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Abstract We investigate numerically the passage of spontaneous, dynamic in-plane shear ruptures from
initiation to their final rupture speed, using very fine grids. By carrying out more than 120 simulations, we
identify two different mechanisms controlling supershear transition. For relatively weaker faults, the rupture
speed always passes smoothly and continuously through the range of speeds between the Rayleigh and shear
wave speeds (the formerly considered forbidden zone of rupture speeds). This, however, occurs in a very short
time, before the ruptures reach the compressional wave speed. The very short time spent in this range of
speeds may explain why a jump over these speeds was seen in some earlier numerical and experimental
studies and confirms that this speed range is an unstable range, as predicted analytically for steady state,
singular cracks. On the other hand, for relatively stronger faults, we find that a daughter rupture is initiated by
the main (mother) rupture, ahead of it. The mother rupture continues to propagate at sub-Rayleigh speed and
eventually merges with the daughter rupture, whose speed jumps over the Rayleigh to shear wave speed
range. We find that this daughter rupture is essentially a “pseudorupture,” in that the two sides of the fault are
already separated, but the rupture has negligible slip and slip velocity. After the mother rupture merges with
it, the slip, the slip velocity, and the rupture speed become dominated by those of the mother rupture. The
results are independent of grid sizes and of methods used to nucleate the initial rupture.

1. Introduction

It is now known that in-plane shear faults (primarily strike-slip earthquakes) can not only exceed the shear wave
speed of the medium but can even reach the compressional wave speed (this is commonly referred to as
supershear earthquakes in the geophysical literature or analogously as intersonic ruptures in the framework of
fracture mechanics). This result is based on theoretical and numerical studies [Burridge, 1973; Andrews, 1976;
Das and Aki, 1977; Burridge et al., 1979; Freund, 1979; Geubelle and Kubair, 2001; Bizzarri et al., 2001; Festa and
Vilotte, 2006; Dunham, 2007; Liu and Lapusta, 2008; Lu et al., 2009], laboratory experiments [Rosakis et al., 1999;
Rosakis, 2002; Xia et al., 2004, 2005; Lu et al., 2007; Rosakis et al., 2007; Passelègue et al., 2013] and indirect evidence
based upon seismic data analysis [Archuleta, 1984; Olsen et al., 1997; Bouchon et al., 2001; Bouchon and Vallée,
2003; Dunham and Archuleta, 2004; Ellsworth et al., 2004; Robinson et al., 2006; Bhat et al., 2007; Vallée et al., 2008].

On the other hand, analytical calculations made on steady state singular cracks [Broberg, 1994, 1995, 1999]
and numerical studies on spontaneous nonsingular cracks [Andrews, 1976] show that speeds between
the Rayleigh and shear wave speeds are not possible. In such a case there is negative energy flux into the
fault edge from the surrounding medium. The fault would not absorb strain energy but generate it (see
Broberg [1999] for details). In a pioneering numerical study, Andrews [1976] showed that the forbidden
zone does exist, even for nonsingular, 2-D, in-plane faults which start from rest and spontaneously
accelerate to some terminal velocity. The existence of this “forbidden zone” in rupture speed has been
supported by many studies, both analytical [Burridge et al., 1979] and numerical [Liu and Lapusta, 2008;
Lu et al., 2009]. Geubelle and Kubair [2001] studied this problem numerically using a spectral boundary
integral equation method. Though they find similar results as above, they do not find the forbidden zone.
Instead, they schematically demonstrate that for most of their cases, the rupture front passes rapidly and
smoothly through the forbidden zone, although the initiation procedure of the rupture is not described
in detail, and the (numerical) resolution of the forbidden zone is not shown. They also do not clarify why
this happens for some configurations and their insights are retrieved from the location (and shape) of the
rupture front (and not from a formal computation of the rupture speed).
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Recently, Bizzarri and Das [2012] showed that the
rupture front actually does pass through the [vR, vS]
range of speeds, and very fast. Unprecedented fine
grids are used in their numerical experiments for a
truly 3-D shear ruptures (in which the in-plane
(mode II) and the antiplane (mode III) are mixed
together) propagating on a planar fault and obeying
the linear slip-weakening governing model.

Motivated by these results, here we examine in
detail, using very fine grids, the 2-D pure mode
II case to see the passage of the rupture front
from sub-Rayleigh to the compressional wave
speeds. The 2-D problem is of interest because
for very long strike-slip faults in the Earth’s crust
the rupture becomes primarily pure mode II at
large distances from the hypocenter (that is,
when the fault length is much larger than its
width). In addition to the inherent theoretical
issues, the interest in supershear ruptures is
motivated by very practical implications.
Compared to subsonic events, the supershear
ruptures produce stronger shaking farther from

the fault and are richer in high frequencies [Aagaard and Heaton, 2004; Bhat et al., 2007; Bizzarri and
Spudich, 2008; Bizzarri et al., 2010].

To investigate the entire range of possible rupture speeds from rupture initiation to the compressional wave
speed, numerical experiments are carried out to mainly cover the parameter space where supershear rupture
propagation could occur. A few cases where the rupture speed remains below the Rayleigh wave speed are also
studied. The small grid sizes used in this study provide a very good resolution of the rupture speed, allowing us to
examine the details of the rupture progress from sub-Rayleigh to compressional wave speeds. It is worthwhile
to emphasize here that most of the previous studies, instead of showing the actual values of the rupture speeds
obtained through numerical calculations, merely plot schematic figures of the rupture speed evolution. Liu and
Lapusta [2008] and Lu et al. [2009] show the rupture speeds, averaged over a broad moving window.

The present paper is organized as follows. In section 2 we present the geometry of the problem. The
numerical results are shown in section 3, where we present the two different mechanisms which control the
supershear transition. In section 4 we discuss the distance from the nucleation patch at which the supershear
transition occurs, and we present a phase diagram to compare against previous results of Andrews [1976]
and summarize the major conclusions of this study. Technical details on the estimate of the rupture speed,
the effect of nucleation methods, and different spatial grid sizes are thoroughly discussed in the three
appendices (Appendix A–Appendix C, respectively).

2. Fault Geometry and Rupture Nucleation

In the present study we consider a 2-D, pure in-plane shear (mode II) rupture problem, as shown in Figure 1. The
rupture propagates along x1; the solutions (e.g., the displacement discontinuity) do not depend on x2 and have
only one component (e.g., u1(x1, t); for the sake of simplicity, in the remainder of the paper we will omit the
subscripts). The elastodynamic problem, in which body forces are neglected, is numerically solved by using the
finite difference code described in Bizzarri et al. [2001], originally developed by Andrews [1973], which uses a
mesh of triangles and the leap-frog scheme. The code has beenmademore efficient by us using parallelization
through the OpenMP paradigm. We assume that the fault obeys the linear slip-weakening friction law [Ida,

1972], which is expressed by the following relation: τ uð Þ ¼ σeffn μu � μu � μfð Þmin u; d0ð Þ=d0½ �, where τ is the

magnitude of the shear stress on the fault, σeffn is the effective normal stress (assumed to be constant through
time), μu is the static friction coefficient, μf is the dynamic friction coefficient, u is the fault slip, and d0 is the
characteristic slip-weakening distance. The parameters used in this study are listed in Table 1.

Figure 1. Geometry of the fault. The dotted line indicates
the fault trace. The rupture begins at the hypocenter H and
propagates bilaterally, as shown by the arrows. Lf is the half
length of the fault. Due to the symmetry of the problem, only
one half of the fault is considered (as indicated).
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Choices of the ratio C= vPΔt/Δx and
possible rupture speed values that
can be resolved numerically are
discussed in detail in the Appendix A
(Δt and Δx are the temporal and the
spatial grid sizes, respectively). For
the second-order accurate, explicit,
2-D finite difference scheme
employed here, the Courant-
Friedrichs-Lewy condition is C ≤ 0.71
[Mitchell, 1976] and ensures the
stability and the convergence of the
numerical solution. We can choose C
or Δt as small as we like, as long as
rounding and magnification errors
remain negligible.

In order to initiate a rupture governed by the linear slip-weakening friction law, we use an (artificial)
nucleation procedure to trigger the dynamic propagation. Once the nucleation stage is completed, the
rupture propagates spontaneously. The rupture speed vr is not prescribed (as for nonspontaneous problems)
but is a part of the solution itself. In the present paper we adopt two rupture nucleation strategies with
different initial parameters. In the first strategy, called the time-weakening initiation, the rupture is initially
nonspontaneous and it propagates at a constant, prescribed rupture speed vr= vinit [Andrews, 1985; Bizzarri,
2010]. Values of vinit equal to 1.2 km/s and 5 km/s are tested. In the second strategy, called the asperity
initiation, a small perturbation in initial shear stress is used to trigger the dynamic rupture [Bizzarri, 2010]. The
size of the asperity should be small enough to avoid interference with the subsequent spontaneous rupture
propagation. The details of the methods and their effect, if any, are fully discussed and quantitatively
compared in Appendix B.

3. Numerical Results for 2-D Spontaneous Rupture Propagation

One hundred and twenty six numerical experiments are carried out in this study. They are sorted into six
Configurations, named as A to F. For each configuration we investigate the relation existing between the
rupture speed and the strength parameter S, originally defined by Hamano [1974] as S= (τu� τ0)/(τ0� τf ),
where τu ¼ μuσ

eff
n is the upper yield stress, τ0 is the initial shear stress, and τf ¼ μfσ

eff
n is the residual shear

stress. The numerator represents the so-called strength excess (i.e., the amount of stress needed to reach
the failure point) and the denominator represents the dynamic stress drop. Thus, doubling the value of this
stress drop simply reduces S by a factor of 2. In addition, a fault with the same strength would have a different
value of S if its initial stress is changed. From here on, we shall refer to weaker/more stressed or a relatively
weaker fault as a “weak fault” and vice versa for a “strong fault.”

We consider 24 values of S in the range between 0.38 and 1.2, and 6 values larger than 1.2. To obtain different
values of S, we change the upper yield stress τu, and we keep the other parameters unchanged. Contrary to the
3-D case, where the absolute values of the stresses affect the behavior of the propagating rupture (they indeed

Table 1. Parameters Adopted for the 126 Cases in This Studya

Parameter Value

Lamé’s constants, λ = G 35.9 GPa
S wave speed, vS 3.464 km/s
Rayleigh speed, vR 3.184 km/s
Eshelby speed, vE ¼

ffiffiffi
2

p
vs 4.899 km/s

P wave speed, vP 6 km/s
Effective normal stress, σeffn 120MPa
Initial shear stress (prestress), τ0 73.8MPa
Dynamic friction coefficient, μf 0.46
Dynamic friction level, τf 55.2MPa
Dynamic stress drop, τ0� τf 18.6MPa
Characteristic slip-weakening distance, d0 0.4m
C = vPΔt/Δx

b 0.0514

aWe consider homogeneous properties and a constant effective normal
stress. Except for C, all parameters are the same as in Bizzarri and Das [2012].

bΔt is the time step and Δx is the spatial grid length.

Table 2. Parameters Used in Configurations A to Ea

Configuration Δx (m) Δt (s) Number Of Cases Nucleation Method

A 40 3.42 × 10�4 24 TWb: vinit = 0.5 km/s
B 20 1.71 × 10�4 24 ’’
C 10 8.57 × 10�5 24 ’’
D 40 3.42 × 10�4 24 TWb: vinit = 1.2 km/s
E 40 3.42 × 10�4 24 Asperity

aThe fault half-length Lf = 40 km is used for all the configurations.
bTW: Time-weakening with starting speed vinit.
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control the level of rake rotation; Bizzarri and Cocco [2005]), in the 2-D case only the value of S controls the
rupture behavior. For S≥~1.77 the rupture speed remains below the Rayleigh wave speed [Andrews, 1976; Das,
1976; Das and Aki, 1977], so most of the values chosen ensure that supershear rupture speeds are attained.
Configurations A–C use the same time-weakening initiation strategy with starting speed vinit = 0.5 km/s, but

Table 3. Parameters Used in Configuration Fa

Strength Parameter S Δx (m) Δt (s) Time (s) Fault Half Length (km) Lf Supershear Rupture

1.3 40 3.42 × 10�4 16 66 Yes
1.4 40 3.42 × 10�4 16 52 No
1.5 40 3.42 × 10�4 16 52 No
1.6 160 1.37 × 10�3 68 214 No
1.7 160 1.37 × 10�3 68 214 No
1.8 160 1.37 × 10�3 68 214 No

aThe time-weakening initiation method with vinit = 0.5 km/s is used for all the cases.

Figure 2. (a) Rupture speeds for the 24 values of S used in Configuration A. The spatial grid size Δx is 40m, and the starting
velocity is 0.5 km/s. The range [vR, vS] is marked. The two kinds of transition behavior for the smaller and larger S values are
clearly seen (light blue and light orange, respectively). (b) Schematic version of Figure 2a, which emphasizes the two rather
distinct behaviors. The vertical dashed lines indicate the birth of the daughter rupture. For values of S greater than 0.9 the
jump to the supershear speed (associated with the presence of the forbidden zone) occurs after t = 4.5 s. When S reaches
the critical value of 1.77 [Andrews, 1976], the rupture asymptotically reaches vR and remains in the sub-Rayleigh regime.
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different spatial grid sizes, Δx = 40m,
20m, and 10m. Configurations D and E
use the same spatial grid length Δx =
40m as Configuration A, but different
nucleation methods. Configuration D
uses the time-weakening initiation
strategy with starting speed vinit =
1.2 km/s, and Configuration E uses the
asperity initiation strategy. The relevant
parameters for these six Configurations
are listed in Table 2. For comparison, we
also study six cases (S> 1.2) where it is
difficult or impossible for the rupture
speed to exceed the Rayleigh wave
speed. These cases are grouped together
in Configuration F. For the cases with
S> 1.6, we used larger spatial grids
(Δx = 160m) as it takes longer for the
rupture to propagate (the parameters are
given in Table 3).

3.1. Supershear Rupture for Weaker
Faults (~0.38 ≤ S ≤~0.72): The Direct
Transition Mechanism

For this range of S the fault is relatively
weak and the supershear rupture occurs
soon after nucleation. We choose
S ≥ 0.38 as lower boundary of this
interval simply to give enough time for
the rupture to become spontaneous and
to avoid any possible artificial effect of
the nucleation methods. The rupture
speed versus time for this range of S is
shown in Figure 2a, with a schematic
summary version shown in Figure 2b.
This figure pertains to Δx = 40m, but the
results for Δx = 20m and Δx = 10m are
very similar (see the results shown in
Appendix C), which indicates that our
conclusions are independent of the
spatiotemporal grid lengths.

The rupture speed curves for this range of S in Figure 2a form a completely separate group (light blue in
Figure 2b) from faults with larger values of S (light orange in Figure 2b). We see that the rupture starts from
rest, accelerates and passes smoothly through the range [vR, vS], and then approaches the compressional
wave speed vP. This direct transition mode has been studied by [Geubelle and Kubair, 2001; Festa and Vilotte,
2006; Dunham, 2007; Liu and Lapusta, 2008; Lu et al., 2009]. The prominent result to be highlighted here
is that the forbidden zone has been shown to or implied to exist for this range of S in some of these studies
[Liu and Lapusta, 2008; Lu et al., 2009]. The present study—which adopts very fine grids with a proper
rupture speed resolution in the [vR, vS] (see Appendix A)—quantitatively demonstrates that the rupture
speed evolves continuously and passes through this range of rupture velocities during direct transition. For
such faults the rupture speed continuously increases from sub-Rayleigh to supershear without any jump.
We also see (Figure S1 in the supporting information) that the time spent in the [vR, vS] regime is
independent of the grid size.

Figure 3. Cohesive zone and rupture speed for the case S = 0.4 of
Configuration A. (a) The green region indicates the cohesive zone, and
the red line indicates where slip velocity is zero (i.e., the boundary
between the unbroken and the broken parts of the fault). Leading edge
and trailing edge of the cohesive zone are also indicated, in agreement
with Bizzarri and Das [2012]. (b) Rupture speed as a function of the dis-
tance from the hypocenter. The red and green vertical dashed lines
denote the beginning of slip weakening (SW) and the end of time
weakening (TW). Region between red vertical line and green vertical line
denotes the transition from TW to SW. For distances greater than the
green vertical line the propagation is fully spontaneous. (c) Stress (nor-
malized by the dynamic stress drop) and fault slip velocity (normalized by
vP) at different times t = 0.9 s, 1 s, and 1.1 s, which correspond to times
before, during, and after the transition, respectively. The position of the
rupture tip with supershear rupture speed is indicated.
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As an example, details of the case S=0.4 are
shown in Figure 3. In Figure 3a, we plot the
evolution of the cohesive zone, where the
fault traction degrades from the upper
yield stress down to the kinetic level (or
analogously, where the fault slip increases
from 0 to d0). Bizzarri et al. [2001] and Bizzarri
and Das [2012] quantify its length as Xb, the
breakdown zone length, and its duration as
Tb, the breakdown time. From Figures 2 and
3a it is clear that no daughter rupture
develops ahead of the main rupture, which
indeed is a single continuous line, without
any jump. The position of the leading edge
and rupture time increases smoothly
during the transition. Remarkably, the
rupture speed increases continuously and
penetrates into the [vR, vS] region roughly at
a distance of 1.5 km from the hypocenter
(Figures 3a and 3b). Numerical details for the
computation of the rupture speed are
reported in Appendix A.

In Figure 3c, we plot the stress and fault slip
velocity at three different times, t = 0.9 s,
1 s, and 1.1 s, which correspond to the time
before, during, and after the transition,
respectively. It is obvious that no shear
stress peak is developed ahead the main
rupture tip, contrary to the situation shown
in Andrews [1976, Figures 4–6], and which
pertain to the mother-daughter transition
mechanism (see next section). From
Figure 3c the rupture tip is easily

identifiable from the slip velocity curves. The movie showing the complete time evolution of stress and
fault slip velocity is available as Animation S1 in the supporting information.

3.2. Supershear Rupture for Stronger Faults (S ≥~0.76): The Mother-Daughter Transition Mechanism

For S ≥ 0.76 Figure 2 shows that the fault rupture behavior is quite different compared to that discussed in
section 3.1. Although the fault is now stronger, the overall behavior of the rupture below vR is similar to that
seen above. However, as vR is approached, a major change in the behavior occurs: the rupture speed no
longer crosses vR but approaches it asymptotically.

In this range of the parameter space, the mother-daughter transition mechanism (reported earlier by Andrews
[1976], Dunham [2007], and Lu et al. [2009]), a secondary fracture is initiated ahead of the main rupture front.
Animation S2 in the supporting information is the movie of the time evolution of stress and fault slip velocity.
For the cases S≥ 0.9, we see the rupture asymptotically approaches vR and then the jump described above
occurs. The daughter rupture now starts to propagate at a speed which is already supershear, but it exhibits
negligible fault slip and fault slip velocity (Figures 5b–5d). The mother rupture then merges with the daughter
rupture at (Figures 4a and 5a), and it is only after this time that the fault slip and the fault slip velocity of the
daughter rupture become appreciable. In fact, the increase in the speed of the daughter rupture mentioned
above actually occurs after the merging of the two ruptures and eventually itself approaches the Pwave speed
(the limiting speed of this rupturemode). Thus, the daughter rupture is essentially a “pseudorupture,”where the
two sides of the fracture have broken apart, but do not have significant motion and no appreciable stress drop,
a feature seen in Andrews [1976].

Figure 4. (a and b) The same as for Figure 3 but now for S = 0.9.
(c) Speed versus time. Details of the daughter rupture, marked by a
rectangle in Figure 4a, are shown in Figure 5.
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For cases with ~ 0.76 ≤ S< 0.9, the fault
rupture behavior is similar to S=0.9, but
there is a decrease in rupture speed as it
approaches the Rayleigh wave speed, this
being more obvious for smaller S values in
this range. For S> 0.9 we still have a jump
from the sub-Rayleigh to the
supershear regime.

4. Discussion and Conclusions

In the present paper we consider 2-D, pure
in-plane shear (mode II) ruptures,
spontaneously propagating and obeying
the linear slip-weakening governing model
[Ida, 1972]. We thoroughly analyze the
behavior of the rupture front and the
cohesive zone where the stress is released,
in order to see whether (i) the rupture jump
and (ii) the so-called forbidden zone
(between the Rayleigh and the shear wave
speeds, vR and vS, respectively), previously
reported (Andrews [1976] among many
others referenced above) for this kind of
problem, really exist.

We scrutinize the different behavior of the
ruptures by considering a large number of
values of the parameter S ranging from 0.38
to 1.8. We conduct all the numerical
experiments by employing a very fine
spatiotemporal resolution, to capture all the
details of the traction evolution within the
cohesive zone and to guarantee an
excellent resolution of the [vR, vS] velocity
range. On average, we have about 25 spatial
grids inside the cohesive zone before
supershear transition occurs.

The simulations confirm that there are two
rather different mechanisms which control
the supershear transition. For weaker faults
(S<~ 0.7), the direct transition mechanism
[Liu and Lapusta, 2008; Lu et al., 2009]
dominates (light blue in Figure 2a). There is
no peak in the shear stress field traveling
ahead of the main rupture front, and
therefore, no daughter rupture appears
(see Figure 3 and Animation S1 in the

supporting information). This mechanism is in agreement with the numerical results obtained at very low
effective normal stress by Lu et al. [2009, section 3.2]. More importantly, we have shown here that in this case,
referred to as direct transition, the rupture penetrates and then passes smoothly through the formerly
considered forbidden zone. It then approaches the compressional wave speed (the terminal, limiting speed
for this rupture mode). In other words, we quantitatively demonstrated for the first time here that, even in
2-D, the penetration of the [vR, vS] range occurs, as for truly 3-D ruptures [Bizzarri and Das, 2012]. Remarkably,

Figure 5. (a) Cohesive zone, (b) fault slip in m, and (c) fault slip velo-
city in m/s zooming in on the daughter rupture portion of Figure 4
(S = 0.9 of Configuration A). In Figures 5b and 5c the thick green line
marks the cohesive zone. (d) Snapshots of stress and slip velocity at
times t = 3.2 s, 3.5 s, and 3.7 s which correspond to times before,
during, and after the transition, respectively. The position of the
daughter rupture tip is indicated.
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the forbidden zone can disappear, and it is not a
universal feature of mode II, nonsingular ruptures.
The results are accurate and robust; the
phenomenon we observe is not an artifact of the
numerical method, the numerical resolution, or the
method employed to nucleate the rupture.

For stronger faults (S>~0.7), the mother-
daughter mechanism (also referred to as the
Burridge-Andrews mechanism) [Andrews, 1976;
Freund, 1979; Abraham and Gao, 2000; Rosakis,
2002; Dunham, 2007] dominates in this
mechanism. The forbidden zone does exist as
the transition to the intersonic regime involves a
rupture speed jump.

In Figure 6 we report a phase diagram summarizing
the behavior of the different ruptures considered in
the present work. As S increases and approaches the
critical value Smax = 1.77 the rupture tends to remain
in the sub-Rayleigh regime. On the other hand,
when S decreases, the supershear transition can
occur sooner. The passing of the rupture through
the [vR, vS] velocity range occurs for the values of S

smaller than the critical value Sc=~0.7, identified above as the boundary between the direct transition (S< Sc)
and the mother-daughter transition mechanism (S> Sc). Figure 6 also shows the distance at which the
supershear transition occurs, namely, the transitional length Ltrans

(2� D) of Bizzarri and Das [2012], and that
Ltrans

(2� D) does not linearly depend on S over the whole parameter space.

In the present paper we employ the linear slip-weakening law, which is known to be a very simplified,
idealized version of more elaborate (realistic) governing equations (see Bizzarri [2011] for a review). It is
possible to simulate spontaneous supershear rupture propagation with other constitutive models (see
Table 1 of Bizzarri [2011, and references cited therein]). Therefore, one intriguing question which naturally
emerges is whether the disappearance of the forbidden zone of rupture speeds we observe in this study in
the case of the linear slip-weakening law is a common feature of all constitutive models. This could be the
subject of future investigations.

It is very important to note that the results presented and discussed here are not in conflict with previous
theoretical predictions for 2-D problems [e.g., Burridge et al., 1979; Freund, 1979; Broberg, 1994, 1995, 1999].
The latter establish the existence of the forbidden zone of rupture speeds for singular, steady state cracks,
while our simulations refer to nonsingular, nonsteady, spontaneous ruptures. However, there is no question
that the [vR, vS] range of rupture speeds is one within which the rupture does not linger (also seen for the 3-D
case by Bizzarri and Das [2012]), showing that it is truly an unstable zone. In fact, the only possible terminal
speeds of ruptures are either the Rayleigh wave speed for relatively stronger faults or the compressional
wave speed for the relatively weaker faults, and no other. We also note that in the range [vS, vP], the rupture
speed continuously increases (Figure 2b), though slowly, and only starts leveling off once it nears the
compressional wave speed. Thus, earthquake ruptures would probably not travel large distances in the
[vS, vP] velocity range.

Finally, our study uses a constant value of S over the entire fault, whereas in the real Earth S could vary along a
fault. So, a fault would slow down and speed up many times during the faulting process. This could explain
why supershear ruptures are rarely observed. In addition, the fault in our model remains planar, whereas real
faults could change strike and deviate very frequently from planarity, exhibiting geometrical complexities
such as bending, branching, and kinks [Aochi et al., 2000; Poliakov et al., 2002; Kame et al., 2003; Fliss et al.,
2005; Robinson et al., 2006, 2010; Bhat et al., 2007]. This additional complexity might also affect the supershear
transition mechanism [e.g., Bouchon et al., 2001; Robinson et al., 2006].

Figure 6. Phase diagram summarizing the behavior of all
the cases in Configurations A and F. We plot the strength
parameter S on the abscissa, the ratio between the critical
length Lc and the location of the rupture front L on the
ordinate. The relevant cases reported in Figures 3–5 are
also indicated.
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Appendix A: Estimate of the
Rupture Speed in 2-D Numerical
Experiments and
Its Limitations

A1. Estimation of the Rupture Speed in 2-D

Rupture speed is an indirect part of the
solution of the spontaneous rupture
propagation problem which has to be
retrieved from the rupture times. Such a
computation, although conceptually
straightforward it is not numerically simple.
In this section we test different methods in
order to explore whether the results depend
on the assumed numerical algorithm.

By adopting the two-point forward
difference method, the rupture speed vr(i) at
a generic fault node i (having absolute
coordinate xi= iΔx) is

vr ið Þ ¼ i þ 1ð ÞΔx � iΔx
tr i þ 1ð Þ � tr ið Þ ¼

Δx
tr i þ 1ð Þ � tr ið Þ (A1)

where Δx is the spatial grid length, tr(i) represents the rupture time at node i. According to previous study
[Bizzarri and Das, 2012, and references cited therein], the rupture time at node i is defined as the first time at
which the fault slip velocity in that location exceeds the threshold value vl = 0.01m/s. (Readers can refer to
section 3.1 of Bizzarri [2013] for a discussion.)

Similarly, in the two-point central difference method, the rupture speed vr(i) at node iΔx is

vr ið Þ ¼ i þ 1ð ÞΔx � i � 1ð ÞΔx
tr i þ 1ð Þ � tr ið Þ ¼ 2Δx

tr i þ 1ð Þ � tr i � 1ð Þ (A2)

In the five-point stencil difference method, the rupture speed vr(i) at node iΔx is

vr ¼ i � 2ð ÞΔx � 8 i � 1ð ÞΔx þ 8 i þ 1ð ÞΔx � i þ 2ð ÞΔx
tr i � 2ð Þ � 8tr i � 1ð Þ þ 8tr i þ 1ð Þ � tr i þ 2ð Þ

¼ 12Δx
tr i � 2ð Þ � 8tr i � 1ð Þ þ 8tr i þ 1ð Þ � tr i þ 2ð Þ

(A3)

All of these three direct estimation methods are tested, and the results are shown in Figure A1. Rupture
speeds obtained by using the different methods are found to be very similar for the present 2-D
configurations, but the two-point central difference method is preferred; it has less numerical oscillations
than the simple forward different scheme, and it is practically identical to the five-point stencil, but it is
computationally more efficient.

A linear interpolation method was suggested by the associate editor to reduce the discreteness of rupture
speed, which is discussed in section A2. Consider the first time step when the slip velocity becomes nonzero.
Define a “virtual traction” that varies linearly in time between the value of traction at the previous time
step and the value of the “trial traction” [Andrews, 1999] at the current time step. Find the (nondiscrete) time
when this virtual traction equals the upper yield stress. Owing to the linear interpolation assumption, this
time lies between the current and previous time steps. Hence, a subsample-precision rupture time and speed
can be obtained by assuming linear interpolation of tractions between time steps.

A2. Possible Values of Rupture Speeds Obtainable in the 2-D Numerical Experiments

Since the rupture speeds vr determined from discrete grids in the space-time numerical scheme are limited to
certain discrete values, it is important scrutinize what these possible values are. In Figure A2 some possible
values of vr are schematically indicated by using the two-point central difference method (which is our
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Figure A1. Rupture speed, estimated using the two-point forward
difference method (green squares), two-point central difference
method (red dots), and five-point stencil difference (blue circles) are
shown (see Appendix A for details). Similar results are obtained using
Δx = 20m and Δx = 10m.
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preferred method; see section A1). The largest vr is

v0r ¼ ∞, obtained when the node (i� 1)Δx and
(i+ 1)Δx fail at the same time (horizontal line). The
second largest vr is vr= 2vP/C, where C= vPΔt/Δx,
when node (i� 1)Δx and (i+ 1)Δx fail at iΔt and
(i+ 1)Δt, respectively (or fail at (i� 1)Δt and iΔt,
situation not shown in Figure A2 in the interest of
simplicity). If a possible value between v0r and v1r is

needed, for example, v1=2r ¼ 4vp=C, we have to
change the time step from Δt to 1/2Δt to add a
node (j+ 1/2)Δt between iΔt and (j+ 1)Δt. These
new nodes for the new time step 1/2Δt are
indicated by crosses in Figure A2. Note that if the
spatial grid size is changed from Δx to 1/2Δx

simultaneously, the desired value v1=2r ¼ 4vP=C will
be unavailable again.

To fully understand the limitation in the
numerical resolution of the rupture speeds, we
express the quantity tr(i + 1)� tr(i� 1) in
equation (A2) as N×Δt(N= 0, 1, 2, 3,…), so that

the only possible discrete values of the rupture speeds that can be determined from the discrete grids
in the space-time are

vNr ¼ Δx
N�Δt

¼ vP
N�C

; N ¼ 0; 1; 2; 3;… (A4)

where vNr ¼ v0r ; v
1
r ; v

2
r ;…v∞r

� �
represent the only possible discrete values of the rupture speed grid. For

a given pair of Δx and Δt, and for a given numerical algorithm to compute the rupture speed (see
section A1), vNr are determined by the value Δt/Δx or by C. Figure A3 shows the rupture speed grid vNr
from different C in 2-D numerical experiments. For smaller C, the grid points are denser and more
evenly distributed in the interval of interest, which implies a better resolution of the forbidden zone. In

the interval [vR, vS] the number of possible discrete rupture
speed values increases from 1 to 6 as C decreases from
0.9 to 0.0541. We use C=0.0514 in this study as the speed
interval of interest is well covered by the grid points and
the forbidden zone is well resolved by six grid points.

Thus, for a given spatial grid length Δx the rupture speed
resolution could be improved by using smaller Δt, as long as
the Courant-Friedrichs-Lewy condition is satisfied. It is
interesting to emphasize here that if we concurrently reduce
Δx and Δt by keeping C unchanged, it is not possible to
improve the rupture speed resolution. Finally, we remark that
the numerical algorithm employed to compute the rupture
speed can also affect the possible discrete rupture speed
values (see Figure A1), and ultimately the resolution within
the forbidden zone. Thus, the direct estimation methods are
less important than the values of Δt/Δx or C.

The rupture speed resolution could also be improved by using
the linear interpolation method without changing the Δt/Δx
or C. We do not see more noisy rupture speeds in our test
cases but this is not necessarily guaranteed in other simulation
methods and codes. We suggest using the interpolation
method after it is validated by the direct method.
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Figure A3. The only possible rupture speed values
that can be obtained with the two-point central
difference method and using different values of C.
As C increases, the grid points are more evenly
distributed. C = 0.9 and 0.144 are the values used in
Andrews [1973, 1976] and Bizzarri and Das [2012],
respectively. C = 0.05 is used in this study. The
range of velocities formerly considered forbidden is
shown in gray.

Figure A2. Rupture speed estimation by two-point central
difference. Integers i and j discretize the space and the time
domains, respectively.
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We emphasize that the existence of the forbidden zone shown or implied in a very large number of previous
numerical studies dealing with nonsingular 2-D ruptures is possibly related to the lack of resolution of rupture
speed in the [vR, vS] range.

Appendix B: Effect of Different Nucleation Methods

As well known [see, e.g., Bizzarri, 2010], the linear slip-weakening constitutive equation requires the
introduction of an artificial procedure to induce the nucleation of the rupture and the subsequent dynamic,
spontaneous propagation of the fault surface. Here we scrutinize whether the adopted nucleation strategy
can have some influence on the supershear rupture transition and thus on the penetration of the [vR, vS]
range. To this goal we used two rather different ways for the rupture initiation; the time-weakening method
and the asperity method (readers can refer to “Initially non-spontaneous rupture propagation and

Figure B1. Rupture speeds for different S in Configuration E, in which the rupture nucleation is obtained though the time-
weakening method. The Δx is 40m, and the starting velocity is 1.2 km/s (see Appendix B for further details).

Figure B2. The same as for Figure B1 but now for cases pertaining to Configuration E, where the nucleation is obtained
through the introduction of a shear stress asperity (see Appendix B for further details).
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introduction of an initial shear stress asperity
sections” of Bizzarri [2010], respectively, for a
detailed discussion of these two strategies).
The Configurations D and E (see Table 2) are
relevant to this test.

For the Configuration D, the time-weakening
method, a starting speed of vinit = 1.2 km/s is
used, and the rupture speed curves are plotted
in Figure B1. Compared to Configuration A
(Figure 2), the nucleation stages have larger
rupture speeds, but the spontaneous rupture
behavior is similar. In particular, we do not
observe any relevant change in the
supershear transition.

For the Configuration E, an asperity nucleation
method is used. The stress perturbation used to
initialize the rupture is 0.5% greater than the
upper yield stress. The asperity size is set to 2 LC,
where LC is defined as the half-critical length in
Andrews [1976] (see equation (1) of Bizzarri

[2010]), and the entire asperity is allowed to rupture at the first time step to initiate the process. The resulting
rupture speed curves are plotted in Figure B2, which shows that after the nucleation stage, the spontaneous
rupture behavior is similar to Figures 2 and B1.

If vinit is large enough, the mother-daughter mechanismmay act before direct supershear transition occurs,
especially for small S (S ≤~ 0.72). In such cases the penetration of forbidden zone disappears. An example of
this situation is represented by a case with the time-weakening nucleation strategy, with a starting speed
equal to 2.4 km/s and Δx = 40m for the case of S = 0.4; the resulting rupture speed curve is plotted in
Figure B3. Due to the larger starting speed the rupture speed jumps from sub-Rayleigh to supershear
rupture speed via the mother-daughter mechanism. But for S = 0.4, all of the three ways of nucleation
(time weakening with vinit = 0.5 km/s, 1.2 km/s, and asperity) show that the rupture speed increases
continuously from sub-Rayleigh to supershear speed (Figure B3). This clearly indicates that if the initial
rupture speed is too large (see also Bizzarri [2010]), the energy initially provided to the rupture is large
enough to artificially cause an apparent jump of the daughter mechanism. This further confirms that the
nucleation method, and the parameters controlling it, can have severe consequences in the subsequent
rupture propagation. This is a clear example of a configuration in which the nucleation procedure artificially
pollutes the solution and causes an improper rupture behavior. Incidentally, we also recall here that
Bizzarri [2010] also found that if the initial shear asperity is too large (compared to the critical length of the
problem), it might cause a supershear rupture speed also for large values of the strength parameter, which
would theoretically predict a subshear rupture propagation. We emphasize that all the results presented
and discussed in this paper (see section 3) pertain to a proper choice of the nucleation procedure,
according to the general guidance of Bizzarri [2010].

Appendix C: Effect of Different Grid Sizes

In this section we will explore the effects of the adoption of different spatial discretization in the
determination of the threshold value of the strength parameters S which separates the mother-daughter
from the direct transition mechanisms.

When we change the spatial grid size Δx, but keep C= vPΔt/Δx unchanged, the time step Δt is automatically
changed. To study the effect of different grid sizes, Configurations B and C are tested with Δx = 20m and
Δx = 10m (see Table 2).

Compared to Configuration A (Figure 2), similar results are obtained in these two tests (Figure C1). The two
regions that represent direct and mother-daughter supershear rupture transition are clearly seen. In the
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Figure B3. Comparison of rupture speeds using different rupture
nucleation methods, for the case S = 0.4 and Δx = 40m. Note that
the only case in which the forbidden zone does exist (and the
daughter front exhibits a jump) pertains to a case for which the
initial rupture velocity is too high (2.4 km/s) and the nucleation
procedure affects and pollutes the subsequent dynamic, sponta-
neous rupture propagation.
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case of S=0.72, the direct transition occurs in Configuration A, but the mother-daughter transition occurs in both
Configurations B and C. This is due to the supershear transition being very sensitive to the stress peak. In the
numerical simulations, the amplitude of the peak in stress field will increase as more high frequency components
radiate from the rupture tip for smaller spatial grids. So the threshold value of Swhich separates the two different
transition mechanisms changes from 0.76 to 0.72 as the spatial grid size decreases. This implies that in numerical
simulations it is difficult to find an exact value of S (in an absolute sense) which separates the two parameter
regions reported in Figure 2b. An estimation of about 0.7 is reasonable from our simulation results.

For smaller spatial grid size, the rupture speed curves are smoother—and this causes less numerical
oscillations—but larger memory and more computational time are required in this case. In
Configuration C, the simulation time is limited to 2.6 s, which is not long enough for the cases S ≥ 0.80
to become supershear rupture. Balancing between computing time and accuracy, we choose spatial
Δx = 40m to simulate most of the cases.
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Figure C1. Rupture speeds for different spatial gird sizes in Configurations B and C, in which the rupture nucleation is
obtained though the time-weakening method and the starting velocity is 0.5 km/s (see Appendix C for further details).
(a) The Δx is 20m. (b) The Δx is 10m.
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