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Abstract

We combine all the available experimental information on Bs mixing, including the very
recent tagged analyses of Bs → J/Ψϕ by the CDF and DØ collaborations. We find that the
phase of the Bs mixing amplitude deviates more than 3σ from the Standard Model
prediction. While no single measurement has a 3σ significance yet, all the constraints show
a remarkable agreement with the combined result. This is a first evidence of physics
beyond the Standard Model. This result disfavours New Physics models with Minimal
Flavour Violation with the same significance.

PACS Codes: 12.15.Ff, 12.15.Hh, 14.40.Nb

1. Letter

In the Standard Model (SM), all flavour and CP violating phenomena in weak decays are

described in terms of quark masses and the four independent parameters in the Cabibbo-Koba-

yashi-Maskawa (CKM) matrix [1,2]. In particular, there is only one source of CP violation, which

is connected to the area of the Unitarity Triangle (UT). A peculiar prediction of the SM, due to

the hierarchy among CKM matrix elements, is that CP violation in Bs mixing should be tiny. This
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property is also valid in models of Minimal Flavour Violation (MFV) [3-8], where flavour and CP

violation are still governed by the CKM matrix. Therefore, the experimental observation of siza-

ble CP violation in Bs mixing is a clear (and clean) signal of New Physics (NP) and a violation of

the MFV paradigm. In the past decade, B factories have collected an impressive amount of data

on Bd flavour- and CP-violating processes. The CKM paradigm has passed unscathed all the tests

performed at the B factories down to an accuracy just below 10% [9-11]. This has been often con-

sidered as an indication pointing to the MFV hypothesis, which has received considerable atten-

tion in recent years. The only possible hint of non-MFV NP is found in the penguin-dominated

b → s non-leptonic decays. Indeed, in the SM, the  coefficient of the time-dependent CP

asymmetry in these channels is equal to the  measured with b →  decays, up to hadronic

uncertainties related to subleading terms in the decay amplitudes. Present data show a system-

atic, although not statistically significant, downward shift of  with respect to [12-21],

while hadronic models predict a shift in the opposite direction in many cases [22-29].

From the theoretical point of view, the hierarchical structure of quark masses and mixing

angles of the SM calls for an explanation in terms of flavour symmetries or of other dynamical

mechanisms, such as, for example, fermion localization in models with extra dimensions. All

such explanations depart from the MFV paradigm, and generically cause deviations from the SM

in flavour violating processes. Models with localized fermions [30-32], and more generally mod-

els of Next-to-Minimal Flavour Violation [33], tend to produce too large effects in εK [34,35]. On

the contrary, flavour models based on nonabelian flavour symmetries, such as U(2) or SU(3),

typically suppress NP contributions to s ↔ d and possibly also to b ↔ d transitions, but easily

produce large NP contributions to b ↔ s processes. This is due to the large flavour symmetry

breaking caused by the top quark Yukawa coupling. Thus, if (nonabelian) flavour symmetry

models are relevant for the solution of the SM flavour problem, one expects on general grounds

NP contributions to b ↔ s transitions. On the other hand, in the context of Grand Unified The-

ories (GUTs), there is a connection between leptonic and hadronic flavour violation. In particu-

lar, in a broad class of GUTs, the large mixing angle observed in neutrino oscillations corresponds

to large NP contributions to b ↔ s transitions [36-39].

In this Letter, we show that present data give evidence of a Bs mixing phase much larger than

expected in the SM, with a significance of more than 3σ. This result is obtained by combining all

available experimental information with the method used by our collaboration for UT analyses

and described in Ref. [40].

We perform a model-independent analysis of NP contributions to Bs mixing using the follow-

ing parametrization [41-46]:

Sqqs

Sccs ccs

Sqqs Sccs
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where  is the effective Hamiltonian generated by both SM and NP, while  only con-

tains SM contributions. The angle βs is defined as  and it equals

0.018 ± 0.001 in the SM (we are using the usual CKM phase convention in which  is real

to a very good approximation).

We use the following experimental input: the CDF measurement of Δms [47], the semileptonic

asymmetry in Bs decays [48], the dimuon charge asymmetry  from DØ [49] and CDF

[50], the measurement of the Bs lifetime from flavour-specific final states [51-59], the two-dimen-

sional likelihood ratio for ΔΓs and ϕs = 2(βs - ) from the time-dependent tagged angular anal-

ysis of Bs → J/ψϕ decays by CDF [60] and the correlated constraints on Γs, ΔΓs and ϕs from the

same analysis performed by DØ [61]. For the latter, since the complete likelihood is not available

yet, we start from the results of the 7-variable fit in the free-ϕs case from Table one of ref. [61]. We

implement the 7 × 7 correlation matrix and integrate over the strong phases and decay ampli-

tudes to obtain the reduced 3 × 3 correlation matrix used in our analysis. In the DØ analysis, the

twofold ambiguity inherent in the measurement (ϕs → π - ϕs, ΔΓs → - ΔΓs, cos δ1,2 → - cos δ1,2)
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Table 1: Input parameters used in the analysis.

Δms [ps-1] 17.77 ± 0.12 [47]

 × 102
2.45 ± 1.96 [48]

 × 103
-4.3 ± 3.0 [49,50]

 [ps]
1.461 ± 0.032 [51-59]

ϕs see ref. [60] [60]
ΔΓs see ref. [60] [60]

ϕs [rad] 0.60 ± 0.27 [61]
ΔΓs [ps-1] 0.19 ± 0.07 [61]

[ps]
1.52 ± 0.06 [61]

 = -0.042  = -0.571  = 0.23

We also show the correlation coefficients Cs of the measurements of ϕs, ΔΓs and  from ref. [61].
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for arbitrary strong phases was removed using a value for cos δ1,2 derived from the BaBar analysis

of Bd → J/ΨK* using SU(3). However, the strong phases in Bd → J/ΨK* and Bs → J/Ψϕ cannot be

exactly related in the SU(3) limit due to the singlet component of ϕ. Although the sign of cos δ1,2

obtained using SU(3) is consistent with the factorization estimate, to be conservative we reintro-

duce the ambiguity in the DØ measurement. To this end, we take the errors quoted by DØ as

Gaussian and duplicate the likelihood at the point obtained by applying the discrete ambiguity.

Indeed, looking at Fig. 2 of ref. [61], this seems a reasonable procedure. Hopefully DØ will

present results without assumptions on the strong phases in the future, allowing for a more

straightforward combination. Finally, for the CKM parameters we perform the UT analysis in the

presence of arbitrary NP as described in ref. [34], obtaining  = 0.140 ± 0.046,  = 0.384 ±

0.035 and sin 2βs = 0.0409 ± 0.0038. The new input parameters used in our analysis are summa-

rized in Table 1, all the others are given in Ref. [34]. The relevant NLO formulae for ΔΓs and for

the semileptonic asymmetries in the presence of NP have been already discussed in refs.

[34,62,63].

The results of our analysis are summarized in Table 2. We see that the phase  deviates from

zero at 3.7σ. We comment below on the stability of this significance. In Fig. 1 we present the two-

dimensional 68% and 95% probability regions for the NP parameters  and , the corre-

sponding regions for the parameters  and , and the one-dimensional distribu-

tions for NP parameters. Notice that the ambiguity of the tagged analysis of Bs → J/Ψϕ is slightly

broken by the presence of the CKM-subleading terms in the expression of Γ12/M12 (see for exam-

ple eq. (5) of ref. [63]). The solution around  ~ -20° corresponds to  ~ -50° and

 ~ 75%. The second solution is much more distant from the SM and it requires a dom-

inant NP contribution (  ~ 190%). In this case the NP phase is thus very well deter-

mined. The strong phase ambiguity affects the sign of cos ϕs and thus Re , while Im

 ~ - 0.74 in any case.

Before concluding, we comment on our treatment of the DØ result for the tagged analysis and

on the stability of the NP fit. Clearly, the procedure to reintroduce the strong phase ambiguity in

the DØ result and to combine it with CDF is not unique given the available information. In par-

ticular, the Gaussian assumption can be questioned, given the likelihood profiles shown in Ref.

[61]. Thus, we have tested the significance of the NP signal against different modeling of the

probability density function (p.d.f.). First, we have used the 90% C.L. range for ϕs = [-0.06, 1.20]°
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From left to right and from top to bottom, 68% (dark) and 95% (light) probability regions in the  - ,  -  planes and p.d.f for , , , , Re , Im Figure 1

From left to right and from top to bottom, 68% (dark) and 95% (light) probability regions in the  

- ,  -  planes and p.d.f for , , , , Re , Im 
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given by DØ to estimate the standard deviation, obtaining ϕs = (0.57 ± 0.38)° as input for our

Gaussian analysis. This is conservative since the likelihood has a visibly larger half-width on the

side opposite to the SM expectation (see Fig. 2 of Ref. [61]). Second, we have implemented the

likelihood profiles for ϕs and ΔΓs given by DØ, discarding the correlations but restoring the strong

phase ambiguity. The likelihood profiles include the second minimum corresponding to ϕs →

ϕs+π, ΔΓ → -ΔΓ, which is disfavoured by the oscillating terms present in the tagged analysis and

is discarded in our Gaussian analysis. Also this approach is conservative since each one-dimen-

sional profile likelihood is minimized with respect to the other variables relevant for our analy-

sis. It is remarkable that both methods give a deviation of  from zero of 3 σ (the 3 σ ranges

for  are [-88, -48]° ∪ [-41, 0]° and [-88, 0]° for the two methods respectively). We conclude

that the combined analysis gives a stable evidence for NP, although the precise number of stand-

ard deviations depends on the procedure followed to combine presently available data.

To illustrate the impact of the experimental constraints, we show in Fig. 2 the p.d.f. for 

obtained without the tagged analysis of Bs → J/Ψϕ or including only CDF or DØ results. Includ-

ing only the CDF tagged analysis, we obtain  < 0 at 97.7% probability (2.3σ). For DØ, we

show results obtained with the Gaussian and likelihood profile treatment of the errors. In the

φBs

φBs

φBs

φBs

Table 2: Fit results for NP parameters, semileptonic asymmetries and width differences.

Observable 68% Prob. 95% Prob.

[°]
-19.9 ± 5.6 [-30.45,-9.29]

-68.2 ± 4.9 [-78.45,-58.2]
1.07 ± 0.29 [0.62,1.93]

[°]
-51 ± 11 [-69,-27]

-79 ± 3 [-84,-71]
0.73 ± 0.35 [0.24,1.38]
1.87 ± 0.06 [1.50,2.47]

Im 
-0.74 ± 0.26 [-1.54,-0.30]

Re 
-0.13 ± 0.31 [-0.61,0.78]

-1.82 ± 0.28 [-2.68,-1.36]

 × 102
-0.34 ± 0.21 [-0.75,0.03]

 × 103
-2.1 ± 1.0 [-4.7,-0.3]

ΔΓs/Γs 0.105 ± 0.049 [0.02,0.20]
-0.098 ± 0.044 [-0.19,-0.02]

Whenever present, we list the two solutions due to the ambiguity of the measurements. The first line corresponds to the one closer 
to the SM.
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Gaussian case, the DØ tagged analysis gives  < 0 at 98.0% probability (2.3σ), while using the

likelihood profiles  < 0 at 92.8% probability (1.8σ). Finally, it is remarkable that the different

constraints in Fig. 2 are all consistent among themselves and with the combined result. We

notice, however, that the top-left plot is dominated by the measurement of  while 

φBs

φBs

ASL
μμ A s

SL

From left to right: P.d.f. for  without the tagged analysis of Bs → J/Ψϕ, including only the CDF analysis, including only the DØ Gaussian analysis, including only the DØ likelihood profiles. We show 68% (dark) and 95% (light) probabil-ity regionsFigure 2

From left to right: P.d.f. for  without the tagged analysis of Bs → J/Ψϕ, including only the CDF 

analysis, including only the DØ Gaussian analysis, including only the DØ likelihood profiles. We show 
68% (dark) and 95% (light) probability regions.

φBs
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favours positive , although with a very low significance. For completeness, in Table 2 we also

quote the fit results for ,  and for ΔΓs/Γs.

In this Letter we have presented the combination of all available constraints on the Bs mixing

amplitude leading to a first evidence of NP contributions to the CP-violating phase. With the pro-

cedure we followed to combine the available data, we obtain an evidence for NP at more than

3σ. To put this conclusion on firmer grounds, it would be advisable to combine the likelihoods

of the tagged Bs → J/Ψϕ angular analyses obtained without theoretical assumptions. This should

be feasible in the near future. We are eager to see updated measurements using larger data sets

from both the Tevatron experiments in order to strengthen the present evidence, waiting for the

advent of LHCb for a high-precision measurement of the NP phase.

It is remarkable that to explain the result obtained for ϕs, new sources of CP violation beyond

the CKM phase are required, strongly disfavouring the MFV hypothesis. These new phases will in

general produce correlated effects in ΔB = 2 processes and in b → s decays. These correlations can-

not be studied in a model-independent way, but it will be interesting to analyse them in specific

extensions of the SM. In this respect, improving the results on CP violation in b → s penguins at

present and future experimental facilities is of the utmost importance.

2. Note added

During the review procedure of this Letter, results based on new data were presented by the Teva-

tron experiments, as well as a combination of Tevatron results on the tagged angular analysis of

Bs → J/ψϕ. However these updates are all unpublished. Furthermore, the likelihoods required by

our analysis are not publicly available except for the new DØ analysis with no assumption on

strong phases [64]. For the sake of completeness, we quote  = (-19 ± 8)° ∪ (-69 ± 7)° ([-36,

-5]° ∪ [-83, -54]° at 95% probability), obtained using this new likelihood for the DØ tagged

angular analysis of Bs → J/ψϕ. Clearly, we no longer need to manipulate the DØ likelihood to

remove the strong phase assumption and to account for the non-Gaussian shape as described

above. Remarkably, this updated result is well compatible with the results of this Letter, confirm-

ing a deviation from the SM at the level of ~3σ (99.6% probability). More recent experimental

results seem to confirm the effect discussed in this Letter. We will include them in future analyses

as soon as they become available.

We are much indebted to M. Rescigno for triggering this analysis and for improving it with

several valuable suggestions. We also thank G. Giurgiu, G. Punzi and D. Zieminska for their

assistance with the Tevatron experimental results. We acknowledge partial support from RTN

European contracts MRTN-CT-2006-035482 "FLAVIAnet" and MRTN-CT-2006-035505 "Hep-

φBs

A s
SL ASL

μμ

φBs
Page 8 of 10
(page number not for citation purposes)



PMC Physics A 2009, 3:6 http://www.physmathcentral.com/1754-0410/3/6
tools". M.C. is associated to the Dipartimento di Fisica, Università di Roma Tre. E.F. and L.S. are

associated to the Dipartimento di Fisica, Università di Roma "La Sapienza".

References
1. Cabibbo N: Phys Rev Lett 1963, 10:531.

2. Kobayashi M, Maskawa T: Prog Theor Phys 1973, 49:652.

3. Chivukula RS, Georgi H: Phys Lett 1987, 188:99.

4. Hall LJ, Randall L: Phys Rev Lett 1990, 65:2939.

5. Gabrielli E, Giudice GF: Nucl Phys B 1995, 433:3. [Erratum-ibid. B 507, 549 (1997)]

6. Ciuchini M, Degrassi G, Gambino P, Giudice GF: Nucl Phys B 1998, 534:3.

7. Buras AJ, Gambino P, Gorbahn M, Jager S, Silvestrini L: Phys Lett B 2001, 500:161.

8. D'Ambrosio G, Giudice GF, Isidori G, Strumia A: Nucl Phys B 2002, 645:155.

9. Bona M, Ciuchini M, Franco E, Lubicz V, Martinelli G, Parodi F, Pierini M, Roudeau P, Schiavi C, Silvestrini L, Stocchi A, 
[UTfit Collaboration]: JHEP 2005, 0507:028.

10. Bona M, Ciuchini M, Franco E, Lubicz V, Martinelli G, Parodi F, Pierini M, Roudeau P, Schiavi C, Silvestrini L, Stocchi A, 
Vagnoni V, [UTfit Collaboration]: JHEP 2006, 0610:081.

11. Charles J, Hocker A, Lacker H, Laplace S, Le Diberder FR, Malcles J, Ocariz J, Pivk M, Roos L, [CKMfitter Group]: Eur 
Phys J C 2005, 41:1.

12. Aubert B, [BABAR Collaboration], et al.: . arXiv:hep-ex/0607101

13. Aubert B, [BABAR Collaboration], et al.: Phys Rev Lett 2007, 98:031801.

14. Aubert B, [BABAR Collaboration], et al.: Phys Rev D 2007, 76:071101.

15. Aubert B, [BABAR Collaboration], et al.: Phys Rev D 2007, 76:091101.

16. Aubert B, [BABAR Collaboration], et al.: Phys Rev Lett 2007, 99:161802.

17. Aubert B, [BABAR Collaboration], et al.: Phys Rev D 2008, 77:012003.

18. Aubert B, [BABAR Collaboration], et al.: . arXiv:0708.2097 [hep-ex]

19. Chen KF, [Belle Collaboration], et al.: Phys Rev Lett 2007, 98:031802.

20. Abe K, [Belle Collaboration], et al.: Phys Rev D 2007, 76:091103.

21. Abe K, [Belle Collaboration], et al.: . arXiv:0708.1845 [hep-ex]

22. Beneke M: Phys Lett B 2005, 620:143.

23. Engelhard G, Nir Y, Raz G: Phys Rev D 2005, 72:075013.

24. Li Hn, Mishima S, Sanda AI: Phys Rev D 2005, 72:114005.

25. Engelhard G, Raz G: Phys Rev D 2005, 72:114017.

26. Raz G: . arXiv:hep-ph/0509125

27. Williamson AR, Zupan J: Phys Rev D 2006, 74:014003. [Erratum-ibid. D 74, 03901 (2006)]

28. Li Hn, Mishima S: Phys Rev D 2006, 74:094020.

29. Silvestrini L: Ann Rev Nucl Part Sci 2007, 57:405.

30. Gherghetta T, Pomarol A: Nucl Phys B 2000, 586:141.

31. Agashe K, Perez G, Soni A: Phys Rev D 2005, 71:016002.

32. Contino R, Kramer T, Son M, Sundrum R: JHEP 2007, 0705:074.

33. Agashe K, Papucci M, Perez G, Pirjol D: . arXiv:hep-ph/0509117

34. Bona M, Ciuchini M, Franco E, Lubicz V, Martinelli G, Parodi F, Pierini M, Roudeau P, Schiavi C, Silvestrini L, Sordini V, 
Stocchi A, Vagnoni V, [UTfit Collaboration]: JHEP 2008, 0803:049. [arXiv:0707.0636 [hep-ph]]

35. Davidson S, Isidori G, Uhlig S: . arXiv:0711.3376 [hep-ph]

36. Baek S, Goto T, Okada Y, Okumura Ki: Phys Rev D 2001, 63:051701.
Page 9 of 10
(page number not for citation purposes)



PMC Physics A 2009, 3:6 http://www.physmathcentral.com/1754-0410/3/6
37. Chang D, Masiero A, Murayama H: Phys Rev D 2003, 67:075013.

38. Harnik R, Larson DT, Murayama H, Pierce A: Phys Rev D 2004, 69:094024.

39. Hisano J, Shimizu Y: Phys Lett B 2003, 565:183.

40. Ciuchini M, D'Agostini G, Franco E, Lubicz V, Martinelli G, Parodi F, Roudeau P, Stocchi A: JHEP 2001, 0107:013.

41. Soares JM, Wolfenstein L: Phys Rev D 1993, 47:1021.

42. Goto T, Kitazawa N, Okada Y, Tanaka M: Phys Rev D 1996, 53:6662.

43. Deshpande NG, Dutta B, Oh S: Phys Rev Lett 1996, 77:4499.

44. Silva JP, Wolfenstein L: Phys Rev D 1997, 55:5331.

45. Cohen AG, Kaplan DB, Lepeintre F, Nelson AE: Phys Rev Lett 1997, 78:2300.

46. Grossman Y, Nir Y, Worah MP: Phys Lett B 1997, 407:307.

47. Abulencia A, [CDF Collaboration], et al.: Phys Rev Lett 2006, 97:242003.

48. Abazov VM, [D0 Collaboration], et al.: Phys Rev Lett 2007, 98:151801.

49. Abazov VM, [D0 Collaboration], et al.: Phys Rev D 2006, 74:092001.

50. CDF Collaboration: CDF note 9015.  .

51. Buskulic D, [ALEPH Collaboration], et al.: Phys Lett B 1996, 377:205.

52. Abe F, [CDF Collaboration], et al.: Phys Rev D 1999, 59:032004.

53. Abreu P, [DELPHI Collaboration], et al.: Eur Phys J C 2000, 16:555.

54. Ackerstaff K, [OPAL Collaboration], et al.: Phys Lett B 1998, 426:161.

55. Abazov VM, [D0 Collaboration], et al.: Phys Rev Lett 2006, 97:241801.

56. CDF Collaboration: CDF note 7386.  .

57. CDF Collaboration: CDF note 7757.  .

58. Barberio E, [HFAG], et al.: . arXiv:hep-ex/0603003

59. CDF Collaboration: CDF note 9203.  .

60. Aaltonen T, [CDF Collaboration], et al.: . arXiv:0712.2397 [hep-ex]

61. Abazov VM, [D0 Collaboration], et al.: . arXiv:0802.2255 [hep-ex]

62. Bona M, Ciuchini M, Franco E, Lubicz V, Martinelli G, Parodi F, Pierini M, Roudeau P, Schiavi C, Silvestrini L, Stocchi A, 
Vagnoni V, [UTfit Collaboration]: JHEP 2006, 0603:080.

63. Bona M, Ciuchini M, Franco E, Lubicz V, Martinelli G, Parodi F, Pierini M, Roudeau P, Schiavi C, Silvestrini L, Stocchi A, 
Vagnoni V, [UTfit Collaboration]: Phys Rev Lett 2006, 97:151803.

64.  [http://www-d0.fnal.gov/Run2Physics/WWW/results/final/B/B08A/likelihoods/].
Page 10 of 10
(page number not for citation purposes)

http://www-d0.fnal.gov/Run2Physics/WWW/results/final/B/B08A/likelihoods/

	Abstract
	1. Letter
	2. Note added
	References

