networks: Linking Structure to
Dynamics in Food Webs. Oxford University Press, Oxford, UK.
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