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We investigated the seismicity patterns associated with an𝑀 = 4.8 earthquake recorded in the Aeolian Archipelago on 16, August,
2010, bymeans of the region-time-length (RTL) algorithm.This earthquake triggered landslides at Lipari; a rock fall on the flanks of
theVulcano, Lipari, and Salina islands, and some damages to the village of Lipari.TheRTL algorithm is widely used for investigating
precursory seismicity changes before large and moderate earthquakes. We examined both the spatial and temporal characteristics
of seismicity changes in the Aeolian Archipelago region before the𝑀 = 4.8 earthquake. The results obtained reveal 6-7 months
of seismic quiescence which started about 15 months before the earthquake. The spatial distribution shows an extensive area
characterized by seismic quiescence that suggests a relationship between quiescence and theAeolianArchipelago regional tectonics.

1. Introduction

Thequiescence of seismic activity has been defined as the no-
table decrease in the seismic activity against the average back-
ground. Temporal seismic observations have shown trends of
seismic quiescence preceding large and moderate events [1,
2]. Successively Sobolev and Tyupkin [3, 4] proposed the
region-time-length algorithm (RTL algorithm), a statistical
method for the investigation of the seismic activity level
preceding large earthquakes.

This method may evidence a decrease (quiescence) or an
increase (activation) in the seismic activity against the aver-
age background [5]. The RTL method has previously been
applied to earthquakes in Kamchatka and Caucasus [4, 6,
7], Japan (e.g., [7–9]), China [10, 11], Greece [12], Turkey
[13], Taiwan [14], and India [15]. Some moderate Italian
earthquakes have been studied by Di Giovanbattista and
Tyupkin [16–18], Gentili and Bressan [19], and Gentili [20]
by using this technique.

The Aeolian Archipelago (Figure 1) is located in the
Southern Tyrrhenian Sea (Italy) and represents the man-
ifestation of a submarine volcanic arc originating in the

central sectors of the Tyrrhenian Sea during the Pliocene and
successively migrating towards the southeast.

It can be subdivided into three sectors with a different
structural and tectonic evolution [21]. In the western sector,
comprising the Alicudi and Filicudi islands, the volcanic
activity started at about 1.3Ma [22] and ended at about 30–
40 kyr. At present, the seismicity occurs in the crust along
the WNW-ESE Sisifo fault system (Figure 1). The eastern
sector, which comprises Panarea and Stromboli islands and
where volcanism developed from 0.8Ma ago and is still active
and is affected by a prevailing NE-SW striking fault system.
The central sector includes the islands of Salina, Lipari, and
Vulcano. Here, the volcanism began at 0.4Myr [23] and is still
active (last eruption 1888–1890) at Lipari and Vulcano (e.g.,
[24–27]).

These volcanoes are aligned along a lithospheric NNW-
SSE fault system, the Aeolian-Tindari-Letojanni fault system
(Figure 1) with right-lateral to oblique kinematics along
which the seismicity is roughly aligned (e.g., [28–30]). Earth-
quakes occur mostly in the upper 20 km of the crust [31];
in particular, the seismicity west of Tindari-Letoianni fault
system is distributed in a 7–18 km interval of depth, whereas
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Figure 1: Map of the investigated area withmain structural features and seismic network.The largest earthquakes, which occurred in Aeolian
Archipelago in the last 50 years, are reported.

earthquakes of Lipari-Vulcano eastern area are not deeper
than 12-13 km [32].

The southern Tyrrhenian area is characterized by seis-
micity with maximum magnitude in the range of 5-6; in the
last 50 years two strong events have been recorded: 𝑀 =
5.5 (15/04/1978) and 𝑀 = 5.7 (28/05/1980) (Figure 1, [33]).
These two moderate earthquakes have marked an increase
of the regional dynamics that, according to Chiodini et al.,
1992 [34], and Montalto, 1996 [35], caused the reactivation of
the volcanic system on Vulcano. Moreover the occurrence of
an earthquake of regional significance shortly before the last
eruption of Vulcano [36] confirms that a moderate seismic
event could initiate a rapid magma ascent.

The seismicity recorded from 1999 to 2011 comprises
events with𝑀 < 5.0 and the 16, August, 2010 (𝑀 = 4.8), one
represents the event with the highest magnitude recorded. In
this study, the region-time-length (RTL) algorithm has been
implemented to the catalogue of earthquakes which occurred
in the period from 2000 to 2010 and we discuss the phases
of seismic activation and quiescence preceding the𝑀 = 4.8
event in 2010.

2. Data

Since the late ‘70s, continuous seismic monitoring activity in
the Aeolian Archipelago has been performed by a permanent
seismic network made up of a few analogical 3C stations.
Starting from the ‘80s, the networkwas augmentedwith other
stations deployed over the entire Aeolian Archipelago and

equipped with short-period seismometers, having a natural
frequency of 1Hz. During 2005 and 2007, almost all the
stations were replaced by new digital 24-bit ones, equipped
with broadband (40 s) three-component sensors, with a
dynamic range of 144 dB. To date, the Aeolian permanent
seismic network, managed by INGV-CT (Istituto Nazionale
di Geofisica eVulcanologia-Sezione di Catania), consists of 12
three-component digital seismic stations (Figure 1). In order
to reduce the azimuthal gap, events location is obtained also
using the stations deployed in the Calabro-Peloritan area and
on the northern flanks of Mt. Etna (Figure 1). Furthermore,
where possible, we added data from the INGV national
permanent seismic network.

We considered an area of 100 × 80 km with a latitude
between 38.00 and 38.85 and a longitude of 14.00 and 15.30.
The dataset used in this study comprises 1680 crustal earth-
quakes recorded from August 1999 to 2011 with magnitude
1.0 ≤ Md ≤ 4.8, whose location, performed for surveil-
lance purposes, is obtained by using the Hypoellipse code
[37] (Figure 2). The mean errors of the analytical locations
are, respectively, 0.95 km for the epicentral coordinates and
1.15 km for focal depth; the mean root mean square (RMS) is
0.16 s.

The main event of the catalogue occurred at 12.54GMT
of the 16, August, 2010, when Aeolian Archipelago was
shaken by an earthquake of an estimated 4.8 magnitude.
The hypocenter of the earthquake was situated 8 km west-
south-west of the island of Vulcano at a depth of 13.0 kmb.s.l.
(Figure 1). The earthquake was felt on the northern coast of
Sicily and in the cities of Palermo, Catania, and Messina. The
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Figure 2: Seismic activity recorded in the Aeolian Archipelago area during the August 1999–December 2011 period. The dataset comprises
1680 earthquakes recorded from August 1999 to 2011; the red circle shows location of the 16, August, 2010,𝑀 = 4.8 earthquake.

earthquake triggered some landslides at Lipari, a rock fall on
the flanks of Vulcano Lipari and Salina. In the village of Lipari
minor damages to buildings and roads were reported and
some beaches were closed for safety reasons.

3. Method

The analysis of the earthquake dataset has been performed by
using the well-established method known as RTL algorithm
[4, 8] which uses three parameters, namely, 𝑅 (region around
the earthquake epicenter), 𝑇 (time), and 𝐿 (rupture length).
The fundamental idea of RTL algorithm is to assign a weight-
ing RTL value to a given spatiotemporal value (𝑥, 𝑦, 𝑧, 𝑡),
which comes from events occurring in a prescribed space-
time window within the characteristic distance and time.
An RTL parameter is defined as the product of 𝑅, 𝑇, and 𝐿
describing the influenceweights of location, occurrence time,
and magnitude as
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where 𝑙
𝑖
is the rupture dimension (a function of magnitude

𝑀
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); 𝑡
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is the occurrence time of the 𝑖th earthquake; 𝑟
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distance from the position (𝑥, 𝑦, 𝑧) to the epicenter of the
𝑖th event; 𝑟
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associated with the spatiotemporal criteria; 𝑑
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depth; and 𝑛 is the number of events satisfying the following
criterion:
𝑀
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For the rupture dimension 𝑙

𝑖
the following expression is

used [16]:

𝑙
𝑖
= exp (0.44∗𝑀

𝑖
− 1.289) . (2)

𝑅bk, 𝑇bk, and 𝐿bk are the background values of 𝑅, 𝑇, and
𝐿, respectively, obtained as the expected values in the time
interval considered for the analyzed position. RTL parameter
describes the deviation from the background level of seis-
micity and is expressed in units of the standard deviation.
A negative RTL value indicates a lower seismicity and a
positive RTL value indicates a higher seismicity compared
to the background. Clearly, both a temporal and a spatial
analysis of RTL can be performed and some authors often use
the spatial average value for the RTL parameters calling it 𝑄
parameter [11]. The algorithm for the computation of 𝑅, 𝑇,
𝐿, and 𝑄 parameters has been implemented in the MATLAB
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environment (Figure 3), allowing simple management and
plotting of the results.

4. RTL’s Calculation and Results

The RTL analysis needs to be applied to declustered cata-
logues, where aftershocks are removed [9]. In order to declus-
ter the INGV catalogue, we applied the Reasemberg [38] al-
gorithm implemented in Zmap software [39].

The Reasenberg algorithm defines a seismic sequence as
a chain of events linked to each other by spatial and temporal
windows. The variables are 𝑟fact, the factor for the interaction

radius of dependent event, 𝜏min, the look-ahead time for un-
clustered events in days, 𝜏max, the maximum look-ahead time
for clustered events in days, and 𝑃, a measure of the confi-
dence that the next event in the sequence is being observed.

For declustering we used the default parameters (𝑟fact =
10, 𝜏min = 1, 𝜏max = 10, and 𝑃 = 0.95) obtaining a catalogue
of 1324 events.

Moreover themagnitude of completeness has been evalu-
ated for the catalogue by using theGutenberg-Richter relation
of earthquake frequency and magnitude.

The completeness of the data entries depends on the char-
acteristics of the seismic network. The geometry, sensitivity,
and resolution of the seismic network quantify different parts
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Figure 5: Cross-section of the selected seismicity catalogue to show
depth distribution of all seismicity (grey diamonds) and after remov-
ing aftershocks and𝑀 < 1.8 (purple diamonds).

of the region in order to judge the behavior of the seismic
regimes based on the representation ofminimummagnitude.

We applied the Gutenberg-Richter relation to search the
𝑀min, representative magnitude for the present earthquake
time series of the Aeolian Archipelago region.

The power law of Gutenberg-Richter fits the earthquake
energy distribution as a linear plot of recurrence.Thebending
of the linear plot for the smaller magnitude earthquake gives
an indication of incompleteness of the catalogue below a
specified magnitude. This specified magnitude is the min-
imum or the threshold magnitude for the studied area.
Figure 4 shows the earthquake frequency magnitude plot.
It may be noted from here that the data are complete for
earthquakes of𝑀 = 1.8. After removing events with𝑀 < 1.8

the remaining data comprised 838 events whichwere used for
the present study to estimate the RTL variation.

We calculated the RTL and 𝑄 parameters [9, 13], that is,
the possible time and spatial variation of the seismic qui-
escence, and to this end we made some choices about the
input parameters; if we consider, for example, the 𝑀 = 7.3
earthquake, which occurred in the western region of Tottori
prefecture, Japan, on 6, October, 2000, Huang [9] adopted a
distance 𝑟

0
= 50 km, 𝑡

0
= 1 year, and a focal depth (𝑑

0
) of

30 km.
Shashidhar et al. [15], for moderate earthquakes (𝑀 =
5.0) in a small area (20 km × 30 km), tried different values for
parameters adopting the following values: 𝑟

0
= 10 km, 𝑡

0
= 25

days, and 𝑑
0
= 20 km.

In order to obtain the RTL, we have considered location
of the 16, August, earthquake (𝑀 = 4.8) and the 1, January,
2008–15, August, 2010 (958 days), period.

We set a focal depth of 30 km considering that almost
all earthquakes (98.7%) are not more than 30 km deep
(Figure 5) andwe tried different values of 𝑟

0
and 𝑡
0
(Figure 6).

RTL algorithm does not show large differences between the
different curves (Figure 6); we adopted the following model
parameters: a characteristic distance 𝑟

0
= 25 km and 𝑡

0
= 50

days. Finally, we also ran (Figure 7) the RTL algorithm for the
entire 2000–August 2010 period.

5. Discussion

Inmany parts of theworld, the RTLmethod has been used for
larger regions and longer seismic catalogues, obtaining valid
observations on the quiescence phenomenon prior to large
earthquakes [11, 40]. In this study, the RTL algorithm has
been implemented in the MATLAB environment and tested
to a triggered earthquake time series occurring in the Aeolian
Archipelago (Italy), a relatively small area (100 km× 80 km)
characterized by a moderate seismicity. A phase of seismic
quiescence (between the 700th and the 850th day in Figure 6)
was detected by the 𝑄 parameter around the epicenter of the
16, August, 2010, earthquake. The seismic quiescence spans
the June–December 2009 period, ending 8-9 months before
the𝑀 = 4.8 earthquake.

Figures 6 and 7 show the presence of short-time positive
changes (activations) during the 2000–2010 period. These
short changes are linked to the occurrence of 3.2 ≤ 𝑀 ≤ 3.8
earthquakes located nearby (10–15 km) the𝑀 = 4.8 epicenter.
Moreover some modest and rapid negative changes are also
visible.

All these short-time variations may be related to an im-
perfect removing of the aftershocks in the catalogue and/or
to the adopted parameters.

Six-seven-month quiescence ending 8-9 months before
the earthquake is in accordance with duration of the qui-
escence (0.6 to 3 years) and time shift from the end of the
quiescence to the earthquake (0 to 2.9 years) was found by
Gentili [20] for several Italian sectors.

Finally, in order to investigate its possible spatial varia-
tion, we calculated the 𝑄 parameter in the quiescence period
(June–December 2009) for the entire area (Figure 8). To this
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end, the territory has been divided into 2,500 cells, each one
with an area of ca. 4 km2.

The main area covered by the quiescence (ca. 200 km2)
comprises a sector around Vulcano island. The 𝑀 = 4.8
earthquake occurred in this area, which is about 4 km west
of the pixel with lower (−3.3) 𝑄 value. However, an area
between Salina and Filicudi of ca. 80 km2 and a small sector
(ca. 40 km2) in the north of Sicily also shownegative𝑄 values.
Areas covered by the quiescence agreewith sectors affected by
Sisifo and Tindari-Letojanni fault system.

Considering the 𝑀 = 4.8 location (Figures 1 and 8)
we would expect an quiescence focussed only on Tindari-
Letojanni fault system. As different tectonic zones have
different background seismicity [13] our results suggest a
continuity between the two structures and a relationship
between the quiescence recorded before the 𝑀 = 4.8 and
overall Aeolian Archipelago regional tectonics.

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00

Ja
n.

 2
00

0

RT
L

Ja
n.

 2
00

2

Ja
n.

 2
00

4

Ja
n.

 2
00

6

Ja
n.

 2
00

8

Ja
n.

 2
01

0

Ja
n.

 2
01

2−10.00
−5.00

3
.5

3
.4
3
.4

3
.2

3
.6

3
.4

3
.8

M
=

M
=

M
=

M
=

M
=

M
=

M
=

Figure 7: 2000–August 2010 time variation of the RTL at the
epicenter of the 16, August, 2010,𝑀 = 4.8 earthquake by using
𝑟
𝑜
= 25, 𝑡

𝑜
= 50, and 𝑑

𝑜
= 30 as input parameters. Red diamonds

identify the occurrence times of the 3.2 ≤ 𝑀 ≤ 3.8 earthquakes
located nearby (10–15 km) the 16, August, 2010, epicenter.

38.8

38.6

38.4

38.2

38.0
14.0 14.5 15.0

1.5

1.0

0.5

0.0

−0.5

−1.0

−1.5

−2.0

−2.5

−3.0

Figure 8: Spatial variation of RTL in the Aeolian Archipelago area
during the observed quiescence period (June–December 2009).The
scale on the right corresponds to the RTL value in the units of the
standard deviation.The white circle shows location of the 16 August
2010,𝑀 = 4.8 earthquake.

6. Conclusions

The results obtained reveal a seismic quiescence phase before
an𝑀 = 4.8 earthquakewith an extensive (ca. 320 km2) spatial
distribution which comprises the triggered zone. However
the area covered by the quiescence seems large in order to
affirm that the method presented here is an effective tool
of improving the significance and reliability of earthquake
precursors.

These features are consistent with the results obtained
by different authors by using RTL worldwide and encourage
us to improve RTL analyses on other earthquakes by testing
different parameters in order to evaluate the future possibility
of moderate earthquake occurrence in this region that could
also have an impact on the volcanic system of Vulcano.
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