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ABSTRACT

The present geomagnetic field is chaotic and ergodic: chaotic because it can
no longer be predicted beyond around 6 years; and ergodic in the sense that
time averages correspond to phase-space averages. These properties have
already been deduced from complex analyses of  observatory time series in
a reconstructed phase space [Barraclough and De Santis 1997] and from
global predicted and definitive models of  differences in the time domain
[De Santis et al. 2011]. These results imply that there is a strong necessity
to make repeat-station magnetic surveys more frequently than every 5
years. This, in turn, will also improve the geomagnetic field secular
variation models. This report provides practical examples and case studies.

1. Introduction and motivation 
Repeat-station surveys [e.g., Barraclough and De Santis

2011] are important, among other things for: (a) modeling
the main geomagnetic field and global and regional secular
variation; (b) navigational purposes; and (c) better definition
of  magnetic anomalies. Two issues are fundamental for the
present report: the first regards the repeat time of  site occu-
pation in the repeat-station surveys; and the second concerns
the kind of  data analysis we perform at the repeat station. 

Generally, the typical time interval of  re-occupation of
a repeat station is around 5 years. However, there has been
recent debate in the geomagnetism community about
whether this time lag should be reduced or maintained. In
addition, the measurement values considered during the re-
peat-station reoccupation are temporal averages of  all the
measurements at the same site. These values are then cor-
rectly reduced, taking into account a close observatory or a
fixed reference station [e.g., Barraclough and De Santis 2011].
Alternative schemes of  analysis and averages have also been
proposed. However, we can ask whether these simple aver-
ages are still appropriate or not. The aim of  this report is to
justify on the basis of  the physics of  the recent geomagnetic
field: (i) more frequent repeat-station survey re-occupation;

and (ii) the present typical operation of  time averaging at
each repeat station. 

To do this, we will first introduce some concepts on chaos
and ergodicity, and then we will recall some previous results
from analyses of  recent geomagnetic field data and models,
which provide evidence for both of  these physical properties
of  the field. When we transfer these results to magnetic re-
peat-station surveys, we arrive at the clear conclusion that
more frequent occupations are a real necessity according to a
solid physical basis, instead of  the current interval of  5 years.
Finally, we complete the report with some conclusions.

2. Chaos theory
Chaos theory studies dynamical systems where the be-

havior is highly sensitive to the initial conditions. If  we consider
the time evolution x(t) of  a nonlinear process, it is possible to
represent this by Equation (1) for continuous time t:

(1)

or by Equation (2) for discrete time:

(2)

where, F and f are some nonlinear functions of  x. 
As in Barraclough and De Santis [1997] and De Santis et

al. [2002], we make use of  the concept of  phase space to
characterize the dynamic system under study. This phase-
space diagram is basically an abstract reference system, the
coordinates of  which are all the independent variables that
are necessary to completely describe the state of  the system
at any moment with just a point. For instance, let us con-
sider the solution of  the discrete case; i.e., the solution of
Equation (2), with the initial state x0: the sequence xn = f n (x0)
is a trajectory of  the phase-space diagram; i.e., the evolu-
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tion with time of  the system under dynamics f. When a real
system is under consideration, the problem is the absence
of  information about all of  the variables involved. In this
case, a way to represent the system dynamics is through an
appropriate phase-space reconstruction. This operation,
which is a local approximation approach, allows the recon-
struction (or embedding) of  a single-dimensional time se-
ries into a multi-dimensional phase space. In this way, the
system dynamics is represented locally step-by-step in this
new phase space.

A system is chaotic if  each small change f of  some ini-
tial close trajectory in the phase space propagates exponen-
tially with time t; i.e.: 

(3)

This is just the exponential behavior in time of  f(t) that
will lead us to investigate in greater detail in section 5 the
possible implications in repeat-station surveys. The Kol-
mogorov entropy, K (>0), measures the rate of  information

loss of  the system under study [Schuster and Just 2005], and
it is inversely proportional to the time over which a chaotic
system is predictable. For this reason, we can introduce here
the mean time <T> = 1/K after which no reliable prediction
can be made [Barraclough and De Santis 1997, De Santis et
al. 2002]. As described above, a way to represent such a dy-
namic system is through phase-space reconstruction. One of
the most popular methods available for reconstructing the
phase space from an experimental time series is that of  time
delays that was introduced by Takens [1981]. By using the
past history and an appropriate delay time, x, this method
can allow us to project a time series xi into a reconstructed
E-dimensional phase space yi, such that:  

(4)

where, i = 1, 2, ..., N, N is the number of  data points of  the
state variable x(t), E is the so-called embedding dimension,
which is greater than or equal to the number of  degrees of
freedom of  the dynamic system, and also to the number of
deterministic scalar equations that characterize it. 

Once this pseudo-space is reconstructed, it is simple to
check whether there is divergence of  a perturbed trajectory
with respect to the original one. Almost all of  the tech-
niques used to detect chaos in time series require a large
amount of  data. A simple way that overcomes this limita-
tion is to apply a nonlinear forecasting approach in the phase
space [Wales 1991, Sugihara and May 1990]. With this
method, we split the sequence under study into two parts,
and use the first part to predict the second one: the com-
parison between the predicted and observed values allows
us to deduce some important properties about the possible
chaoticity of  the time series. When applied to several geo-
magnetic observatory time series, Barraclough and De San-
tis [1997] and De Santis et al. [2002] found a clear chaotic
nature of  the geomagnetic field with <T> = 6 years (Figure
1). We will show below how this result, together with the
ergodic property of  the field, is important for the frequency
of  repeat-station re-occupation. 

3. Ergodicity 
Historically, the issue of  ergodicity arose from the work

of  Boltzmann on the determination of  average values in ki-
netic theory. For a given dynamic system represented by (Ω,
f t, r) in the phase space Ω with an invariant (during evolu-
tion) measure r, a deterministic dynamics f t drives the time
evolution along a path (named the trajectory) that will pass
through all of  the possible states the system can reach, for a
sufficiently long time. So, this behavior should allow the sub-
stitution of  the phase-space average with the temporal one
of  the same observable. This is the ergodic hypothesis [Eck-
mann and Ruelle 1985]. 

As a formula, it translates into [e.g., Walters 1982]:
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Figure 1. Correlation coefficients between the predicted (a) and observed
(b) values of  the X and Y geomagnetic time series of  three European ob-
servatories when reconstructed in a phase space (adapted from Barra-
clough and De Santis [1997]). The decrease in time is a symptom for a
chaotic geomagnetic field. E = 3 is the embedding dimension of  the re-
constructed phase space.
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(5)

As a consequence of  this feature, if  the system is ergodic
and A(x) is an observable, the time average <A(x0)> does not
depend on the initial state x0; i.e., after a certain time evolu-
tion, the system is no longer dependent on its initial state. A
is an appropriate average in the phase space.

4. Chaotic and ergodic character of  the recent geomag-
netic field 

As mentioned above, some previous studies have con-
firmed the chaotic properties of  the recent geomagnetic field
[Barraclough and De Santis 1997, De Santis et al. 2002, De
Santis and Qamili 2010], i.e., its sensitivity to initial condi-
tions in the phase space. 

When the process under study is ergodic, the phase-
space reconstruction is not necessary, and we can perform
the analyses in the time domain. De Santis et al. [2011]
demonstrated that this is the case of  the geomagnetic field.
Under the ergodic condition, a good technique used to find
possible nonlinearity and chaos in a system is a simple non-
linear forecasting approach in the time domain. This tech-
nique uses the past history of  a time series to forecast future
values, without reconstructing the phase space. This result
was determined by De Santis et al. [2011] through an analy-
sis of  the divergence of  the errors between the predicted and
definitive global geomagnetic models, with the estimation
of  the typical mean time <x> after which time no predic-
tion is reliable. They found <x> = 6 years, which is the same
time average <T> that results from the analysis with phase-
space reconstruction (Figure 2). This confirms that it is not
possible to predict the evolution into the future of  the geo-
magnetic secular variation by more than 6 years, so that any

prediction must be limited to a shorter time, whereby the
shorter this time, the better the prediction will be.

We argued in De Santis et al. [2011] that the close agree-
ment between the outcomes from two independent analy-
ses, i.e., <x> as deduced from the time-error analysis in the
time domain, and <T> as estimated from the nonlinear fore-
casting approach in the phase space [De Santis et al. 2002],
confirms the chaotic nature of  the geomagnetic field and rep-
resents empirical proof  of  its ergodicity.

It could be said that the concepts of  chaos and ergodic-
ity seem in contradiction, but this is only apparently so: there
are many examples of  chaotic phenomena that are also er-
godic [e.g., Eckman and Ruelle 1985]. This can be under-
stood also for the geomagnetic dynamo: although in general
it has nonequilibrium and nonstationary dynamics, the geo-
dynamo can evolve into parts of  the phase space that are
characterized by both chaos and ergodicity [e.g., Vincent
2005, Shen et al. 2009]. There are other evident nonequilib-
rium and nonstationary geophysical phenomena that can
show analogous properties: e.g., seismic sequences have been
shown to be ergodic [Tiampo et al. 2007] and chaotic [De
Santis et al. 2010] occasionally. 

The properties of  chaos and ergodicity of  the recent ge-
omagnetic field, i.e., the short predictability in time and the
sort of  space-time regularity, respectively, allow us to make
reasonable forecasts of  the geomagnetic field for a few years in
advance; e.g., to update the geomagnetic charts for a few years
into the future. Also, shorter time variations of  the geomag-
netic field that are due to external contributions that arise
mainly from the ionosphere and magnetosphere have shown
important chaotic characteristics [e.g., Balasis et al. 2010], al-
though this aspect will not be considered in this report, which
is mainly concerned with the corresponding chaotic properties
of  the internal geomagnetic field and its secular variation.  
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Figure 2. Error behavior between the predicted and observed global International Geomagnetic Reference Field (IGRF) models (from De Santis et al.
[2011]). The exponential increase in time is a symptom of  a chaotic geomagnetic field.

( ) ( ) ( ) ( )limA x T f x dt dt x A1
t

T
t

0
0

0{ t {= = =
"3

6 @# #



5. Consequences of repeat-station surveys
We can now take advantage of  the established proper-

ties of  chaos and ergodicity of  the recent geomagnetic field.
In this case, Equation (3) is valid for the error f of  any geo-
magnetic element of  the field, the initial error value of  which
is taken as f0. This means that:

(3a)

where, on the right-hand side we have replaced K entropy
with the reverse of  the mean time of  predictability <x>.
From the results given by Barraclough and De Santis [1997]
and by De Santis et al. [2011], we insert <x> = <T> = 6 years
into Equation (3a) and apply it to some typical cases of  re-
peat-station measurement errors. Equation (3a) indicates how
an initial error of  a certain measurement taken at the repeat
station in a given epoch t0 (here set equal to zero, for con-
venience) will explode after some time t following the expo-
nential law of  typical chaotic processes. Figure 3 shows this
temporal behavior for three possible cases of  initial errors, of
5 nT, 8 nT and 10 nT; these values are reasonable values of
the errors likely to be involved in the deduced values from
measurements at a repeat station, including the process of
time and space reduction [e.g. Meloni et al. 1994; Barraclough
and De Santis 2011]. In Figure 3, vertical lines are drawn at 2,
3 and 5 years after the initial measurement: the correspon-
ding intersections are the estimated errors at each successive
epoch. It is evident that after 5 years from the initial meas-
urement the error is relatively large, while the errors after 2
years and 3 years are still reasonably acceptable. Indeed, just
to give an idea, an initial error of  8 nT will grow to a final
error of  18.5 nT after 5 years, but will only be 11 nT to 13 nT

after 2- years to 3 years, values which are lower (and probably
still sustainable) than the error obtained after 5 years.

To better reproduce the real case of  repeat-station time
series at different frequencies of  re-occupation, we consid-
ered also the CM4 geomagnetic model (see Sabaka et al.
[2004] for details of  this model) and synthesized the yearly
values of  each geomagnetic component G(ti )

CM4 (= XCM4,
YCM4 or ZCM4; ti = 1960, …, 2002) in the central points of
Spain (Figure 4, left side) and Australia (Figure 5, left side).
We chose these two ideal sites because they are eventually
representative of  two different regions on the Earth. For each
time series, we then considered the cases of  2-year and 6-year
repeat-station re-occupation. The latter was chosen (instead
of  simply a 1/5 year−1 frequency) for an easier one-to-one
comparison with the other shorter period of  re-occupation.
For both frequencies of  re-occupation, we calculated the fol-
lowing differences:

(6)
where: 

(7)

with ti starting at 1964 (with initial ti−1 = 1962 and ti−2 =
1960) for the 2-year re-occupation, and at 1972 for the 6-year
re-occupation (with initial ti−1 = 1966 and ti−2 = 1960). Equa-
tion (7) is the extrapolation of  the G component at time ti as
deduced from the previous two data points taken at times
ti−1 and ti−2 , i.e., at the epochs of  the previous two magnetic
surveys. Therefore, Equation (6) measures the deviation of
the predicted value G(ti)

pred with respect the actual synthe-

DE SANTIS ET AL.

4

Figure 3. Exponential divergence in time of  some typical initial errors (of  5 nT, 8 nT and 10 nT) in repeat-station surveys in the case of  a chaotic
geomagnetic field. Vertical lines are taken at 2 years, 3 years and 5 years. While the error after 5 years is relatively large, those at the first two epochs are
accepted for any extrapolation in time of  eventual magnetic charts. 
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sized value from the model G(ti)
CM4. Figures 4 and 5 (right

sides) show the differences expressed by Equation (6) for
Spain and Australia, respectively, where the white circles rep-
resent the data points deduced with the 2-year re-occupation,
and black circles are those obtained from the 6-year re-occu-
pation. It is clear from Figures 4 and 5 that the longer time of
re-occupation provides much more scattered values with ex-
pected errors that are much larger than those at the 2-year re-
occupation: for instance for the X component, in Spain and
Australia the largest errors reach around 70 nT and 130 nT, re-
spectively, while they are no larger than 20 nT for the shorter
time of  re-occupation. This confirms that, too long a time in-
terval between two subsequent surveys will cause very large
extrapolation errors, thus invalidating any possibility of  re-
constructing reliable magnetic maps in the time in between. 

These simple examples show that a reduction to 2 years
to 3 years for the time of  re-occupation of  the repeat-station
network is to be recommended, to avoid the error of  the
temporal extrapolation from becoming too large. We believe
that the present technology and potential of  most European
scientific institutions would allow this recommendation to
be put into practice. It is also clear that any improvement in
terms of  error reduction in repeat-station surveys will also
have positive effects on any secular variation model that is
based on the repeat-station data. 

However, since we understand the difficulties that some
countries might have, it is not necessary for all of  the repeat
stations of  a country to be more frequently reoccupied. A
reasonable compromise could be to increase the frequency
of  reoccupation only in a subset (say, 10% to 20%) of  the nor-

CHAOS ERGODICITY AND MAGNETIC REPEAT STATIONS

Figure 4. Left: Synthetic case of  possible repeat-station time series of  the geomagnetic component in a central point in Spain, as deduced from the CM4
model. Right: Differences between the synthetic (actual) values and the predicted values when the frequency of  repetition is one data point every 2 years
(white circles) and 6 years (black circles).  



mal repeat stations (the 'super stations', as used by McEwin
[1993]). In this way, it will be easier to minimize the possible
errors of  extrapolation between two epochs of  reoccupation
without too much effort.

In addition, the ergodicity of  the recent geomagnetic
field confirms the use of  temporal arithmetic means for the
estimation of  the mean value of  some magnetic element at
a certain epoch, and the reduction in the value using corre-
sponding temporal means at a close magnetic observatory
or reference station. This is also valid for the calculation of
other successive statistical moments (e.g., variance, skew-
ness, kurtosis). The overall set of  typical operations on re-
peat-station data made in time to reduce them to some fixed
past or future epoch (i.e., averaging the daily measurements,

reducing to the closest night, and then reducing to the clos-
est observatory at, say, the middle of  the year) can be per-
formed, because we implicitly assume that the magnetic field
is ergodic. Otherwise, more complex (sometime even im-
possible) operations would be necessary, with most of  them
made in the phase space, and with the implied difficulties of
its reconstruction. 

6. Conclusions 
The nonlinear forecasting approach applied to the geo-

magnetic field in the phase space has highlighted its chaotic
nature that is characterized by a mean time <T> = 6 years of
predictability [Barraclough and De Santis 1997, De Santis et
al. 2002]. At the same time, the analyses of  differences be-
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Figure 5. Left: Synthetic case of  possible repeat-station time series of  the geomagnetic component in a central point in Australia, as deduced from the
CM4 model. Right: Differences between the synthetic (actual) values and the predicted values when the frequency of  repetition is one data point every
2 years (white circles) and 6 years (black circles).



7

tween predicted and definitive geomagnetic models in natu-
ral time and space domains provided the same result <x> =
6±3 years [De Santis et al. 2011]. This supports our knowl-
edge of  the chaotic nature of  the field and demonstrates its
ergodicity. According to our previous results, if  we want to
reproduce a correct secular variation, frequent repeat-station
surveys are compulsory, with, of  course, the period of  time
of  re-occupation of  less than 6 years, which represents an
upper limit, for the reasons we have given. Consistent with
the availability of  resources, a re-occupation every 2 years to
3 years is highly recommended, so that the error is less than
twice the initial error. In this way, the chaotic nature of  the
field does not have too large an effect on the possible short-
time extrapolation of  the field from the repeat-station ob-
servations. As already indicated [Newitt et al. 1996], another
advantage of  frequent re-occupation will be to eventually
track rapid changes in secular variation, such as the jerks
[e.g., Duka et al. 2012]. Finally, the property of  ergodicity
confirms that both the operation of  making time averages
at the repeat station and the comparison with analogous time
averages at close magnetic observatories or stations for tem-
poral reduction, are appropriate, because of  the validity be-
tween the exchange of  phase space and time averages, as
given by Equation (5). 

Since this report was presented at the MagnetE Work-
shop held in Rome, from May 9-11, 2011, we hope that our
arguments have been taken into due considerations by the
world-wide community of  repeat-station planning and man-
agement, and in particular by the institutions contributing
to the European Repeat-Station Network.
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