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Abstract

Near real-time monitoring of ecosystem disturbances is critical for addressing impacts
on carbon dynamics, biodiversity, and socio-ecological processes. Satellite remote sensing
enables cost-effective and accurate monitoring at frequent time steps over large areas. Yet,
generic methods to detect disturbances within newly captured satellite images are lacking.
We propose a generic time series based disturbance detection approach by modelling sta-
ble historical behaviour to enable detection of abnormal changes within newly acquired
data. Time series of vegetation greenness provide a measure for terrestrial vegetation
productivity over the last decades covering the whole world and contain essential infor-
mation related land cover dynamics and disturbances. Here, we assess and demonstrate
the method by (1) simulating time series of vegetation greenness data from satellite data
with different amount of noise, seasonality and disturbances representing a wide range of
terrestrial ecosystems, (2) applying it to real satellite greenness image time series between
February 2000 and July 2011 covering Somalia to detect drought related vegetation dis-
turbances. First, simulation results illustrate that disturbances are successfully detected
in near real-time while being robust for seasonality and noise. Second, major drought
related disturbance corresponding with most drought stressed regions in Somalia are de-
tected from mid 2010 onwards and confirm proof-of-concept of the method. The method
can be integrated within current operational early warning systems and has the potential
to detect a wide variety of disturbances (e.g. deforestation, flood damage, etc.). It can
analyse in-situ or satellite data time series of biophysical indicators from local to global
scale since it is fast, does not depend on thresholds or definitions and does not require
time series gap filling.

Keywords: early warning, real-time monitoring, global change, disturbance, time series, re-
mote sensing, vegetation and climate dynamics.

1. Introduction

Real-time ecosystem disturbance detection is critical for tracking human-induced and natural
disturbances promptly (Asner 2011). Such information is needed for signalling abnormal
developments, quickly raising awareness and reducing negative impacts to natural resources,
humans, and infrastructure. Ecosystem disturbances can also contribute to the current rise of
carbon dioxide (CO2) levels in the atmosphere due to the emission of CO2 from terrestrial
biomass loss (Potter et al. 2003; Schimel et al. 2001). Key to approaches looking at disturbances



2 Near Real-Time Disturbance Detection

is that many recent change events occur worldwide at unknown locations. In this sense, remote
sensing tools can be in the first instance used to alert when things start to appear abnormal.
For example, deviations from normal land surface phenology, defined as the seasonal variation
in vegetated land surface from satellite sensors (White et al. 2009), can indicate deforestation
activities (Asner 2011), forest health issues (e.g. tree mortality) (Hargrove et al. 2009; Stone
et al. 2008; Verbesselt et al. 2009), drought and climate anomalies (Funk and Budde 2009;
Vrieling et al. 2011).

Satellite sensors are well-suited to provide consistent and frequent measurements over large
areas which is appropriate for capturing the effects of many processes that cause disturbances,
including physical (e.g. droughts, fires, floods), biogenic (e.g. herbivorous insects and pathogens)
and anthropogenic (e.g. deforestation, urbanisation, farming) disturbances (Jin and Sader 2005;
Potter et al. 2003). A common way to derive indicators of ecosystem dynamics and disturbances
is the use of spectral vegetation indices such as the Normalised Difference Vegetation Index
(NDVI) related to the photosynthetic capacity of vegetation canopies (Myneni et al. 1995;
Pettorelli et al. 2005; Potter et al. 2003). Although NDVI might be affected by soil background
and a saturation effect at high biomass levels, it captures seasonal and inter-annual changes in
vegetation status (Huete et al. 2002; Myneni et al. 1997).

The ecosystem changes commonly observed with remote sensing approaches can be divided
into three categories: (1) seasonal or cyclic change, driven by annual temperature and rainfall
interactions impacting plant phenology resulting in distinct intra-annual patterns for different
vegetation types; (2) gradual trend change such as trends in mean annual rainfall or gradual
change in land management (e.g., long term drought, forest regrowth after fire) that result
in changes over several years; and (3) abrupt trend change, caused by events from human
activities (e.g., deforestation) or natural causes (e.g., wind throw or an extreme drought event)
that change land cover over short time frames (days or weeks) (de Beurs and Henebry 2005a;
Verbesselt et al. 2010a,b).

Detecting changes within time series is the first step towards understanding the acting processes
and drivers (e.g. natural or anthropogenic). Estimating change from remotely sensed data
series however is not straightforward, since time series contain a combination of seasonal,
gradual and abrupt ecosystem changes occurring in parallel, in addition to noise that originates
from the sensing environment (e.g., view angle), remnant geometric errors, atmospheric scatter
and cloud effects (de Beurs and Henebry 2005a; Roy et al. 2002; Wolfe et al. 1998). The ability
of any system to detect change depends on its capacity to differentiate normal phenological
cycle from abnormal change (e.g., drought anomalies, degradation, deforestation). Several
change detection methods are available to detect disturbances within historical satellite image
time series (de Beurs and Henebry 2005b; Verbesselt et al. 2010a,b; White and Nemani 2006)
but generic methods to detect disturbances within newly captured satellite images are lacking.
Three major challenges remain.

First, it is crucial to be able to detect disturbances within newly captured satellite images
to enable a rapid response or early warning. In previous work, we proposed an approach,
BFAST i.e. Break detection For Additive Season and Trend, for change detection within
seasonal time series (de Jong et al. In Review; Verbesselt et al. 2010a,b). BFAST detects and
characterises trend and seasonal changes within historical time series but the method is not
developed to detect disturbances in recently acquired data. Methods to detect changes in near
real-time, also referred to as monitoring techniques, have been suggested in the statistics and
econometrics literature to assess the stability of linear regression models (Chu et al. 1996),



Jan Verbesselt, Achim Zeileis, Martin Herold 3

e.g., for investigating exchange rate dynamics (Zeileis et al. 2010). However, these methods
have not been optimised for real-time disturbance detection of terrestrial ecosystems using
remotely sensed time series data.

Second, change detection techniques for global disturbance monitoring need to be independent
of vegetation-specific thresholds while being robust against the inherent noise and seasonality
captured within time series. Most change detection methods require user designation of a
threshold or change type definition separating real change from spectral changes caused by
variability in illumination, seasonality, or atmospheric scattering (Lu et al. 2004; Potter et al.
2003; Hayes and Cohen 2007). White and Nemani (2006) presented a method for real-time
monitoring but requires a region-specific threshold for detecting change. The determination
of thresholds adds significant cost to efforts expanding change detection across regions or
becomes complex when the regions are changing. A historical analysis using archived satellite
data is needed to model normal, expected behaviour against which abnormal behaviour, i.e.
disturbance, in the near future can be described (Hargrove et al. 2009). There is a critical
need to enable analysis of time series independent of specific thresholds or definitions to detect
disturbances.

Third, change detection methods need to deal with missing data (e.g., clouds or sensor defects)
in time series data. Existing change detection methods smooth or fill gaps (Jönsson and
Eklundh 2002; Roerink et al. 2000; Julien and Sobrino 2010) when dealing with noisy times
series of remotely sensed data. For a given date, these methods typically require looking both
backwards and forwards in time, negating use in real-time or forecast applications (White
and Nemani 2006). Furthermore, gap filling techniques model data based on assumptions
of normal data variation which inhibits the detection of disturbances (Samanta et al. 2011).
Hence, methods able to analyse and detect changes in non-gap-filled time series are urgently
needed for global change monitoring.

We propose a multi-purpose approach for near real-time disturbance detection using time
series data that does not require specific thresholds and deals with missing data. The following
major research questions are answered in this paper:

(1) Can a period, representing stable (i.e. normal) historical data variation representing
both seasonal and gradual changes, be identified within a time series?

(2) Is the model representing the normal historical data variation able to reliably and quickly
differentiate between normal and abnormal changes (i.e. disturbances) within newly
incoming observations (i.e., near real-time)?

We assess this approach for different ecosystems by simulating NDVI time series with varying
amounts of seasonal variation and noise, and by adding changes with different magnitudes
representing a wide variety of terrestrial ecosystems. We demonstrate the proof-of-concept
using the MODIS (Moderate Resolution Imaging Spectrometer) NDVI 16-day image composites
from February 2000 until July 2011 for drought disturbance detection in Somalia. NDVI
time series are also used by organisations like the European Research Centre (JRC), the
United State’s Warning System Network (FEWS-NET), and the United Nations Food and
Agricultural Organisation (FAO) as an early warning of potential food production problems in
African countries (Rojas et al. 2005).
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2. Material and methods

2.1. Real-time disturbance detection

When investigating disturbances using satellite data, many approaches (e.g., de Jong et al.
In Review; Potter et al. 2003; Verbesselt et al. 2010b; White et al. 2009) focus on the
question if and where disturbances occur in the season and trend component of a given
observed time series t = 1, . . . , n. Here, we want to investigate a different question: Do new
observations t = n, n+ 1, . . . still conform with the expected behaviour of the historical sample
t = 1, . . . , n ? Thus, we want to detect disturbances at the end of a time series by comparison
with representative, i.e. stable, historical observations. Here, a method is presented that is
able to detect disturbances within newly acquired time series data by automatically identifying
a stable history period (Section 2.4) to model normal expected behaviour (Section 2.2) against
which disturbances can be detected (Section 2.3).

Validation of multi-temporal change-detection methods is often not straightforward, since
independent reference sources for a broad range of potential changes must be available
(Kennedy et al. 2007). Thus, we simulated 16-day NDVI time series with different noise levels,
seasonality, and disturbances in order to robustly test the disturbance detection approach
in a controlled environment (Verbesselt et al. 2010a,b). It, however, is challenging to create
simulated time series that approximate remotely sensed time series, because these contain
combined information on vegetation phenology, inter-annual climate variability, disturbance
events, sensor conditions (e.g., viewing angle), and signal contamination (e.g. clouds) (Zhang
et al. 2009). Hence, we tested the method by (1) a simulation experiment (Section 2.5) and
(2) analysis of 16-day MODIS satellite NDVI time series for drought disturbance detection
Somalia (Section 2.6).

2.2. Season-trend model

The method proposed here is based on a similar additive season and trend model as employed
by Verbesselt et al. (2010b) to account seasonal and trend changes typically occurring within
climate driven biophysical indicators derived from satellite data (e.g. NDVI) (de Beurs and
Henebry 2005a). For the observations yt at time t, a season-trend model is assumed with
linear trend and harmonic season:

yt = α1 + α2t+
k∑

j=1

γj sin

(
2πjt

f
+ δj

)
+ εt, (1)

where the intercept α1, slope α2 (i.e., trend), amplitudes γ1, . . . , γk, and phases δ1, . . . , δk
(i.e., season) are the unknown parameters, f is the known frequency (e.g., f = 23 annual
observations for a 16-day time series), and εt is the unobservable error term at time t (with
standard deviation σ). In the applications below, we employ three harmonic terms (i.e., k = 3)
to robustly detect disturbances within MODIS NDVI time series, as components four and
higher represent variations that occur on a three-month cycle or less (Geerken 2009; Julien
and Sobrino 2010). The model (Eq. 1) can be written as standard a linear regression model
(see e.g., Cryer and Chan 2008, Chapter 3.3):
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yt = x>t β + εt,

xt = {1, t, sin(2π1t/f), cos(2π1t/f), . . . , sin(2πkt/f), cos(2πkt/f)}> ,
β = {α1, α2, γ1 cos(δ1), γ1 sin(δ1), . . . , γk cos(δk), γk sin(δk)}> ,

containing the p = 2 + 2k regression parameters β which can be estimated and tested
using ordinary least squares (OLS) techniques. If there are gaps in the time series yt, these
observations are simply omitted prior to estimation of β which can then still consistently be
identified (unless all observations at certain frequencies are missing). The season-trend model
takes the underlying trend and seasonal variation within a time series into account so that
season-trend patterns are removed in the resulting residuals. This corresponds to approaches
where in multiple steps a time series is ‘detrended’ and ‘deseasonalized’ (Potter et al. 2003)
whereas here the adjustment is done in a single step by OLS-fitting of the season-trend model.

2.3. Monitoring structural change

Based on the season-trend model introduced above, the question raised in the introduction
can be rephrased: Given that a stable season-trend model was estimated in an observed time
period, does it remain stable for new observations? A disturbance is detected when the model
does not remain stable for new incoming observations. As the season-trend model can be
formulated as an OLS regression, we can leverage methods proposed in the structural change
literature for linear regression models where this problem is known as monitoring of structural
changes (Chu et al. 1996). The idea for monitoring techniques is simple. Given that the
parameters β can be consistently estimated as β̂ from a stable history period t = 1, . . . , n, we
want to check whether β̂ still fits the data yt for t > n (i.e. for new data). To do so, some
measure of discrepancy is needed (Chu et al. 1996; Leisch et al. 2000; Zeileis 2005). Here, we
use moving sums (MOSUMs) of the residuals in the monitoring period t = n+ 1, . . . , N :

MOt =
1

σ̂
√
n

t∑
s=t−h+1

(ys − x>s β̂), (2)

where h is the bandwidth of the MOSUM and is typically chosen relative to the size of the
history sample, e.g., h = n/4 or h = n (Zeileis 2005; Zeileis et al. 2010). If the model remains
stable, the MOSUM process MOt should be close to zero and fluctuate only randomly. However,
if a structural change occurs, MOt will deviate systematically from zero. A structural break
is declared if the absolute value |MOt| exceeds some boundary that is asymptotically only
crossed with 5% probability under structural stability. If there are missing values in yt in the
monitoring period, these are again simply not included in the MOSUM MOt, i.e. only reduce
the number of observations available. The technical details for the boundary are based on a
so called functional central limit theorem (see Leisch et al. 2000, for details). The boundary
function employed here is taken from Zeileis et al. (2005, Eq. 7).

2.4. Selecting the stable history period

A crucial assumption for the monitoring approach proposed above is that the history period
t = 1, . . . , n itself is free of disturbances, that the parameters β are stable during this time,
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Figure 1: Simulated 16-day MODIS NDVI time series with a = 0.4, σ = 0.05, containing
one simulated abrupt change with m = −0.3). The period from 2004 until mid 2010 (i.e., the
time step just before the simulated break), is considered the history period and the period
after the simulated break is the monitoring period (grey background). The monitoring period
contains 6 observations (d = 6, red line). The result of the monitoring approach are shown.
A stable history period is identified within the history period (i.e. 2007 until mid 2010) and
used to model and predict the normal data variation (blue dashed line) to enable disturbance
detection (Section 2.3). Here, a disturbance is detected (green vertical line).

and can be used to model normal expected behaviour. In practice, there are often long series
of observations yt available before the start of the monitoring process and it would be naive to
assume that always all of these observations can be adequately captured by a single season-
trend model. Hence, a natural idea is to not use all observations but only the last l, . . . , n
observations with l ≥ 1 so that a stable season-trend model can be fitted. Here, we implement
a technique proposed by Pesaran and Timmermann (2002) that by moving backward in time
for t = n, n− 1, n− 2, . . . considers a cumulative prediction error until the season-trend model
(Eq. 1) breaks down. The method is also known as reversed-ordered-cumulative sum (CUSUM)
of residuals, or ROC. The CUSUM test (see Zeileis et al. 2002, for more details) is based
on similar ideas as the monitoring approach introduced above and the ROC method simply
applies it in reverse ordering.

Figure 1 provides an overview of the three steps that are being performed when applying
the real-time disturbance detection approach. Two periods are defined within a time series;
(a) a history period i.e., data that already has been acquired and which will be analysed for
stability in order to model normal vegetation dynamics, and (b) a monitoring period i.e.,
the period representing new data that recently has been captured that needs to be analysed
for disturbances. The blue line illustrates the fit of the season-trend model on the identified
stable part of the history period of an example NDVI time series (Section 2.2 and 2.4). This
season-trend fit is used to model the normal expected behaviour in the history period and as
such detect abnormal data variations, disturbances, within the monitoring period (Section 2.3).
Here, a disturbance is detected with only a short delay.

2.5. Simulation experiment

The objective of the time series simulation experiment is to assess the detection delay, i.e.
how much new data is required to detect a disturbance, while varying the amount of noise,
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Parameters Values

a 0.1, 0.3, 0.5
σ noise 0.01, 0.02, . . . , 0.15
m 0,−0.2,−0.4, . . . ,−0.8
d 1, 2, . . . , 6

Table 1: Parameter values (a, σ noise and m) for simulation of 16-day NDVI time series while
varying the amount of data available in the monitoring period (d, 16-day time steps units) to
quantify the detection delay.

seasonal amplitude, and the magnitude of the disturbance in the simulated time series. NDVI
time series were simulated using a similar approach as proposed by Verbesselt et al. (2010b)
representing a wide range of ecosystem dynamics. Simulated NDVI time series are generated
by summing individually simulated season, trend, and noise components (Figure 1).

First, the seasonal component is created using an asymmetric Gaussian function with an
amplitude (a) for each season. Second, a disturbance was added to the trend component (e.g.,
fire or drought) by combining a step function with a magnitude (m) and fixed gradient recovery
phase. Third, the noise component was generated using a random number generator that
follows a normal distribution N(µ = 0, σ = x). Vegetation index specific noise was generated
by randomly replacing the white noise by noise with a value of −0.1, representing cloud
contamination that often remains after atmospheric correction and cloud masking procedures
(see Verbesselt et al. 2010b, for more details). Figure 1 shows a simulated 16-day MODIS NDVI
time series with a = 0.2, σ = 0.05, containing one simulated abrupt change with m = −0.3.

In the simulation experiment the history period is defined as the period from 2000 until mid
2006 (i.e., the time step just before the simulated break), whereas the monitoring period is
defined as the period from the simulated break onwards of which the length is gradually
increased during the experiment (d) (Figure 1 and Table 1). We selected a range of a, σ, and
m values for the simulation study to represent a large range of land cover types of different
data quality while varying the amount of data, d, available in the monitoring period (Table 1).
An example of the set-up of the simulation experiment is shown in Figure 1. 1000 iterations of
all the combinations of σ, a, d and m were performed to quantify the probability of detecting
a disturbance in the monitoring period in relation to the amount of data available (d).

2.6. Drought disturbance detection in Somalia

The use of the real-time monitoring approach is demonstrated using the 16-day MODIS NDVI
composites with a 0.05◦ spatial resolution (MOD13C1 collection 5). This product provides
NDVI corrected for the effect of atmospheric gases, thin cirrus clouds and aerosols as a proxy
for global scale vegetation dynamics and disturbances (Huete et al. 2002). The MOD13C1
global satellite images were acquired from February 2000 to July 2011 and were analysed for
disturbances from mid 2010 onwards covering Somalia in order to assess the impact of the
2010–2011 drought on the vegetation photosynthetic capacity. The MODIS quality assurance
(QA) flags are used to select only cloud-free data of optimal quality. An NDVI time series is
only analysed when either (1) it lacked less than 15% of observations masked out by the QA
flags and (2) covering vegetated land; i.e. having a median of NDVI time series larger than 0.2
NDVI (de Beurs et al. 2009; de Jong et al. In Review; Vrieling et al. 2011). The noise level (σ)
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Figure 2: Monthly rainfall anomaly (mm/hr) for the period 1998–2011 measured by the
tropical rainfall measuring satellite mission (TRMM) for an area in South Somalia (2◦ Lat.
and 43◦ Long.). The time series was derived from the TRMM 3B43 climatology (version 6)
data set using the online visualisation and analysis system (TOVAS). Anomalies are computed
as the difference between the measured precipitation and the average climatology for the
selected region (Acker and Leptoukh 2007).

of NDVI time series is estimated by deriving the standard deviation of the residuals from the
fitted season-trend model (Eq. 1) on the stable history period. The magnitude and direction
of the disturbance is estimated by deriving the difference between the median of the fitted
season-trend model and the new observations during the monitoring period.

Somalia has a tropical but not torrid climate, and there is little seasonal change in temperature.
In the low areas, the mean temperature ranges from about 24◦ C to 31◦ C. The plateau
region is cooler, the southwest warmer. The periodic winds, the southwest monsoon (June–
September), and the northeast monsoon (December–March) influence temperature and rainfall.
Rain falls in two seasons of the year: heavy rains from March to May, and light rains
from September to December. Average annual rainfall is estimated at less than 28 cm
(http://www.nationsencyclopedia.com/). However, after a period of persistent poor rains
during the past decade, the autumn 2010 rains were poor and the spring rains in 2011 failed
completely (Funk 2011). The lack of rainfall combined with high food prices has weakened the
population’s resilience to food emergencies and are among most important factors explaining
the severe and ongoing famine in Somalia today. The monthly rainfall anomaly time series
shown in Figure 2 illustrates the lack of rainfall in the last decade and the severity of the
rainfall anomaly occurring from mid 2010 onwards in Southern Somalia. The spatial extent of
the drought severity is illustrated by the February–March 2011 rainfall (Xie and Arkin 1997)
and land surface temperature anomaly for Somalia (Figure 3). Below normal rainfall and
above normal temperatures occurred during February–March 2011 in south Somalia.

http://www.nationsencyclopedia.com/
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(a) (b)

Figure 3: Two-monthly rainfall estimates (RFE2) (a) and land surface temperature (LST)
(b) anomaly are shown for Somalia illustrating the below normal rainfall and above normal land
surface temperature during the February-March period in 2011. The RFE2 data is a merged
satellite-gauge rainfall product produced by NOAA’s Climate Prediction Centre at a 0.1◦spatial
resolution. The LST product is the land surface temperature measured by the MODIS satellite
and is provided at a 0.05◦spatial resolution. Individual observations are subtracted from the
time series mean to produce anomaly data. MODIS NDVI time series (2000–2011) for three
locations (4,+ and ♦) are shown in Figure 6. The data was obtained using the Early Warning
Explorer software tool available at http://earlywarning.usgs.gov/.

3. Results

3.1. Simulation experiment

Figure 4 illustrates the probability for detecting a break within the monitoring period of a time
series while varying the noise level (σ), magnitude of simulated disturbance (m) and the amount
of data available in the monitoring period (d). The seasonal amplitude (a) did not influence
the probability for break detection and results shown in Figure 4 are valid for the different
simulated a’s (Table 1). Random and NDVI specific noise levels were introduced to simulate
disturbances in the history period of the simulated time series and trigger identification of
stable history periods with different lengths. The length of the identified stable history period
also did not influence the probability for break detection (results not shown). We, however,
recommend limiting the disturbance detection to time series with a stable history period longer
than 2 years (i.e. 46 observations representing two seasons in this study) to enable a reliable
estimation of the 8 season-trend model parameters. Furthermore, Figure 4 shows that a break
with m = −0.4 can be detected when σ is smaller than 0.1 and d < 3. When the magnitude
of the break is larger (e.g., m = −0.6), less observations (d < 4) are required for a similar
amount of noise (e.g., σ < 0.1).

http://earlywarning.usgs.gov/
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Figure 4: Results from the simulation experiment (1000 iterations) illustrating the probability
for break detection in the monitoring period while varying the amount of noise (σ), magnitude
of the simulated break (m), and amount of data available in the monitoring period (d). The
units of the x and y-axis are noise (i.e., σ NDVI of the residuals of the fitted season-trend
model on the history period) and probability of detecting a break (i.e., proportion of detected
breaks in 1000 iterations). See description of the simulation experiment for more details
(Section 2.5).

3.2. Drought disturbance detection in Somalia

We demonstrate the proof-of-concept of a multi-purpose near real-time disturbance detection
method by analysing MODIS 16-day NDVI image time series. Here, the disturbance detection
is limited to areas (1) with a minimum amount of vegetation cover by restricting the analysis
to time series with a median NDVI > 0.2 during the 2000–2011 period (Vrieling et al. 2011)
and (2) with a stable history longer than two years (see Section 3.1);

(1) Figure 5a illustrates the median of an NDVI image time series (2000–2011) as a proxy
for vegetation cover during the period of analysis. Areas with no or very low vegetation
cover are occurring in the North East of Somalia whereas areas with higher vegetation
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(a) (b)

(c) (d)

Figure 5: Results from the analysis of 16-day MODIS NDVI image time series from February
2000 until July 2011 covering Somalia; (a) median of all NDVI images as a proxy for vegetation
cover during the 2000–2011 period, (b) length of the stable history period expressed in years
where a shorter length is an indication of a more recent disturbance, (c) spatial variation of
the noise level i.e. the standard deviation of the residuals of the stable history model, (d) the
magnitude of the detected disturbances in the monitoring period (mid 2010 onwards) where
white indicates that no disturbance is detected. The analysis of (d) was restricted to areas
with minimum vegetation cover i.e. median NDVI 2000–2011> 0.2 and length of the history
period > 2 years. Examples for three locations (4,+ and ♦) are shown in Figure 6.
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cover are situated in the South of Somalia. Similar approaches have been used by Brown
et al. (2010) and Vrieling et al. (2011) to study response of African land surface phenology.
The NDVI time series with no or very low NDVI values do not show any seasonal climate
related vegetation dynamics and are mainly influenced by irregular variations of the soil
background. The areas with NDVI values above 0.2 correspond to the areas where below
normal rainfall and above normal land surface temperature is occurring (Figure 3) which
illustrates that a severe drought is impacting areas with a minimum amount of vegetation
cover (NDVI > 0.2).

(2) Figure 5b illustrates the spatial variation of the length of the stable history period and is
used to restrict the analysis to regions with a stable history longer than 2 years. The stable
history is identified for modelling normal variation within the history period to enable
differentiation from abnormal changes, i.e. disturbances, in the monitoring period (i.e.
mid 2010 onwards). The ROC approach (Section 2.4) verifies whether or not a structural
change is occurring while stepwise going back in history. The length of the stable history
(Figure 5b) can be used as an approximation of the occurrence of the most recent large
(enough) disturbance in the history period. (If a more precise estimate of the timing of
this last major disturbance if of interest, more appropriate methods are available, e.g.
Bai and Perron 2003, or Verbesselt et al. 2010a.) Analysed NDVI time series for specific
locations are shown in Figure 6 where for time series in Figure 6a and c the whole history
period and in Figure 6b a shorter stable history period is identified as stable. The short
history period in Figure 6b can be explained by a lack of rainfall at the beginning of 2008
(Funk and Budde 2009).

Figure 5c shows the spatial variation of the noise level (i.e. σ̂ of the residuals of the season-
trend model) where low σ̂ correspond to the low vegetated areas and the high σ̂ correspond
to the semi-arid ecosystems (e.g. woodland and savannah) (see Figure 5a). High σ̂ in the
semi-arid ecosystems can be explained by large inter-annual phenological shifts (e.g. shifts
in the start and end of the growing season) and double growing seasons when compared to
areas with low vegetation cover or forested areas (Verbesselt et al. 2010b; Brown et al. 2010).
Forest ecosystems when compared to semi-arid ecosystems (herbaceous land cover types) are
more resistant to seasonal climate variations in rainfall and temperature due to the deeper
rooting system (Verbesselt et al. 2006). Furthermore, Vrieling et al. (2011) illustrated that
vulnerability to food insecurity tends to increase when cumulated NDVI – used as a proxy for
net primary productivity – shows high temporal variability.

Figure 5c also illustrates that the noise range, 0–0.15, corresponds to the noise range of the
simulation experiment (Figure 4) which confirms that the range of terrestrial ecosystem NDVI
dynamics occurring in the study area were appropriately simulated for testing the proposed
method in a controlled environment. The noise range shown in Figure 5c can be used when
interpreting Figure 5d, since the simulation experiment (Figure 4) illustrated that σ is one of
the main drivers of the probability to detect disturbance. Figure 5d shows the magnitude of
the disturbance when detected in the monitoring period. Only disturbances with large negative
magnitudes are detected and illustrate the effect of the 2010–2011 drought on vegetation
photosynthetic capacity as measured by the NDVI in Somalia and surrounding countries (Funk
2011). Due to the high seasonal variability (i.e. high σ levels) only severe disturbances with
large magnitude can be detected with the method, as illustrated in the simulation experiment
(Figure 4) and in Figure 5d. Again, these findings confirm the severity of the ongoing drought
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Figure 6: Results of real-time monitoring approach applied to 16-day MODIS NDVI time
series for three locations a, b, and c, corresponding to symbols +, 4 and ♦ shown in Figure 5.
The period from 2000 until mid 2010, is considered the history period and the period after
the simulated break is the monitoring period (grey background, red line). The stable history
period within the history period (blue dashed line) is used to model and predict the normal
data variation and enable disturbance detection in the monitoring period (Section 2.3). A
disturbance is detected (green line) in Fig 5a and 5b.

and corresponds with the regions in South Somalia showing most intense drought anomaly
(Figure 3).

Figure 6a and b illustrate to examples of NVDVI time series where a disturbance with a negative
magnitude is detected in the monitoring period. The negative magnitude is clearly shown
by the lack of seasonality and major decrease in NDVI from mid 2010 onwards. Statistical
significant disturbances are detected early 2011 and confirm the early warning capacity of the
proposed multi-purpose disturbance detection method. Hence, the method can contribute
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to existing early warning systems and be integrated in operational monitoring systems to
automatically confirm abnormal events at the end of a time series (i.e. in near real-time).

4. Discussion

Real-time satellite images are routinely produced (e.g. http://www.fews.net/) but methods
for disturbance detection within newly acquired images are lacking. Here, we propose a
time series analysis approach that automatically identifies a stable history period within time
series to model normal expected behaviour and enables detection of abnormal events (i.e.
disturbances) within new observations (i.e. monitoring period).

The method is tested in a controlled environment by simulating time series containing dis-
turbances and demonstrated by applying it to MODIS NDVI image time series covering
Somalia. First, NDVI time series representing a wide range of terrestrial ecosystems are
simulated and results illustrate that when more than two new observations are available in
the monitoring period disturbance detection becomes possible. It is also shown that the noise
level remaining after fitting the season-trend model is the main driver of the capacity to detect
disturbances. Hence, data pre-processing in order to improve the quality and reliability of time
series data remains essential to improve disturbance detection. Second, major disturbances are
detected in southern Somalia in early 2011 illustrating the severity of the drought affecting the
photosynthetic capacity of the vegetation. This illustrates the proof-of-concept of the method
as a near real-time disturbance detection system that can be integrated within existing early
warning systems for automated disturbance detection (e.g. drought or deforestation). Three
items can be discussed in detail;

(1) Results confirm the importance of a simulation experiment when developing global change
detection methods. Novel methods can be tested in a controlled environment while
varying individual parameters. When detecting changes in real data at a global scale often
accurate field data about disturbances and influencing factors (e.g. quality of the time
series observations) are not available. However, it is challenging to create simulated time
series that approximate remotely sensed time series (Zhang et al. 2009). For example, it
is important to assess the effect of inter-yearly seasonal shifts in real satellite data (e.g.
shifts in the growing season) as these can increase the σ and reduce the probability of
disturbance detection. The inter-yearly seasonal variation is especially high in grasslands,
savannah regions with a high herbaceous cover fraction and unpredictable rainfall (de Jong
et al. In Review). The effect of inter-yearly seasonal variations have been simulated in this
experiment by introducing high σ levels (i.e. up to 0.15 σ, Table 1). On the other hand,
drought related anomalies cause major disturbances (e.g. magnitudes < −0.2 NDVI) in
herbaceous ecosystems (i.e. large variations in NDVI) which enables drought disturbance
detection in highly variable ecosystems (Section 3.2).

(2) The accuracy of estimating the time of disturbance was not assessed in the simulation
experiment. The proposed method is developed as a fast, generic and globally applicable
alert system for disturbances within newly acquired data of available time series observa-
tions. In previous work, the BFAST method was proposed to determine the number, type,
and timing of trend and seasonal changes within historical time series (Verbesselt et al.
2010a) whereas, here, we focussed on disturbance detection in newly acquired observa-
tions. A possible operational workflow for disturbance monitoring could be to (a) verify

http://www.fews.net/
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whether or not a disturbance is occurring in new observations using the method proposed
here and then (b) if a disturbance is detected the timing, magnitude and direction of
change can be determined when more data is available. Similarly, the accuracy of the
estimated stable history length was not assessed. The validated ROC approach (Pesaran
and Timmermann 2002) was used here as an automated approach to identify a history
period without disturbances and is not developed for time estimation of disturbances
in the history period. Again, in a second phase the BFAST approach can be used for
a more accurate time of disturbance estimation. Alternatively, when expert knowledge
is available the stable history period can manually be set but is not recommended for
regional or global scale analysis due to a loss in flexibility. This functionality is available
in the real-time monitoring function available in the bfast package for R (R Development
Core Team 2011).

(3) Food security is not simply a function of NDVI dynamics, but also factors such as poverty,
market forces, conflict, lack of infrastructure, and HIV/AIDS play an important role
(Funk 2011; Vrieling et al. 2011). Still, analysis of climate and NDVI variability provides
important input for food security analysis. Current operational food security monitoring by
organisations as FEWS-NET, JRC, and FAO concentrate on mapping of NDVI anomalies
deviating from a long term mean. Anomalies compared to a mean do not take into
account gradual and seasonal variability (i.e. seasonal and trend related changes captured
by the season-trend model in Eq. 1). Vrieling et al. (2011) has shown that temporal
variability needs to be taken into account for anomaly-based food security monitoring. The
method proposed here addresses this issue and models normal season-trend variation of
an automatically identified stable history period to enable drought disturbance detection
in the monitoring period.

The multi-purpose approach is based on statistical principles applicable to different types
of time series (e.g., in-situ or satellite sensors). The method can be applied to time series
with a higher temporal resolution (e.g., hourly, daily or 8-day time series) to enable a more
rapid response to detected disturbances and has the following characteristics that make it
appropriate for real-time global scale disturbance detection: It (1) is fast and requires a
minimum amount of processing time (e.g., 0.02 seconds to analyse 10 year long 16-day time
series on a normal desktop computer), (2) does not require the definition of thresholds, (3) can
analyse time series with data gaps (e.g., masked clouds or sensor defects) and does not require
gap filling techniques, and (4) analyses the full temporal detail of a time series. Furthermore,
the real-time monitoring method is implement in open-source software environment and is
freely available in the bfast package for R (R Development Core Team 2011).

While the data and methods used are appropriate for proof-of-concept development for global
scale disturbance monitoring, specific applications (e.g., drought or deforestation monitoring)
mandates integration within an operational early warning framework (e.g. http://www.fews.
net/ or http://earlywarning.usgs.gov/). For example, further work is required to verify
whether the real-time disturbance detection approach can be implemented in an operational
framework for deforestation monitoring to complement existing systems such as the Brazilian
deforestation monitoring system (DETER, Shimabukuro et al. 2006 or CLASLITE, Asner
et al. 2009) or as an independent alert system in other regions in the world (e.g., Indonesia,
Vietnam) where real-time monitoring systems are not implemented yet (Asner 2011).

http://www.fews.net/
http://www.fews.net/
http://earlywarning.usgs.gov/
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Abstract
Near real-time monitoring of ecosystem disturbances is critical for addressing im-
pacts on carbon dynamics, biodiversity, and socio-ecological processes. Satellite re-
mote sensing enables cost-effective and accurate monitoring at frequent time steps
over large areas. Yet, generic methods to detect disturbances within newly captu-
red satellite images are lacking. We propose a generic time series based disturbance
detection approach by modelling stable historical behaviour to enable detection of
abnormal changes within newly acquired data. Time series of vegetation greenness
provide a measure for terrestrial vegetation productivity over the last decades cove-
ring the whole world and contain essential information related land cover dynamics
and disturbances. Here, we assess and demonstrate the method by (1) simulating
time series of vegetation greenness data from satellite data with different amount of
noise, seasonality and disturbances representing a wide range of terrestrial ecosys-
tems, (2) applying it to real satellite greenness image time series between February
2000 and July 2011 covering Somalia to detect drought related vegetation disturban-
ces. First, simulation results illustrate that disturbances are successfully detected in
near real-time while being robust for seasonality and noise. Second, major drought
related disturbance corresponding with most drought stressed regions in Somalia
are detected from mid 2010 onwards and confirm proof-of-concept of the method.
The method can be integrated within current operational early warning systems
and has the potential to detect a wide variety of disturbances (e.g. deforestation,
flood damage, etc.). It can analyse in-situ or satellite data time series of biophysical
indicators from local to global scale since it is fast, does not depend on thresholds
or definitions and does not require time series gap filling.
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