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Introduction 

Intensity scales define the criteria used to determine different levels of shaking in relation to 

environmental effects. Objective evaluations of low intensity degrees based on transient effects may 

be difficult. In particular, estimations for the number of people feeling an earthquake are critical, 

and are qualitatively described by words such as “few”, “many”, and “most” for determining 

various intensity levels. In general, such qualitative amounts are converted into specific percentages 

for each macroseismic scale. Additionally, estimations of macroseismic intensity are influenced by 

variables that are mentioned in macroseismic scale degree descriptions. For example, the Mercalli-

Cancani-Sieberg (MCS; Sieberg, 1930) and the Modified Mercalli Intensity (MMI) scales (Wood 

and Neumann, 1931) describe the intensity II as “Felt only by a few people, extremely susceptible, 

in perfectly quiet situations, almost always on the upper floors of buildings”. Another example is 

the European Macroseismic Scale (EMS) (Grunthal, 1998) that describes the intensity V as “felt 

indoors by most, outdoors by few. Many sleeping people awake”.  

In this work, we focus on two variables referred to as people’s physical “situation” (what 

were you doing?), here categorized as “sleeping”, “at rest”, or “in motion”; and the observer’s 

“location”, here categorized as “higher floors”, “lower floors”, and “outdoors”. Both variables have 

a partial influence on intensity assessments because they condition vibration perception. However, 

it is important to study, using an experimental method, the weights of these variables in the 

quantification of felt effects. Musson (2005a) also recognized the influence of such conditions on 

the number of people feeling an earthquake, stating that the proportion of people in different 

conditions “are generally difficult to quantify in any case”. Today, we have a large amount of data 

available through the macroseismic web site “haisentitoilterremoto” associated with specific 

observer conditions. Using this data, a study of these effects is possible. For this analysis, we placed 

attention on transitory effects that, in the past, could not be easily studied due to the intrinsic 

difficulty in collecting this type of data. The aim of this work was to specifically analyze and 



3 
 

quantify how the observer’s “situation” and “location” influence earthquake perception suggesting a 

new scale description that can be easily used for low intensity estimation.  

 

Data  

The analysis was conducted using about 250,000 macroseismic questionnaires received 

through the internet for earthquakes in Italy of medium to low magnitude that occurred from June 

2007 to October 2012 at a depth shallower than 20 km and with local magnitude ML from 3 to 5.9 

(Fig. 1). The analyzed questionnaires pertain to 793 earthquakes located in the Italian territory, most 

of the events (778) had ML between 3 and 5, and a few (15) had a magnitude greater than or equal 

to 5 (Figs. S1-S2 and Tab. S1, available in the electronic supplement to this article). The internet-

based macroseismic questionnaire used for the study is managed by the Istituto Nazionale di 

Geofisica e Vulcanologia (INGV), and is available at www.haisentitoilterremoto.it (“hai-sentito-il-

terremoto?” means “did you feel the quake?”). The online questionnaire is basically compiled by 

volunteers, although a group of permanent compilers (approximately 20,000, homogeneously 

distributed in Italy) are alerted via e-mail after the occurrence of an earthquake near their 

municipality. The presence of a question that asks if an earthquake was felt or not felt provided us 

with a set of “not felt” data. Even if the data are under-sampled with respect to reality, as generally 

occurs using online surveys (Boatwright et al., 2012), “not felt” data actually represented almost 

half of the database.   

The questionnaire lists the questions needed for estimating macroseismic intensity (Sbarra et 

al., 2010). In particular, answers to the question regarding vibration perception consider four levels 

of progressive shaking intensity (“not felt”, “weak”, “moderate”, or “strong”). Other questions are 

useful for describing the “situation” and the “location” of the observer. Concerning the question 

“What were you doing?” respondents can choose one of the following: “sleeping”, “at rest”, “in 

motion”, or “do not remember”. Data for the “do not remember” option were discarded. For 

observer location, the online choice was either “outdoors” or “inside a building”. Regarding the 
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“inside a building” option the respondent was asked about floor position. At present, the greatest 

portion of the questionnaire pertains to observations made for the first or second floor (67%). Data 

regarding the outdoors represented less than 10% of responses.  For this “location” we did not offer 

a “sleeping” option. 

 

Analysis and results 

We created several graphs (Fig. 2, S3, available in the electronic supplement to this article) 

for various magnitudes showing the earthquake felt percentages measured for all observers 

separated for the couple “situation - location”, here referred as “condition” and plotted versus the 

hypocentral distance. In each window (20, 30, or 40 km wide for Fig. 2a, b, and c-d respectively), 

the felt percentage was calculated and placed at the distance corresponding to the window center. In 

these graphs we searched for the existence and the quantification of joint effects on the “situation” 

and “location” of earthquake perception. The magnitude ranges considered were from 3 to 3.9 (Fig. 

2a), from 4 to 4.9 (Fig. 2b), from 5 to 5.4 (Fig. 2c), and from 5.5 to 5.9 (Fig. 2d). We grouped the 

floors into two classes with similar effects (Sbarra et al., 2012), thereby separating lower floors 

(basement, low ground) from higher floors (from 1 to 6). Since in Italy buildings with six or more 

stories are rarely present and the amount of data is consequently too low to be meaningful we did 

not analyze floors higher than six. Each of the plotted felt percentage values accounted for at least 

20 questionnaires (for conditions involving the “outdoors”) up to nearly 10,000 (Fig. S3, available 

in the electronic supplement to this article). In the figures presented, the experimental points are 

connected with a smooth line only for interpretation. Since data for “not felt” were not well sampled 

because it is unlikely that a person not feeling an earthquake will visit an internet site looking for 

earthquake information, the felt percentages are clearly overestimated. However, since the sampling 

method was the same for all cases, the relative behavior of different “conditions” should not be 

impacted.  
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The plots indicate that, within the general attenuation trend of felt percentage versus distance, 

it is possible to distinguish the behavior of each “condition”. In fact, the curves followed an almost 

parallel trend beginning from a saturated value of nearly 100% felt near the epicenter to a value 

approaching 0% at larger distances.  

To check the significance of the different behavior among conditions, the Chi squared test 

was performed on the frequencies of “felt” and “not felt” at distances 30, 75, 140, 180 respectively 

for Figs. 2a, 2b, 2c, 2d corresponding to percentage values far from saturation. The distributions 

resulted significantly different for all couples, except for those that are very close each other in Fig. 

2 (Tabs. S2, S3, S4, S5, Fig. S3, available in the electronic supplement to this article).  

For low magnitude (Fig. 2a) the curves appear to be grouped for “situation” (in sequence from 

top to bottom for “at rest”, “sleeping”, and “in motion”), and, inside of each group, ordered by 

“location” (in sequence from top to bottom for “higher floors”, “lower floors”, and “outdoors”). For 

higher magnitude (Fig. 2b,c,d) the “sleeping” curves are near to the “at rest – lower floors” and “at 

rest – outdoors” ones. The maximum distance reported on the graphs (Fig. 2) corresponds to the 

distance beyond which the macroseismic “not felt” was generally expected to prevail. Interesting to 

note is that the different levels reached by the curves at longer distances, in particular for “at rest - 

higher floors”, maintained values of felt percentage of approximately 50%; whereas “in motion – 

lower floors” were, reasonably, fewer than 10%. The range of magnitude for each plot was quite 

large, ensuring a large amount of data for each “condition” and distance range. On the other hand, 

inside each magnitude range felt percentages came from different earthquakes. As an example, in 

Fig. 2b where we mixed events of magnitude 4 to 4.9 the data came from intensities over a range of 

one degree. To overwhelm this problem we decided to put together data with respect to its degree of 

EMS intensity instead of its hypocentral distance.  

Using the procedure described by Sbarra et al. (2010), all of the questionnaire answers were 

statistically analyzed by the procedures implemented on our Internet site www.haisentitoilterremoto.it. 

As for other web-based questionnaires (Wald et al., 2011), our automated procedure controls the 
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reliability of questionnaires and discharges those that either contain contradictory answers or that 

exceed 2.5 EMS degrees over the expected intensity based on attenuation laws. Macroseismic intensity 

for a municipality is assessed by adding the intensity scores associated with the answers for all of the 

questionnaires and by determining the mode of the score distribution. The system was versatile and 

allowed us to assess the intensity degree measured using different macroseismic scales, only modifying 

the intensity scores (associated to each answer) according to the degree definitions. We routinely 

assigned intensity values for both the MCS and EMS scales. The difference in values between the two 

scales was quite small. In fact, all of the 12-degree intensity scales were observed to behave in a similar 

manner, especially regarding low degrees (Murphy and O’Brien, 1977; Musson et al., 2010). Our 

database of intensity values contained a great quantity of data for low degrees, belonging to both long 

distances from large earthquakes and short distances from small earthquakes. Low intensity degrees are 

generally disregarded by traditional macroseismic analysis. As a result main attenuation relationships 

for Italy are defined for large magnitudes and high intensities (Pasolini et al., 2008). In order to calculate 

an attenuation relationship as a function of distance and earthquake magnitude applicable to our data, 

we fit a planar surface using EMS intensity as a dependent variable (Î), whereas the magnitude (ML) and 

the decimal logarithm of the kilometric distance from the hypocenter (log R) were independent 

variables. We only considered the intensities of municipalities having more than five questionnaires. 

The relationship found to be highly significant was: Î = -2.26  log R + 1.08  ML + 2.22. A similar 

equation with different coefficients was proposed by Musson (2005b) for data from the United 

Kingdom. We then associated each questionnaire to the value Î computed using the corresponding log R 

and ML.  

As already mentioned, our quantities of “not felt” report are underestimated, thus we evaluated 

the correcting factors to be multiplied to the not felt number in order to have corrected felt percentages 

comparable with the values reported in EMS scale description (Grünthal 1998). Considering the 

municipalities having at least fifty questionnaires, we analyzed the underestimation of not felt report in 

respect to percentages corresponding to the middle of the ranges for III, IV and V EMS (respectively 

92%, 65%, 28%). The mean multiplicative factors obtained are well aligned on a straight line (Fig. S4, 
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available in the electronic supplement to this article) and show that the underestimation is greater for 

low intensity because the people attention is higher in the areas characterized by heavier effects. We 

then extrapolated the factors on the base of the least squares fit for all EMS degrees. In detail the 

corrective factors are 175, 150, 120, 95, 75, 55, 25 respectively for II-III, III, III-IV, IV, IV-V, V and V-

VI EMS.  

Applying both the attenuation relation and the “not felt” correcting factors, we calculated and plotted the 

corrected felt percentages grouped by ”condition” with respect to macroseismic intensity (Fig. 3). The 

corrected felt percentages are comparable to the EMS ones, permitting to evaluate the impact of the 

“condition” of the observer on earthquake perception. The general parallel trend shown in Fig. 2 was 

confirmed. The smoother shapes of Fig. 3 benefited from a greater number of data used for calculating 

each value (Fig. S4, available in the electronic supplement to this article). The sequence of curves 

maintained the same disposition. Felt percentages calculated for observers “at rest” yielded the highest 

values, while percentages relative to people “in motion” were the lowest. Sleeping situations were 

mainly located in the middle. For each “situation” the order of the location, from higher floors 15 

through lower floors down to the outdoors, for each degree, was respected for almost all the conditions. 

In the Figs. 2 and 3, a , line connects points referring to “in motion – outdoors” because we suspected 

that some of the respondents interpreted this category as meaning inside of a moving vehicle. For this 

reason the associated percentages were low.  

We show in Fig. 4 (tabular data are in Tab. S6, available in the electronic supplement to this 

article), for the same intensity ranges provided in Fig. 3, the relative proportions of the three vibration 

levels (weak, moderate, and strong) as reported in the “felt” questionnaires, together with those “not 

felt” (here referred to as “none”). In this manner, the felt percentages provided in Fig. 3 were split 

into three categories. The width of the slices represents shaking level percentage on the total 

responses for each case. From the top to the bottom, pie plot rows correspond to different 

“conditions” in the same manner as for the curves of Fig. 3. Shaking level percentages indicate that 

the difference amongst diverse conditions is mainly due to the weak vibration, preferentially felt by 
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observers at rest. On the other hand, the percentage of strong vibrations was less affected by 

observer conditions. 

In order to further analyze the variability of reported shaking at different “conditions”, we applied 

the Multivariate Correspondence Analysis (MCA). MCA belongs to the ample family of multivariate 

analysis that includes (principal component analysis, factor analysis, principal coordinates analysis and 

canonical correlation). They basically aim to reduce the complexity of a multidimensional process, 

keeping as much as possible the information content of the original data set. In fact, data are normally 

constituted by a number of samples where, for each one, a defined number of characteristics (variables) 

are measured. Main objective of the analysis is to reduce the number of original variables (i.e. the 

characteristics measured for each sample), through the analysis of the mutual correlations, introducing a 

new variable made with a combination of them. The count of questionnaires reporting a specific 

vibration level constitute a 8 per 36 data matrix (Tab S6, available in the electronic supplement to this 

article) in which “conditions” are rows (8 samples) and vibration level for each EMS degree 

(intermediate degrees included) are columns (a total of 36 variables). MCA is well suited for 

enumerative data as nominal or ordinal observations (Davis, 1986). The general scheme of the analysis 

starts from the creation of a symmetric similarity matrix rjk  in the form:  

𝑟!" =
𝑂!" − 𝐸!"

𝐸!"

𝑂!" − 𝐸!"
𝐸!"

!

!!!

 

where Oij and Eij are respectively the observed and the expected values for the sample i and variable j 

(the same is for variable k). Oij is the percentage of reports for a specific condition and vibration level. 

Eij is the product of the probability to have reports for a specific condition (regardless the vibration 

level) with the probability to have reports for a vibration level (regardless the condition). Successively 

eigenvalues and eigenvectors are extracted from the rjk matrix. Each eigenvalue and associated 

eigenvectors can be represented as principal axis of the so-called factor space. Each eigenvalue has 

eigenvectors (one for each original variable), they represent the correlation of each original variable 

with the respective principal axis. The eigenvalue is usually expressed as percentage of variance (also 

referred as inertia, related to the information content of the data) on the total variance obtained with the 
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sum of all eigenvalues. Following specific transformations, involving eigenvalues and eigenvectors, we 

obtain, for each original variable, a scaled factor loading value for each factor axis, so we can plot all 

variables on a factor space. Following a similar procedure we obtain scaled factor loadings for each 

sample too, and we plot them on the same factor space with the same metrics. Variables, or samples, 

occupying the same portion of factor space have similar behavior.  

In this analysis we, note that two axes of factor space are enough (Fig. 5) to express a sufficiently 

amount of information, simplifying data interpretation. In fact the first two eigenvalues account the 

95.87% of total variance (respectively 65.31% the first and 30.56% the second one). In Fig. 5 two main 

groups are present: the “not felt” (not at all vibration) close to the “in motion” situation, and the other 

vibration levels close to “sleeping” and “at rest” situation. The first group shows that people “in motion” 

often do not feel the earthquake, whereas the latter group is approximately ordered according to the 

vibration level, from weak to strong. This order is reasonably related to observer’s “condition”. In fact 

people at rest indoors are better suited to report weak and moderate vibration, whereas people at rest 

outdoors or sleeping experience moderate and strong shaking. Moreover, while “at rest”, people feel the 

III EMS as a weak vibration, following the EMS scale, but only if located at higher floors. 

To better group the “condition” samples, we applied the cluster analysis on correspondence axis 

loadings. Cutting the resulting dendrogram (Fig. S6, available in the electronic supplement to this 

article, and slashed areas in Fig. 5) at similarity threshold 1.0, we observe that samples cluster with 

respect to “sleeping”, “at rest”, and “in motion”, indicating that vibration perception is first driven by 

"situation" then by “location”. This analysis statistically confirms the previous consideration about the 

influence of conditions on earthquake perception. The only exception is the condition “at rest - 

outdoors” that is slightly nearer to “sleeping” group than to “at rest” one. 

 

Discussion  

On the base of our results we deduced the relative influence of “situation” and “location” on 

earthquake perception. In detail (Figs. 2, 3) the felt percentages for people at rest at higher floors 

are the highest, especially for long distances, whereas the worst perception occurred when people 
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were in motion, as proved by the correspondence analysis (Fig. 5). Interesting to note is that the 

vibration felt outdoors at rest was higher than the vibration felt while in motion inside a building 

regardless of floor level (Figs. 2, 3), confirming that “location” plays a secondary role. For people 

at rest at lower floors and outdoors the felt percentages were similar. For sleeping people, the felt 

percentages for low magnitudes were between situation “at rest” and “in motion” and similar to “at 

rest” for higher magnitudes (Fig. 2). The “in motion - outdoors” curve (dashed line in Fig. 3) was 

quite different from the others, likely because it was sometimes erroneously associated with being 

in a moving vehicle. This difference is evidenced by the correspondence and cluster analyses that 

separate such condition from the others (Fig. 5 and Fig. S6, available in the electronic supplement 

to this article). In our Internet questionnaire’s present form, to exclude any misunderstandings, we 

added a new answer “in a car” to the question regarding “location”.  

As previously mentioned, due to the scarce number of people reporting a not felt earthquake, 

all of the obtained experimental felt percentages are overestimated. In fact, despite the contribution 

of the group of registered users, the number of not felt reports is not fully representative, as 

commonly occurs in internet-based macroseismic questionnaires (Boatwright et al., 2012).We 

applied multiplicative correcting factors, experimentally obtained, to make corrected felt 

percentages comparable to those reported in EMS scale (Fig. 3, and Fig. S4, available in the 

electronic supplement to this article). 

Following the results presented in Fig. 3, we propose in Tab. 1 the specifications, using both 

adjectives (most, many, few) and percentages that should be operatively applied to improve the 

assessment of low intensities. The EMS scale specifies that vibration is less felt outdoors with a 

difference up to two intensity degrees as compared to indoors. In other words, a shaking felt by 

many indoors corresponds to intensity IV, while if many feel an earthquake outdoors it corresponds 

to intensity VI. Instead, on the base of our results, a shaking felt by many at rest at both higher and 

lower floors correspond to intensity IV, while an earthquake felt by many “at rest - outdoors” 

correspond to intensity IV-V (Tab. 1). Considering this result currently the intensity assessment, 
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following the criteria of the EMS scale involving people “at rest – outdoors”, are overestimated of 

1.5 EMS. Additionally, the outdoor effects described in the macroseismic scales are relatively few, 

consequently the correct evaluation of the felt percentage in respect to ”situation” is even more 

important.  

For the EMS scale, reference to “situation” is quoted in the description of the intensity III 

where it is specified that “few people at rest” felt a light trembling. Sleeping people are mentioned 

in intensity IV where few are awakened. Therefore, in the case of a vibration felt by few people at 

rest indoor and a shaking that awakens few people there is a relative difference of one degree (Tab 

1). Whereas, according to our results, this difference is 0.5 EMS because a few are awakened at III-

IV (Tab. 1). The greatest separation (one degree, Fig. 3) was evidenced when comparing the same 

felt percentage of people “at rest – higher floors” and “in motion – lower floors”, a double 

difference in respect to different “location” at the same “situation”. A simple way to apply the 

results evidenced in this study, as a first approximation, is to change only the word “indoors” with 

“at rest” and the word “outdoors” with “in motion” in the EMS description (Tab. 1, Fig. 3).  

 As shown, when people were at rest, the difference of felt percentages, in respect to other 

situation, was mainly due to weak vibration (Figs. 4, 5). Weak vibration was, in fact, most likely to 

be perceived under optimal situations without any type of disturbance. We can note that the 

correspondence analysis (Fig. 5) plots weak vibration variables near situation “at rest”. The none 

vibration variables are plotted near situation “in motion”, except for VI EMS that is far from the 

others due to the obvious scarcity of people reporting none vibration in this degree.  On the other 

hand, strong vibrations percentages were less influenced by conditions, because strong vibration 

could always be felt.  

In the EMS macroseismic scale the recommended practice was “To discount all reports from 

observers higher than the fifth floor when assigning intensity” (Grünthal, 1998). However, on the 

basis of our results, the vibration perceived at higher floors was effectively stronger only if the 

observers were at rest. By analyzing the database of “haisentitoilterremoto”, quantification of the 
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“floor effect” was previously investigated (Sbarra et al. 2012). For the “floor effect” the authors 

found that the amplification of macroseismic effects is proportional to both height of the 

observation floor and earthquake magnitude. The maximum intensity variation between the highest 

and lowest floors was half a MCS degree. However, these values should be revised for the observer 

“situation”. In fact, people “at rest” perceive a greater shaking. The complexity of the phenomenon, 

influenced by several variables, can be studied by analyzing one parameter at a time while fixing 

the others, as proposed by this paper. 

 

Conclusions 

The large amount of experimental data collected for Italian earthquakes of low-medium 

magnitude allowed the characterization of the effect of observer condition on earthquake 

perception. Quantification of the relative weight of “situation” and “location" variables is a 

fundamental step for a correct evaluation of low macroseismic intensity degrees, which are 

generally assessed by only considering qualitative descriptions. 

 According to the description of macroseismic scales, the “location” variable has more weight 

with respect to “situation”. Whereas our results indicated that the “situation” (“at rest”, “in motion”, 

or “sleeping”) had more influence on earthquake perception. For observation made at rest on higher 

floors felt percentage was the highest. People in motion had the worst perception. Felt percentage 

for sleeping situation is, generally, in between those at rest on higher floors and in motion. 

Attention should be paid to the macroseismic surveillance of low intensities. In fact, the 

incorrect sampling of observers can cause a bias in the intensity assessment by more than half a 

degree. 

As a first approximation we propose changigin the word “indoors” with “at rest” and the word 

“outdoors” with “in motion” in the description of the EMS scale. We detail (Tab. 1) the 

specifications that should be operatively applied to improve the assessment of low intensities 
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considering both “situation” and “location” of observers. We thus highlight the need to ask about 

“situation” in macroseismic questionnaire. 
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Figure captions 

 

Figure 1. Map of earthquakes considered in this study. The Northern and the Southern clusters 

pertain to the seismic sequences respectively of Emilia (May 2012) and L'Aquila (April 2009). 

 

Figure 2. The percentage of people feeling a quake to total respondents with respect to the 

hypocentral distance for the specified magnitude ranges. Each symbol corresponds to the 

percentage calculated by observers as characterized by a specific ”condition”. 
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Figure 3. Felt percentages corresponding to each EMS intensity degree. Each symbol corresponds 

to the percentage calculated by observers as characterized by a specific ”condition”. The 

experimental points are connected with a smooth line only for interpretation. The adjectives 

reported on ordinate axis correspond to the definitions of quantity according to EMS specifications.   

 

Figure 4. Pie graphs of the vibration level felt by observers for each EMS intensity degree with 

respect to different “conditions”. 

 

Figure 5. Classification of conditions and vibration levels as resulting from representation of 

correspondence analysis. Gray squares refer to conditions. Round symbols refer to reported 

vibration level (none, weak, moderate, strong) at the specified EMS intensity degree (Roman 

numerals). Tick mark spacing on axes is 0.2. Slashed areas correspond to the condition groups 

identified by the cluster analysis. 

 

EMS 
degree 

Description (Grünthal, 1998) Description proposed 

III “... felt indoors by a few.” Felt by a few at rest at higher floors (5%) and by 
very few at rest at lower floors (2%).  

IV “... felt indoors by many and felt 
outdoors only by very few. A 
few people are awakened.” 

Felt by many at rest at higher floors (33%), by 
many at rest at lower floors (23%), by few/many 
at rest outdoor (15%), by a few in motion at 
higher floors (12%), by few in motion at lower 
floors (6%). Many people are awakened at higher 
floors (33%), and at lower floors (18%). 

V “... felt indoors by most, 
outdoors by few. ... Many 
sleeping people awake.” 

Felt by most at rest at both higher floors (86%) 
and lower floors (64%), and outdoors (78 %). By 
many in motion at both higher floors (53%) and  
lower floors (28%). By a few in motion outdoors 
(7%). Most people are awakened at both higher 
floors (77%) and lower floors (82%). 

VI “Felt by most indoors and by 
many outdoors.” 

Felt by all at rest or in motion (100%). All people 
are awakened (100%). 

 

Table 1. EMS scale description and our corresponding specifications. 
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