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Abstract Petrophysical properties of rocks and their applicability at larger scale are a challenging topic in
Earth sciences. Petrophysical properties of rocks are severely affected by boundary conditions, rock
fabric/microstructure, and tectonics that require a multiscale approach to be properly defined. Here we

(1) report laboratory measurements of density, porosity, permeability, and P wave velocities at increasing
confining pressure conducted on Miocene foredeep sandstones (Frosinone Formation); (2) compare the
laboratory results with larger-scale geophysical investigations; and (3) discuss the effect of thrusting on the
properties of sandstones. At ambient pressure, laboratory porosity varied from 2.2% to 13.8% and P wave
velocities (V,,) from 1.5 km/s to 2.7 km/s. The P wave velocity increased with confining pressure, reaching
between 3.3 km/s and 4.7 km/s at 100 MPa. In situ V), profiles, measured using sonic logs, matched the
ultrasonic laboratory measurement well. The permeability varied between 1.4x 10~ "> m? and 3.9x 107> m?
and was positively correlated with porosity. The porosity and permeability of samples taken at various
distances to the Olevano-Antrodoco fault plane progressively decreased with distance while P wave
velocity increased. At about 1 km from the fault plane, the relative variations reached 43%, 65%, and 20% for
porosity, permeability, and P wave velocity, respectively. This suggests that tectonic loading changed

the petrophysical properties inherited from sedimentation and diagenesis. Using field constraints and
assuming overburden-related inelastic compaction in the proximity of the fault plane, we conclude that
the fault reached the mechanical condition for rupture in compression at differential stress of 64.8 MPa at a
depth of 1500 m.

1. Introduction

The knowledge of the petrophysical properties of rocks is crucial in many fields, such as the relocalization of
earthquakes using appropriate velocity profiles [e.g., Bally et al., 1986; Barchi et al., 1998] and the
characterization of water and hydrocarbon reservoirs [e.g., Cosentino et al., 2010]. Many works demonstrated
that petrophysical properties of rocks are severely affected by boundary conditions [e.g., Heap et al., 2014a],
rock fabric [e.g., Benson et al., 2005; Heap et al., 2014b], and by tectonic structures, such as faults [e.g., Faulkner
et al., 2006; Mitchell and Faulkner, 2012]. Several studies were dedicated to local-scale changes of
petrophysical properties and rock textures associated with fault development [Chester and Logan, 1986; Tondi
et al., 2006; Agosta et al., 2007; Solum et al., 2010; Mitchell and Faulkner, 2012, and references therein], in
particular for granular host rocks such as sandstones [Antonellini and Aydin, 1994, 1995; Shipton and Cowie,
2001; Shipton et al., 2002]. However, studies dedicated to the kilometer-scale variation of their petrophysical
properties with respect to tectonic structures are rather scarce [e.g., Benson et al., 2005; Chang et al., 2006;
Mavko et al., 2009]. Concerning the Central Apennines, a Tertiary-Present fold-and-thrust belt characterized
by the occurrence of several carbonate ridges thrusted onto siliciclastic foredeep deposits [Cosentino et al.,
2010], studies dedicated to the experimental evaluation of the petrophysical properties mainly focused on
evaporites [Trippetta et al., 2010, 2013], carbonates [Ciccotti and Mulargia, 2004; Ciccotti et al., 2004], and fault
rocks [Agosta et al., 20071]. It is worth noting that foredeep sandstones are common in mountain belts and
represent the most common reservoir rocks worldwide. In this work, we report for the first time in the
Apennines a set of laboratory measurements of petrophysical parameters (porosity, permeability, and seismic
wave velocity) in siliciclastic sandstones belonging to the Tortonian Frosinone Formation that crop out at the
footwall of the Olevano-Antrodoco thrust fault (Figure 1). Measurements were conducted at ambient
temperature and pressure and at increasing confining pressure, simulating progressively deeper crustal
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Figure 1. Schematic map of Central Apennines showing the studied area and the well locations. Modified from Cavinato
and De Celles [1999].

conditions. The results were consistent with data from borehole sonic logs. Moreover, we attributed the
observed variations of the petrophysical properties to the tectonic load associated with the Olevano-
Antrodoco thrust fault.

The measurement of crustal stress magnitude is always challenging and generally poorly constrained
[Montone et al., 2012]. Moreover, in situ measurements in boreholes drilled for this purpose are extremely
expensive [e.g., Chéry et al.,, 2004; Hickman and Zoback, 2004; Wu et al., 2007; Tembe et al., 2009]. This

is particularly significant in active fault zones where the knowledge of stress magnitude is crucial for
understanding fault mechanics during earthquakes nucleation. Indirect stress evaluations on exhumed faults,
as the Olevano-Antrodoco thrust, can be an inexpensive but valuable alternative. In this work we propose a
workflow using laboratory values of porosity as a proxy for quantitative paleostress reconstruction. The
procedure can be applied to other cases in fold-and-thrust belts worldwide.

2. Geological Setting

The Apennines are a late Oligocene-Present fold-and-thrust belt that developed along the “eastward” radially
retreating subduction of the Adriatic Plate [e.g., Carminati et al., 2012]. The Central Apennines (Figure 1)
are characterized by the northeastward migration of thrust fronts [Cipollari et al., 1995] that brought
carbonate ridges onto foredeep turbiditic basins [Ricci Lucchi, 1986; Boccaletti et al., 1990; Cipollari et al., 1995;
Patacca and Scandone, 2001; Cosentino et al., 2010].
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The rocks cropping out in the central sector of the Apennines fold-and-thrust belt were mainly deposited in
two paleogeographic domains: the Latium-Abruzzi domain to the east and the Umbria—Marche domain to
the west, both developed along the passive margin of the Adriatic Plate [Carminati et al., 2012]. The passive
margin deposits consist of Late Triassic sulfates and dolomites [e.g., Pierantoni et al., 2005; Ciarapica and
Passeri, 2005], followed by early Early Jurassic peritidal carbonate deposits [Laubscher and Bernoulli, 1977].
These deposits are common to both paleogeographic domains.

An Early Jurassic rifting phase generated structural highs and lows [Santantonio and Carminati, 2011]. To the
west, the Umbria—Marche domain was characterized by deposition of Mesozoic-Tertiary limestones, marly
limestones, and marls [Centamore et al., 1971; Parotto and Praturlon, 1975; Corrado et al., 1998] in a pelagic to
escarpment environment, while shallow-water carbonate sedimentation continued until the Late Cretaceous
in the Latium-Abruzzi domain (Figure 1) [Damiani, 1990, 1991].

In the Latium-Abruzzi domain, a Late Cretaceous-early Miocene hiatus was followed by deposition of early
Miocene paraconformable carbonates, deposited along a carbonate ramp [Civitelli and Brandano, 2005] and
hemipelagic marls deposited in a foreland environment [Carminati et al., 2007], followed by deposition of
siliciclastic turbidites in a foredeep setting [Patacca and Scandone, 1989; Cipollari and Cosentino, 1991; Patacca
et al.,, 1991; Milli and Moscatelli, 2000; Critelli et al., 20071. Corrado [1994] showed that the siliciclastic deposits
were buried at a maximum depth of about 2 km.

The siliciclastic turbidites are composed by fining upward meter-scale sequences consisting of fine- to
medium-grained gray sandstones at the bottom, sometimes massive and amalgamated with frequent water-
escape structures, passing upward to very fine grained laminated sandstones alternating with clay and marls
with traction and fallout structures. The sandstones deposition likely occurred through poorly efficient
turbiditic flows in elongated submarine-fan lobes, probably fed by deltas [Milli and Moscatelli, 2000]. Massive
sandstones are the sedimentological expression of the lower and denser portion of bipartite turbidity
currents, whereas laminated sandstones represent the upper, turbulent, and diluted portions [Accordi

et al., 1986].

The shortening of the Central Apennine successions started in the late Miocene [Bally et al., 1986;
Mostardini and Merlini, 1986; Royden et al., 1987]. The geometries and kinematics of Neogene contractional
structures were strongly influenced by inherited Mesozoic faults and by the lateral variability in thickness
and facies of sediments involved in the belt [e.g., Calamita, 1990; Corrado et al., 1998; Butler and
Mazzoli, 2006]. The Olevano-Antrodoco thrust fault developed at the boundary between the Latium-
Abruzzi platform and the Umbria—Marche basin, possibly inverting an Early Jurassic normal fault

[Di Domenica et al., 2014].

2.1. The Olevano-Antrodoco Lineament

The Olevano-Antrodoco lineament is a N-S to NNE-SSW complex structure [Dallan Nardi et al., 1971; Castellarin
et al., 1982], cropping out for tens of kilometers and separating the Umbria—Marche pelagic deposits to the
west from the Latium-Abruzzi platform carbonates to the east (Figure 1). The thrust fault location was likely
controlled by the occurrence of one or more Early Jurassic normal faults oriented N-S and dipping to the west
[Cantelli et al., 1982].

The Olevano-Antrodoco is an out-of-sequence thrust fault [Cipollari et al., 1993] characterized by multiphase
prevalently dextral transpressional kinematics [Coli, 1981; Cavinato et al., 1986; Calamita and Deiana, 1987;
Calamita et al., 1987; Corrado, 1995; Turtt et al., 2013], although evidence for strike-slip kinematics on

other fault segments oriented N-S in Central Apennines are reported by some authors [Castellarin et al., 1982;
Cello et al., 1997; Cello and Mazzoli, 1999].

Our study focused on the southernmost 30 km of the lineament, where Miocene carbonates of the Calcari
a Briozoi e Litotamni Formation [Civitelli and Brandano, 2005] and marly deposits of the Marne a

Orbulina Formation [Cipollari and Cosentino, 1991] are thrusted onto the late Miocene siliciclastic foredeep
sandstones of the Late Tortonian Frosinone Formation [Cipollari and Cosentino, 1991]. In its southernmost
part, the Olevano-Antrodoco lineament displays an imbricate fan geometry (Figure 2). The number

of splays, generally trending N-S and isolating thin slices of Miocene carbonates and marls, is variable
from 5 to 1. The lateral continuity of the thrust fault is often interrupted by NW-SE and WNW-ESE
subvertical transfer faults, displaying, respectively, dextral and sinistral strike-slip kinematics (Figure 2b).
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Figure 2. Schematic map of the southernmost sector of the Olevano-Antrodoco thrust fault with sampling localities. The
geological cross sections show the stratigraphic and structural relationships between the Olevano-Antrodoco thrust and
the Frosinone Formation. The stereoplots show (a) dextral transpressive and (b) right-lateral strike-slip faulting.

The hanging wall carbonates and marls are generally steeply dipping to the west, displaying hanging
wall anticline geometries.

Detailed structural analysis allowed us to reconstruct the Olevano-Antrodoco kinematics. The main fault
plane consists of gentle SW-dipping thrust plane with kinematic indicators showing mainly dextral
transpression (Figure 2a). Data from kinematic indicators and slip vectors on fault planes exhibit top-to-NE
slip directions, coherent with an axis of horizontal maximum compression oriented SW-NE.

At the footwall of the thrust fault, the turbiditic sequence gently dips toward W-WSW and NW (Figure 2), and
no overturned footwall synclines were mapped (Figure 2). The footwall damage zone (in the sense of Caine
et al. [1996]) is about 300 m wide and is associated with deformation bands, slip planes, fractures, and
kilometer-scale open folds that fade moving eastward (i.e., away from the thrust surface).
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el : Nwl 3. Sampled Lithologies:
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We analyzed 26 specimens of Miocene
! g foredeep sandstones (Frosinone

= e < Formation) that were sampled at the
footwall of the Olevano-Antrodoco
thrust fault at various distances

(Figure 2). For each sample, we
calculated the stratigraphic distance
from the thrust fault by measuring,
perpendicularly to the bedding attitude,
the distance between the sample
location and the fault trace. Following
Milli and Moscatelli [2000] and based on

Figure 3. (a) Outcrop showing laminated and massive lithofacies of the  pbserved sedimentary features, the
Frosinone Formation. The outcrop is 15 m long and 1 km away from the
thrust front. Cylindrical specimens of (b) laminated and (c) massive sand-
stones, displaying subhorizontal foliation and chaotic fabric, respectively.

—_— N W N
—_— N W A

S

samples were classified as laminated (L)
and massive (M) (Figure 3). Laminated
samples are strongly anisotropic and
consist of light yellow sandstone with
low textural heterogeneity and clear planar bedding in both hand specimens and outcrops. A pervasive
foliation is often visible in thin sections, where grains and clay minerals exhibit a preferred alignment that
results in the lamination visible in hand specimens. Both intergranular and intragranular microcracks were
recognized at the optical microscope scale; grains are generally angular to subrounded, very well sorted, with a
mean size of approximately 0.2 mm (Figures 4a and 4b).

Massive samples are highly heterogeneous, and no lamination can be observed both in hand specimens and
outcrops. Thin section investigation highlighted both intergranular and intragranular microcracks; grains
appear poorly sorted, angular to subrounded, with variable sizes from 2 mm to <0.1 mm (Figures 4c and 4d).
Largest grains are scattered in a matrix of smaller grains and do not show any preferred orientation. The
largest (2 mm sized) grains are lithic fragments of metamorphic and sedimentary rocks or singles minerals
(Figures 4c and 4d). According to Chiocchini et al. [1988], both lithofacies have a composition of about 33%
quartz, 15% feldspar (plagioclase and K-feldspar), 5% lithics fragments (volcanic, metamorphic, and
sedimentary rocks), and 20% mica together with other accessory minerals. The sandstones are cemented by
calcite overgrowths that partially obliterated the primary porosity. According to Cipollari et al. [1993], the
Olevano-Antrodoco thrust acted as an out-of-sequence thrust after the deposition of the Frosinone
Formation sandstones, whose diagenesis and deposition were not affected by thrusting. Moreover, cements
are homogeneously distributed throughout the stratigraphic levels of Frosinone Formation [Chiocchini et al.,
1988], suggesting that with the exception of burial pressure, the boundary conditions during diagenesis were
similar for the entire formation.

Laminated sandstones, close to the fault plane up to a distance of about 300 m, are often characterized by
bands of crushed and comminuted minerals, showing a smaller grain size with respect to the host rock. These
bands sometimes accommodate shear offset (Figure 4e) and are arranged as individual structures (up to

2 mm thick) or clusters (up to 1 cm thick). Cluster structures are made up of many adjacent bands forming
=1 cm thick deformation zones. At the mesoscale, these structures are lighter in color and are characterized
by differential erosion, compared to the host rock. We interpreted these bands as deformation bands [Aydin,
1978], e.g., as the result of strain localization processes [Baud et al., 2000; Baud et al., 2004; Solum et al., 2010;
Wong and Baud, 2012]. Deformation bands are found in a wide range of geological settings [Fossen et al.,
2007] and are often associated with damage zones in granular fault rocks [e.g., Antonellini and Aydin, 1994,
1995; Solum et al., 2010; Ballas et al., 2014]. They are characterized by a marked decrease in porosity and
permeability [Zhu and Wong, 1997; Wong and Baud, 2012]. In the Frosinone Formation, deformation bands
were found only in laminated sandstones (characterized by well-sorted grain size) close to the fault plane,
consistently with the observations of Cheung et al. [2012].
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Figure 4. Thin sections representative of microstructures in the tested materials. (a and b, plane-polarized light) Laminated
sandstones (Ln10 and Ln14) show low textural heterogeneities with preferentially aligned grains reproducing the same
foliation of hand specimens. Both intergranular and intragranular microcracks are present, and minerals are generally
angular to subrounded, very well sorted, and have a mean size of approximately 0.2 mm. (c and d, cross-polarized light)
Massive sandstones (M1 and M4) show high textural heterogeneity, without clear foliation or fabric. Both intergranular and
intragranular microcracks are present, and grains are poorly sorted, angular to subrounded, with variable sizes (from 2 mm
to <0.1 mm), arranged randomly without any internal organization. The largest (2 mm) grains are lithic fragments of
metamorphic and sedimentary rocks or single minerals. (e, plane-polarized light) Example of shear deformation band
developed within fault damage zone. (f, plane-polarized light) Sample Ln2 shows an individual, 1 mm thick, band of
crushed, and comminuted minerals, interpreted as an incipient compaction band.

Given the purpose of defining a general trend of petrophysical properties for the Frosinone Formation, we
did not sample sandstones with deformation bands. Only in sample Ln2, an incipient compaction band,
without any evidence of shear, was observed at the microscale (Figure 4f).

4. Methods

A set of 26 rock specimens was prepared and measured at the HP-HT Laboratory of Experimental Volcanology
and Geophysics of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Rome, Italy. Density, porosity,
P wave velocity, and permeability measurements were conducted on cylindrical specimens 38 mm in
diameter and 40 mm in length, with their end faces ground flat and parallel to better than £0.02 mm. In order
to avoid the effects of atmospheric weathering, we cored the specimens away from weathered surfaces.
For laminated sandstones, measurements were performed on rock samples cored both normal (Ln) and
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l 4444 massive sandstones, measurements
— 8388 : :
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— -— directions, since foliations were absent

in these rocks.

Density measurements were made on

“downstream” pore fluid intensifier 1 300MPa  Samples that were dried in an oven at
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distribution  samples prior the measurements [Glover
“upstream” pore fluid intensifier ¢ plates et al., 1995].
! L sample The volume of interconnected pores
rubber _ i i
B, tic bars = et (the so-called effective porosity) was

measured using a helium pycnometer
(AccuPyc Il 1340). For simplicity, we will

confining refer to the effective porosity as
— fluid

oil reservoir

air driven pump

(oil) “porosity” from here onward.
Initial elastic wave velocity measurements
dv) were performed axially on dry samples
Pc at ambient conditions using the pulse

. transmission technique [Birch, 1960,
Figure 5. Schematic diagram of permeameter/volumometer at the

HP-HT Laboratory of Experimental Volcanology and Geophysics of the 1961]. A 900V pulse generator was
Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Rome, Italy, used for used to excite a 1 MHz resonant
simultaneous porosity, permeability, and acoustic wave velocity measure- frequency piezoelectric transmitting
ments [from Heap et al, 2014al. transducer, and resulting waveforms
were captured using an identical
receiving transducer. After preamplification, signals were recorded and displayed on a digital

storage oscilloscope.

Subsequently, axial P wave velocity measurements were performed at increasing pressure steps by means of a
fluid-medium hydrostatic pressure vessel, equipped with four 1 MHz resonant frequency piezoelectric
transducer crystals, two each for compressional (V,,) and shear (V;) wave velocity measurements. Seismic
velocities were measured under dry and wet (saturated) conditions.

In dry tests, the confining pressure was increased in steps of 5 MPa up to 50 MPa and in steps of 10 MPa from 50
to 100 MPa, with measurements of V, conducted at each step. For V,, the accuracy is estimated as 1-2%. A
schematic diagram of the internal arrangement of the measurement apparatus is shown in Figure 5 [from Heap
et al,, 2014a).

The apparatus is also equipped with two 70 MPa servo-controlled fluid pressure intensifiers that allow
measurements in water-saturated samples at elevated pore fluid pressures. To prepare wet tests, the samples were
saturated under vacuum with distilled water and then inserted in the pressure vessel. The confining pressure was
set at 20 MPa and the pore fluid pressure at 4 MPa in both intensifiers, equivalent to an effective pressure
(confining pressure minus pore pressure, for water-saturated tests) of 16 MPa and kept constant until pressure
equilibrium was reached. Afterward, we imposed a pore fluid pressure difference (1 MPa) between the two
intensifiers (P_up 4 MPa and P_down 3 MPa) and measured permeability at steps of effective pressure of 5 MPa.
Permeability was measured generally for maximum effective pressure of 46 MPa, with the exceptions of samples
(M1 and Ln11), for which effective pressures of 96 MPa were reached. Samples were kept at each confining
pressure step until steady state flow conditions were achieved. We were then able to determine the permeability
at each pressure step from the measured volume flow rates and the sample dimensions, using Darcy’s law.

Two saturated samples were also tested under increasing confining pressure in order to calculate the porosity
variation. For each increment in confining pressure, we measured the volume of expelled water and thus
estimated the decrease in pore volume.
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Table 1. Summary of the Physical Properties of the Different Lithologies Measured at Ambient Pressure (0 MPa) and at High Pressure (100 MPa)?

Sample Bulk Density Porosity Porosityat Vpo MPa Vp100 MPa Stratigraphic

Group Name (g/cm3) (%) (%) (m/s) (m/s) Permeability (mz) Distance (m)
Ln1 2.52 6.74 2429 80
Ln2 2.63 2.63 1.12 4194 4774 1362x10 > 20
ATA1 Lp2 2.64 2.24 1.84 4192 4983 20
Ln3 2.55 5.80 4.89 2544 4122 15
Lp3 2.61 4.14 3907 15
Ln4 2.58 449 3.55 2807 4648 270
Lp4 2.57 4.75 2451 270
Ln5 253 6.89 2441 140
A2A2 Lp5 2.51 7.47 2574 140
Ln6 2.50 7.68 2374 280
Ln7 2.63 2.99 294 3446 4729 210
M1 258 515 471 2549 4685 2197x10 "° 280
Ln8 247 8.40 8.10 2067 3610 560
Ln9 2.62 3.81 3.64 3202 4254 590
Ln10 2.59 5.56 3.68 2408 4059 600
Ln11 2.52 6.89 6.55 3144 4329 3911 % 10715 735
Lp11 2.52 6.12 561 3449 4572 2640x10° "2 735
Ln12 2.56 5.68 4.50 2331 4195 735
B Ln13 2.52 7.26 6.79 2368 3824 735
Ln14 2.58 5.23 5.10 3298 4174 735
Ln15 231 13.83 12.05 1153 3285 840
M2 2.61 4.00 1.25 1808 4387 735
M3 2.57 5.42 4.86 2321 4674 3.020x 10 "° 735
M4 2.78 5.95 561 1960 690
M5 2.57 5.53 4.80 1406 4122 735
M6 2.53 7.12 6.79 927 3870 735

@Porosity is connected porosity, porosity AT is the porosity after tests at high pressure, and Vp is the P wave velocity. Stratigraphic distance is calculated from the
thrust fault by measuring, perpendicularly to the bedding attitude, the distance between the sample location and the fault trace.

5. Results

5.1. Measurements at Ambient Pressure

Bulk densities, connected porosities, and axial P wave velocities measured at ambient pressure are listed in
Table 1. Connected porosities and bulk densities range from 2.2% to 13.8% and from 2.3 g/cm? to 2.6 g/cm?,
respectively. At ambient pressure, parallel laminated samples (Lp) show that P wave velocities are higher than
those of orthogonal samples (Ln) in both dry and saturated conditions (Figure 6a). Generally, laminated
samples show a linear inverse relationship between porosity and axial P waves velocity (Figure 6a) in
agreement with literature data [e.g., Jaeger et al., 2007]. The measurements on massive sandstones show a
comparable, although less constrained, correlation between the axial P wave velocity and porosity

(Figure 6b), and for the same porosity value, they exhibit lower V,, with respect to laminated samples at
ambient pressure.

5.2. Measurements at Elevated Pressure

In order to characterize the physical properties of the Frosinone Formation over the entire range of burial
conditions, laboratory measurements were performed on six samples loaded up to 100 MPa confining
pressure. These samples (Ln12, Ln13, Ln14, M2, M5, and M6) were cored at a stratigraphic distance of about
735 m from the Olevano-Antrodoco thrust fault and far from other secondary structures. P wave velocity
measurements were conducted on dry samples during pressurization to 100 MPa and depressurization to
ambient pressure both for laminated (Figure7a) and massive (Figure 7b) samples. With increasing pressure,
the P wave velocity increases and values obtained during depressurization are always higher than those
recorded during pressurization leading to a strong velocity hysteresis (Figures 7a and 7b).

It is possible to note a different trend between laminated and massive lithofacies. Laminated samples Ln12,
Ln13, and Ln14 exhibit a total change of velocity of 80%, 62%, and 27%, respectively, with increasing pressure
from 0 to 100 MPa, while the velocity variations were higher for the massive samples M2, M5, and M6
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@AG U Journal of Geophysical Research: Solid Earth 10.1002/2014JB011221

P-wave velocity (0 MPa) P-wave velocity (0 MPa)
0 1.000 2.000 3.000 4.000 5.000 6.000 0 1.000 2.000 3.000 4.000 5.000 6.000
| | f | f 14 | L . . f 14
<o
O Parallel samples (dry) O Massive Samples (dry)
@ ® Parallel samples (wet) IEI = Massive Samples (wet)
¢ Perpendicular samples (dry)
#  Perpendicular samples (wet) [~ 12 L12
r10 r10
i Lg & L8 2
%o g g
o ¢ & g &
o e -6 3
pe o
A3 é o ",
& o
o 2 4 o 4
<
°
[ 2 2

Figure 6. Variation of axial P wave velocity at ambient pressure as a function of porosity for (a) laminated and (b)
massive samples.

(1439%,193%, and 317%, respectively). For both laminated and (more evidently) massive samples, the velocity
increase mostly occurred at low confining pressures, between 0 and 50 MPa. At confining pressures above
50 MPa, the low-porosity samples (M2 and Ln14) had relatively high P wave velocities, while the high-porosity
ones (M6 and Ln13) were associated with lower velocities (Figures 7a and 7b).

5.3. Comparison Between Laboratory Data and Sonic Log Measurements

To test the reliability of our laboratory data for interpreting natural processes, we analyzed sonic logs of

P wave velocities recorded from two boreholes (Frosinone 1 and Pilone 1), traversing the same stratigraphic
unit (Frosinone Formation) some tens of kilometer southeast of the sampled area (see Figure 1 for well
locations). We digitalized the sonic logs from the database of ViDEPI project (Ministero dello Sviluppo
Economico, Italy; http://unmig.sviluppoeconomico.gov.it/videpi/) in order to infer digital velocity profiles
from the interval transit times of sonic logs by using a sampling interval of 10 m.

The Frosinone 1 borehole penetrated the Frosinone Formation from about 170 to 510 m depth. The
stratigraphic log indicates the presence of quartz-rich sandstones in alternance with levels of siltstones and
claystones. The sonic log shows an average velocity of 3.4 km/s.
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Figure 7. Variation of axial P wave velocity for representative samples of (a) laminated and (b) massive sandstones in dry
conditions measured during both pressurization (solid symbols, up) and depressurization (open symbols, down) cycles. For
all samples, the P wave velocities measured during depressurization are higher than those obtained during pressurization,
suggesting that inelastic compaction is induced in the samples during pressurization up to 100 MPa.
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Figure 8. Comparison between synthetic V,, depth profile (calculated
from the laboratory P wave velocities during pressurization and depres-
surization phases) and in situ V,, measurements from sonic logs through
the Frosinone Formation at the Frosinone 1 and Pilone 1 boreholes. See
Figure 1 for the borehole locations.

The Pilone 1 borehole penetrated the
Frosinone Formation from about 160 to
550 m depth. The stratigraphic log
shows the same lithological features
observed for the Frosinone 1 borehole,
and the sonic log is characterized by an
average velocity of 3.2 km/s.

Synthetic profiles of seismic P wave
velocity with increasing depth were
calculated by using our average
laboratory values from pressurization
and depressurization cycles, assuming a
mean lithostatic stress gradient of

25 MPa/km (Figure 8). Comparing
laboratory and in situ velocities is
difficult owing to differences in
attenuation caused by different
acquisition frequencies [Batzle et al.,
2006; Chapman et al., 2006; Adam et al.,
2009; Thakur and Rajput, 2010, and
references therein]. Tisato and Madonna

[2012] showed that attenuation occurs if (1) fluids are present and (2) frequencies are higher than 10Hz in
rock samples hydrostatically confined at pressure lower than 2 MPa. Attenuation decreases progressively
for confining pressures between 2 and 15 MPa. Above 15 MPa, no attenuation occurs irrespective of presence
of fluids or frequency. Comparing laboratory and boreholes P wave velocity profiles, we used only oven-dried
laboratory measurements (acquired at frequency = 1 MHz) to exclude attenuation problems. The depth
steps of the borehole measurements (acquired at frequency = 10 Hz) corresponded to increments in
confining pressure of >2 MPa and the maximum depth to about 13 MPa. Following Tisato and Madonna
[2012] under these conditions, the discrepancy between laboratory data (dry samples) and in situ velocities

(at T0 Hz and up to 13 MPa) should be reasonably low.

O  Group Al
164 O Group Az
<& Group B
M 0,
14 4 -0~ Average porosity (%) o
~ 12 4
X
N~ 10 4
&
= o
o 84 o
= u]
S g O ¢
~ 6o > o §
40 E o> o
[m]
2 - 8
0 T T T T
0 200 400 600 800

Stratigraphic Distance (m)

Figure 9. Variation of connected porosity as a function of the distance
from the fault plane. Samples are divided into two groups: samples at a
distance smaller than 300 m (group A) and samples at a distance larger
than 300 m (group B). Group A was divided in two subgroups: samples in
proximity of the fault, group A; (<50 m) and samples within the fault
zone, group A, (>50m and <300 m). The average effective porosity,
calculated for each group, decreases toward the fault plane.

The comparison between synthetic and
borehole profiles (Figure 8) demonstrate
that borehole velocities are higher
than laboratory values obtained during
pressurization but closely match

those velocities measured during
depressurization. The lower velocities
recorded at zero confining pressure at
the onset of the test, respect to the in
situ measurements extrapolated to the
surface, is likely related to exhumation-
related processes (e.g., long-term stress
relief and associated crack reopening),
while the velocity pressure sensitivity
allow us to exclude weathering effects
[Morrow and Lockner, 1994].

We conclude that (1) in situ
measurements show a slight increase in
velocity with increasing depth and (2)
the in situ velocities are in the range of
laboratory data recorded during
depressurization cycle. This behavior
confirms that compaction and
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Figure 10. Relative changes in porosities as a function of effective pres-
sure up to about 50 MPa, simulating up to 2 km of sedimentary burial
[Corrado, 1994]. Porosity decreases by 4.4% and 5.7%, respectively, for
Ln9 and M4 with increasing effective pressure. These values are in
agreement with data for sandstones by Benson et al. [2005].
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Figure 11. Variation of porositiy (open symbols) and axial P wave veloci-
ties measured under dry condition (solid symbols) during increasing
effective pressure both for (a) massive and (b) laminated samples.
Porosity decreases and axial P wave velocity increases for increasing
pressure. The change in porosity mirrors the change in velocity. Porosities
at ambient pressure of samples M4, M2, and M5 are, respectively, 5.9%,
4%, and 5.5%. Porosities of samples Ln9, Ln13, and Ln12 are, respectively,
3.8%, 7.3%, and 5.7%.

subsequent porosity decrease directly
depend on the overburden pressure
experienced by the rock volume in
particular in the early stages of burial
(first 2 km). This is in agreement with
previous work [e.g., Corrado, 1994],
indicating that all drilled rocks were
previously buried at deeper depths and
velocities hysteresis is recorded also in
borehole sonic log.

5.4. Evolution of Sandstone
Petrophysical Properties With the
Distance From the Fault

With the aim of determining the
evolution of petrophysical properties of
sandstones with the stratigraphic
distance from the fault plane, the whole
data set was divided in two groups:
group A comprised samples collected
within the 300 m thick footwall damage
zone, whereas group B comprised
samples from larger distance. Group A
was further divided in two subgroups
accounting for samples taken in
proximity of the fault plane, group A,
(distance < 50 m), and samples from
the damage zone, group A,

(50 m < distance < 300 m) (Figure 9).

The porosity values are characterized
by high variability as commonly
observed for natural systems in both
laboratory experiments [e.g., Allen and
Allen, 2005] and from borehole data
[e.g. Bally et al., 1986; Pierdominici et al.,
2011]. In order to define a trend for the
whole lithology, we calculated the
average porosity of groups A;, A,, and
B from porosity values of Table 1.
Group A, shows an average porosity of
3.7% with a minimum value of 2.2%
(sample Lp2), corresponding to the
lowest value of the whole data set.
Conversely, average porosities for
group A, and B are, respectively, 5.8%
and 6.5%. In spite of the great textural
heterogeneity of Frosinone Formation,
these variations highlight a relative
porosity decrease of about 43%

(from 6.5% to 3.7%) moving from the
undeformed sandstones toward

the sandstones close to the fault

plane (Figure 9).
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Figure 12. Variation of (a and b) permeabilities and (c and d) axial P wave velocities under both (e) wet and (f) dry
conditions as a function of pressure and distance from the fault plane. Samples in proximity of the fault (group A) show
lower permeabilities and higher P wave velocities than those sampled at larger distances (group B).

For two samples (M4 and Ln9), we also investigated the porosity change with increasing effective pressure.
Porosity measurements were made at each increment in effective pressure, from 0 to 54 MPa, in order to
simulate the maximum burial depth of 2 km [Corrado, 1994]. Results indicate that with increasing effective
pressure, porosity decreases by 5.7% and 4.4%, respectively, for samples M4 and Ln9, in agreement with the
porosity range reported by Benson et al. [2005] (Figure 10). These changes in porosities were negatively
correlated with the evolution of P wave velocities both for massive (Figure 11a) and for laminated samples
(Figure 11b). Due to the effect of microcracks closure, the largest porosity and P wave velocity changes are
recorded in a pressure interval spanning between 0 and 50 MPa.

Figure 12 shows that the permeability measurements of group A (Figure 12a; samples Ln2 and M1) are
generally lower than that of group B (Figure 12b; samples M3, Lp11, and Ln11), in agreement with porosity
measurements. In particular, sample Ln2 shows the lowest initial permeability and porosity, respectively, of
14x107 "> m? and 2.6%; in contrast, sample Ln11 shows the highest initial permeability and porosity,
respectively, of 3.9x 10™'> m? and 6.9%.

Accordingly, P wave velocities of group A exhibit values higher than those measured for group B, both under
saturated (Figures 12c and 12d) and dry conditions (Figures 12e and 12f). During depressurization cycle, the
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permeability values and P wave velocities are invariably lower and faster than those measured during
pressurization cycle. According to Okazaki et al. [2014], the porosities measured at ambient pressure after
pressure tests are lower than those measured prior to the tests. This is in agreement with the hysteresis
inferred from both velocity and permeability analyses (Table 1).

6. Discussion

Although all the analyzed samples pertain to the same rock formation, systematic petrophysical differences
have been observed. These differences are mainly related to (1) the original depositional conditions that
produced massive and laminated textures and (2) the distance from the Olevano-Antrodoco thrust fault.

As point (1) is concerned, our measurements conducted under ambient conditions show a linear inverse
relationship between porosity and P wave velocity [e.g., Chang et al., 2006] for both laminated (Figure 6a) and
massive (Figure 6b) samples; according to Mavko et al. [2009], sandstones have lower P wave velocity with
increasing porosity and vice versa. This is consistent with the observation that the V,, behavior is essentially a
measure of the bulk modulus of the rock (solid matrix, microcracks, and pores). Consequently, an increase of the
number of microcracks corresponds to a decrease in P wave velocity [e.g., Mavko et al., 2009]. However, for
comparable porosity, massive sandstones exhibit lower V, with respect to laminated samples at ambient
pressure. This is due to the distinct microstructural characteristics of sandstones. Examined under the optic
microscope, massive samples show poorly sorted grains textures, lacking of internal organization, with large
grains scattered in the matrix (Figures 4c and 4d). Massive samples are characterized by a larger number of
microcracks compared to laminated samples. At ambient pressure, these microcracks were open and reduced
significantly the P wave velocity with respect to laminated samples at the same conditions.

Seismic anisotropy in laminated samples is demonstrated by the fact that P waves velocities in Lp samples are
faster than those measured in Ln samples. At ambient pressure, both water-saturated Lp and Ln samples
show P wave velocities higher than those measured on dry samples. Similar results were obtained for high
effective pressure, with saturated samples still exhibiting slightly higher P wave velocities. However, for these
samples, the total change in P wave velocity with increasing effective pressure is much smaller (between 6%
and 12%). At low effective pressures, microcracks were open and water-filled. Consequently, V,, was
significantly higher in saturated rocks than in dry rocks. By contrast, at effective pressure higher than 50 MPa,
the microcracks were essentially closed, implying a smaller difference in V, as observed for other lithologies
[Trippetta et al., 2010; Heap et al., 2009].

The discussed changes in seismic wave velocity are consistent with the variation of the lithological nature of
the rock samples. For laminated samples, most of the velocity increase occurred at pressures below 50 MPa,
with the rate of increase slowing markedly above this value.

At low pressures, seismic wave propagation is heavily influenced by cracks, since microcraks can still be open
below 50 MPa [e.g., Trippetta et al., 2010]. For massive samples, we noted a larger and step-like change in
velocity at pressure between 0 and 50 MPa with respect to laminated samples. From these results, it can be
inferred that massive sandstones contain a significantly larger number of microcracks with respect to
laminated samples as confirmed by microstructural observations (Figure 4).

The second factor controlling the petrophysical properties of the Frosinone Formation is the stratigraphic
distance from the Olevano-Antrodoco thrust fault. It is worth noting that at the footwall of the Olevano-
Antrodoco fault, the Frosinone Formation dips toward W-WSW and NW (Figure 2). Therefore, moving from E
to W, younger strata progressively crop out. Due to the decrease in burial depth, permeability and porosity
should increase, while P wave velocity should decrease. On the contrary, laboratory experiments revealed a
decrease of porosity from 6.5% (group B) to 3.7% (group A,) toward the Olevano-Antrodoco thrust fault
(Figure 13). Moreover, the average permeability decreased, and average P wave velocity increased markedly
from E to W (Figure 13). This can be interpreted as the effect of tectonic load caused by thrusting, where
tectonic compaction overprinted the original sedimentary compaction, inverting the original permeability,
porosity, and velocity trends.

At a more detailed scale, the structural control of the Olevano-Antrodoco thrust fault is suggested by the
development of deformation bands [e.g., Antonellini and Aydin, 1994, 1995; Eichhubl et al., 2010; Solum et al.,
2010]. Several studies demonstrated that close to a fault plane and within the damage zone, where
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ﬂ = deformation bands are well developed,
32 é permeability and porosity are lower
E s :; than in the undeformed rocks [e.g., Zhu
e T8 and Wong, 1997; Solum et al., 2010;
% L4 § Wong and Baud, 2012]. In our case, these
g % observations are confirmed by sample
3 20 i Ln2, the only sample showing an
| i g E incipient compaction band and

characterized by among the lowest
permeability and porosity values of the
data set. In summary, our data showed a
consistent kilometer-scale trend
characterized by a decrease in porosity
and permeability and an increase in P
wave velocity approaching the fault
plane (Figure 13a). These new data
corroborate the observations from
previous studies dealing with the
behavior of sandstone-bearing faults
[e.g., Antonellini and Aydin, 1994, 1995;
Solum et al., 2010; Ballas et al., 2014].

Porosity (%)

6.1. Paleostress Reconstruction

C In this section, we propose a new
6x 10 'Pa methodology to calculate differential
= o o'l = 87.4 MPa paleostress needed to reach rupture
A= Pfipgz =04 R Al g3 =226 MPa it humed faults usi
OQ o conditions on exhumed faults using
4| 6\0&‘ A, g,; - ‘2133 1\1\2]}:2 laboratory porosity measurements. The
(o \@/‘9 A B o1=0n= p'rocedure is desc.rlbed graphically in
5| < 30.1 MPa Figures S1a-S1d in the
supporting information.
The first step (Figure S1a in the
1'0 1‘2 14 supporting information) consists in
O, x 107 Pa assessing the porosity of sediments at the

time of their deposition (initial porosity).
Figure 13. (a) Variation of petrophysical properties (average permeability  The initial porosity is calculated for
and average dry P wave velocity at 0 MPa, average measured porosity, sediments cropping out =1 km away
and theoretical porosity) as a function of the distance from the Olevano- from the Olevano—Antrodoco thrust fault
Antrodoco thrust fault (OATF). (b) Structural and stratigraphic relation- . . !
ships between OATF and Frosinone Formation. (c) Mohr diagram showing ~ SINc€ the sediments closer to the fault
the state of stress (effective stresses) close (point A;) at about 200 m plane were likely affected both by
(point A,) and at about 1 km away (point B) from the fault plane. sedimentary and tectonic loads.
According to Corrado [1994], the
maximum burial of footwall sediments of the Frosinone Formation at a distance of =1 km from the thrust fault
(point B, Figure 13b) was about 2 km. Using this constraint, the initial porosity of the Frosinone Formation was
calculated using the exponential porosity-depth relation [Athy, 1930]:

$ = doexp™™ M

where ¢ is the porosity at depth x (km), b is the starting porosity of sediments, and c is an experimentally
derived compaction coefficient. We assumed a compaction coefficient ¢ equal to 0.27, typical for sandstones
[Sclater and Christie, 1980]. From laboratory data, the average porosity of these sediments is ¢ =6.5% (Figure 9),
for a burial depth of 2 km. Using equation (1), we calculated an initial (preburial) porosity ¢o=11.1%.

In the second step (Figure S1b in the supporting information), we calculated the maximum burial depth of
point A; (close to the fault; Figure 13b) before the onset of faulting, in order to separate the effect of
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sedimentary load from the subsequent tectonic load. From field data, the average dip angles of the Frosinone
Formation and the fault plane are, respectively, about 30° and 47°. These geometric relationships suggested
that point A, was, stratigraphically, 500 m shallower than point B (Figure 13b). As a consequence, the
maximum burial depth of point A; was about 1500 m. Using equation (1), we calculated that the porosity of
point A, related only to sedimentary load was about 7.4% (Figure 13a). It is worth noting that this value is
higher than the porosity measured in laboratory for group A; (3.7%). The difference (Ad =3.7%, equal to
inferred porosity minus calculated porosity) is thought to be caused by the tectonic load associated with the
activity of the Olevano-Antrodoco thrust fault (Figure 13a).

In the third step (Figure S1c in the supporting information), we calculated the stress needed to reduce
porosity of point A; from the theoretical value of 7.4% to the measured value of 3.7%. To this aim, we

In(-&
rearranged equation (1) as x= l}oz; by substituting x from the relation ¢ = pgx and rearranging, we obtained

_n(&)

—C

o Pg ()
where &y is the porosity related only to sedimentary load (7.4%) and ¢ is the measured porosity (3.7%)
(Figure 13a), p is the density (9/cm®) of sediments, and g is the gravity acceleration. Assuming p=2.56 g/cm?
and o =64.8 MPa. This value represents the maximum differential stress (Ao) that acted close to the fault
plane (tectonic load) and reduced the porosity from 7.4% to 3.7% at a depth of 1500 m (point A;; Figure 13a).
Applying the same procedure to point A, and B, we obtained, respectively, Ac=19.7 MPa and Ac =0 MPa
(no decrease in porosity due to tectonic loading).

In the final step (Figure S1d in the supporting information), we inferred the mechanical conditions of the
system far (point B), at intermediate distance (point A,) and close (point A,) to the fault plane. First, we
calculated 63 and o1. Our field data and previously published data [Coli, 1981; Cavinato et al., 1986; Calamita
and Deiana, 1987; Calamita et al., 1987; Corrado, 1995; Turtt et al., 2013] indicated a compressional regime
during the slip of the Olevano-Antrodoco thrust fault. This implies a horizontal o1 oriented SW-NE and a
vertical 63. By using the density-depth relation, o = pgx, it results that, 3 =37.7 MPa as it corresponds to the
vertical stress that acted at point A;. Consequently, o1, calculated as 1= (03 + Ac) =(37.7 MPa + 64.8 MPa),
is about 102.5 MPa (Figure S1d in the supporting information). The same procedure was repeated for

point A, (burial depth of 1650 m, Ac =19.7 MPa, 61 =61.1 MPa, and 63 =41.4 MPa) and for point B (burial
depth of 2000 m, 61 =03 =50.2 MPa, since Ag =0) (Figure 13c).

In absence of evidence for fluid overpressure, a hydrostatic fluid pressure Pr (A = 0.4, where A= P¢/pgx) was
assumed while reconstructing the paleostress state (Figure 13c); Py resulted to be 15.1 MPa, 16.6 MPa, and
20.1 MPa for points A;, A,, and B, respectively. The effective stresses (¢’ = ¢ — Py) calculated for points A;, Ay,
and B are shown in Figure 13c.

Studies on friction by Byerlee [1978] considered numerous types of rocks and resulted into a range of
coefficients of friction (1) spanning from about 0.6 to 0.85. Following Byerlee [1978], accurate studies by Rutter
and Glover [2012] suggested u =0.71 for porous sandstones. We adopted this coefficient of friction in our
paleostress reconstruction, assuming the Amontons criterion (cohesion C=0), adequate for multiple
episodes of reactivation of a fault. Under these conditions, failure was reached at point A;; the Mohr circle
is tangent to the failure envelope (Figure 13c), while stable conditions characterized points A, and B
(Figure 13c). These results are fully consistent with geological observations and support the validity of the
procedure. To check the stability of our calculations, a sensitivity analysis was performed on the paleostress
reconstruction. We used the highest and the lowest porosities obtained for the samples of group A;. This
analysis showed that varying porosity throughout the entire range of measurements, the Mohr circles for
point A, reach failure conditions within the range of friction proposed by Byerlee [1978] (see Figure S2a in
the supporting information). Moreover, we tested the effect of fluid overpressures on the stability of our
results. We found that if hydrostatic fluid pressure is increased by as much as 5 MPa, equivalent to A=0.52, the
Mohr circles for point A; reach failure conditions within the range of friction proposed by Byerlee [1978]
(Figure S2b in the supporting information). This denoted a good stability of our results and confirmed the
reliability of the proposed procedure.

SMERAGLIA ET AL.

©2014. American Geophysical Union. All Rights Reserved. 9091



@AG U Journal of Geophysical Research: Solid Earth

10.1002/2014JB011221

Acknowledgments

Simone Fabbi and Salvatore Milli are
thanked for their fruitful discussions.
Domenico Mannetta is thanked for his
help during the thin section preparation.
We thank MJ. Heap and N. Tisato for the
critical reviewing of this manuscript.

Y. Bernabe is thanked for the constructive
comments, which have been fundamental
to improve the paper. Financial support
from Progetti di Ateneo (Sapienza) 2012
(project “Fratturazione e stato termico in
reservoir esposti, analoghi a quelli sepolti
in Pianura Padana e Adriatico” led by
Carminati Eugenio) is acknowledged. S.
Mollo was supported by the ERC Starting
Grant 259256 GLASS project. The research
activities of the HP-HT laboratory of the
INGV were supported by the European
Observing System Infrastructure Project
(EPOS). The data shown in Figures 6-136
to 13 can be requested from the
corresponding author.

7. Conclusions

Laboratory measurements conducted on sandstones sampled at different distance from the Olevano-
Antrodoco thrust fault and their comparison with analogue data from boreholes drilled in the same lithology
allowed us to draw the following conclusions:

1. At ambient pressure, a linear inverse relationship was observed between porosity and P wave velocity in
both laminated and massive samples.

2. With increasing confining pressure (from 0 to 100 MPa) under dry conditions, the average P wave velocity
increased about 60% in laminated samples and about 200% in massive samples. The largest part of the
velocity increase occurred in the pressure range between 0 and 50 MPa. At 0 MPa, the average P wave
velocities for laminated and massive samples are about 2.5 km/s and 1.4 km/s, respectively. At 50 MPa and
100 MPa, the average P wave velocities are about 3.6 km/s and 4.1 km/s for both lithologies.

3. P wave velocities of boreholes logs matched well with the ultrasonic laboratory measurement measured
during the depressurization cycle.

4. Permeability values ranged between 1.4x 107> m? and 3.9x 107> m? and were positively correlated
with porosity values that spanned from 2.6% to 6.9%.

5. A constant decrease in porosity and permeability and an increase in P wave velocity are observed toward
the Olevano-Antrodoco thrust fault. This allowed us to infer that the tectonic load increased the original
sedimentary and diagenetic compaction of sediments, changing the petrophysical properties.

Finally, the mechanical reconstruction derived from inelastic compaction in the proximity of the fault plane
indicated that the fault reached the mechanical condition for rupture in a compressive regime at a depth of
1500 m with a differential stress of 64.8 MPa.
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