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Abstract 

High-resolution, single-channel seismic and multibeam bathymetry data collected at the 

Amendolara Ridge, a key submarine area marking the junction between the Apennines 

collision belt and the Calabrian subduction forearc, reveal active deformation in a supposedly 

stable crustal sector. New data, integrated with existing multichannel seismic profiles 

calibrated with oil-exploratory wells, show that middle to late Pleistocene sediments are 

deformed in growth folds above blind oblique-reverse faults that bound a regional pop-up. 

Data analysis indicate that ~10 to 20 km long banks that top the ~80 km long, NW-SE 

trending ridge are structural culminations above en-echelon fault segments. Numeric 

modeling of bathymetry and stratigraphic markers suggests that three 45°-dipping upper 

crustal (2-10 km) fault segments underlie the ridge, with slip rates up to ~0.5 mm/yr. 

Segments may be capable with M~6.1-6.3 earthquakes, although un unknown fraction of 

aseismic slip undoubtedly contributes to deformation. The fault array that bounds the 

southern flank of the ridge (Amendolara Fault System, AFS) parallels a belt of Mw<4.7 

strike-slip and thrust earthquakes, which suggest current left-oblique reverse motion on the 

array. The eastern segment of the array shows apparent morphologic evidence of deformation 

and might be responsible for Mw≤5.2 historic events. Late Pliocene-Quaternary growth of the 

oblique contractional belt is related to the combined effects of stalling of Adriatic slab retreat 

underneath the Apennines and subduction retreat of the Ionian slab underneath Calabria. 

Deformation localization was controlled by an inherited mechanical interface between the 

thick Apulian (Adriatic) platform crust and the attenuated Ionian basin crust.  

 

Key points 

High-resolution marine geophysics data document active oblique contraction  
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Keywords: seismic reflection profiles, active fault-related folds, blind reverse-oblique fault 

segments modeling, Ionian Basin, southern Italy 



©2014 American Geophysical Union. All rights reserved. 

1. Introduction  

The characterization of active structures within orogens with low contemporary 

displacement rates is a difficult task because of the common lack, in the subaerial setting, of a 

suitable geomorphologic and stratigraphic record of deformation. Within submarine orogenic 

belts, on the contrary, high-resolution marine geophysical data provide a valuable tool to help 

deciphering the recent and current deformation pattern [e. g. Barnes and Nicol, 2004; 

Okamura et al., 2005; Cormier et al., 2006; Nodder et al., 2007; Di Bucci et al., 2009; 

Polonia et al., 2012; Goldfinger et al., 2012]. 

These difficulties and opportunities are typified in the area of southern Italy, where 

rapid Neogene north-easterly migration of the Apennines collision belt toward the Adriatic-

Apulian foreland and southeastward emplacement of the Calabria forearc sliver toward the 

Ionian basin [Figures 1a, 1b; Patacca et al., 1990; Faccenna et al., 2001; Polonia et al., 

2011] contrasts with the modern deformation characterized by dominant hinterland extension 

and quiescent frontal thrust belt activity [Pondrelli et al., 2006; D’Agostino et al., 2011]. 

The seaward continuation of the Apennines belt in the Taranto Gulf, a major 

embayment of the Ionian Sea, is represented by the >80 km long Amendolara Ridge (Figure 

1a). Although workers have suggested that the ridge has grown as a result of Pliocene-

Quaternary transpressional or oblique-reverse displacement [Del Ben et al., 2007; Ferranti et 

al., 2009], detailed images of the recent tectonic activity are lacking. 

The oceanographic cruise Teatioca_2011 was purportedly devoted to acquire high-

resolution geophysical data on the Amendolara Ridge in order to demonstrate the occurrence 

and mode of recent tectonics. Results of the cruise support the hypothesis that deformation is 

occurring today beneath the ridge and is accommodated by growth of fault-propagation folds 

above oblique thrust ramps. The high-quality datasets allow investigation how relatively 

small but detectable deformation is accommodated by the several segments composing the 

system. When integrated with existing multi-channel seismic (MCS) profiles, deep borehole 

logs and seismicity data, the new dataset allows the compilation of a feasible model of active 

crustal deformation in the regional tectonic context. 

Documentation of active deformation beneath the Amendolara Ridge carries important 

seismotectonic implications. This part of southern Italy is characterized by a low level of 

historic and instrumental seismicity when compared to the hinterland extensional province, 

and is considered tectonically stable by most researchers [e. g. Pondrelli et al., 2006; 

D’Agostino et al., 2011, Pierdominici and Heidbach, 2012; Presti et al., 2013]. Indeed, the 

region suffered from moderate but locally damaging earthquakes caused by debated or 



©2014 American Geophysical Union. All rights reserved. 

unknown sources [DISS Working Group, 2010]. Characterization of the proper geometric and 

segmentation model for the Amendolara Ridge is thus vital to better assess the seismic hazard 

of this populated coastal area of southern Italy. 

Detailed characterization of the crustal deformation pattern at the Amendolara Ridge 

also provides quantitative information to construct models of regional tectonism. We show 

that Quaternary oblique contraction occurs behind the frontal thrust of the Apennines and 

hints at a complex interaction between the Apennines and Calabrian Arc. Rapid Miocene-

Pliocene north-east motion of the Apennines thrust belt evolved during eastward roll-back of 

the Adriatic slab [Malinverno and Ryan, 1986; Patacca et al., 1990]. By the early 

Pleistocene, stalling of slab roll-back beneath the Apennines is testified by the cessation of 

frontal thrust displacement [Hippolyte et al., 1994; Patacca and Scandone, 2007]. During 

Pliocene-Quaternary, however, displacement of the Calabria subduction forearc still occurred 

[Polonia et al., 2011].  

The study area lies at the transition between the Apennines and Calabria and has the 

potential to preserve the record of the complex interaction between the two segments of the 

central Mediterranean orogen. Development of the Amendolara Ridge during late stages of 

Apennines tectonism may hint at an oblique convergence between different crustal blocks 

underlying the Ionian and Adriatic seas (Figure 1b). Overall, results reported here highlight 

the role of inherited crustal weaknesses in driving localization of deformation. 

 

2. Regional tectonic setting. 

The Amendolara Ridge floors the southern Taranto Gulf at the transition between the 

Southern Apennines and Calabrian Arc segments of the central Mediterranean orogen 

(Figures 1a, 1b). Growth of the Apennines and Calabrian belts occurred during Neogene 

west-directed  subduction and east-directed roll-back of Adria, a lithospheric block or micro-

plate formerly connected to north Africa that drifted away from it during the Mesozoic 

[Malinverno and Ryan, 1986; Gueguen et al., 1998; Faccenna et al., 2001; Catalano et al., 

2001]. The Adria plate is composed of two dissimilar crustal sectors, as reflectd in the 

bathymetry (Figure 1b). Whereas the shallow Adriatic Sea region to the northeast is floored 

by continental crust, the deep Ionian Sea to the southwest is thought to lay upon thinned 

continental or oceanic crust related to stretching and rifting [De Voodg et al., 1992; Catalano 

et al., 2001]. The margin between the two crusts lies beneath the Ionian Sea and projects to 

the northwest in Calabria, underneath the accretionary wedge (Figures 1a and 1b). The paired 

margin between Ionian crust and African continental crust is located on the Sicily eastern 
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slope (Figure 1b). 

The southern part of the Adriatic continental block, which crops out in the Apulia 

region of southern Italy, is rimmed to the east by the west-verging Dinarides, Albanides and 

Hellenides, and to the west by the east-verging Apennines (Figure 1b). The Adriatic sector 

served as a foreland for both fold and thrust belts during their Neogene emplacement [Roure 

et al., 1991; Menardi-Noguera and Rea, 2000; Nicolai and Gambini, 2007]. Conversely, the 

stretched and rifted Ionian block represents the foreland for south-directed motion of the 

Calabrian forearc terrane and of its frontal accretionary wedge [Malinverno and Ryan, 1986; 

Pepe et al., 2010; Polonia et al., 2011].  

Rapid roll-back of the Ionian and southern Adriatic sectors of Adria, and related 

orogenic migration are thought to have occurred during Miocene-Pliocene, but during the 

Quaternary, displacement rates slowed substantially both in the Apennines and in Calabria 

[Faccenna et al., 2001]. Today, only limited subduction of the seismically active part of the 

Ionian slab beneath Calabria (Figure 1b) is suspected [D’Agostino et al., 2011], with active 

shortening taken up by outward motion of the accretionary wedge in the deep Ionian Sea 

[Polonia et al., 2011]. In the Southern Apennines, motion of the frontal thrust belt ceased 

during early Pleistocene as the front was buried beneath the western margin of the Bradano 

foredeep basin [Figure 1a; Patacca and Scandone, 2007]. Offshore, motion of the Apennnies 

thrust front submerged beneath the Taranto Gulf (Figure 1a) is suspected but poorly defined 

[Butler, 2009; Volpi et al., 2011]. To the east, the fronts of the Dinarides, Albanides and 

Hellenides are seismologically and geodetically active [Jouanne et al., 2011]. 

In the western or hinterland sector of the Apennines and Calabria, Pliocene demise of 

contraction was replaced by extensional faulting related to stretching in the Tyrrhenian back-

arc basin [Figures 1a, 1b; Patacca et al., 1990; Hippolyte et al., 1994; Monaco et al., 1998; 

Spina et al., 2009] and to uplift of the mountain belt [Westaway, 1993; Ferranti and Oldow, 

2005]. An array of normal faults is traced along the axis of the chain (Figures 1a, 2), and 

shows geologic, seismologic and geodetic evidence of activity [Papanikolaou and Roberts, 

2007; Ferranti et al., 2014]. 

Since middle Pleistocene, the coastal sector of the Apennines abutting the Ionian Sea 

has experienced vigorous uplift (~1 mm/a and locally more) [Westaway, 1993; Cucci and 

Cinti, 1998; Ferranti et al., 2009; Santoro et al., 2009; 2013; Caputo et al., 2010]. Uplift is 

manifested by staircases of raised paleo-shorelines, whose deformed profiles embeds both a 

long- and a short-wavelength component.  Whereas the long-wavelength component is 

attributed to deep-sourced, regional uplift of southern Italy, the short-wavelength component 
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is argued to reflect local folding and faulting [Ferranti et al., 2009; Caputo et al., 2010; 

Santoro et al., 2013]. 

Based on morphotectonic and structural data, Ferranti et al. [2009] contended that 

middle-late Pleistocene terrace folding along the flanks of the Pollino and Valsinni ranges 

west of the Amendolara Ridge (Figure 2) was caused by motion on underlying blind 

transpressional faults. The traces of southwest-directed oblique-reverse faults are located at 

the southern front of the Pollino mountain range [Monaco et al., 1998; Ferranti et al., 2009]. 

On the opposite northeast-directed blind thrusts bound to the north the Valsinni Ridge (Figure 

2), which grew during the early Pleistocene [Hippolyte et al., 1994; Patacca and Scandone, 

2007]. Fault numerical modeling of the deformed marine terraces [Santoro et al., 2013] 

suggests active uplift of two opposite-dipping fault-propagation folds linked to blind oblique-

thrust ramps located underneath the coastal ranges (Figure 2).  

 

3. Structural framework of the Taranto Gulf. 

The Taranto Gulf can be divided into three main morpho-structural sectors. The north-

eastern sector has a well-developed shelf, with a smooth morphology representative of the 

foreland area (Figures 1a, 1c). It is floored by the western part of the Apulian Swell, which is 

an NW-SE elongated ridge culminating with the Apulian peninsula (Figure 1c). The swell is 

made of an ~6 km thick Mesozoic-Cenozoic carbonate platform succession resting on an ~35 

km thick crust [Aroux  et al., 1999; Doglioni et al., 1999]. 

The central sector has a very narrow shelf incised by a deep trough (the Taranto Valley; 

Figures 1a, 1c, 2), which is located at the foot of the frontal thrust belt and hosts the 

submerged part of the Apenninic foredeep basin [Senatore et al., 1988]. 

The southwestern sector is also floored by a narrow shelf and by the slope to the Ionian 

Sea. This sector is characterized by ridges and intervening basins (Figures 1c, 2) that are the 

morphologic expression of imbricates and folds of the Apennines thrust belt [Butler, 2009; 

Volpi et al., 2011]. The Apulian carbonate platform, lying to the northeast in the Apulian 

Swell, plunges to the southwest underneath the submerged foredeep basin and the thrust belt 

(Figure 1c). The Apulian carbonates can be traced west until beneath the Amendolara Ridge, 

and are lost farther west under the northern Calabria coast. High-penetration seismic 

reflection profiles coupled with oil-exploratory wells show that the Apulian platform rocks 

are involved in thrusting beneath the frontal belt of the Apennines both on-land and offshore 

[Menardi-Noguera and Rea, 2000; Nicolai and Gambini, 2007; Ferranti et al., 2009; Butler, 

2009], where they form structural highs and lows (Figure 2). 
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Bathymetric data and seismic reflection profiles in the southern Taranto Gulf 

demonstrate the offshore continuation of the structures mapped on-land. The seaward 

projection of the Pollino and Valsinni structural highs coincides with the Amendolara Ridge 

(Figure 2). Offshore the Sibari Plain, the Sibari-Corigliano Basin is filled locally by >2.5 km 

of Pliocene-Quaternary deposits and parallels the steep southern scarp of the Amendolara 

Ridge (Figure 2). Seismic reflection profiles across the Sibari Basin and Amendolara Ridge 

suggest that the Miocene-Pliocene thrust belt is offset by deeper faults which cut across the 

underlying Apulia unit [Del Ben et al., 2007; Ferranti et al., 2009]. Farther offshore, a 

regional seismic profile located ∼100 km southeast of the Amendolara Ridge shows, on the 

seaward projection of the ridge, a backthrust belt rooted at or beneath ~5 sec (≥7 km depth) 

[Figure 1c; Doglioni et al., 1999].  

 

4. Materials and Methods. 

Swath bathymetric mapping of the sea-floor, a grid of high-resolution (Geo-Source 

Sparker) and very high-resolution (Sub-bottom Chirp) single-channel seismic (SCS) 

reflection profiles (Figure 4a), and shallow coring were carried on during January 2011 

(Teatioca_2011 cruise) onboard the oceanographic vessel Urania of the National Research 

Council (CNR). Positioning was controlled by Differential Global Positioning System. 

The echo-metric data processing was performed by using the PDS2000 software 

(Reson), which provided a Digital Terrain Model (DTM) with a spatial resolution range 

between 2 and 10 m (Figure 4). Multibeam data covered an area of approximately 1100 km2

The Sub-Bottom Chirp profiler operated with a 16 transducer Benthos Chirp II system 

in a wide frequency band (2–7 kHz), with a long pulse (20–30 ms). Signal penetration was 

exceeding 125 ms, two-way time (TWT) in the deeper sector of the study area.  

 

including the continental shelf and slope of the Amendolara Ridge and part of the adjoining 

basins to a depth of ~1000 m.  

The acoustic source used to acquire the high-resolution seismic data was a 1 kJ Sparker 

power supply with a multi-tips Sparker array, which lacks ringing and has a base frequency 

around 800 Hz, fired at 1.5s time interval. Data were recorded with a single-channel streamer 

having an active section of 2.8 m and containing seven high-resolution hydrophones, for 1.3 s 

two way time (t.w.t) at 10000 Hz (0.1 ms) sampling rate.  

Data processing was performed using the Geo-Suite software package running the 

following mathematical operators: true amplitude recovery using a T2 spherical divergence 

correction; band-pass (300-2000 Hz) “finite impulse response" filter using a filter length of 
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256 samples, swell-filter to compensate for sea swelling, mixing of three traces for enhancing 

horizontal signal, time variant gain to boost amplitudes of deeper arrivals and mutes to 

eliminate the signal noise on the water column. Signal penetration was found to exceed 500 

ms t.w.t.. The vertical resolution is up to 0.5 m near the seafloor. 

Following the seismic facies analysis, the SCS lines were depth-converted using 

velocity intervals of 1500, 1700 and 1800 m/s for the water column, upper Pleistocene-

Holocene and lower-mid Pleistocene sedimentary units, respectively. Correlation between 

seismic units, stratigraphy, and seismic velocities is based on seismic facies analysis and 

available stratigraphic data areas as illustrated in the Result section. 

High-penetration MCS reflection profiles (acquired for oil exploration and available in 

printed PDF data format only, together with exploratory well logs, through the project 

VIDEPI: http://unmig.sviluppoeconomico.gov.it/videpi/), which partly overlap with the new 

SCS profiles grid (Figures 3a, 7), offered constraints on the upper crustal geometry of the 

ridge and adjacent basins. The MCS profiles were shot in 1975 by the Compagnie Generale 

de Geophysique (CGG), Massy, France. A Vaporchoc (depth 6 m) and a 48‐channel streamer 

(depth 19 m), with 50 m group interval, were the hardware components used during seismic 

prospecting. Shot interval was 25 m, resulting in 48‐fold coverage. Seismic signals were 

recorded for 6.0 s TWT at 4 ms sample rate. The multichannel seismic data processing was 

carried out by the CGG in 1975 by applying the following mathematical operators: amplitude 

recovery, stabilization by vaporchoc signal, muting, deconvolution, velocity analysis, normal 

move out and stack of the CDP, time variant filters and trace equalization.  

For our research work, we have converted the images of seismic profiles in SGY 

seismic data format using the GeoSuite AllWorks software, which is a comprehensive GIS 

environment for processing and interpretation of geological/geophysical data.  We interpreted 

the MCS profiles based on seismic facies analysis calibrated using the deep well logs. Sonic 

logs, available for some wells, have been used to constrain the seismic velocity for each 

seismic unit and used for the time to depth conversion of seismic profiles. 

Tectonic and stratigraphic information derived from new and existing marine 

geophysical data were then blended to build a numerical model of active faults underlying the 

Amendolara Ridge. The parameterization derives from standard dislocation modeling of slip 

on buried, rectangular-shaped faults embedded in an elastic half-space, and are based on the 

theoretical formulation of Okada [1985]. Such modeling reproduces the surface deformation 

induced by slip at depth during an earthquake, and is calibrated against the shape of deformed 

horizons (i.e. bathymetry and subsurface geology as derived from the interpretation of 
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Multibeam data and of SCS and MCS profiles, respectively), on the assumption that shape 

arises from the long-term activity of the underlying fault. The best-fitting fault location and 

geometry (length, width, angle of dip, minimum and maximum depth) were constrained 

based on iterative comparison between the observed shape of deformed markers and the 

predicted displacement output of models. The numeric models were performed using the 

Fault Studio software (a technical report of the version 1.1 is provided by Basili, R., INGV, 

http://www.earth-prints.org/handle/2122/1039), a MapBasic application which uses a 

geographical interface. In the final step, fault dislocation modeling was used to calculate the 

fault slip rates. 

Finally, the seismicity pattern of the study region and surroundings was obtained by 

merging some seismic catalogues that cover different time spans: the Parametric Catalog of 

Italian Earthquakes (CPTI11, Rovida et al. [2011]) with earthquakes from 1005 to 1981; the 

International Seismological Centre (ISC, ISC Bulletin [2011]) with earthquakes from 1904 to 

1981; the Italian catalog with homogeneous Mw (GASP, Gasperini et al. [2013]) with 

earthquakes from 1981 to present. For the overlapping period from 1904 to 1981, when a 

same earthquake is available in CPTI and ISC, we prefer the CPTI event, which generally 

performs a more robust analysis for location and magnitude using local and global data (see 

CPTI Working Group, [2004]). Both GASP and ISC catalogs provide re-evaluated proxy Mw 

[Gasperini et al., 2013a,b; Lolli et al., in press]. Focal mechanisms provide a framework of 

the coseismic strain by event available (table S1) from different datasets: Global Centroid 

Moment Tensor (GCMT, [Dziewonski et al., 1981]), European-Mediterranean Regional 

Centroid Moment Tensor (RCMT, Pondrelli et al. [2002, 2006, 2011]), Time Domain 

Moment Tensor (TDMT, Scognamiglio et al. [2009]), and Earthquake Mechanisms of 

Mediterranean Area (EMMA, Vannucci and Gasperini [2003, 2004, 2010]). For TDMT 

catalog a Mw correction according to Gasperini et al. [2012] is applied. When a solution is 

available in more than one catalog, we selected a preferred solution by using criteria as in 

Vannucci and Gasperini [2003]. 

 

5. Results 

 

5.1. Morphotectonics of the Amendolara Ridge. 

The new multibeam mapping of the sea-floor illustrates with fine detail the salient 

morphostructural features of the Amendolara Ridge. The ridge is ~80 km long and ~20 km 

wide, and stretches from the continental shelf to the lower slope of the southern Taranto Gulf 
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(Figure 3a). The shelf at and around the ridge is very narrow (maximum distance from coast: 

7 km), locally absent due to retrogressive canyon erosion. Generally, the slope is 

characterized by an irregular morphology incised by deep gullies, that extends beneath water 

depths of 150–200 m (Figure 3a).  

The Amendolara Ridge joins the Calabria coast to the west at the Roseto Capo Spulico 

Head and deepens to the southeast. Standing above this regional slope, four different 

seamounts or banks are encountered whose minimum depth accordingly deepens to the 

southeast (Figure 3a). The western and shallower Amendolara Bank, topping at -24 m below 

sea level (b.s.l.), stretches for ~18 km from a submarine saddle ~10 km off the coast to a 

steep southeast-facing escarpment down to -350 m b.s.l. From the base of the escarpment, the 

ridge bifurcates into two parallel branches. The main or southern branch culminates with two 

distinct banks. The western, Rossano Bank (top at -175 m b.s.l.) stretches for ~15 km and 

features two minor ridges to the north and northeast. A saddle at ~300 m separates the 

Rossano from the ~18 km long Cariati Bank (top at - 232 m b.s.l.) to the southeast. A ~12 km 

long, 5 km wide, northeast-trending furrow (Corigliano Channel) at 800-900 m b.s.l. limits 

the Cariati Bank from the ~18 km long, deeper Cirò Bank (not investigated in this study) 

further southeast. The northern ridge, which branches east from the Amendolara Bank, is 

separated from the southern ridges by a 30 km long, 5 km wide channel, here named 

Amendolara Channel, whose bottom is steeper and irregular at the head, but becomes flat 

downslope. The ~30 km long northern ridge (here named Capo Spulico Ridge, topping at -

350 m b.s.l.) displays a sharp crest with several hog-back-type culminations. 

All these ridges have a remarkably consistent asymmetric profile, with steep 

southwestern flank and gently sloping northeastern flank. The maximum height of the 

southwestern scarp increases eastward from ~350 m, ~400 m, ~500 m in the Amendolara, 

Rossano, and Cariati banks, respectively. The maximum height of the Capo Spulico scarp is 

~350 m. 

The Amendolara Ridge is bounded to the southwest and northeast by the Sibari-

Corigliano and Amendolara Basins, respectively (Figure 3a). At a water depth of ~200–800 

m, the <20 km wide Sibari-Corigliano Basin is nestled between the northeastern Calabria 

continental slope and the Amendolara Ridge. The basin is divided in two depocenters. The 

shallower western part (Sibari Basin) lays flat in front of the Amendolara Bank, and is 

separated by a broad saddle from the eastern section (Corigliano Basin), which is narrower 

and faces the Rossano Bank. Unlike the Sibari-Corigliano basin, which is narrow and 

elongated, the Amendolara basin to the north is broadly equilateral (Figures 2, 3a). 
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5.2. Seismo-stratigraphic architecture of Upper Quaternary deposits. 

5.2.1. Seismic Units 

A number of stacked seismic units, which are bounded by unconformities or para-

conformities, have been identified within the SCS profiles in the first 200-300 m below the 

sea-floor (Figures 4a to 4f). Seismic units are characterized by a rhythmic alternation of 

seaward-dipping, high-amplitude and laterally continuous reflections, and of low-amplitude 

reflections. The shallowest sequence S1 is limited at the bottom by U1, which unconformably 

cuts the underlying sequences on the shelf and progressively becomes a paraconformity on 

the slope (Figures 4a to 4f, 5a to 5c).  

On the shelf, nine seismic units (S1 to S9; Table 1) have been recognized, which are 

limited by a landward-converging wedge of bounding surfaces (Figures 4a, 4c, 4d). The 

thickness of seismic units, although dissimilar and variant in profiles from different parts of 

the ridge, is broadly constant on the shelf and is typically ~30-40 m (Figure 5a, 5b). 

5.2.2. Age attribution 

The most recent unit, S1, is assigned to the latest Pleistocene-Holocene age because it 

overlays the widespread surface (U1) carved during the sea-level lowstand of the Last Glacial 

Maximum (LGM), aged at ~20 ka [Lambeck et al., 2011].  

In light of the lack of quantitative age information, the underlying seismic units are 

broadly bracketed in age by using constraints from on-land outcrops and offshore boreholes. 

The Lucia well, located straightly upon profiles Tea_10 and Tea_36 (Figures 3a, 4a, 4b), 

records a transition from unrecovered material, which in the Ionian shelf is generally middle-

upper Pleistocene sandy to silty mud, to the lower Pleistocene Subapennine Clay, a readily 

distinguishable package of compacted clay with regional distribution [Patacca and Scandone, 

2007]. The depth of this stratigraphic transition in the well nearly coincides with the base of 

the mapped unconformities (Figures 4a, 4b).  

Correlation between the offshore wells and coastal exposures of the Subapennine Clay 

(Figure 3a) supports this attribution. Along the Pollino coast, the topmost layers of the clay 

dips 6°-14° seaward, and nannoplancton analysis revealed an uppermost early Pleistocene 

age [Di Donato, pers. comm.]. The top of the same clay has similar recorded dip values in 

wells, where it forms the base of the middle-upper Pleistocene regressive sequences (Figure 

3a). 

Based on the above arguments, the stacked seismic units imaged by the SCS profiles 

are attributed to the middle Pleistocene-Holocene interval (the last ~800 ka; Table 1). The 

observation that the seismic units on the shelf have broadly comparable thickness and similar 
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reflector internal geometry supports the notion that each of them formed during the time 

interval of comparable duration (~100 ka) that characterizes the middle Pleistocene-Holocene 

eustatic cycles [Waelbroeck et al., 2002; Lisiecki and Raymo, 2005]. These packages 

represent the distal, finer sedimentary counterpart, of the coarse, terraced coastal deposits that 

are uplifted along the flank of the Pollino Range [Santoro et al., 2009]. 

The stratigraphic architecture of middle-late Pleistocene sequences indicates uplift 

during deposition. This is documented by the observation that, except for S1, only the 

sedimentary record of the falling and lowstand systems tracts are preserved (“forced-

regression sequences”). This pattern is typically observed in sectors of the central 

Mediterranean shelf affected by uplift [Ridente and Trincardi, 2002; Pepe et al., 2003; 2013]. 

 

5.3. Shallow structural geometry of the Amendolara Ridge from SCS data. 

Three-dimensional analysis of the Sparker profiles reveal that the Pleistocene deposits 

are deformed into broad-wavelength folds, which define a kinematically linked structural 

system (Figure 3b). Individual folds can be recognized beneath the banks, which culminate 

the ridge, and partly beneath the shelf to the northwest. The structures are described below, 

moving from shallower to deeper water depths. 

5.3.1. The shelf. 

Two northwest-trending anticlines are traced east of Roseto Capo Spulico with 

wavelength of 5-6 km (Figure 3b). Due to the landward limit of the survey, the folds can be 

traced for a minimum length of 7-8 km, but they probably extend farther northwest and are 

connected to the folds exposed on land in the Valsinni Ridge. The western fold appears 

broader and more open, and the eastern fold is narrower (fold hinges at shot points ~3000 and 

~5300, respectively, Figure 4b). A weak northeast fold asymmetry is observed for both folds, 

consistent with the vergence documented for the Valsinni anticline on-land [Hippolyte et al., 

1994], and with the modeling of uplifted coastal terraces [Santoro et al., 2013]. 

A southern, broad fold is detected in the southern part of the shelf west of the 

Amendolara Bank (Larissa fold, Figures 3b, 4b). This structure does not have a bathymetric 

expression, but its deeper crustal expression has been drilled by the Larissa well (Figure 3a). 

The structure likely connects on-land to the major anticlinorium represented by the Pollino 

Range. 

5.3.2. Amendolara Bank. 

The anticline underlying the Amendolara Bank (Amendolara fold) is shifted ~5 km 

south from the eastward termination of the Valsinni folds, and has a west-northwest-trending 
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axial trace that is rotated ~40° west relative to the latter folds (Figure 3b). To the west, the 

western part of the Amendolara fold is almost along-strike with the Larissa fold (Fig. 3b), but 

bathymetry data suggests the two are not linked. Unlike the Valsinni and Larissa folds, which 

are buried under the shelf due to a high sediment supply, the morphology of the Amendolara 

Bank directly reflects the major anticline (Figures 4c and 4d) that can be traced parallel to the 

long axis of the bank (Figure 3b). The shape of the Amendolara fold changes from cylindrical 

in the west (Figure 4c) to box in the east (Figure 4d).  

Overall, the fold shows beds steepening progressively toward the Sibari basin. A main 

break in slope at ~200-250 m b.s.l. marks the location where the reflector dip within the 

middle-upper Pleistocene panel became steeper (around shot point 2500, Figure 4c), and a 

further increase in dip is observed at the base of the submarine scarp which limits the 

southern side of the bank at ~350-400 m b.s.l. (shot points 3000 and 1500 in Figures 4c and 

4d, respectively). Kinks with locally over-steepened beds are also observed on the northern 

side of the anticline toward the Amendolara Basin (shot point ~3750, Figure4). 

Very high-resolution Chirp profiles document that U1 is also involved in broad folds 

(Figure 5a), which are parasitic to the main bank-flooring structure, and is locally offset by 

drag faults related to folding (Figure 5b). 

5.3.3. Rossano Bank. 

The transition between the Amendolara and Rossano folds occurs at a marked 

southeast-facing submarine scarp, which limits eastward the Amendolara Bank (Figure 3b). 

The trend of the ~12 km long Rossano fold is northwest and diverges of ~30° eastward from 

that of the Amendolara fold. A minor-length (~5 km) monocline fold is found north of the 

eastern part of the Rossano fold (Figure 3b). 

In detail, the Rossano fold forms a fold train with gentle southwestern asymmetry 

(Figure 4e). On the south-western side of the bank, two >100 m scarps are formed by the 

steeply rotated beds (shot points ~6000 and ~6750, respectively, Figure 4e). 

5.3.4. Cariati Bank and Capo Spulico Ridge. 

The Cariati Bank is shifted to the north relative to the Rossano Bank, and is underlain 

by two west-northwest trending, right-overlapping folds with a cumulative length 

approaching 20 km (Figure 3b). Unlike the Amendolara fold, the morphology of the Rossano 

folds is markedly asymmetric, with a crest found at the southwest rim of the bank, and an 

overall northeast-tilt (Figure 4f). In front of the main fold, a train of minor folds faces the 

Corigliano basin. The trailing fold is limited by a ~50 m scarp at the sea-floor (outer scarp, 
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Figure 4f), whose detailed image is provided by the Chirp profile (Figure 5c). Beneath the 

scarp and within the high-standing block, seismic reflections are disturbed and opaque, 

suggesting exposure of older rocks due to fault offset, consistent with the rectilinear pattern 

of the scarp in map view (Figure 5a). The footwall block of this fault on the slope in front of 

the main bank forms a folds train (Figure 4f) which, as chirp profiles reveal (Figure 5c), 

involve the sea-floor and the LGM paraconformity. Although the nature of the fault is not 

clarified by available data, we suggest a NE-dipping reverse component to be consistent with 

structures exposed in the footwall. 

A taller (~220 m), inner scarp (shot points ~1700 to 1900, Figure 4f) separates the 

frontal folds train from the main fold flooring the bank. At the foot of this inner scarp, 

reflections ~200 m beneath the sea-floor appear disturbed, suggesting drag along a deep fault 

that, based on the overall fold asymmetry, is interpreted to dip northward beneath the bank 

(Figure 4f). The main bank-flooring folds have a wavelength of ~8 km, and are characterized 

by parasitic folds and faults (between shot points ~2000-2500). 

The Cariati Bank is separated from the Capo Spulico Ridge to the north by the 

Amendolara Channel. Although a lateral correlation of seismic reflections between the two 

morphological highs across the channel is prevented by diffuse slumping on the slopes, 

simple projection of reflectors indicates structural uplift of the Capo Spulico Ridge relative to 

the Cariati Bank (Figure 4f). It is not possible to document whether uplift is accommodated 

by a fault at the base of Capo Spulico Ridge, or by folding. 

5.3.5. Lateral variability in fold geometry. 

To establish the lateral extent of individual folds along the Amendolara Ridge, we 

constructed profiles of fold amplitudes parallel to the ridge elongation (Figure 6; see trace in 

Figure 3b). This was accomplished by measuring the fold amplitude for horizon U5 in each 

across-ridge profile, between the hinge of the anticline in the bank and the hinge of the 

syncline in the Sibari and Corigliano basins [e.g. Nicol et al., 2002; Di Bucci et al., 2009]. 

The spacing of Sparker profiles used to constrain the amplitude profile of folds is reasonably 

tight (2-3 km and locally 5-6 km, Figures 3a, 6), and thus the deformation pattern appears 

well determined. We choose U5 because it tops a transparent seismic unit with occasional 

low-amplitude reflections, and thus it can be identified and traced from the ridge to the basins 

with a plausibly good degree of confidence. 

All folds have bell-shaped longitudinal profiles suggesting the existence underneath of 

laterally defined fault segments. Based on this assumption, the lateral change in fold 

amplitude allows to estimate the corresponding variation in deformation accommodated on 
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individual fault segments, and to search for the position of segment boundaries. 

In detail, the longitudinal profile of fold amplitude shows the sharp termination of the 

Valsinni fold and the overlapping growth of the Amendolara fold (Figure 6). The 

Amendolara fold can be confidently traced for ~12 km, but the amplitude shape suggests that 

it can stretch up to ~20 km. The Cariati fold to the southeast has an amplitude longitudinal 

profile similar in shape, length and magnitude to the Amendolara fold (Figure 6). We must 

note that because of deeper water depth and lesser quality of data, substantial uncertainty 

exists on the estimation of U5 position beneath the basin south of the Cariati bank. However, 

such limitation does not impact the reconstructed fold longitudinal shape. 

The amplitude of the Rossano fold is nearly half that of the adjacent Amendolara and 

Cariati folds, and the estimated length does not exceed ~15 km (including the contribution of 

the minor fold to the north of the main fold). Similar geometric features characterize the Capo 

Spulico Ridge fold. When the individual amplitude of the Rossano and Capo Spulico folds 

are combined, however, the aggregate throw measured on U5 across the Rossano and Cariati 

banks (cumulative profile in Figure 6) is almost constant. The geometric pattern, with 

distributed folding at the Rossano Bank and Capo Spulico Ridge, supports the contention that 

only two fault segments exist underneath the Amendolara and Cariati banks, and thus of an 

interposed segment boundary at the Rossano Bank (Figure 6). 

 

5.4. Deep structural geometry of the Amendolara Ridge from MCS data. 

5.4.1. Seismo-stratigraphic and structural architecture 

Reflectors imaged by MCS profiles, once calibrated by drillings (Figures 8, 9), 

represent excellent markers that can be laterally traced and bound regionally correlated [e.g. 

Minelli and Faccenna, 2010; Spina et al., 2011; Capozzi et al., 2012] depositional packages. 

The uppermost unit is characterized by sub-parallel high-frequency and low-amplitude 

reflections, and corresponds to the Pliocene-Quaternary deposits (Figures 8, 9). The thickness 

of the unit increases moving offshore from the Sila shelf to the Sibari-Corigliano Basin to 

~2.5 km and locally over, and decreases again on the Amendolara Ridge and Pollino shelf 

(Figures 7, 8). Within this unit, the abrupt transition between middle-upper Pleistocene sand 

and silty clay, and the underlying upper Pliocene-Pleistocene clay is seismically characterized 

by a high-amplitude and continuous reflector (Figure 9a), and locally allows distinction of 

two sub-units.  

The base of the Pliocene-Quaternary sequence is marked by a relatively continuous and 

high-amplitude reflector (Figure 9). This reflector corresponds to a horizon of regional 
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significance (M- or A-reflector) associated with the top of evaporites and clastic sediments  

deposited during the late Messinian salinity crisis, or with an erosional unconformity formed 

during the late Messinian sea level fall [Ryan, 1969; Finetti and Morelli, 1973; Malinverno et 

al., 1981]. 

Underneath the Sila shelf and Sibari-Coriglino basin, horizon M overlies a faintly 

reflective sequence characterized by poorly continuous reflections, attributed to Upper 

Messinian continental or transitional clastics [Figure 10a; Cita and McKenzie, 1986; Cavazza 

and DeCelles, 1998], and  in turn a locally thick package of strong and continuous 

reflections, which are interpreted to represent the lower Messinian evaporites (“Gessoso-

Solfifera”, Cita and McKenzie [1986]). The base of this unevenly thick unit is defined by a 

planar high-amplitude reverse polarity reflector, generally known as B-reflector [Figure 9a; 

Finetti and Morelli, 1973; Gallais et. al., 2011].  

The pre-Messinian units are seismically characterized by a succession of high- and low-

amplitude, discontinuous reflections that can be correlated to Miocene clastic sediments 

(Figure 9a). These deposits rest above a planar and continuous reflection, which deepens to 

the northeast from ~2 to ~5 km. Although this reflection has not been calibrated with well 

data, based on projection of on-land outcrops [Van Dijk et al., 2000] we interpret it as the top 

of the Calabrid Paleozoic crystalline rocks and locally overlying Mesozoic-Paleogene 

deposits (Figure 9a). 

Underneath the Amendolara Ridge, the stacked pattern of seismic sequences is more 

disturbed by thrusting. Some wells north of the ridge (e.g. Lucia and Letizia well, Figure 8) 

drill through thin imbricates which involves Miocene clastics and evaporites. These sheets, 

together with their pre-Miocene bedrock (the Ligurid-Sicilid units), form the allochthon 

thrust wedge, which thickens from northeast to southwest from ~2-2.5 to ~4.5 km beneath the 

Amendolara Ridge (Figures 10a to 10c). 

Beneath and northeast of the Amendolara Ridge, a south-west dipping, continuous and 

high-amplitude reflection images the top of the Apulia foreland platform which is thrust 

beneath the allochthonous wedge (Figures 9b, 10a to 10c). The nature of the reflection is 

proved by the Letizia well (Figure 8), and corresponds to the intra-Messinian unconformity 

(horizon M) that truncates the pre-Miocene Apulia carbonates [Butler, 2009]. This deeper M-

reflector is covered by some hundred meters of Pliocene-lower Pleistocene clay and marls 

(Figure 8), which marks the timing of emplacement of the thrust belt above the Apulia 

foreland platform. 

The Calabrid units on the west, and the Apennines and subjacent Apulia units on the 
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east meet just under the Amendolara Ridge (Figures 10a to 10c). However, the exact 

structural relation among these units is not resolved by the available data.  

 

5.4.2. Geometry of Late Pliocene-Quaternary faults 

The MCS profiles show that the structure of the Miocene-early Pliocene, northeast-

displaced thrust belt is cut by steeper reverse faults which dip both southwest and northeast. 

The most prominent array, the Amendolara Fault System (AFS; ABFZ in Ferranti et al., 

2009), bounds the southern flank of the ridge and is formed by two sub-parallel faults. We 

name those AF1 and AF2, respectively (Figures 7, 10a to 10c). 

Both AF1 and AF2 cut the lower part of the Pliocene-Quaternary unit, and form crustal 

ramps with a mean dip of ~45°. Note, however, that tracing of the fault becomes uncertain 

beneath the first ~4 km depth due to poor data quality. Above the ~2 km depth of the ramp 

upper tip, some low-angle splays branch from both faults where they run through the 

Messinian evaporite, which provides a preferred detachment level (Figures 10a, 10b). 

The vertical throw of the Pliocene-Quaternary sequence that is accommodated by the 

aggregated fault strands, on the assumption of a planar initial geometry, is estimated at up to 

~1.3 km. The amplitude of the overlying fold that deforms the base of the Middle Pleistocene 

reflector, again on the assumption of a planar original geometry, is ~500-600 m (Figure 10a). 

These estimates represent maximum bounds. 

In map view, the fault array swings following the morphologic separation between 

highs and lows. West of the Amendolara Bank, the AFS turns and probably merges with an 

~east-west striking blind thrust fault bounding the southern side of the structural high drilled 

by Larissa well (Figures 3b; 7). The non-rectilinear trend of the AFS is mimicked by the 

pattern of the base Pliocene-Quaternary isobaths, which has maximum depths in the Sibari-

Corigliano basin (Figure 7).  

An antithetic, southwest-dipping fault, the Valsinni fault system (VFS) is mapped 

beneath the northern flank of the Amendolara Bank, and is composed of two sub-parallel 

strands, VF1 and VF2, with a ~300-400 m aggregated throw of the Pliocene-Quaternary 

sequence (Figure 10a). Toward the north, the VFS limits the structural high drilled by Letizia 

and Lucia wells (Figure 7), and then projects on-land north of the Pollino Range, where it 

likely merges with the thrust system located on the northern side of the Valsinni Ridge 

(Figure 2). 

Moving to the southeast, VF1 and VF2 join together and the system comes to a 

termination, where it is replaced en-echelon by a northeast dipping fault, the Capo Spulico 
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Fault (CSF, Figures 10b, 10c; note the decreasing displacement and then disappearance of the 

VFS). The CSF accommodates a throw of the Pliocene-Quaternary base which increases to 

the southeast up to ~300 m (Figure 10c).  

The downward projection of the steeply dipping AFS, VFS and CSF intersects apparent 

steps within the west-dipping monocline of the Apulia platform as imaged by the deep M-

reflector (Figs 10a to 10c). Although the lack of quality data prevents a precise estimate of 

the offsets in the deep M-reflector, the location and amplitude of the steps in the dipping 

reflector is broadly consistent with the throw measured on the base Pliocene-Quaternary unit, 

suggesting that the recent faults cut through the Apulian platform rocks. 

In summary, MCS data show that activity on the AFS, VFS and CSF has controlled 

deformation of the Amendolara Ridge starting from the Late Pliocene (although an earlier 

Pliocene activity cannot be neglected but is not resolved by data). The upper crustal faults are 

blind and their upward projection correspond to the broad folds  in recent deposits as 

recorded by the SCS profiles. 

 

5.5. Seismicity analysis 

Appraisal of the historic and instrumental seismicity reveals a marked difference 

between the Lucania Apennines and northern Calabria (Figure 11). Most of the activity is 

concentrated in the axial part of the Lucania Apennines, but comes to an abrupt termination at 

the boundary with Calabria. Here, seismic activity is shifted to the east and, although more 

sparse, covers predominantly the eastern side of the region and its offshore, including a NW-

SE trending band in and adjacent to the Amendolara Ridge and Sibari-Corigliano Basin. 

Focal mechanisms of earthquakes [Totaro et al., 2013], together with differential 

geodetic velocities and fault pattern [Ferranti et al., 2014], also suggest active tectonic 

processes that differ between the two regions. Focal mechanisms in the Lucania Apennines 

consistently document extension on faults whose strike is parallel to the trend of the belt 

(Figure 11). Some extensional focal mechanisms are also present in western Calabria. The 

focal depths of extension-related earthquakes in the western part of Lucania and Calabria are 

confined to the upper ~15 km of the crust.  

In contrast, in the zone of seismicity parallel to the northeast coast of Calabria, focal 

plane solutions are equally representative of thrust, extensional and strike-slip earthquakes 

(Figure 11). Thrust and strike-slip earthquakes, which are the most energetic events and thus 

the more reliable in terms of depth and mechanism, have P-axes oriented between ~NE-SW 

and ~ESE-WNW. These focal mechanisms are consistent with left-oblique reverse motion on 



©2014 American Geophysical Union. All rights reserved. 

nodal planes striking NW-SE parallel to the structural trend of the Amendolara Ridge and 

Sibari-Corigliano Basin. Significantly, the focal depth of these events is on average deeper 

(10-30 km) than that of the extension-related earthquakes in the hinterland (Figure 11).   

Most destructive historical events are located in the axial part of the Apennines and 

have been associated to causative faults [DISS Working Group, 2010]. Notwithstanding, 

strong and damaging earthquakes have also occurred along the northeastern coast of Calabria 

and its offshore (e.g. 1836, April 25, with Mw= 6.2; 1917, June 12, with Mw=5.25; 1988, 

April 13 with Mw=4.4; 2002, April 17 with Mw=4.9; Figure 11), but their sources are yet 

unknown or debated [DISS Working Group, 2010].  

 

6. Fault numerical modeling and slip rate 

We compared the expected deformation produced by motion on discrete segments 

composing the fault arrays with the bathymetry, with horizons U3 (249-270 ka), U5 (430-450 

ka) derived from interpretation of the SCS profiles, and with the base of the Middle 

Pleistocene sequence extracted from MCS profiles. 

The starting geometry of the modeled faults was derived from geologic and geophysical 

datasets presented above. Because of their relatively low resolution, the MCS profiles were 

only used to obtain a preliminary assessment of fault location, minimum and maximum 

depth, and dip, that were slightly adjusted during the following iterative comparison between 

model initial geometry and output. The strike/length of fault segments were derived from the 

fold map obtained from the SCS dataset (Figure 4a), because of the denser observational 

constraints and better data quality with respect to the MCS dataset. The width was scaled 

using empirical relationships with fault length. 

Specifically, the modelled geometry of the AFS involves only two segments of fault 

AF2 underlying the Amendolara and Cariati banks, respectively (Figure 12). This geometry 

was chosen on the basis of the fold amplitude analysis carried on the SCS profiles, which 

suggests that structures underneath the intervening Rossano Bank accommodate a transition 

between the two principal fault segments (Figure 6). This inference is broadly supported by 

the MCS profile analysis, which indicates lesser cumulative throw for the AFS underneath 

the Rossano Bank  (Figure 10b) with respect to adjacent banks. Based on the above 

arguments, we consider the Rossano structures as a relay zone linking fault segments 

underneath the Amendolara and Cariati. 

Rakes obtained from published active stress indicators analysis [Heidbach et al., 2008; 
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Presti et al., 2013] show for this region an ~NE-SW trending Shmax, which averages the 

observed trend of earthquakes P-axis (Figure 12). The seismologic observation is consistent 

with fault slip data analysis within the lower Pleistocene Subapennine Clay cropping out 

along the coast of the Pollino Range [Figure 12; Ferranti et al., 2009]. The NE-SW Shmax 

adopted here implies left- oblique (rake: 64°-70°) slip on the modeled segments (Table 2). 

Modeling results show that the Amendolara Ridge is controlled by steep (45°) blind 

fault segments that have upper and lower tips between ~2 and ~10 km of depth below sea 

floor, respectively (Table 2). The anticline below the Amendolara Bank overlies an ~18 km 

long NE-dipping fault (Amendolara Segment, AS), corresponding to the western part of AF2 

identified in the MCS reflection profiles, and an accompanying SW-dipping fault (Valsinni 

Segment, VS) which broadly coincides with fault VF1 (Figure 10a). In map view, the two 

faults are slightly oblique (Figure 12), but modeling is consistent with the seismic data and 

indicates that the southwest-dipping Valsinni Segment merges with the Amendolara Segment 

at ~7 km depth (Figure 10a). Similarly, the Cariati anticline is underlain by an ~18 km long 

NE-dipping fault (Cariati Segment, CS) corresponding to the eastern part of fault AF1 

(Figures 10c, 12). 

We are aware that our interpretation is a best-fit fault model and not, obviously, a real 

image of the fault, because of the inherent uncertainty in MCS profile interpretation and 

because of the simplistic results provided by the elastic modelling. The range of dips 

indicated on the fault model (Figures 10a to 10c) shows the model variability deriving from 

uncertainty in dip estimation. Similar uncertainties exist on the remaining model parameters 

(length, rake and so on). What is important here is the general result that current tectonic 

activity at the Amendolara Ridge is accommodated by reverse fault segments with a left-

oblique component of slip.  

The input data for calculating the slip rate of fault segments was the growth geometry 

of seismic units S3 and S5 overlying unconformities U3 and U5, respectively, as imaged in 

the SCS profiles (Figure 4). We measured the thickness of the sedimentary sequences on the 

crest of the anticlines and in the synclines (Figures S1a and S1b in the Supplementary 

Material section; Table 3). The thickness difference between the two locations reflects the 

relative uplift between anticline and syncline during deposition of the growth strata (i.e. the 

vertical component of the structural growth according to Schneider et al., [1996]). Where the 

profile does not reach the axis of the syncline (Figure S1b), the rate is estimated by a 

downward extrapolation of S5. The slip necessary to produce the estimated relative uplift was 

calculated using dislocation modeling of the best fitting fault planes. For the sake of 
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simplicity, in the absence of an estimate for the sedimentation rate, the age of the sequences 

used to calculate the slip rate was taken as the age of the downward-bounding surface. 

In most cases, units S3 and S5 are not continuous over the Amendolara Bank, because 

they are erosionally truncated by the base of LGM low-stand (S1a in the Supplementary 

Material section). Nevertheless, the wedge of stacked seismic units thins towards the anticline 

crest, highlighting that the fold was growing during deposition. Based on these observations, 

we calculated the slip rate of the Amendolara Segment along the profiles where S3 and S5 

were eroded, by assuming a zero thickness over the crest of the anticline. The obtained rate 

value must be considered as a maximum (Table 3). 

It must be noted that the shape of modeled reflectors extracted from the SCS profiles is 

not entirely structural, because hemipelagic sediments forming the seismic units drape over a 

pre-existing morphology (Figure S1). In addition, some difference in thickness of seismic 

units between structural highs and lows can arise from enhanced deposition of sediments in 

the syncline both from upslope (e.g. gravity flows) and from laterally flowing currents (e. g. 

contour currents), rather than from a larger accommodation space created by fold growth. To 

alleviate this latter quandary, we corrected the estimate of structural growth by subtracting, to 

the thickness of S3 and S5 in the syncline, the thickness of transparent layers (interpreted as 

gravity flow and/or contourites deposits) mapped on the Sparker profiles (see the sketch in 

Figure S1a). Where it was not possible to obtain this measurement, we corrected the values 

adopting an average 15% reduction of growth strata thickness in the basin as estimated from 

nearby observations (Table 3). In one case the Sparker profiles intercepted what we 

interpreted to be a fault scarp, which offsets the sea bed and interrupts the continuity of 

seismic units S5 and S3 (Figures 4f, 5c, and S1c).  

The slip rates were not corrected for the effects of differential subsidence induced by 

consolidation of young, saturated sediments through time. The amount of consolidation is 

related to the sediment granulometry and is proportional to layer thickness. Hence 

consolidation effects mimic those of tectonic deformation. Maesano et al. [2013], by using a 

3D modeling of anticline-syncline fold pairs buried below the Adriatic Sea, estimated that the 

average thickness change after decompaction may be up to 40% of the original thickness.  

Considering the above limitations and uncertainties, the vertical component of the 

structural growth estimated here must be regarded as a maximum value. However, the 

existence of fresh, rectilinear sea-bed scarps (Figures 4f, 5c), which were evidently not 

draped and concealed by sediments, and the progressive tilt of sediment packages lacking 

evidence of sliding (e. g. Figure 5a to 5c), point to significant structural growth during 
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deposition.  

Modeling results for the Amendolara Segment are strikingly consistent along different 

profiles for both S5 and S3, with average maximum slip rates of ~0.7-0.8 mm/yr. For the 

Cariati Segment, slip rates are apparently half (~0.4 mm/yr) of those for the Amendolara 

Segment. However, as quoted above, the frontal part of the Cariati segment is characterized 

by a possible fault scarp, with a ~70 m apparent offset of the sea-floor (Fig. 5c). Although we 

lack markers to compute the fault slip rate, we suggest that the discrepancy in slip rate 

between the Amendolara and Cariati segments may be taken up by this frontal splay. 

When a ~40% decrease (based on the work of Maesano et al. [2013]) is applied to the 

estimated slip rates to account for the lack of decompaction correction for S3 and S5, average 

slip rates decrease to ~0.4-0.5 mm/yr for both the Amendolara and Cariati (with inclusion of 

the frontal splay fault) segments. 

The average result for the Amendolara Ridge is noticeably similar to the slip rate (0.5 

mm/yr) estimated on the base of offset coastal terraces [Santoro et al., 2013] for the modeled 

Pollino fault segment, the trace of which is west of the Amendolara Segment (Figures 2, 12).  

 

7. Discussion 

7.1. Structural model for the Amendolara Ridge. 

Integrated analysis of swath bathymetry and seismic profiles with different 

resolution/penetration shows that the Amendolara Ridge has grown during the late (?) 

Pliocene-Quaternary as a result of oblique contraction. The various datasets provide 

independent observations at different spatial and temporal scales that are pivotal in 

determining the geometry and modes of deformation. Swath mapping of the sea-floor shows 

that the morphobathymetric pattern is structurally-controlled, and high-resolution SCS 

profiles reveal that folding has recently occurred at the ridge. The mechanism of deformation 

is inferred based on the relation between folding and deposition shown in the SCS profiles. 

Specifically, based on the lack of limb rotation and relatively modest syn-tectonic deposition, 

a fault-propagation folding model [e.g. Suppe and Medwedeff, 1990] can be invoked. 

The MCS profiles analysis supports the contention that fold growth imaged by SCS 

data is related to displacements on underlying blind reverse-oblique faults. The limited 

resolution of MCS data does not permit an accurate reconstruction of fault geometry at depth, 

and specifically to what extent faults cut through the interpreted top of the Apulia platform 

(Figure 10a to 10c). However, modeling of horizons extracted mostly from the high-

resolution SCS profiles analysis indicates that fault segments located beneath the Amendolara 
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and Cariati banks form steep ramps that terminate, and probably merge, at ~9-10 km depth. 

The Valsinni model segment is linked to the Amendolara segment at ~7 km (Table 2), 

forming a pop-up like structural culmination. 

The modeled faults cut through ~5-6 km of allochthonous sedimentary rocks and their 

synorogenic cover, plus at least through ~4-5 km of structurally underlying Mesozoic-

Cenozoic rocks of the Apulia carbonate platform. Based on well logs and geophysical data 

from southern peninsular Italy, the sediment thickness in the central part of the Apulia 

platform is estimated at ~6 km [Doglioni et al., 1999]. It is likely, however, that the 

sedimentary thickness on this southwest extension of the platform underlying the 

Amendolara Ridge, toward the ancient Mesozoic continental margin (Figure 1a), was smaller. 

It is conceivable that the blind fault ramps modeled here merge at or nearb the contact 

between the sedimentary cover and the pre-Mesozoic crystalline basement of the Adriatic 

crust. At this depth, the upper crustal faults could continue to cut across the basement as a 

single crustal ramp, or sole into a diffuse detachment zone (see Menardi-Noguera and Rea 

[2000] and Scrocca et al. [2005], for alternative views on the thin- versus thick-skin model 

for Apulia imbricates beneath the Southern Apennines). Alternatively, the fault segments 

might be linked into a steeper transcurrent shear zone to form a positive flower structure [e.g. 

Van Dijk et al., 2000; Del Ben et al., 2007].  

The high-angle thrust faults that accommodate imbrication of the Apulia platform 

beneath the Apennines were possibly primary normal faults, reactivated during late Pliocene-

Quaternary shortening [Butler et al., 2004]. Here, we show that steep reverse faults were 

active beneath the Amendolara Ridge during the same time interval. Although our data 

resolution does not allow us to propose a robust interpretation, we argue that the AFS was 

primarily a system of normal faults related in same way to the Mesozoic continental margin 

(Figure 1a), that were reactivated as oblique-reverse in the late part of the Apenninic orogeny.  

 

7.2. Regional tectonic framework for oblique contraction. 

Different models can be invoked to explain the growth, under the Amendolara Ridge, 

of an oblique-thrust belt. In a first scenario, the ridge could be viewed as part of a regional 

triangle zone, forming either an active roof duplex kinematically linked to motion on the 

frontal thrust, or a passive-roof duplex. 

On land, the frontal thrust of the Apennines has been inactive since the end of the early 

Pleistocene [Patacca and Scandone, 2007], at a time when the foreland, foredeep and frontal 

thrust belts started to be uplifted above sea-level [Ferranti and Oldow, 2005]. Although more 
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recent displacement is suspected along the offshore continuation of the front beneath the 

northern Taranto Gulf [Butler, 2009; Volpi et al., 2011], available data do not have the 

needed resolution to firmly establish post-early Pleistocene motion. Because, as shown here, 

the Amendolara Ridge faults were active during the entire Pleistocene, lack of motion on the 

frontal thrust during the same time span would favor a passive-roof duplex model. 

A triangle zone scenario is consistent with the analysis of the high-penetration CROP 

M5 seismic profile located ~100 km southeast and on-strike with the Amendolara Ridge 

(Figure 1c). The M5 profile shows that the Miocene, east-directed, thin-skinned belt was cut 

and tilted by deeper back-thrusts, which root in the underthrust Apulia platform. In light of 

the common structural evolution, the contractional belt highlighted by both Doglioni et al. 

[1999] and in this study would extend for at least ~ 150-200 km above the ancient continental 

margin (Figure 1a). 

In the alternative view that the reverse-oblique faults of the Amendolara Ridge merge 

down-section into a steep transcurrent zone [Van Dijk et al., 2000; Del Ben et al., 2007], 

lithospheric processes would play a prominent role. Under this hypothesis, halting of east-

directed Adriatic slab retreat coupled with residual southeast Ionian slab roll-back 

[D’Agostino et al., 2011], and motion of the deep Ionian accretionary prism [Polonia et al., 

2011], would require transcurrent deformation at the Amendolara Ridge; the upper crustal 

oblique shortening documented here could result from deep shear along a boundary with 

irregular morphology [Reitz and Seeber, 2012]. 

The more intriguing scenario that emerges from both models concerns the localization 

of the deformation belt at the Amendolara Ridge and at its offshore prolongation in the Ionian 

Sea, because of the existence of a long-lived deep crustal boundary. The Amendolara Ridge, 

the Sibari-Corigliano Basin, and the backthrust belt of Doglioni et al. [1999] all have 

developed above the transition between the Adriatic continental crust to the north and the 

Ionian thinned continental or oceanic crust to the south (Figures 1a, 1c). The extreme 

mechanical interface between crustal sections with different buoyancy might have focused 

growth of the contractional belt. With Quaternary cessation and slowing of slab roll-back in 

the Adriatic and Ionian sectors, respectively, convergence between Adria and southern 

Europe, which is largely accommodated at the seismologically active Dinarides and 

Albanides front (Figure 1b), could be partly absorbed at the ancient continental margin. 

Inversion of earthquake focal mechanisms and fault slip data document an ~NE-SW 

shortening axis (Figure 12), which implies left-oblique reverse motion on the thrust segments 

modelled here. Seismologic strain data are consistent with thrust and strike-slip focal 
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mechanisms just south of the ridge (Figure 11), and the Late Quaternary geologic structure 

reconstructed using marine geophysical data. The trend of the Shmax in the area is, however, 

at odds with the NW-SE displacement predicted solely on the base of Adria-Europe 

interaction [Carafa and Barba, 2013]. On the other hand, it is consistent with models 

invoking shorter-wavelength stress sources, such as those deriving from exploitation of deep 

crustal heterogeneities, which would rotate the predicted stress toward an ~ENE-WSW trend 

[Barba et al., 2010; Pierdominici and Heidbach, 2012]. 

 

7.3. Seismotectonic implications 

The fault array defined in the present study is ~50 km long and extends on-land and 

offshore for several additional tens of km. It is composed of discrete fault segments which 

underlye individual banks atop the ridge and the surrounding shelf (Figure 12; Table 2). The 

segmentation, documented by morphobathymetric and high-resolution seismic data, involves, 

in the part of the system studied here (Figure 12), two main northeast-dipping segments 

(Amendolara and Cariati faults) linked by a relay ramp (Rossano fault), and a southwest-

dipping segment (Valsinni fault). The crustal nature of the segmentation is also suggested by 

the depositional architecture of the Sibari-Corigliano basin that flanks the AFS on the 

southern side of the ridge, and whose trend swings mirroring that of the segments of the array 

(Figure 7). The larger Pliocene-Quaternary sedimentary thickness spatially coincides with the 

Amendolara segment and Rossano relay, which represents a restraining bend of the array, 

where syntectonic deposition has been enhanced. The antithetic, southwest-dipping Valsinni 

segment modeled on the northern side of the Amendolara Ridge controls syn-tectonic 

deposition in the Amendolara Basin (Figure 7). 

According to the size of the three model segments, and following the empirical 

relationships of Wells and Coppersmith [1994], the segments would be able to generate M6+ 

earthquakes (Table 2). However, there is information on their actual seismic behavior; 

although we observe that oblique thrusting across the fault system is accompanied by 

infrequent earthquakess as recorded by seismologic catalogues (Figures 11, S3). 

The most energetic, recent earthquake with an epicenter located close to the AFS is the 

Mw=4.4 1988 event (Figures 11, 12). Although constraints from macroseismic intensities do 

not provide an accurate epicentral location, we hypothesize that the Mw=5.5 1917 earthquake 

[Rovida et al., 2011] was also generated along the AFS. Noticeably, the epicenter of both 

events is located at the western termination of the Cariati segment, and the aftershocks of the 

1988 event ceased at the segment boundary (Figure 12). At this location, multibeam (Figure 
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3a), Sparker (Fig. 4f), and Chirp (Fig. 5c) data highlight an ~50 m sea-floor scarp with low-

amplitude reflections. We argue that the scarp reflects an active fault that up-throws older 

rocks of the bank relative to the basin, and has at least in part formed during multiple co-

seismic ruptures. The paleo-earthquakes should have been energetic enough to propagate to 

the sea-bottom, and thus be characterized by a Mmax close to the 6.3 predicted by the elastic 

model (Table 2). 

Current seismicity indicates activity not at the AFS, instead just south of the fault array 

(Figures 11 and S3). In particular the Sibari-Corigliano basin shows peaks of relatively high 

energy release (Figure S3), by using either data from 1981 only (Figure S3a) with re-

evaluated magnitude [Gasperini et al., 2013], or a temporal extension of the catalog [Rovida 

et al., 2011; ISC Bulletin, 2011] with events from 1600 (Figure S3b) and re-evaluated Mw 

[Gasperini et al., 2013a,b; Lolli et al., in press]. We hypothesize that this southward shift of 

the locus of seismicity with respect to the AFS can be an artifact due to a minor azimuthal 

coverage of the Italian seismic network in the northeastern area, because of the Ionian Sea. 

 

8. Conclusions 

Analysis of seismic profiles with different resolution/penetration, and of multibeam 

swath bathymetry, corroborated by seismicity and regional structural data, indicates that the 

Amendolara Ridge forms an active tectonic belt at the transition between the Southern 

Apennines collision belt and the Calabrian subduction forearc. Deformation is expressed by 

folding of middle-late Pleistocene deposits in response to propagation of underlying blind 

reverse-oblique, upper crustal fault segments, at an average middle Pleistocene slip rate of 

~0.4-0.5 mm/yr. 

Although shortening in the frontal part of the Apennines ceased by the middle 

Pleistocene, and recent motion of the submerged thrust front in the Ionian Sea is not resolved 

by available data, it appears that a component of contraction may still be ongoing in this more 

internal region, although at a very slow rate, and with a subdued morphologic signature. The 

latter limitations encountered in previous analyses have led to the common assumption that 

this sector of southern Italy is inactive. Our study documents active deformation of young 

sedimentary deposits and of the sea-floor which, together with assessment of local seismicity, 

indicates oblique-reverse motion on the fault segments modeled in this study. 

Late (?) Pliocene-Quaternary growth of an oblique contractional belt in the study area 

may be related to a triangle zone behind the submarine thrust front of the Apennines, which 

was progressively de-activated. Alternatively, it was related to activity of a steep transcurrent 
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zone, with the blind reverse faults and related fold-propagation folds studied here forming the 

upper crustal part of a positive flower structure.  

The major conclusion of this study is that localization of the deformation belt is 

controlled by the inherited mechanical interface between the thick Apulian crust and the 

attenuated Ionian crust. Development of the Amendolara Ridge occurred at a time when 

halting of Adriatic slab retreat and collision between southern Adria and Europe interacted 

with a retreating Ionian slab, along an irregular continental margin, that focused left-oblique 

shortening at the ancient crustal boundary. 

Our results are consistent with the deformation pattern recorded by coastal terraces 

along the Ionian Sea coast of the Apennines. When the two adjoining sectors are considered 

together, a substantially long (80 km or more) active deformation belt emerges. Appraisal of 

a deep seismic profile located further offshore the Amendolara Ridge (Figure 1c) brings the 

total extent of the back-thrust belt to ~180 km. The belt, at least in the part studied here, is 

segmented, with contrasting geometries and structural styles among the ~15 to 20 km long 

segments underlying the coast and the banks topping the Amendolara Ridge (Figure 12). Our 

segmentation model provides a limit to the predicted strain release that, if totally occurring 

through rupturing, would be capable to generate moderate (M up to 6.3) earthquakes. 

Based on numerical modelling, the steep upper crustal fault segments extend at least 

down to ~10 km depth. Below that depth, they could merge into a steeper deep-seated fault 

system, a crustal ramp or a detachment zone. It is likely, however, that deformation below the 

branching depth mostly occurs aseismically and thus simultaneous activation of a 

substantially longer section of the fault array is unlikely. 
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Table 1: Seismic units and bounding surfaces on the Sparker seismic profiles. 

 

Seismic unit Surface MIS Surface Age 
(ka) Age source 

S1               sea-floor       

S2 
              U1 2 18-23 Waelbroeck et al. 

[2002] 

S3 
            U2 6 137-150 Waelbroeck et al. 

[2002] 

  
S4 

          U3 8 249-270 
Waelbroeck et al. 

[2002] 

    
S5 

        U4 10 343-345 
Waelbroeck et al. 

[2002] 

      
S6 

      U5 12 430-450 Waelbroeck et al. 
[2002] 

        
S7 

    U6 14 530-550 Lisiecki and 
Raymo [2005] 

          
S8 

  U7 16 630-650 Lisiecki and 
Raymo [2005] 

            
S9 

U8 18 710-720 Lisiecki and 
Raymo [2005] 

              U9 20 800 Lisiecki and 
Raymo [2005] 

Table 1. Seismic units and relative bounding surfaces recognized on the Sparker seismic 

profiles. Each seismic unit is bounded on top and bottom by the corresponding surfaces, 

respectively, as listed in the related column. The assigned correlation with individual Marine 

Isotope Stage (MIS) is also shown. 

a 
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Table 2. Geometrical parameters of individual thrusts from dislocation modeling 

Name Strike Dip Rake Length Width 

Minimum 

depth 

(km) 

Maximum 

depth 

(km) 

expected 

Magnitude 

Amendolara 

segment 
298 45 64 17.5 9.5 2.0 8.7 6.3 

Cariati 

segment 
298 45 65 18 9.7 1.5 8.4 6.3 

Valsinni 

segment 
128 45 70 11.3 7.0 2.0 6.9 6.1 

 

Table 2: Geometric and kinematic parameters of the fault segments underlying the 

Amendolara Ridge modeled in this study. The expected magnitude of each segment was 

derived from the empirical relationships of Wells and Coppersmith [1994]. 
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Table 3. Slip rates of the thrust segments calculated in this study 

Fault 
segment 

Sparke
r line 

marke
r 

Age 
ka 

relativ
e 

uplift 
m 

sli
p 
m 

slip 
rate 
mm/

a 

relative 
uplift 

m 
corrected

slip 

3 

m 
corrected

slip rate 

3 

mm/a 
correcte

d 

Notes 

Amendolar

a Segment 

Tea_15 

U5 

450

-

430 

185 
43

4 

0.97-

1.01 
  

0.82-

0.86
 4 

Tea_30 

450

-

430 

182
38

6 
1 

0.86-

0.90 163 344 0.77-
0.80

maximu
m value, 

U5 
eroded 

on top of 
anticline 

3 

Tea_9 

450

-

430 

181
39

1 
1 

0.87-

0.91   0.74-
0.77

maximu
m value, 

U5 
eroded 

on top of 
anticline 

4 

Tea_32 

450

-

430 

117
24

7 
1, 2 

0.55-

0.58 97 205 0.46-
0.48

maximu
m value, 

U5 
eroded 

on top of 
anticline 

3 

Tea_17 

450

-

430 

187 
41

2 

0.92-

0.96 
163 359 

0.80-

0.83
 3 

Tea_15 

U3 

270

-

249 

155
36

4 
1 1.35-

1.46   1.15-
1.24

maximu
m value, 

U3 
eroded 

on top of 
anticline 

4 

Tea_17 

270

-

249 

86
18

9 
1 0.70-

0.76 63 139 0.51-
0.56

maximu
m value, 

U3 
eroded 

on top of 
anticline 

3 

Tea_30 

270

-

249 

125
26

5 
1 

0.98-

1.06 106 225 0.83-
0.90

maximu
m value, 

U3 
eroded 

on top of 
anticline 

3 

Tea_9 

270

-

249 

130
28

1 
1 1.04-

1.13   0.88-
.096

maximu
m value, 

U3 
eroded 

on top of 
anticline 

4 

Tea_32 

270

-

249 

106
22

4 
1 0.83-

0.90 
86 182 

0.67-

0.73

maximu
m value, 

U3 
eroded 

on top of 
anticline 

3 

Cariati 

Segment 
Tea_3b U5 

450

-

430 

93 
23

1 

0.51-

0.54 
  

0.44-

0.46
 4 
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Tea_5 

450

-

430 

59 
14

8 

0.55-

0.59 
  

0.47-

0.51
 4 

 

Table 3: Slip rates of the Amendolara and Cariati thrust fault segments calculated from 

simple dislocation modeling using growth strata identified in the Sparker lines. Ages of the 

deformed markers are taken from Waelbroeck et al. [2002], see Table 1. (1) Maximum 

relative uplift considering no deposition of S3 or S5 over the anticline and not considering 

LGM low-stand erosion. (2) Value obtained with a linear interpolation of the thickness 

change of seismic unit S5 in the syncline. (3) Values corrected subtracting the measured 

thickness of debris flow deposits from the geometry of growth strata (on average 10-15% of 

the original value). (4) Values corrected subtracting an estimated average thickness (15% of 

the original value) of debris flow deposits from the geometry of growth strata in the syncline.  
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Figure 1. Regional tectonic setting of southern Italy. (a) Tectonic map showing the Apulian 

swell, the Southern Apennines and Calabrian arc orogens, the front of the thin-skinned thrust 

belt of the Apennines, the deep transition between Ionian and Apulian crusts (after Catalano 

et al. [2001]), and the main active faults on land and offshore (after Ferranti et al. [2009]). 

AR, Amendolara Ridge; BF, Bradano Foredeep basin; BB, backthrust belt of Doglioni et al. 

[1999] (Figure 1c). b) Geodynamic setting of the central Mediterranean, showing the regional 

contractional structures; dotted lines are isobaths of the Ionian slab (from D’Agostino et al., 

[2011]), thicker dashed lines are the conjugate continental margins of the Ionian Sea (after 

Catalano et al. [2001]). c) Line-drawing of deep crustal profile CROP M5 (after Doglioni et 

al. [1999]), whose trace is in Figure 1a.  
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Figure 2. Tectonic map of the Southern Apennines frontal zone in southern Lucania and 

northern Calabria. Pliocene-Quaternary isochronopachs and depth to the top of the Apulia 

platform from Bigi et al. [1992]. Boxes are thrust segments derived from dislocation 

modeling by Santoro et al. [2013]. Amendolara Fault System (AFS) and Valsinni Fault 

System (VFS) from this work. AR, Amendolara Ridge; AB, Amendolara Basin. 
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Figure 3. a) Morphobathymetric map of the Amendolara Ridge derived from the 

Teatioca_2011 multibeam survey, integrated with bathymetry data from GEBCO08 Digital 
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Atlas (www.nbi.ac.uk), showing the grid of acquired Sparker profiles (dotted black lines; 

thicker lines are selected profiles shown in Figure 4) and selected CHIRP profiles (white line 

and boxes). Attitude of the top of the Subapennine Clay in outcrop and in borehole (including 

depth) is also shown. Arrows attached to wells indicate line projection. RCS, Roseto Capo 

Spulico; b) Morpho-structural map of the Amendolara Ridge derived from interpretation of 

the Sparker profiles. Folds: AF, Amendolara Fold; CaFs, Cariati Folds; CiF, Cirò Fold; CSF, 

Capo Spulico Fold; LF, Larissa Fold; RF, Rossano Fold; VEF, Valsinni Eastern Fold; VWF, 

Valsinni Western Fold. IS and OS, Outer and Inner Scarp of the Cariati Bank, respectively. 

http://www.nbi.ac.uk/�
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Figure 4. Depth-converted interpreted SCS lines through: a) and b) the Calabria shelf 

(Tea_10, Tea_36); c) and d) the Amendolara Bank (Tea_15, Tea_9); e) the Rossano Bank 

(Tea_7); f) the Cariati Bank (Tea_5), showing the identified seismic units and bounding basal 

unconformities (U). The upper section of borehole Lucia is displayed in profiles a) and b). 

The projected base of the top of the Subapennine Clay in profile a) is derived from 
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interpolation of outcrop and well attitude and well depth data shown in Figure 3a. Section 

traces located in Figure 3a. Vertical exaggeration (V.E.) = 6:1 for all profiles. Scale is the 

same for all profiles except for profile Tea_10 (a) where it is 1.5 times larger to better show 

the architecture and internal geometries of the sedimentary units. S. b. m., Sea-bottom 

multiple. 
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Figure 5. Depth-converted interpreted CHIRP lines through a) and b) the Amendolara Bank, 

and c) the southern slop of the Cariati Bank. Location in Fig. 3a. 
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Figure 6. Pattern of fold amplitude measured for horizon U5 between anticline and syncline 

hinges on individual Sparker profiles (profile number indicated on top) along an idealized 

profile parallel to the Amendolara Ridge (generalized location in Figure 3b). On top of the 

Amendolara Bank, where U5 was eroded, the amplitude was assumed to coincide with the 

sea-floor. The amplitude pattern allows to distinguish different folds (dashed-dotted lines). 

The cumulative profile (dotted) is the sum of amplitude profiles for individual folds. The 

sharp amplitude decrease in the cumulative profile, as well as the termination of individual 

folds in the central part of the profile, identifies a segment boundary (arrow). A nominal 

uncertainty of ±10 m has been adopted when horizon picking was straightforward. 

Uncertainty is increased and asymmetric (-10/+20 m) in the case of erosional removal of the 

horizon on the Amendolara Bank. When correlation ambiguity was suspected, uncertainty 

has been increased to ±40 m, which takes into account a maximum error in horizon 

correlation to one sequence boundary above and below U5. Uncertainty has been further 

increased to ±80 m for the Cariati fold due to the lower resolution in greater water depths. 

Note that the fold amplitude estimation is a maximum bound because it assumes flat 

bathymetry prior to U5 development. 
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Figure 7. Structural map of the Amendolara Ridge derived from interpretation of the MCS 

profiles, showing age of last detectable fault activity, and the isobaths to the base of the 

Pliocene-Quaternary. The grid of profiles and the wells used to build the isobaths map are 

indicated. Arrows attached to wells indicate line projection. Highlighted and labeled profiles 

are shown in Figure 11. Individual faults strands of the Amendolara and Valsinni faults 

systems are labeled as AF1, Af2, and VF1, VF2, respectively. SB, Sibari Basin; CB, 

Corigliano Basin. 
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Figure 8. Stratigraphic correlation among 7 selected wells from the Sila to the Pollino shelf. 

Wells are located in Figure 8. Up., Upper. Lo., Lower. 
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Figure 9. Seismostratigraphic frame of the sedimentary section in the Ionian offshore aligned 

along a general SW-NE cross section from the northern Sila shelf (a) to the Amendolara 

Ridge (b). Note that we did not trace reflector B on the seismic section in the right panel 

because it has been disrupted and duplicated by thrusting (see Lucia well, Fig, 8). 
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Figure 10a. (top) Time to Depth converted MCS seismic reflection profiles F75-89 (location 

in Figure 8). (bottom) Interpretation (modified after Ferranti et al. [2009]; Santoro et al. 

[2013]). Projection of oil explorations wells (located in Fig. 7) is reported. Note that the 

Letizia well is projected from a long distance and thus the bottom unit (Apulia) drilled by the 

well is located at a higher depth in the study area due to the structural slope. Because of this, 

the actual depth of the well has been projected further down-section till the Apulia unit. 

Faults labeled as in Figure 8.  Thick yellow lines are faults segments from dislocation 

modeling. Inset shows the Sparker profile Tea_9 (no vertical exaggeration) whose trace 

coincides with that of the MCS line. 
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Figure 10b. (top) Time to Depth converted MCS seismic reflection profiles F75-87 (location 

in Figure 8). (bottom) Interpretation. Faults labeled as in Figure 8. Projection of the Lea oil 

explorations well (located in Fig. 7) along the section is reported. For the well depth-

projection, see caption of Figure 10a. Inset shows the Sparker profile Tea_7 (no vertical 

exaggeration) whose trace coincides with that of the MCS line. 
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Figure 10c. (top) Time to Depth converted MCS seismic reflection profiles F75-97 (location 

in Figure 8). (bottom) Interpretation. Faults labeled as in Figure 8. Projection of the Lella oil 

explorations well (located in Fig. 7) along the section is reported. For the well depth-

projection, see caption of Figure 10a. Thick yellow lines are faults segments from dislocation 

modeling. Inset shows the Sparker profile Tea_5 (no vertical exaggeration) whose trace 

parallels but does not coincides with that of the MCS line. 
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Figure 11.  Seismicity data in Southern Lucania and Northern Calabria from various seismic 

catalogues (see text for detail). Symbols of the Parametric Catalog of Italian Earthquakes 

(CPTI11, Rovida et al. [2011]) are unfilled, without depth information. Depth, Mw and 

reference (see table S1) for each focal solution is displayed. Location of focal mechanisms in 

the map is indicated by colored diamonds with reference number. The dotted line outlines the 

regional administrative boundaries. The grey boxes include the two different seismic domains 

identified by Totaro et al. [2013]. For parameters details of the focal mechanisms see table 

S1. 
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Figure 12. Seismotectonic map of the Amendolara Ridge showing thrust segments used in 

the dislocation modeling (solid boxes: segment; dashed box: relay ramp; red from this study, 

navy from Santoro et al. [2009]), epicenters of historical events (1917 event, and 1988 

earthquake mainshock and aftershocks), and the trend of strain axis (average seismological 

Shmax axis from Presti et al [2013]; individual seismological P-axis from Figure 11 and 

Table S1; shortening axis derived from fault-slip inversion from Ferranti et al. [2009]). The 

Sparker lines used for elastic modeling (Figure S2) are indicated. Location of the active fault 

scarp detected from SCS profiles is shown. AS, Amendolara Segment; CS, Cariati Segment; 

RR, Rossano Relay; VS, Valsinni Segment; PS, Pollino Segment; VCS, Valsinni Coastal 

Segment. The parameters of the thrust segments are listed in Table 2.  


	5.2. Seismo-stratigraphic architecture of Upper Quaternary deposits.
	5.3.2. Amendolara Bank.
	5.3.4. Cariati Bank and Capo Spulico Ridge.
	5.3.5. Lateral variability in fold geometry.
	5.4.1. Seismo-stratigraphic and structural architecture
	5.4.2. Geometry of Late Pliocene-Quaternary faults

	5.5. Seismicity analysis
	6. Fault numerical modeling and slip rate
	7. Discussion
	7.2. Regional tectonic framework for oblique contraction.
	7.3. Seismotectonic implications


