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Ray theory formulation and 
ray tracing method. Application in
ionospheric propagation

T
his work will lead to ray theory and ray tracing formulation. To deal with this problem the theory of  classical

geometrical optics is presented, and applications to ionospheric propagation will be described. This provides useful

theoretical basis for scientists involved in research on radio propagation in inhomogeneous anisotropic media,

especially in a magneto-plasma. Application in high frequencies (HF) radio propagation, radio communication, over-the-

horizon-radar (OTHR) coordinate registration and related homing techniques for direction finding of  HF wave, all rely

on ray tracing computational algorithm. In this theory the formulation of  the canonical, or Hamiltonian, equations related

to the ray, which allow calculating the wave direction of  propagation in a continuous, inhomogeneous and anisotropic

medium with minor gradient, will be dealt. At least six Hamilton’s equations will be written both in Cartesian and spherical

coordinates in the simplest way. These will be achieved by introducing the refractive surface index equations and the ray

surface equations in an appropriate free-dimensional space. By the combination of  these equations even the Fermat’s

principle will be derived to give more generality to the formulation of  ray theory. It will be shown that the canonical

equations are dependent on a constant quantity H and the Cartesian coordinates and components of  wave vector along

the ray path. These quantities respectively indicated as ri(t), pi(t) are dependent on the parameter t, that must increase

monotonically along the path. Effectively, the procedure described above is the ray tracing formulation. In ray tracing

computational techniques, the most convenient Hamiltonian describing the medium can be adopted, and the simplest way

to choose properly H will be discussed. Finally, a system of  equations, which can be numerically solved, is generated.

Q
uesto lavoro descrive la teoria del raggio d’onda indicata, nella letteratura internazionale, come “ray theory” e la tecnica del

ray tracing. Per affrontare questo problema, viene presentata la teoria dell’ottica classica relativa al raggio d’onda e viene descritta

l’applicazione nella propagazione ionosferica. Così vengono fornite utili basi teoriche per i ricercatori coinvolti nelle ricerche della

radio propagazione nei mezzi disomogenei e anisotropi, quale è il magneto-plasma ionosferico. Le applicazioni nella radio propagazione

ad alta frequenza (HF), nelle radio comunicazioni, nelle tecniche radar over-the-horizon-radar (OTHR) per la tecnica di coordinate

registration, nella relativa tecnica di homing per la direction finding dell’onda HF si basano tutte su algoritmi di ray tracing numerici.

Questa teoria tratta la formulazione delle equazioni canoniche o Hamiltoniane relative al raggio d’onda che permettono di calcolare la

direzione di propagazione nei mezzi anisotropi, continui o con piccoli gradienti di disomogeneità. Sono necessarie almeno sei equazioni

che possono essere scritte in coordinate cartesiane o sferiche nella maniera più semplice. Queste possono essere ottenute introducendo

l’equazione della superficie degli indici di fase e della superficie dei raggi, in un opportuno spazio adimensionale. Dalla combinazione di

quest’ultime equazioni può essere derivato anche il principio di Fermat per conferire più generalità alla ray theory. Viene dimostrato che

le equazioni canoniche dipendono da una quantità costante H, dalle coordinate cartesiane e dalle componenti del vettore d’onda lungo

l’intero ray path. Queste quantità, rispettivamente indicate come ri(t), pi(t), sono dipendenti dal parametro t che è una quantità che cresce

monotonamente lungo il ray path. Di fatto, la procedura sopra descritta contiene il concetto stesso di ray tracing. Nella tecnica

computazionale del ray tracing, può essere adottata la Hamiltoniana più conveniente per descrivere il mezzo e viene discusso il modo più

semplice per scegliere H opportunamente. Infine, viene generato un sistema di equazioni che può essere numericamente risolto.

Introdution

This paper describes the ray propagation of  electromagnetic
waves, which is generally referred to in international litera-
ture as “ray theory”. This theory often includes the method
of  ray-tracing formulation, which typically applies numeri-
cal analysis techniques. The theory is based on some funda-

mental concepts and on the approximate solution of  partial
differential equations. These are the well-known WKB
approximations, an acronym from Wentzel, Kramers, and
Brillouin the three authors who independently proposed the
technique in 1926. This approximation leads to the eikonal
equation, a phase integral, which was used to define the
canonical equations of  the ray [Budden, 1988]. 
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The theory described here leads to the formulation of  the
canonical, or Hamiltonian, equations related to the ray of
the wave. It deals with the propagation of  the ray in a con-
tinuous, inhomogeneous and anisotropic medium with
minor gradient. When the discontinuities of  the medium
are high, the calculation of  the ray path using this tech-
nique is no longer valid and Snell’s law should be applied at
the interface surface discontinuities.
The ray theory formulation, therefore, allows definition of
a number of  differential equations equal to the variables,
which affect the three canonical equations in generalized
coordinates (q1, q2, q3) and the 3 components of  the wave
vector that can be assimilated to the moments (p1, p2, p3). If
a non time-variant medium is considered, six equations are
sufficient to describe the phenomena. Conversely, if  it is
assumed that the medium is time-variant, then two more
equations need to be added to the group of  six equations,
since the Hamiltonian also depends on time and frequency. 
In the initial paragraphs a correct but less formal method
will be followed to arrive at the formulation of  the canoni-
cal equations. This is achieved by introducing the equation
of  the refractive surface index G(x, y, z, px, py, pz)=1 which
depends on both the spatial coordinate, and components of
the refractive index expressed in a special “space index”.
The latter equation combined with the “ray surface”
derived from the “ray space” is utilized to derive the canon-
ical ray equations . This is the sim-
plest mathematical approach found in literature [Budden,
1961].
Mention will also be made of  a very formal approach (para-
graph 9), which takes into account the asymptotic expan-
sion of  the ray of  the wave, which in different degrees of
approximation leads to the Hamiltonian formulation, then
to the determination of  ray tracing. Moreover, returning to
the first point, an introduction is provided for the method
of  combining the surfaces G and F to derive Fermat’s prin-
ciple. This gives a certain generality to the formulation of
ray theory. On the basis of  this principle only a particular
path where the ray takes the minimum time is actually ray-
path permitted, while the ray does not propagate along any
of  the other possible paths. Once the canonical equations
are derived, a constant quantity H dependent on x, y, z, px,
py, pz must be chosen in order to derive from six differential
equations, the coordinate and wave vector direction along
the whole path. These quantities generically indicated as ri
(t), pi(t) are dependent on the parameter t, which must
increase monotonically along the path. Effectively, the pro-
cedure described above is the ray tracing concept. In the
ionosphere the refractive index is a complex quantity that
can assume two different expressions since the medium is
bi-refractive and two different paths are permitted (ordi-
nary and extraordinary ray paths) for the two different
propagating modes. In ray tracing computational tech-

niques, the most convenient Hamiltonian can be adopted
describing the medium and the mode simply by choosing H.
Finally, a system of  equations, which can be numerically
solved, is generated.

1. Phase and ray velocity

In the ray tracing technique, ray velocity vr is considered
rather than phase velocity. Ray velocity is the velocity at
which the energy of  a monochromatic wave propagates in
a medium. This concept does not apply to a wave packet
which propagates at group velocity. The latter velocity is
always lower than c (velocity of  light in vacuum) as each of
the packet components propagates at its own speed. In a
monochrome wave, the speed at which the energy propa-
gates is the speed of  the ray. In general when dealing with
a problem of  ray tracing, the parameter of  interest is the
path followed by the ray of  the wave in the medium in
which it propagates. If  the medium is isotropic, the prob-
lem is simple since the phase and ray velocities propagate
in the same direction. Propagation in an anisotropic medi-
um is different because the phase and ray velocities have
different directions. If  the medium is inhomogeneous, the
wave is subject to the phenomenon of  refraction but, at the
wave front, both phase and group velocities have the same
direction.
The phase velocity, in anisotropic media, forms an angle a
relative to the speed of  the ray as the first is always perpen-
dicular to the wave front (phase constant surface) while the
second coincides with the propagation direction of  energy
(see figure 1). 
Figure 2 shows the same phenomenon from another point
of  view. A radio wave propagates in an anisotropic medi-
um from point T to point R, which is the path along
which the energy propagates, with the velocity vector of
the ray always tangent to the trajectory along the path
TR. The phase velocity vector, perpendicular to the wave
front, forms an angle a with ray vector dependent on the
index of  refraction of  phase and group at the generic
points x, y, z.
In an anisotropic medium at the points x, y, z of  the ray-
path, the relations between the ray and phase velocities
and the corresponding refractive indices, are linked to
each other through the angle a [Fowles, 1989] as in the
following: 

, (1.1)

. (1.2)

One of  the most intuitive derivations of  equations (1.1) and
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(1.2) can be found in texts discussing radio ionospheric prop-
agation [Davies, 1990]. A simple derivation is given on [Kelso,
1964; Kelso, 1968]. The Poynting    vector (energy that flows
into the surface unit in the unit of  time) can be written:

, (1.3)

where w indicates the energy and therefore it appears that
vr = I / w. Now, knowing that v = c /µ it can be written as
follows:

, (1.4)

6

Figure 1. The perpendicular to the wave front is the propagation direction of the phase velocity   . 
In an anisotropic medium it forms an angle a with the ray’s velocity   . 
Figura 1. La perpendicolare al fronte d’onda è la direzione di propagazione della velocità di fase

. In un mezzo anisotropo, forma un angolo a con la velocità del raggio d’onda   .

Figure 2. The ray velocity    is always tangent to the path followed by the wave along the line
TR. The phase velocity vector forms an angle a relative to the propagation direction of the velo-
city    . 
Figura 2. La velocità del raggio d’onda è sempre tangente al percorso seguito dall’onda lungo
la curva TR. Il vettore della velocità di fase forma un angolo a rispetto alla direzione di pro-
pagazione della velocità    . 
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where the Poynting vector    is projected in the direction of
.  . By virtue of  equation (1.3) we have the following:

, (1.5)

with    and    as unit vectors. Equation (1.2) is immediate
since v = c /µ and vr = c / n. The propagation speed of  the
energy (wavelength range) is always greater than the phase
velocity, unless a is not null, when they would be equal.

2. Refractive index surface equation

In an inhomogeneous and isotropic medium, in which the
refractive index characterizing the medium does not vary
much in relation to the wavelength, a special space is intro-
duced known as the “refractive index space”. It is a dimen-
sionless space where the coordinate axes px, py, pz can be
defined parallel to those of  ordinary space described by the
coordinate axes x, y, z. A wave front is considered at the point
x, y, z, as in figure 3.
The normal to the wave front, i.e. the direction of  propa-
gation of  the phase, is different from the direction of  the
ray, which is the energy propagation direction. Now a vec-
tor     with the modulus can be traced
from the origin parallel to the wave normal, with µ
the value of  the phase refractive index at the point x, y, z.
In this space the cosines of  vector are:

, ,                           . (2.1)

Moving on the surface of  the wavefront, the vector    will
trace a surface which can be called the “surface of  the refrac-
tive index” or G, which obviously depends on x, y, z, px, py,
pz, where the components px, py, pz are present only in mutu-
al combination. We can therefore write [Bianchi and Bianchi,
2009]:

(2.2)

The surface just described is similar to the equation of  the
sphere with centre in the origin of  the reference system. It
can be written as above equation (2.2) and is the locus of
points px, py, pz, touched by the apex of  the vector   . Now
the direction of  the ray is normal to the surface of  the refrac-
tive index with the direction cosines proportional to
[Budden, 1988]:

(2.3)

The point x, y, z, where the ray intercepts the wave front
moves with velocity vr and it can be represented as: 

(2.4)

It can therefore be assumed that every point on the surface
has a velocity given by (2.4) and that these components are

Figure 3. Surface of refractive index. Note that: P and G superficies show similar shape;
in the refractive index space, the P axes are parallel to the Cartesian coordinate axes. 
Figura 3. Superficie dell’indice di rifrazione. Si noti che: le superf ici P e G mostrano
forme simili; nello spazio dell’indice di rifrazione, gli assi di P sono paralleli agli assi
delle cordinate cartesiane. 
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proportional to components (2.3). The constant of  propor-
tionality between these two is found in the following man-
ner. The x-axis is selected in such a way that py, pz are zero as
well as the partial derivatives with respect to ∂/∂py and
∂/∂pz. The partial derivative of  G respect to ∂/∂px i.e.
∂(px/µ)/∂px is:

(2.5)

as is also the derivative ∂(1 /µ)/∂px=0, since there is no vari-
ation of  µ along the chosen direction px. If      is used to indi-
cate the velocity component of  the ray along x in the direc-
tion of  the normal wave-front, which is c /µ . Then, accord-
ing to equation (2.5) it will have:

(2.6)

Therefore, the constant of  proportionality is 1/c and, gener-
alizing on the other partial derivatives it will have:

(2.7)

These relations (2.7) are also valid in the case of  an
anisotropic medium once the particular refractive index
(ordinary or extraordinary) has been selected.

3. Ray surface equation

Similarly to what was done for the surface of  the refractive
index, a dimensionless space called the “ray space” can be
defined. Inside this the coordinate axes    ,    ,    are defined
for the velocity, parallel to the ordinary space coordinate
axes x, y, z.
Considering a wave front taken at the point x, y, z, as shown
in figure 4, and following the procedure of  the previous
paragraph, a vector can be traced from the origin, such that
each point on the surface can be associated to a vector of
modulus within the ray space:

(3.1)

Now the direction cosines of  the ray can be expressed as:

, ,                           . (3.2)

Considering all the possible directions of  the wave front, a
surface called the “ray surface” is obtained such that: 

(3.3)

It is equivalent to write:

(3.4)

with the speed vr=c/nr and nr the refractive index of  the ray.
The cosines are proportional to:

px,  py,  pz, (3.5)

and also proportional to:

. (3.6)

The constant of  proportionality between quantities (3.5) and
(3.6) is equal to c. Therefore it will have:

(3.7)

These relationships are reciprocal with equations (2.7). They
are referred to as mutual surfaces, since exchanging px, py, pz,
with the partial derivatives of  the velocities gives either rela-
tions (2.7), where the function G applies, or relations (3.7)
where the function F applies. The constant of  proportional-
ity between px, py, pz, and the quantities (3.6) are found in
the following way. The x-axis is selected in such a way that

and    are zero, and so that the partial derivatives          and
of  the velocity components along y and z do not con-

tribute. The constant of  proportionality between px, py, pz,
and the quantities (3.6) are obtained by the function F, which
is equal to            , and by its derivative with respect to ,
which is:

(3.8)

where nr is put in relation to px recalling the previous con-
struction of  the G surface. Therefore, the proportionality
constant is 1 / c. This relationship can be exploited to for-
mulate Fermat’s principle when it is combined with the
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relation of  the surface refractive index.

4. Phase memory concept

Maxwell’s equation                                 is now considered for
a wave which propagates along r, chosen in the direction of
the normal waveform and having propagation vector mod-
ule k=2l/ . In a new set of  three coordinates x, y, z, this
equation can be written , where
px, py, pz are proportional to the cosines of  the wave-normal
with respect to the new axes and px

2+ py
2+ pz

2=µ 2. These
quantities px, py, pz play an important role as they take into
account the direction of  the ray. At this point the homo-
geneity of  the medium is no longer a requirement. In an
inhomogeneous medium it is important to set the condi-
tion that the refractive index varies slowly [Bianchi et al.,
2009]. Adopting this assumption, the concept of  phase
memory can be applied, in which the phase change can be
expressed as kpx dx. Along a distance x the change can be
expressed as . More generally, the change of  phase
from a point source to a point x, y, z, is given by:

(4.1)

Therefore it is assumed that there exists a function
i.e. a solution to Maxwell’s equations for

which:

(4.2)

In a homogeneous medium, px, py, pz are constant and they
can be taken out of  the integral. The function S is called
eikonal [Bianchi et al., 2009]. It can be thought of  as the spa-
tial part of  the wave phase. It is also evident that:

, ,                     , (4.3)

then

, (4.4)

where     is a vector of  components px, py, pz. As the     curl is
null, i.e.                , we have:

, ,                      . (4.5)

Figure 4. Three dimensional ray space allows definition of a ray surface                       by sim-
ple geometrical means. In the ray space the velocity component axes   ,   ,   are parallel to the
Cartesian coordinate axes. 
Figura 4. Lo spazio tridimensionale del raggio d’onda consente la definizione di una superf i-
cie del raggio d’onda applicando semplici metodi geometrici. Nello spazio del
raggio d’onda, gli assi delle componenti in velocità sono paralleli agli assi delle coordinate
cartesiane. 
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This relation will be exploited later to derive the canonical
equations of  the ray.

5. Canonical ray equations

Let P (x, y, z) be the point where the ray intercepts the wave
front (for example, the coordinate of  a wave crest while it
travels along the ray). For each point of  coordinate x, y, z on
this surface, there is a corresponding point px, py, pz, on the
surface of  the refractive index G whose equation, already for-
mulated, for simplicity is recast as follows:

(5.1)

which is generally valid, and must be satisfied for each point
px, py, pz .
Now considering the functional dependence of  refractive
index G along the direction x and directly differentiating G
relative to x, for both members of  equation (5.1), it will
result dG/dx=0, which in more explicit form is:

(5.2)

because px, py, pz depend on x. So according to equations
(2.7) and (4.5) it will have:

(5.3)

and therefore, since px has null derivative relative to y and z,
it will have:

(5.4)

where d/dt applies to the arbitrary point x, y, z on the G sur-
face. It can therefore be written:

(5.5)

Generalizing, it follows:

, ,                       . (5.6)

These equations are very important in this context because
they assume a familiar form and are called the canonical ray
equations. Together with equation (2.7) they acquire a formal
symmetry similar to Hamilton’s equations when replacing H
to G. Hamilton’s equations elegantly synthesize the theory of
classical mechanics as shown below by the relation:

(5.7)

(5.8)

which are comparable with equations (2.7) and (5.6). In the
previous equations (5.7) and (5.8), qi and pi are respectively
the generalized coordinate and generalized moment. For
this reason, when dealing with equations (2.7) and (5.6),
Hamilton’s equations are being discussed, even if  the deriva-
tion, as seen above, is different from that of  Hamilton in clas-
sical mechanics. For the applications under discussion here,
it is possible to confer more generality to these equations
and include cases of  time-variant medium and, given the
intrinsic dispersivity of  the ionospheric plasma, this particu-
lar equation even becomes dependent on frequency. Making
Hamilton’s equation depend on qi(t) and pi(t) as well as on
time t explicitly and also on frequency ω does not introduce
other formal difficulties but only complications in calcula-
tion. This dependency can be expressed in Cartesian coordi-
nates and wave vector components as:

(5.9)

This equation is also called the super-Hamiltonian as it is
also possible to extract the Doppler shift due to the variation
of  the refractive index through time. Compared to the func-
tion G, the function H differs for the fact that the compo-
nents of  the index of  refraction were replaced with compo-
nents of  the vector  using the formula:

(5.10)

with n=µ +jc the complex refractive index. With this posi-
tion and according to equation (2.2) it is possible to rewrite
equation (5.9) as:

(5.11)
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The anisotropic properties of  the medium depend only on
the real part of  the refractive index [Bianchi, 1990], while the
imaginary part is responsible for the absorption of  the waves
due to the medium. The present interest is for ray tracing
formulation and related implications, and so for the sake of
simplicity, from this point onwards the discussion will con-
sider only the real part µ, returning to equations similar to
equations (2.2) [Jones and Stephenson, 1975]:

(5.12)

These authors used a number of  derived forms of  the equa-
tion (5.12), with spherical coordinates, which will be the sub-
ject of  the following paragraphs.

6. Application of Hamilton’s equations

Assuming that a wave is propagating in an inhomogeneous
medium characterized by a phase refractive index µ(x,y,z),
the value of  which depends on the position, as long as the
wavelength λis small compared to the spatial variation of
the refractive index, the following relations applies:

(6.1.a)

(6.1.b)

(6.1.c)

(6.1.d)

(6.1.e)

(6.1.f )

Even in an anisotropic medium that can present two differ-
ent values for the refractive index at the same point (as in the

ionosphere, with the ordinary and extraordinary refractive
index) the above equations are still applicable. The only
requirement is to consider the values valid for the ordinary
or extraordinary refractive phase indexes separately. The
parameterτvaries monotonically along the wave path, and
can be considered, for example, τ= ct. Similar equations
have also been proposed [Haselgrove, 1955]. Applying the
WKB approximation, there are thus six uncoupled differen-
tial equations, whose numerical integration provides the
wave path or ray tracing. It can also be considered an isotrop-
ic medium with particular symmetry as in the case of  a flat
layered medium. In this case the canonical ray equations
(5.6) and (2.7) can be employed in the numerical calculation
of  ray tracing. They constitute a sort of  Snell’s law general-
ization. For example, if  we reduce Hamilton’s equations
making them depend on a single spatial variable, setting
∂G/∂x=0 and ∂G/∂y=0, taking a flat stratified ionosphere
where µ = µ(z), it is possible to proceed in the following
manner. If  px=S1, py =S2, pz =q, which by virtue of  equations
(5.6) gives:

(6.2)

Namely S1, and S2 are constant along the ray (during the
propagation there is no change relative to t). These are noth-
ing more than Snell’s law. Initially only equations (2.7) and
(5.6) are used, relative to the function G, in a practical case in
which µ = µ(z) and where they can be exploited.
According to paragraph 2 and in particular equation (2.2),
one can write:

(6.3)

It is convenient to introduce the angle θ between the wave
normal and the vertical

(6.4.a)

(6.4.b)

that provides the following two relations:

(6.5.a)

(6.5.b)
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That is, the refractive index depends only on px and pz or on
z andθthrough (6.4) and (6.5). Therefore it can be stated
that µ = µ (z,θ). The derivatives of  G, given in equation
(2.2), compared to px and pz are given by:

(6.6)

(6.7)

When moving along the magnetic meridian it is seen that
∂µ/∂y=0, and as a consequence ∂G/∂y=0. Moreover, since
µ = µ (z,θ) is constant along x this means ∂G/∂x=0, and
because of  the first of  equations (5.6), px will be a constant
(Snell’s law). Therefore the derivatives of  equation (6.4) rela-
tive to t will be:

(6.8)

(6.9)

The last step of  equation (6.9) can be proved calculating dµ/dt
from equation (6.8). Now taking equation (6.6) and replacing
it with , the equation (6.7) to and the
equation (6.9) to , gives:

(6.10)

that is to say:

. (6.11)

A ray path can be obtained integrating this system of  equa-
tions with the opportune initial conditions.

7. Hamilton’s ray equations with spherical coor-
dinates

In OTHR systems, when exactly defining the position of  the
target, the so called “coordinate registration”, and in long
range short-wave communication when distances of  thou-
sands of  km are typically involved, Cartesian coordinates do
not provide ideal coverage. In addition, the spherical shell
symmetry of  the ionosphere and the Earth’s curvature
makes it more logical to use spherical coordinates.
Equations (6.1.a-f ) can be written in spherical coordinates r,
θ, φ (see figure 5). 
The transition from Cartesian geometry to spherical geom-
etry is not difficult but rather cumbersome: 

, (7.1.a)

, (7.1.b)

, (7.1.c)

, (7.1.d)

, (7.1.e)

. (7.1.f )

This was achieved by differentiating the canonical ray equa-
tions relative to spherical coordinates, with the use of  the
metric coefficients 1, r and rsinθ [Bianchi and Bianchi,
2009]. In particular, the last three equations are obtained by
projecting the wave vector , represented in
Cartesian coordinates, on the unit versors            and then
the wave vector components kx, ky, kz are transformed into
spherical coordinates kr , kθ , kφ(see figure 6).

,

.
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Figure 5. The Cartesian (x, y, z) and spherical (r,θ,φ) coordinate systems are represen-
ted. 
Figura 5. Rappresentazione per i sistemi di coordinate cartesiane (x, y, z) e sferiche (r,
θ,φ). 

Figure 6. Projection of the wave vector                     on the directions of the unit ver-
sors          . 
Figura 6. Proiezione del vettore d’onda                    nelle direzioni dei versori uni-
tari   ,  ,  .
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8. Fermat's Principle

Taking into consideration the equation (3.4), which for the
sake of  simplicity is re-written as:

(8.1)

derivative with respect to x, both members quickly give
dF/dx=0 i.e.: 

(8.2)

(8.3)

having taken into account relationships (3.7). Summing the
latter equation (8.3) with equation (5.3) gives: 

(8.4)

with the quantity inside the brackets equal to c and v = c/µ ,
and equating the second member to zero by a quick visual
examination. Similar results are obtained performing deriva-
tives for y and z i.e. dF/dy+dG/dy=0, dF/dz+dG/dz=0.
Starting from the last three and recalling the relations

and px=c∂F/∂x it is possible to write:

. (8.5)

These are the three differential equations of  Euler which can
be expressed in a more compact form or in variational for-
mulation as: 

(8.6)

with the variation between the extremes A and B equal to

zero. This implies that among the possible paths only the
effective ray-path takes the minimum time (Fermat’s princi-
ple). A and B are the extreme points of  the ray-path s, along
the path the surface F is crossed by the ray (see figure 4) nor-
mal to F at the point x, y, z. Hence, if  s is the curved path of
the ray the following equation can be defined: 

(8.7)

Combining the first equation (3.4) with the latter equation
(8.7) and inserting the equation (8.6) gives:

(8.8)

which is again Fermat’s principle. This principle is applicable
only along the effective path (i.e. along the small intervals ds
when the surface F is itself  described by the two relations
(8.6) and (8.8) to the ray’s refractive index nr). Fermat’s prin-
ciple confirms this. Conversely, all other possible paths do no
satisfy all the relations from (8.5) to (8.8).

9. General ray theory for a time-varying medium

The complex eikonal method [Weinberg, 1962] regards wave
ray propagation in a magneto-plasma with refractive index

for a fixed angular frequency ω. According to this for-
mulation acting in Cartesian coordinates (not generalized) it
is possible to define a group of  homogeneous linear differen-
tial equations generated by a matrix operator of
N x N dimensions, operating on a wave function            with
N components as follows:

(9.1)

The matrix operator             is a tensor quantity express-
ing the properties of  medium, since a weak dependence can
be sustained on the time t (time variant) and spatial coordi-
nate   . Furthermore, it is assumed that the wave function

is a vector quantity that depends both on the time t
and spatial coordinate   . Assuming an approximate solu-
tion of  the wave function           , for a medium where the
refractive index slightly varies, all the spatial and tem-
poral dependence of  the wave function            is transferred
to the phase term   according to a function of  the type:

(9.2)

where ξ is only a parameter. The wave function of
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amplitude satisfies the partial differential equations of
the first order with the phase term         , the time-space
dependence of  which has already been specified above. The
wave function (9.2) substituted into equation (9.1) gives:

(9.3)

Since in a homogeneous medium                           , where
and ω are respectively a vector and a scalar constant, it

can similarly be assumed that:

(9.4)

(9.5)

and that the quantities ω′ and      play a role of  local quan-
tities weighed by the parameter ξ [Felsen and Marcuvitz,
1994]. In equation (9.3), given that the amplitude can-
not be null to avoid the non-trivial solution, the determinant
of  the matrix operator                            must be equal to zero,
i.e.:

(9.6)

with the quantities ω′ and    , given by equations (9.4) and
(9.5) respectively, taken as the local angular frequency and wave
vector. The values of  the quantities ω′ and      that satisfy the
equation (9.6) are assumed. Here the term                       was
introduced to recall the presence of  a Hamiltonian, and the
fact that the wave vector is non rotational for equation
(9.5) and satisfies the equation (9.6) should be noted.
If  the matrix operator                            is independent on the
time t, it can be assumed that the wave function           is a
vector that goes with exp(-jωt), and that the matrix operator

depends on the time t only through the
angular frequency ω and spatial coordinate    . In the zero
order approximation it is assumed that the matrix operator

weakly depends on the spatial coordinate
.and that all the spatial dependence of  the wave function

is in the exponential:

(9.7)

(9.8)

Repeating a procedure similar to that proposed by [Bianchi

et al., 2009] and with an approximation to the lowest order
of  the parameter ξ obtains:

(9.9)

(9.10)

The above equation (9.10) is the equation of  eikonal [Bianchi
et al., 2009]. The solution of  equation (9.8) determines the
values of  the angular frequency ω and wave vector that
satisfy the equation from the start. In other words, the
matrix operator generates a relationship

which is eventually a dispersion relation. This
can be considered a constant during propagation. If  it satis-
fies the equation from the start, the equation will always be
satisfied during propagation. In other words it can be consid-
ered as the Hamiltonian, which obviously is a constant along
the path of  wave. This depends on the dispersion equation of
medium since it is also deducible from the implicit form of
equation [Gorman, 1985; Gorman, 1986]. Repeating the rea-
soning that led to equation (9.6) gives:

(9.11)

It is demonstrated that it is possible to formulate the prob-
lem of  ray tracing even in very general terms. This means
determining the “evolution” of  the wave vector    if  it is
made to depend on a time parameterτ, such that:

(9.12)

(9.13)

so that if  the initial conditions satisfy
the following:

(9.14)

(9.15)

this will also apply for each timeτ. In practice the equations
(9.14) and (9.15) can be integrated as the equations (6.1) to
obtain the path of  the ray wavelength.

10. Ray tracing method 

In 4-D space Hamilton’s formalism can be described by the

15

Ray theory formulation and ray tracing method   A. Settimi, S. Bianchi, Quaderni di Geofisica, No. 121, Ottobre 2014



16

generalized coordinates and momentum [Weinberg, 1962],
i.e. pi (three spatial coordinates x, y, z and time t ) and qi
(three wave vector components kx, ky, kz and angular fre-
quencyω), writing the pair of  equations as following:

(10.1.a)

(10.1.b)

where H(x, y, z, t, kx, ky, kz,ω) is the Hamiltonian describing
the medium and the independent variable of  H. From this
system of  equations or canonical ray equations, eight equa-
tions that determine all the dependent variables along the ray
path can be generated. This can be achieved by integrating
equation system (10.1) bearing in mind that qi includes three
wave vector components kx, ky, kz and angular frequencyω.
The introduction of  frequency dispersive and time varying
medium ensure the generality of  the Hamiltonian for-
mulism where H is a constant quantity along the path.
Moreover, H is a complex quantity (real and imaginary parts)
because the Hamiltonian H(x, y, z, t, kx, ky, kz,ω) depends on
the complex refractive index n(x, y, z, t, kx, ky, kz,ω) as in the
following example: 

(10.2)

when nω/c=k with n= µ + jχ. It is possible to deal with the
real or imaginary part independently but in most cases,
when the wavelength is relatively small compared with the
spatial scale in which the wave is absorbed, the imaginary
part of  H does not affect the dependent variables in equation
system (10.1). At this point it is possible to take into account
only the real part of  the refractive index n and then of
Hamiltonian H [Bianchi et al., 2010]. Among the possible
Hamiltonians, with quantity constant along the path, it is
common to have the following formulation [Jones and
Stephenson, 1975] for H: 

(10.3)

in Cartesian coordinates. Or, for long distances, spherical
coordinates r,θ,φ (figure 5) are much more suitable:

(10.4)

In high frequency ionospheric propagation only the real part
of  the refractive index µ  is really useful for ray tracing com-
putation. 
Expanding the equation system (10.1) gives:

(10.5.a)

(10.5.b)

(10.5.c)

(10.5.d)

(10.5.e)

(10.5.f )

(10.5.g)

(10.5.h)

withτa time parameter that varies monotonically along the
path. Similar equations in spherical coordinates can be writ-
ten as:

(10.6.a)

(10.6.b)

(10.6.c)
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(10.6.d)

(10.6.e)

(10.6.f )

(10.6.g)

(10.6.h)

Figure 6 shows the spherical coordinates r,θ,φ and wave
vector components kr, kθ, kφ, in a geocentric computation-
al framework.
A practical ray-tracing computational program, in order to
integrate the equation system (10.6), requires another inde-
pendent variable that allows the computational algorithm to
be simplified. As an independent variableτit is convenient
to assume the group path P’ rather than the time parame-
terτ. The group path P’ is equal to ct with c the velocity of
light in vacuum, i.e. τ=ct=P’. In this context equation sys-
tem (10.6) applying the derivative chain rule for partial deriv-
ative relative to P’ gives: 

(10.7.a)

(10.7.b)

(10.7.c)

(10.7.d)

(10.7.e)

(10.7.f )

(10.7.g)

(10.7.h)

This system has eight equations with eight independent vari-
ables that assume the values able to satisfy the system for a
certain P’. The ray tracing algorithm is performed while P’ is
monotonically increased step by step. In other words, start-
ing in a fixed point where the Hamiltonian H has physical
significance, in the present case in ionospheric magneto-plas-
ma with refractive index n, the choice of  H as in equation
(10.4) directly gives the following equations:

(10.8.a)

(10.8.b)

(10.8.c)
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(10.8.d)

(10.8.e)

(10.8.f )

(10.8.g)

(10.8.h)

(10.8.i)

where: 

(10.9)

(10.10)

The refractive index n as in the Appleton-Hartree formula is:

(10.11)

where X, Y, and Z are a-dimensional parameters. These are
well known quantities in magneto-ionic theory [Bianchi,
1990] and refer respectively to: 

(10.12.a)

(10.12.b)

(10.12.c)

where f, fN, fB andν are respectively the wave, plasma,
cyclotron and collision frequency, while the subscript terms
L and T indicate the longitudinal and transversal projection
of  Y along the direction of  the wave vector    . 

Conclusions

This work deals with ray theory and ray tracing formulation.
As well known the problems of  radio propagation in the ion-
osphere constitute a challenge since mathematical formula-
tion are often cumbersome especially for high frequencies
(HF) and lower frequencies that interact heavily with this
ionospheric plasma. To face this problem the theory of  clas-
sical geometrical optics was described, and applications to
ionospheric propagation are detailed in the last paragraph.
We feel that this work can give useful theoretical back-
ground to scientists involved in research fields like optics,
electromagnetism, radio propagation especially in inhomo-
geneous anisotropic media, as well as other research branch-
es that use Hamiltonian formalism. The analogies with a
mechanical system are relevant too, since certain principles
can be easily applied in their evolution to determine the tra-
jectory of  a material point. In the radio wave theory many of
these concepts and methods apply perfectly. Application in
HF radio propagation, radio communication, over-the-hori-
zon-radar (OTHR) coordinate registration and related hom-
ing techniques, HF wave direction finding, all rely on ray
tracing computational algorithm.
The theory is written for a time independent medium and is
then extended to more general cases of  an anisotropic, dis-
persive and time-variant medium (ionospheric magneto-
plasma). Hence, the theory leads to the formulation of  the
canonical, or Hamiltonian, equations related to the wave ray
in a continuous, inhomogeneous and anisotropic medium
with negligible gradient. When the medium discontinuities
are high, the calculation of  the ray path using this technique
is no longer valid. The six Hamilton’s equations are written
in Cartesian and spherical coordinates in the simplest way
found in literature. These are achieved by introducing the
equations of  the refractive index surface and the ray surface
equations in an appropriate dimensionless space. By the
combination of  these equations, even the Fermat’s principle
has been derived and this gives more generality to the for-
mulation of  ray theory. In fact based on this principle only a
particular path where the ray takes the minimum time is per-
mitted, while the ray does not propagate along any of  the
other possible paths. In this work we have shown how the
canonical equations are dependent on constant quantity H
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and the coordinates and how wave vector direction along the
whole path can be calculated. These quantities generically
indicated as ri(τ), pi(τ) are dependent on the parameter,
that must increase monotonically along the path. Effectively,
the procedure described above is the ray tracing formula-
tion. In ray tracing computational techniques, the most con-
venient Hamiltonian describing the medium can be adopted
and the simplest ways to choose H will be discussed. Finally,
a system of  equations, which can be numerically solved, is
generated.
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