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We calculate the corrections to the amputated Green’s functions of 4-fermion operators, in
1-loop Lattice Perturbation theory. The novel aspect of ourcalculations is that they are carried
out to second order in the lattice spacing,O(a2).

We employ the Wilson/clover action for massless fermions (also applicable for the twisted
mass action in the chiral limit) and the Symanzik improved action for gluons. Our calculations
have been carried out in a general covariant gauge. Results have been obtained for several popular
choices of values for the Symanzik coefficients (Plaquette,Tree-level Symanzik, Iwasaki, TILW
and DBW2 action).

We pay particular attention to∆F = 2 operators, both Parity Conserving and Parity Violating
(F stands for flavour:S, C, B). We study the mixing pattern of these operators, toO(a2), using
the appropriate projectors. Our results for the corresponding renormalization matrices are given
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1. Introduction

A number of flavour-changing processes are currently under study inLattice simulations.
Among the most common examples are the decayK → ππ and K0–K̄0 oscillations. From ex-
perimental evidence, we know that these weak processes violate the CP symmetry. In theory, the
calculation of the amount of CP violation inK0–K̄0 oscillations requires the knowledge ofBK .

The KaonBK parameter is obtained from the∆S= 2 weak matrix element:

BK =
〈K̄0|Ô∆S=2|K0〉

8
3〈K̄

0|s̄γµd|0〉〈0|s̄γµd|K0〉
, (1.1)

wheres andd stand for strange and down quarks, andÔ∆S=2 is the effective 4-quark interaction
renormalized operator, corresponding to the bare operator:

O∆S=2 = (s̄γL
µ d)(s̄γL

µ d), γL
µ = γµ(1− γ5). (1.2)

The above operator splits into parity-even and parity-odd parts; in standard notation: O∆S=2 =
O∆S=2

VV+AA−O∆S=2
VA+AV. Since the above weak process is simulated in the framework of Lattice QCD,

where Parity is a symmetry, the parity-odd part gives no contribution to theK0–K̄0 matrix element.
Thus, we conclude thatBK can be extracted from the correlator (x0>0, y0<0):

CKOK(x,y) = 〈(d̄γ5s)(x)Ô∆S=2
VV+AA(0)(d̄γ5s)(y)〉, O∆S=2

VV+AA = (s̄γµd)(s̄γµd)+(s̄γµ γ5d)(s̄γµ γ5d) , (1.3)

whereO∆S=2
VV+AA is the bare operator and̂O∆S=2

VV+AA is the respective renormalized operator.
In place of the operator in Eq. (1.3) it is advantageous to use a four-quark operator with a

different flavour content (s, d, s′, d′), and with∆S= ∆s+∆s′ = 2, namely [2]:

O
∆S=2
VV+AA = (s̄γµd)(s̄′γµd′)+(s̄γµγ5d)(s̄′γµγ5d′)+(s̄γµd′)(s̄′γµd)+(s̄γµγ5d′)(s̄′γµγ5d) , (1.4)

where now the correlator is given by:CKOK′(x,y) = 〈(d̄γ5s)(x)2O∆S=2
VV+AA(0)(d̄′γ5s′)(y)〉. Making

use of Wick’s theorem one checks the equality:CKOK′(x,y) = CKOK(x,y), which means that both
correlators contain the same physical information.

The aforementioned matrix elements are very sensitive to various systematic errors. A major
issue facing Lattice Gauge Theory, since its early days, has been the reduction of effects induced
by the finiteness of lattice spacinga, in order to better approach the elusive continuum limit.

In order to obtain reliable non-perturbative estimates of physical quantities(i.e. improving the
accuracy ofBK) it is essential to keep under control theO(a) systematic errors in simulations or,
additionally, reduce the lattice artifacts in numerical results. Such a reduction, regarding renormal-
ization functions, can be achieved by subtracting appropriately theO(a2) perturbative correction
terms presented in this paper, from respective non-perturbative results.

In this paper we calculate the amputated Green’s functions and the renormalization matrices
of the complete basis of 20 four-fermion operators of dimension six which donot need power
subtractions (i.e. mixing occurs only with other operators of equal dimensions). The calculations
are carried out up to 1-loop in Lattice Perturbation theory and up toO(a2) in lattice spacing. Our
results are immediately applicable to other∆F = 2 processes of great phenomenological interest,
such asD−D̄ or B− B̄ mixing. Let us also mention that in generic new physics models (i.e. beyond
the standard model), the complete basis of 4-fermion operators contributes toneutral meson mixing
amplitudes; this is the case for instance of SUSY models (see e.g. [3]).
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2. Amputated Green’s functions of 4-fermion ∆S= ∆s+∆s′ = 2 operators.

In this work we evaluate, up toO(a2), the 1-loop matrix element of the 4-fermion operators1:

OXY ≡ (s̄X d)(s̄′Y d′) ≡ ∑
x

∑
c,d

∑
k1,k2,k3,k4

(
s̄c
k1

(x)Xk1k2 dc
k2

(x)
)(

s̄′
d
k3

(x)Yk3k4 d′d
k4

(x)
)

(2.1)

O
F
XY ≡ (s̄X d′)(s̄′Y d) ≡ ∑

x
∑
c,d

∑
k1,k2,k3,k4

(
s̄c
k1

(x)Xk1k2 d′c
k2

(x)
)(

s̄′
d
k3

(x)Yk3k4 dd
k4

(x)
)

(2.2)

with a generic initial state:̄d′a4
i4 (p4)s′a3

i3 (p3)|0〉, and a generic final state:〈0|d̄a2
i2

(p2)sa1
i1

(p1). Spin
indices are denoted byi, k, and color indices bya, c, d, while X andY correspond to the following
set of products of the Dirac matrices:

X, Y = {1, γ5
, γµ , γµ γ5

, σµν , γ5σµν} ≡ {S,P,V,A,T, T̃}; σµν =
1
2
[γµ ,γν ]. (2.3)

Our calculations are performed using massless fermions described by the Wilson/clover action.
By takingmf = 0, our results are identical also for the twisted mass action and the Osterwalder-
Seiler action in the chiral limit (in the so called twisted mass basis). For gluons we employ a
3-parameter family of Symanzik improved actions, which comprises all common gluon actions
(Plaquette, tree-level Symanzik, Iwasaki, DBW2, Lüscher-Weisz). Conventions and notations for
the actions used, as well as algebraic manipulations involving the evaluation of1-loop Feynman
diagrams (up toO(a2)), are described in detail in Ref. [4].

To establish notation and normalization, let us first write the tree-level expression for the am-
putated Green’s functions of the operatorsOXY andOF

XY:

ΛXY
tree(p1, p2, p3, p4, rs, rd, rs′ , rd′)

a1a2a3a4
i1i2i3i4

= Xi1i2 Yi3i4 δa1a2 δa3a4, (2.4)

(ΛF)XY
tree(p1, p2, p3, p4, rs, rd, rs′ , rd′)

a1a2a3a4
i1i2i3i4

= −Xi1i4 Yi3i2 δa1a4 δa3a2, (2.5)

wherer is the Wilson parameter, one for each flavour.
We continue with the first quantum corrections. There are twelve 1-loop diagrams that enter

our 4-fermion calculation, six for each operatorOXY, OF
XY. The diagramsd1−d6 corresponding to

the operatorOXY are illustrated in Fig. 1. The other six diagrams,dF
1 −dF

6 , involved in the Green’s
function of OF

XY are similar tod1 − d6, and may be obtained fromd1 − d6 by interchanging the
fermionic fieldsd andd′ along with their momenta, color and spin indices, and respective Wilson
parameters.

The only diagrams that need to be calculated from first principles ared1, d2 andd3, while the
rest can be expressed in terms of the first three. In particular, the expressions for the amputated
Green’s functionsΛXY

d4
−ΛXY

d6
can be obtained via the following relations:

ΛXY
d4

(p1, p2, p3, p4, rs, rd, rs′ , rd′)
a1a2a3a4
i1i2i3i4

=
(

ΛXY
d1

(−p2,−p1,−p4,−p3, rd, rs, rd′ , rs′)
a2a1a4a3
i2i1i4i3

)⋆

, (2.6)

ΛXY
d5

(p1, p2, p3, p4, rs, rd, rs′ , rd′)
a1a2a3a4
i1i2i3i4

= ΛYX
d2

(p3, p4, p1, p2, rs′ , rd′ , rs, rd)
a3a4a1a2
i3i4i1i2

, (2.7)

ΛXY
d6

(p1, p2, p3, p4, rs, rd, rs′ , rd′)
a1a2a3a4
i1i2i3i4

= ΛYX
d3

(p3, p4, p1, p2, rs′ , rd′ , rs, rd)
a3a4a1a2
i3i4i1i2

. (2.8)

Once we have constructedΛXY
d4

−ΛXY
d6

we can use relation:

(ΛF)XY
d j

(p1, p2, p3, p4, rs, rd, rs′ , rd′)
a1a2a3a4
i1i2i3i4

= −ΛXY
d j

(p1, p4, p3, p2, rs, rd′ , rs′ , rd)
a1a4a3a2
i1i4i3i2

, (2.9)

1The superscript letter F stands for Fierz.
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Figure 1: 1-loop diagrams contributing to the amputated Green’s function of the 4-fermi operatorOXY.
Wavy (solid) lines represent gluons (fermions).

to derive the expressions for(ΛF)XY
d1

−(ΛF)XY
d6

. From the amputated Green’s functions for all twelve
diagrams we can write down the total 1-loop expressions for the operatorsOXY andOF

XY:

ΛXY
1−loop =

6

∑
j=1

ΛXY
d j

, (ΛF)XY
1−loop =

6

∑
j=1

(ΛF)XY
d j

. (2.10)

In our algebraic expressions for the 1-loop amputated Green’s functionsΛXY
d1

, ΛXY
d2

andΛXY
d3

we
kept the Wilson parameters for each quark field distinct, that is:rs, rd, rs′ , rd′ for the quark fields
s, d, s′ andd′ respectively. For the required numerical integration of the algebraic expressions of
the integrands, corresponding to each Feynman diagram, we are forcedto choose the square of the
value for eachr parameter. As in all present day simulations, we set:

r2
s = r2

d = r2
s′ = r2

d′ ≡ 1. (2.11)

Concerning the external momentapi (shown explicitly in Fig. 1) we have chosen to evaluate the
amputated Green’s functions at the renormalization point:

p1 = p2 = p3 = p4 ≡ p. (2.12)

It is easy and not time consuming to repeat the calculations for other choicesof Wilson parameters
and for other renormalization prescriptions. The final 1-loop expressions forΛXY

d1
, ΛXY

d2
andΛXY

d3
,

up toO(a2), are obtained as a function of: the coupling constantg, clover parametercSW, number
of colorsNc, lattice spacinga, external momentump and gauge parameterλ .

The crucial point of our calculation is the correct extraction of the fullO(a2) dependence
from loop integrands with strong IR divergences (convergent only beyond 6 dimensions). The
singularities are isolated using the procedure explained in Ref. [4]. In order to reduce the number
of strong IR divergent integrals, appearing in diagramd1, we have inserted the identity below into
selected 3-point functions:

1 =
1

â p2

(
k̂+a p

2
+ k̂−a p

2
−2k̂2 +16∑

σ
sin(kσ )2sin(apσ )2

)
, (2.13)

whereq̂2 = 4∑µ sin2(
qµ
2 ) andk(p) is the loop (external) momentum. The common factor in Eq.

(2.13) can be treated by Taylor expansion. For our calculations it was necessary only toO(a0):

1

â p2 =
1

a2 p2 +
∑σ p4

σ
(p2)2 +O(a2 p2). (2.14)
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Here we present one of the four integrals with strong IR divergences that enter in this calculation:

∫ π

−π

d4k
(2π)4

sin(kµ) sin(kν)

k̂2 k̂+a p
2
k̂−a p

2 = δµν

[
0.002457072288−

ln(a2p2)

64π2 +a2 p2
(

0.00055270353(6)−
ln(a2p2)

512π2

)

−a2 p2
µ

(
0.0001282022(1)+

ln(a2p2)

768π2

)
+0.000157122310a2 ∑σ p4

σ
p2

]
+a2 pµ pν

[
0.001870841540

1
a2 p2

−0.00029731225(4)+
ln(a2p2)

768π2 −0.000047949674
(p2

µ + p2
ν)

p2 +0.000268598599
∑σ p4

σ
(p2)2

]
+O(a4 p4).

The results for the other three integrals can be found in Ref. [4]. Integrands with simple IR
divergences (convergent beyond 4 dimensions) can be handled by well-known techniques.

Due to lack of space we present only the results forΛXY
d1

and for the special choices:cSW = 0,
λ = 0 (Landau Gauge),rs = rd = rs′ = rd′ = 1, and tree-level Symanzik action:

ΛXY
d1

(p)a1 a2 a3 a4
i1 i2 i3 i4

=
g2

16π2

(
δa1 a4δa3 a2 −

δa1 a2δa3 a4

Nc

)
×

{
Xi1 i2Yi3 i4

[
−

1
2

ln(a2p2)−0.05294139(2)

]

+∑
µ

(Xγµ)i1 i2(Yγµ)i3 i4 [−0.507914049(6)]+ ∑
µ,ν

(Xγµ γν)i1 i2(Yγµ γν)i3 i4

[
1
8

ln(a2p2)+0.0185984988(9)

]

+ ∑
µ,ν ,ρ

(Xγµ γρ)i1 i2(Yγν γρ)i3 i4

[
0.3977157268533

pµ pν

p2

]
+a(ΛO(a1))

XY
d1

+a2(ΛO(a2))
XY
d1

}
, (2.15)

where:

(ΛO(a1))
XY
d1

= ∑
µ

(
(Xγµ)i1 i2 Yi3 i4 +Xi1 i2(Yγµ)i3 i4

)
×

[
ipµ

(
−

1
4

ln(a2p2)+0.09460083(1)

)]

+ ∑
µ,ν

(
(Xγµ γν)i1 i2(Yi3 i4γν)+(Xγν)i1 i2(Yγµ γν)i3 i4

)
×

[
ipµ

(
1
16

ln(a2p2)+0.1692905881(6)

)]
, (2.16)

and:

(ΛO(a2))
XY
d1

= Xi1 i2Yi3 i4

[
p2

(
−

17
72

ln(a2p2)+1.32362250(4)

)
+0.06213649(4)

∑σ p4
σ

p2

]

+∑
µ

(Xγµ)i1 i2(Yγµ)i3 i4

[
p2

(
−

7
48

ln(a2p2)+0.059895142(8)

)
+1.01694823(2)p2

µ

]

+ ∑
µ,ν

(
(Xγµ γν)i1 i2Yi3 i4 +Xi1 i2(Yγµ γν)i3 i4

)
×

[
0.00592406(2)

pν p3
µ

p2

]

+ ∑
µ,ν

(Xγµ)i1 i2(Yγν)i3 i4

[
pµ pν

(
−

1
6

ln(a2p2)−0.19915360(1)

)]

+ ∑
µ,ν

(Xγµ γν)i1 i2(Yγµ γν)i3 i4

[
p2

(
7

240
ln(a2p2)−0.089628048(6)

)
−0.048180850

∑σ p4
σ

p2

+p2
µ

(
−

29
180

ln(a2p2)+0.16608907(3)

)]

+ ∑
µ,ν ,ρ

(Xγµ γρ)i1 i2(Yγν γρ)i3 i4

[
pµ pν

(
41
360

ln(a2p2)−0.21865900(2)+0.140961390
∑σ p4

σ
p2

)

−0.110138790
(p3

µ pν + pµ p3
ν)

p2 −0.477634781(8)
pµ pν p2

ρ

p2

]
. (2.17)

Similar expressions exist forΛXY
d2

andΛXY
d3

.
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3. Mixing and Renormalization of OXY and OF
XY on the lattice.

The matrix element〈K̄0|O∆S=2
VV+AA|K

0〉 is very sensitive to various systematic errors. The main
roots of this problem are:a) O(a) systematic errors due to numerical integration,b) the operator
O∆S=2

VV+AA mixes with other 4-fermion∆S= 2 operators of dimension six. Mixing with operators of
lower dimensionality is impossible because there is no candidate∆S= 2 operator.

In order to address these problems we have calculated the mixing pattern (renormalization ma-
trices) of the Parity Conserving and Parity Violating 4-fermion∆S= 2 operators (defined below),
by using the amputated Green’s functions obtained in the previous section. Amore extensive theo-
retical background and non-perturbative results, concerning renormalization matrices of 4-fermion
operators, can be found in Ref. [5] (see also [2, 6, 7]). Next we summarize all important relations
from Ref. [5] needed for the present calculation.

One can construct a complete basis of 20 independent operators which have the symmetries
of the generic QCD Wilson lattice action (ParityP, Charge conjugationC, Flavour exchange sym-
metryS≡(d ↔ d′), Flavour Switching symmetriesS′≡(s↔ d,s′ ↔ d′) andS′′≡(s↔ d′,d ↔ s′)),
with 4 degenerate quarks. This basis can be decomposed into smaller independent bases according
to the discrete symmetriesP, S, CPS′, CPS′′. Following the notation of Ref. [5] we have 10 Parity
Conserving operators,Q, (P=+1, S=±1) and 10 Parity Violating operators,Q, (P=−1, S=±1):






QS=±1
1 ≡ 1

2

[
OVV ±OF

VV

]
+ 1

2

[
OAA±OF

AA

]
,

QS=±1
2 ≡ 1

2

[
OVV ±OF

VV

]
− 1

2

[
OAA±OF

AA

]
,

QS=±1
3 ≡ 1

2

[
OSS±OF

SS

]
− 1

2

[
OPP±OF

PP

]
,

QS=±1
4 ≡ 1

2

[
OSS±OF

SS

]
+ 1

2

[
OPP±OF

PP

]
,

QS=±1
5 ≡ 1

2

[
OTT ±OF

TT

]
,

{
Q

S=±1
1 ≡ 1

2

[
OVA±OF

VA

]
+ 1

2

[
OAV ±OF

AV

]
,

{
Q

S=±1
2 ≡ 1

2

[
OVA±OF

VA

]
− 1

2

[
OAV ±OF

AV

]
,

Q
S=±1
3 ≡ 1

2

[
OPS±OF

PS

]
− 1

2

[
OSP±OF

SP

]
,

{
Q

S=±1
4 ≡ 1

2

[
OPS±OF

PS

]
+ 1

2

[
OSP±OF

SP

]
,

Q
S=±1
5 ≡ 1

2

[
OTT̃ ±OF

TT̃

]
.

Summation over all independent Lorentz indices (if any), of the Dirac matrices, is implied. The
operators shown above are grouped together according to their mixing pattern. This implies that
the renormalization matricesZS=±1 (Z S=±1), for the Parity Conserving (Violating) operators, have
the form:

ZS=±1 =




Z11 Z12 Z13 Z14 Z15

Z21 Z22 Z23 Z24 Z25

Z31 Z32 Z33 Z34 Z35

Z41 Z42 Z43 Z44 Z45

Z51 Z52 Z53 Z54 Z55




S=±1

, Z
S=±1 =




Z11 0 0 0 0
0 Z22 Z23 0 0
0 Z32 Z33 0 0
0 0 0 Z44 Z45

0 0 0 Z54 Z55




S=±1

. (3.1)

Now the renormalized Parity Conserving (Violating) operators,Q̂S=±1 (Q̂S=±1), are defined
via the equations:

Q̂S=±1
l = ZS=±1

lm ·QS=±1
m , Q̂

S=±1
l = Z

S=±1
lm ·QS=±1

m , (3.2)

wherel ,m= 1, . . . ,5 (a sum overm is implied). The renormalized amputated Green’s functions
L̂S=±1 (L̂ S=±1) corresponding toQS=±1 (QS=±1), are given in terms of their bare counterparts
LS=±1 (L S=±1) through:

L̂S=±1
l = Z−2

Ψ ZS=±1
lm ·LS=±1

m , L̂
S=±1
l = Z−2

Ψ Z
S=±1

lm ·L S=±1
m , (3.3)
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whereZΨ is the quark field renormalization constant.

In order to calculate the renormalization matricesZS=±1 (Z S=±1), we make use of the appro-
priate Parity Conserving (Violating) ProjectorsPS=±1 (PS=±1):

PS=±1
1 ≡ +

ΠVV +ΠAA

64Nc(Nc±1)
,

PS=±1
2 ≡ +

ΠVV −ΠAA

64(N2
c −1)

±
ΠSS−ΠPP

32Nc(N2
c −1)

,

PS=±1
3 ≡ ±

ΠVV −ΠAA

32Nc(N2
c −1)

+
ΠSS−ΠPP

16(N2
c −1)

,

PS=±1
4 ≡ +

ΠSS+ΠPP
32Nc(N2

c−1)
2Nc±1

∓
ΠTT

32Nc(N2
c −1)

,

PS=±1
5 ≡ ∓

ΠSS+ΠPP

32Nc(N2
c −1)

+
ΠTT

96Nc(N2
c−1)

2Nc∓1

,

P
S=±1
1 ≡ −

ΠVA+ΠAV

64Nc(Nc±1)
,

P
S=±1
2 ≡ −

ΠVA−ΠAV

64(N2
c −1)

∓
ΠSP−ΠPS

32Nc(N2
c −1)

,

P
S=±1
3 ≡ ∓

ΠVA−ΠAV

32Nc(N2
c −1)

−
ΠSP−ΠPS

16(N2
c −1)

,

P
S=±1
4 ≡ +

ΠSP+ΠPS
32Nc(N2

c−1)
2Nc±1

∓
ΠTT̃

32Nc(N2
c −1)

,

P
S=±1
5 ≡ ∓

ΠSP+ΠPS

32Nc(N2
c −1)

+
ΠTT̃

96Nc(N2
c−1)

2Nc∓1

,

whereΠXY ≡ (Xi2i1 ⊗Yi4i3)δa2a1δa4a3. Again, summation is implied over all independent Lorentz
indices (if any) of the Dirac matrices) The above Projectors are chosen toobey the following
orthogonality conditions:

Tr(PS=±1
l ·LS=±1

m(tree)) = δlm, Tr(PS=±1
l ·L S=±1

m(tree)) = δlm, (3.4)

where the trace is taken over spin and color indices, andLS=±1
(tree) , L S=±1

(tree) are the tree-level amputated

Green’s functions of the operatorsQS=±1, QS=±1 respectively.

We impose the renormalization conditions:

Tr(PS=±1
l · L̂S=±1

m ) = δlm, Tr(PS=±1
l · L̂ S=±1

m ) = δlm. (3.5)

By inserting Eqs. (3.3) in the above relations, we obtain the renormalization matrices ZS=±1,
Z S=±1 in terms of known quantities:

ZS=±1 = Z2
Ψ

[(
DS=±1)T

]−1
, Z

S=±1 = Z2
Ψ

[(
D

S=±1)T
]−1

, (3.6)

where:

DS=±1
lm ≡ Tr(PS=±1

l ·LS=±1
m ), D

S=±1
lm ≡ Tr(PS=±1

l ·L S=±1
m ). (3.7)

Note thatDS=±1 andDS=±1 have the same matrix structure asZS=±1 andZ S=±1 respectively.

Due to lack of space we provide only the matrixDS=+1 (Parity ViolatingP = −1, Flavour
exchange symmetryS= +1) for the special choices:cSW = 0, λ = 0 (Landau Gauge),rs = rd =

rs′ = rd′ = 1, Nc = 3, and tree-level Symanzik action:

D
S=+1 =




1+D11 0 0 0 0
0 1+D22 D23 0 0
0 D32 1+D33 0 0
0 0 0 1+D44 D45

0 0 0 D54 1+D55




S=+1

(3.8)
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where:

D11=+
g2

16π2

[
7.607190(2)+2 ln(a2p2)+

(
2.642227(3)−

19
18

ln(a2p2)
)

a2p2−2.79899088(3)a2 ∑σ p4
σ

p2

]
,

D22=+
g2

16π2

[
2.299519(2)+ ln(a2p2)+

(
1.846794(4)−

25
36

ln(a2p2)
)

a2p2−0.87361421(2)a2 ∑σ p4
σ

p2

]
,

D23=−
g2

16π2

[
1.1931473(4)+

(
1.4685426(7)−

1
3

ln(a2p2)
)

a2p2−0.89270364(3)a2 ∑σ p4
σ

p2

]
,

D32=−
g2

16π2

[
10.970216(2)−6 ln(a2p2)+

(
6.711307(3)−

7
6

ln(a2p2)
)

a2p2−1.7027590(1)a2 ∑σ p4
σ

p2

]
,

D33=+
g2

16π2

[
11.595959(2)−8 ln(a2p2)+

(
3.102499(4)−

4
9

ln(a2p2)
)

a2p2 +1.92846914(2)a2 ∑σ p4
σ

p2

]
,

D44=+
g2

16π2

[
10.269734(3)−5 ln(a2p2)−

(
0.286209(5)−

1
18

ln(a2p2)
)

a2p2 +2.01567490(4)a2 ∑σ p4
σ

p2

]
,

D45=+
g2

16π2

[
9.732710(2)−5 ln(a2p2)+

(
4.602710(4)−

7
9

ln(a2p2)
)

a2p2−1.07855465(9)a2 ∑σ p4
σ

p2

]
,

D54=+
g2

16π2

[
1.1783609(6)+

1
3

ln(a2p2)+
(

1.255191(1)−
17
54

ln(a2p2)
)

a2p2−0.98220341(2)a2 ∑σ p4
σ

p2

]
,

D55=+
g2

16π2

[
2.297078(2)+

17
3

ln(a2p2)+
(

0.828945(3)−
23
27

ln(a2p2)
)

a2p2−3.06215785(3)a2 ∑σ p4
σ

p2

]
.

In order to obtainZΨ for a given renormalization prescription, one must make use of the inverse
fermion propagator,S−1, calculated (up to 1-loop and up toO(a2) for massless Wilson/clover
fermions and Symanzik gluons) in Ref. [4].
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