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ABSTRACT

We have investigated the role of  the radiation damping term (RDT) on
repeated earthquake ruptures by modeling the faulting process through a
single one-dimensional analog fault system governed by different
constitutive laws. The RDT expresses the energy lost by the seismic waves.
The RDT is inherently accounted for in more elaborated, fully dynamic
models of  extended fault, whereas it is neglected in one-dimensional fault
models. In this study, we adopt various formulations of  the laboratory-
derived rate-dependent and state-dependent friction constitutive laws: the
Dieterich-Ruina law, the Ruina-Dieterich law and the Chester and Higgs
law. Our numerical results clearly indicate that the RDT significantly
affects the system dynamics. More specifically, the more the RDT is
effective, the more frequent the slip failures are (with a cycle-time reduction
of  ca. 30%). We also show that inclusion of  the RDT tends to promote
smaller but more frequent earthquake instabilities, irrespective of  the
choice of  the governing law. Our data shed light on the limitations implied
by the conventional formulation of  the equation of  motion for the spring
system, in which the energy radiation is ignored.

1. Introduction
One of  the challenges of  natural-hazard reduction and

earthquake-risk mitigation is the need to understand the re-
currence interval in seismic instability events. Plate tecton-
ics provide the theoretical background that is required to
identify at least some of  the specific seismic source regions
where earthquakes have occurred in the past [Allen 2007].
However, it is still difficult to predict large earthquakes, due
to their complex occurrence patterns [Abe and Kato 2012].
Scientists have been trying to understand the earthquake ma-
chine and the chemical and physical processes controlling it
(as well as their complicated feedback and unknown param-
eters) from different points of  view and with different ap-
proaches [Panza et al. 2001, Bizzarri 2011, Panza et al. 2011,
Bizzarri 2012d, Wyss et al. 2012]. The relationships between
the frequencies of  earthquakes and their different seismic
moments – expressed in terms of  the slip rate on a fault – is

a possible approach to the study of  the seismic activity that is
likely to occur in a specific region [Molnar 1979, Allen 2007].
Nevertheless, this assessment approach usually starts from
the existing historical seismicity records, and many seismolo-
gists agree that the seismic records available are often not ex-
tensive enough to provide reliable assessment of  earthquake
frequency in a settled area [e.g., Molnar 1979]. Indeed, data
collection ranging from 103–104 years might be required to
determine, with reasonable confidence, a possible earthquake
recurrence interval in regions with high seismic-motion vari-
ability [Molnar 1979]. Consequently, further methods of  in-
vestigation are required to provide a broader insight into
seismicity recurrence. This emphasizes the importance of  nu-
merical model simulations, which are a powerful tool to ex-
plore the complex physical conditions behind earthquake
cycles and the occurrence of  unstable slip episodes. 

In the ideal case where no remote events perturb the
state of  a given fault system, the elastic rebound theory [Reid
1910] remains the basis of  our understanding of  the earth-
quake cycle, and this postulates that once the stress in a re-
gion exceeds some strength value, a rupture occurs. Several
physical models have been proposed to describe the proper-
ties of  the earthquake cycle, among which there is the spring-
slider system (namely, a harmonic oscillator), which can
reproduce the seismic instability periodical patterns and the
so-called stick-slip mechanism observed in laboratory exper-
iments [Bizzarri et al. 2011, and references therein]. 

In this study, we focus on the temporal evolution of  the
frictional properties of  faults. More specifically, we present
and discuss numerical experiments that are conducted using
a mass-spring model, to explore how the radiation damping
term (RDT) can affect the phenomenology of  earthquake
faulting and the seismic cycle of  faults, through obeying dif-
ferent governing laws: i.e., the Dieterich-Ruina (DR) law [Di-
eterich 1979]; the Ruina-Dieterich (RD) law [Ruina 1983]; and
the Chester and Higgs (CH) law [Chester and Higgs 1992].
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From a physical point of  view, the radiation damping ap-
proximation [Rice 1993] mimics the energy lost due to seis-
mic-wave propagation. While this factor is inherently
assumed in more elaborate fault models (such as continuum,
three-dimensional [3-D] fault models), it is frequently ignored
in the simplistic one-degree-of-freedom mass-spring dashpot
model (to date, relevant exceptions are Xu and Knopoff
[1994], Beeler [2001, 2006], and Bizzarri [2012a]). Further-
more, we have seen that its inclusion within spring-slider dy-
namics leads to interesting results, which are widely
illustrated within the next applicative sections. The novelty
of  the present study is that it is a systematic study of  the ef-
fects on the analog fault dynamics that result from the intro-
duction of  the radiation damping factor, a concept as yet
unexplored in previous studies (Xu and Knopoff  [1994] and
Beeler [2001] did not consider rate and state friction, while
Bizzarri [2012a] considered only one single configuration
with the RD law and did not consider the effects of  the RDT
in the context of  earthquake recurrence).

2. Modeling of  the seismic cycle with the mass-spring
system

2.1. The spring-slider model 
In this study, we consider the widely used 1-D fault

model known as the spring-slider system (or the mass-spring
system; see figure 1 in Belardinelli et al. [2003]), in which a
fault is modeled as a point of  mass m (per unit surface area)
that slides over a plane against a shear stress x and subject to
a normal load          (e.g., see Rice and Tse [1986], among many
others). The system is loaded by a remote velocity vload that
acts through the end of  the spring on the block, which phys-
ically represents the velocity of  a tectonic plate acting on a
potentially seismogenic structure that is to be modeled. For
the sake of  simplicity, we will assume here that         is constant
over the whole faulting process; the possible variations in ef-
fective normal stress and other seismological implications
have been quantitatively discussed elsewhere [Bizzarri and
Cocco 2006a, Bizzarri and Cocco 2006b, Bizzarri 2010b, Biz-
zarri 2012c].

The spring-slider system equation of  motion is a first-
order partial differential equation that describes a harmonic
oscillator (see also Bizzarri [2012d]):

(1)
where: 

(2)
with:

(3)

In Equations (1), (2) and (3) (see also Equation 2 in Beeler
[2001], or equation 2 in Beeler et al. [2002]), the overdot indi-

cates the time derivative, u is the block displacement, v is its
velocity, and t is the time. The fault stiffness k, which mimics
the interactions with the elastic medium surrounding the
fault, can be associated with the static stress drop and the total
slip that develops during a failure event [Walsh 1971].

The shear stress x expresses the fault governing law, as
described in Section 2.2. The last term in Equation (3) de-
fines the so-called RDT, in which constant c depends on the
parameters of  the medium where the fault is embedded
[Rice 1993]: 

(4)

where G is the elastic medium rigidity, and vS is the S-wave
velocity away from the fault plane. The RDT simulates the
energy that is lost during the sliding phase, in terms of  prop-
agating seismic waves, and moreover, it reduces the shear
stress on the fault plane by an amount that is directly pro-
portional to the slip velocity [Rice 1993, Kato and Tullis 2001,
see also Brune 1970]. In other words, the RDT defines how
the local fault impedance relates the slip velocities to the
stress, as a (1-D) strain wave propagates into the host rock
[Rubin and Ampuero 2005]. Indeed, Equation (3) is a proxy
of  the true behavior of  an extended fault that is embedded in
a continuous medium, and it is deemed valid in the case of
a fault with homogeneous properties. 

In the case of  the Rice [1993] simulation of  a continuum
medium with rate-dependent and state-dependent friction,
is it possible to either perform a fully dynamic simulation or
use the radiation damping approximation. Without one or
the other, the fault-slip velocities with rate-weakening are
unbounded, and the model will blow up. On the contrary,
such bounding is not needed for a spring-slider model that
accounts for inertia; nonetheless, it allows for a more earth-
quake-like analog model. Indeed, the use of  the RDT in the
slider-block equation is just a way to produce a simulation
that has radiated energy loss. If  we perform a spring-slider
simulation with inertia alone, no radiation effects will be ob-
served, and a complete overshoot will also result (by over-
shoot, we refer to the further traction drop that occurs in
the decelerating phase of  the system, during which the
block decelerates due to the spring compression; see Rice
and Tse [1986]). This behavior, however, is not consistent
with natural earthquakes, or likely to occur with laboratory
stick-slip experiments (no radiated energy is the complete
overshoot condition).

Moreover, we also emphasize that the use of  the RDT
with inertia does not duplicate the rate dependence con-
tained in the rate and state laws, as the explicit dependence
of  the velocity in the expression of  frictional resistance and
in the RDT has the opposite sign. Finally, we mention that if,
on the other hand, a numerical simulation of  a slider block
with radiation damping and no inertia is performed (as in
Segall [2010]), the result is zero overshoot. While this is a
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3

good analog model of  the Orowan condition [Orowan 1960]
(see also Gibowicz [1998]), which has often been used by
Kanamori to analyze earthquakes, it is generally still not con-
sistent with natural earthquakes.

The energy lost in the form of  propagating seismic
waves represented by the RDT is essentially assumed to be
due to planar waves [Rice 1993]. The particular choice made
in Equation (4) then states that all radiation results from
shear waves.

In Equation (1), U formally defines the system state at a
generic time t, in the conventional phase space (u,v). Despite
its obvious limitations in reproducing a fault system, either
owing to its own finite size or to its being a single-degree-of-
freedom dynamic system [Gu et al. 1984, Carlson et al. 1994,
Bizzarri et al. 2011, among others], the spring-mass model
has provided crucial insight into repeated seismic events. 

2.2. Governing equations
Stick-slip motion results from the interactions between

an elastic system and a frictionally slipping surface [Brace and
Byerlee 1966, Gu et al. 1984]. Several attempts have been
made to find a realistic and adequate expression of  a fault-
governing law [e.g., Dieterich 1978, Dieterich 1979, Ruina
1983, Chester and Higgs 1992]. Despite the advances in lab-
oratory settings, we are still far from the formulation of  a
universal constitutive model for real-world faults (see dis-
cussions in Bizzarri and Cocco [2006c] and Bizzarri [2011]). A
wide class of  earthquake source studies has been based upon
the rate-dependent and state-dependent (RS) friction laws, in
which the shear stress x depends on the slip rate v and on a
state variable W (see Bizzarri [2011] for a detailed review). In
the present study, we adopt the following formulations of
the laboratory-derived RS friction law models:

(5)

(6)

(7)

where n
*

and v
*

are a reference friction coefficient and a ref-
erence velocity, respectively, a and b are experimental consti-
tutive parameters that express the direct and evolution effects,
respectively, of  friction, and L is the characteristic distance for
the state variable evolution. Moreover,          is the effective nor-
mal stress, R is the universal gas constant, Qa and Qb are ap-

parent activation energies pertaining to the direct and evolu-
tion effects, respectively, T

*

is a reference temperature, and T
is the temperature developed from frictional heating. This last
quantity, T, is computed as follows [Bizzarri et al. 2011]:

(8)

In Equation (8), T0 is the initial uniform temperature
(i.e., at t = 0), t is the cubic mass density of  the rock, w is the
specific heat, l is the thermal diffusivity of  the continuous
medium in which the fault is embedded, the apex m denotes
the discrete time, and t(0) = 0 and t(n) = t.

Equations (6) and (7) are the RD and CH laws, respec-
tively, that are derived from the DR law (Equation 5), where
the state variable physically represents the average contact
time of  the sliding surface micro contacts [Bizzarri 2011]. It
is clear from Equations (5) to (7) that x, which appears in
Equation (3), can be written (with the standard abuse of  no-
tations) as x = x (v(t),W(t)). The initial state of  the system is
given by                  , and the corresponding shear stress is
x0 = xss(v0); i.e., the steady-state, which is achieved when W
= 0 in Equations (5) to (7).

2.3. Simulation strategy
In the present study, we numerically solve a system of

differential equations that is composed of  an equation of  mo-
tion (Equation 3) that is combined with one of  the three con-
stitutive laws (Equations 5, 6 or 7). The system of  equations
is solved by adopting the Runge-Kutta temporal integration
technique with adaptive step-size control [Press et al. 1992]. 

In line with the simulation strategy widely used and de-
scribed by Boatwright and Cocco [1996] and Belardinelli et al.
[2003], in the present study, the slider equation of  motion
(Equation 3) is solved quasi-statically for relatively low sliding
velocities, and dynamically for high sliding velocities. The
threshold that marks the limit between these two sliding
regimes is the critical velocity vc, the reference value of  which
is assumed to be 0.1 mm/s in the present study (according to
Belardinelli et al. [2003], and references therein). Moreover,
as previously discussed by Weeks [1993], we assume that the
steady-state friction becomes independent of  v at sliding ve-
locities that exceed the critical value vc; this entails consider-
ing a ln(vc/v

*
) instead of  a ln(v/v

*
) at high sliding velocities

(namely, for v > vc; see [Weeks 1993, Boatwright and Cocco
1996, Belardinelli et al. 2003]). This formulation is known as
the frozen approximation of  the RS friction laws.

First, we simulate the spring-slider evolution by using
all of  the three constitutive laws (the DR, RD and CH laws)
with and without the inclusion of  the RDT in the equation
of  motion (Equation 3). Subsequently, we compare the nu-
merical results, to highlight the influence potentially exerted
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by the radiation damping approximation on the seismic cycle
evolution, and consequently, on the recurrence time in seis-
mic instabilities that are governed by the different constitu-
tive laws. Next, we perform further simulations with the CH
constitutive law only, and use Table 1, Configuration A by
varying the vc, so as to focus on the role that their different
magnitudes can have in seismic-cycle evolution. 

3. Numerical results 

3.1. The RDT influence: a stable behavior irrespective of  the
choice of  the governing law

In this section, we aim to analyze the time evolution of
a spring-slider system that obeys three different constitutive
laws (the DR, RD and CH laws; see Section 2.2). More
specifically, earthquake recurrence tends to be markedly af-
fected by the nonobvious choice of  the fault constitutive law

[e.g., Bizzarri et al. 2011]. In the present study, we present
and discuss several numerical results that illustrate a set of
further effects of  different radiation damping coefficient
values, and of  critical velocity (see Table 3) on controlling
the temporal evolution of  repeated earthquake ruptures.

The comparisons will initially be conducted by running
simulations without and with the inclusion of  the RDT, and
through a selection of  the initial set parameters from both
Configurations A and B, as reported in Table 1. Although
both of  these configurations are velocity-weakening regimes
(which explains the difference b − a > 0), Configuration A is
more unstable than Configuration B because b = 2a (this de-
fines a strong seismic regime, as per the terminology of
Boatwright and Cocco [1996]). The results are reported in
Figures 1 (the DR law), 2 (the RD law) and 3 (the CH law).
More specifically, the red lines in Figures 1-3 pertain to Con-
figuration A, and the blue lines refer to Configuration B.
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Parameter Value

Configuration A Configuration B

Model parameters

Loading velocity, vload 3.17 × 10−10 m/s 3.17 × 10−10 m/s

Machine stiffness, k 10 MPa/m 10 MPa/m

Tectonic loading rate, t0 = kvload 3.17 × 10−3 Pa/s 3.17 × 10−3 Pa/s

Period of  the analog freely slipping system,

Ta.f. = 2π 
5 s 5 s

Radiation damping constant, c (reference) 4.5 MPa s/m 4.5 MPa s/m

Critical velocity, vc 10−4 m/s 10−4 m/s

Threshold velocity defining seismic instability, vl 10−1 m/s 10−1 m/s

Fault constitutive parameters

Effective normal stress, 30 MPa 30 MPa

Initial slip velocity, v0 3.17 × 10−10 m/s (= vload) 3.17 × 10−10 m/s (= vload)

Initial shear stress, x0 16.8 MPa (= n
*        

) 16.8 MPa (= n
*        

)

Initial temperature, T0 210 °C 210 °C

Logarithmic direct effect parameter, a 0.008 0.012

Evolution effect parameter, b 0.016 0.016

Characteristic scale length, L 0.01 m 0.01 m

Reference friction coefficient value, n
*

0.56 0.56

Reference sliding velocity value, v
*

3.17 × 10−10 m/s (= v0) 3.17 × 10−10 m/s (= v0)

Reference temperature value, T
*

210 °C (= T0) 210 °C (= T0)

Table 1. Parameters adopted in the present study. Both configurations are velocity weakening regimes, but Configuration A (with b = 2a) represents a
more unstable fault with respect to Configuration B. 
Next page. /Top: Figure 1. Comparisons between the numerical simulations for the DR law (Equation 5) without and with the RDT (thick and thin lines,
respectively). (a) Time evolution of  displacement. (b) Slip velocity history on a logarithmic scale. (c) Time history of  the temperature developed by frictional
heating, computed as in Equation (3) by Bizzarri [2010c], which is known to represent an upper bounds of  the frictional heating. DT represents the difference
between the temperature computed at the present time step and the initial temperature, which in this case also equals the reference temperature (see Table
1). (d) Phase diagram; i.e., normalized stress versus dimensionless slip velocity. The quantity A is defined as A = a . The vertical black line represents
ln(vc/v

*

), which is the threshold between the quasi-static and the full dynamic regimes (see Section 2.3 for numerical details). The parameters are listed
in Table 1. Red curves, Configuration A; blue curves, Configuration B. /Bottom: Figure 2. As for Figure 1, here related to the RD law (Equation 6).
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Figure 1 (caption on previous page).

Figure 2 (caption on previous page).



Moreover, the thick lines refer to the simulations without the
RDT, and the thin lines refer to the RDT-aided simulations.

Interestingly, if  we consider the RDT simulations (Figures
1-3, thin lines), we can appreciate that the inclusion of  such an
approximation in the equation of  motion (Equation 3) has sev-
eral important effects on the evolution of  the system (in what
follows, we will focus on the DR law model, as the results dis-
cussed are qualitatively the same for the RD law and CH law
simulations). As an example, for Configurations A and B, the
slip developed during each seismic instability event is smaller

than the slip where the RDT approximation has not been ac-
counted for (see Figure 1a). Similarly, the velocity peaks reach a
lower value in the RDT case, compared to the reference case
without RDT (see Figure 1b). Moreover, the temperatures that
result from the frictional heating are lower with the adoption
of the RDT term (see Figure 1c). Figure 1d reports the phase di-
agram, which illustrates that the dynamic stress drop, which oc-
curs within the close-to-failure accelerating phase, is the same in
both cases, so without and with the RDT (Figure 1d, thick and
thin lines, respectively). On the contrary, the dynamic overshoot
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Governing law Recurrence time

Configuration A Configuration B

Without
RDT

(years)

With
RDT

(years)

RDT
difference

(%)

Without
RDT

(years)

With
RDT

(years)

RDT
difference

(%)

Dieterich-Ruina
(Figure 1)

170.1 118.6 30.3 128.8 90.3 29.9

Ruina-Dieterich
(Figure 2)

156.3 108.3 30.7 117.8 83.3 29.3

Chester and Higgs
(Figure 3)

73.7 54.02 26.7 78.05 57.01 26.9

Figure 3. As for Figure 1, here related to the CH law (Equation 7).

Table 2. Recurrence times for the different governing laws and the two configurations listed in Table 1. The last row in the table reports the cycle time
variation, computed as:

100 .T
T

T T
cycle

cycle
without RDT

cycle
without RDT

cycle
with RDT

D =
-

^

^ ^

h

h h
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is rather different. Indeed, the dynamic overshoot is larger in
the case without RDT, and this difference explains why the seis-
mic cycle is so different if  the RDT is considered or neglected.
In particular, by adding the RDT, there is a reduction in the dy-
namic overshoot of  ca. 44%. This result is in agreement with
previous estimates [McGarr 1994, 1999; see also Beeler 2001].

In all of  the simulations, the seismic cycle that result
from the RDT inclusion is shorter than the cycle calculated
for the models that do not include the RDT (Table 2). Con-
sequently, all of  the observations made so far show that if  we
consider a spring-slider system that includes the RDT, it will
take less time to reach a new instability phase, as it appears to
require less stress compared to the case without RDT. 

The results discussed so far are the same, irrespective of
the choice of  the governing laws assumed. Figures 2 and 3
show qualitatively identical features, except that the dynamic
slip displacement, sliding velocity, temperatures and dynamic
stress drop values are different in absolute terms, as expected.

By looking at Tables 2 and 3, we can appreciate that
while the DR law and RD law simulations show shorter re-
currence times for rupture events governed by Configuration
B, the opposite occurs for the CH law simulations, which pro-
vide a longer seismic cycle for Configuration B, compared to
that for Configuration A. This result is discussed in more de-
tail in Appendix A.

3.2. Sensitivity study
To quantitatively assess the role of  the RDT, we focus

on a fault governed by the CH law (Equation 5) and we
change the value of  parameter c, which modulates its im-
portance in the equation of  motion (Equation 3). We se-
lected different values of  c by considering typical values of  G
and vS for depths comparable with our hypocentral depth
(see Equation 4). 

Our numerical results clearly show that high values of
c entail low co-seismic displacement (see Figure 4a); from a
physical viewpoint, this results in the simulated earthquake
having a lower magnitude. Moreover, high c values entail
lower velocity peaks and higher velocity minima (Figure 4b),
lower temperature changes (see Figure 4c), and smaller dy-
namic overshoots (see Figure 4d). These observations sup-
port our conclusion that the RDT significantly affects the
system dynamics by promoting smaller and more frequent
earthquakes.  

We also explored the role of  the critical velocity (vc). As
mentioned in Section 2.3, vc formally establishes the relative
influence of  the dynamic regime on each repeated instabil-
ity. Indeed, the RDT is considered in the equation of  motion
(Equation 3) only in the dynamic behavior of  the system,
which corresponds to velocities greater than the vc. This is
physically reasonable, as given the quasi-static stage of  the

RADIATION DAMPING IN 1–D

Figure 4. Comparisons between the numerical simulations for the CH law (Equation 7) with RDT for Configuration A, using different values of  c (the
radiation damping coefficient from Equation 3) at the reference value of  vc. (a) Slip displacement versus time. (b) Time history of  the slip velocity (on a
logarithmic scale). (c) Time history of  the temperature developed by frictional heating. (d) Phase portrait. Black, reference configuration (see Table 1).



rupture, it is unlikely that energy is dissipated through seis-
mic-wave emission. In Figure 5, we keep parameters c un-
changed (as in Table 1), but we vary vc. It is apparent from
Figure 5 that the critical velocity is a key parameter that can
significantly affect the temporal recurrence of  repeated
earthquakes. Indeed, for those simulations where the critical
velocity values are greater than the reference vc (Figure 5,
black lines ), we observe that the coseismic slip, the velocity
peaks, and the temperatures developed decrease (Figure 5a-
c, red lines). The opposite occurs in the case of  a smaller
value of  vc compared to its reference value (Figure 5a-c, blue
lines). Referring to Figure 5d and to Table 3, we can also ap-
preciate that the higher the critical velocity, the shorter the
resulting seismic cycle.

In conclusion, we emphasize that the role of  the RDT in
the equation of  motion (Equation 3) can strongly affect the
earthquake rupture recurrence time for a large class of  con-
stitutive equations and for different degrees of  fault instabil-
ity. In addition, we wish to note the importance of  our
numerical experiments, which demonstrate that high values
of  both the RDT and the vc control dramatically shorten the
seismic cycle.

4. The CH law phase diagram
If  a physical system is not perturbed (i.e., an absence of

stress perturbation effects due to another seismogenic fault),
and if  there is no occurrence of  specific phenomena known

to complicate earthquake cyclic patterns, such as wear pro-
duction [Bizzarri 2010b] or the evolution of  permeability and
porosity [Bizzarri 2012b], the spring-slider system reaches its
limit cycle [see Gu et al. 1984, Rice and Tse 1986, Belardinelli
et al. 2003].

This section is aimed at detailing with the differences be-
tween the phase diagrams obtained for each of  the constitu-
tive laws. More specifically, a special phase diagram shape
that occurred only for the CH law models, and was never ob-
served for the other constitutive laws, emerged from the nu-
merical simulations. Indeed, if  we focus on Figures 3d, 4d
and 5d, we can clearly observe that the CH law phase plane
shows a 'figure-of-8' shape, which is not present for the DR
law model or the RD law model (Figures 1d, 2d) (see also fig-
ure 3 of  Belardinelli et al. [2003]). In other words, focusing on
the CH law numerical results, we can see from Figures 3d, 4d
and 5d that a point in the phase space (x,v) is reached twice
by the system trajectory during each single instability event. 

In Figure 6, we have plotted an example of  a CH law
phase diagram that represents a single, generic limit cycle
that was extracted from the whole simulation. We use a color
scale to emphasize the temporal evolution of  the dynamic
system. In this case, a particular phase of  the physical system
can be associated with a particular portion of  the limit cycle.
As an example, we can easily understand that the fault ana-
log system takes a very short time to enter the dynamic
regime, to perform a seismic instability, and to decelerate to
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Figure 5. As for Figure 4, with changed vc and unchanged c, with respect to the reference value of  Table 1. Black, reference configuration.
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RADIATION DAMPING IN 1–D

Parameter value Recurrence time (years)

Dieterich-Ruina law Ruina-Dieterich law Chester and Higgs law

Conf. A Conf. B Conf. A Conf. B Conf. A Conf. B

Parameter c in the RDT
(vc = 1 × 10-4 m/s)

2.700 × 106 Pa s/m (*) 134.46 102.11 123.18 93.97 60.19 63.55

3.375 × 106 Pa s/m 127.96 127.96 117.09 89.59 57.68 60.89

4.500 × 106 Pa s/m (*) 118.65 90.35 108.33 83.30 54.02 57.01

5.400 × 106 Pa s/m 112.35 85.66 102.38 79.02 51.52 54.39

8.500 × 106 Pa s/m (*) 96.30 73.71 87.15 68.05 45.00 47.47

Critical velocity vc
(c = 4.5 × 106 Pa s/m)

3 × 10-4 m/s (*) 114.31 83.37 104.36 77.06 50.92 51.79

1 × 10-4 m/s (*) 118.65 90.35 108.33 83.30 54.02 57.01

1 × 10-5 m/s 127.69 104.55 116.65 96.28 60.75 68.35

1 × 10-6 m/s 136.63 118.36 124.95 109.19 67.72 80.07

1 × 10-7 m/s (*) 145.49 131.86 133.25 122.09 74.92 92.12

Table 3. Recurrence times for the different governing laws and the two configurations listed in Table 1 resulting from the sensitivity study (see Section
3.2). Values reported in bold represent the reference configurations. Asterisks denote the simulations reported in Figures 4 and 5. Conf., configuration.

Figure 6. Single limit cycle resulting from the CH law and with the RDT. The parameters are those of  Table 1. The colors express the relative duration
of  each single phase with respect to the total duration of  the cycle. The count begins from the point marked by the symbol vc and proceeds clockwise.
Dashed black line, ln(vc/v

*

) = 12.7; continuous black line, ln(vl/v
*

) = 19.57, which formally defines the time occurrence of  a dynamic instability.



very low slip velocities. The fully dynamic phase of  the seis-
mic cycle is no more that 1% of  the entire fault cycle (Figure
6, red portion), as expected physically. Following the occur-
rence of  a seismic instability episode (Figure 6, black vertical
line), the system itself  keeps on accelerating, even when the
traction starts to rise. This fast restrengthening stage has al-
ready been observed by Bizzarri [2010a] in an extended fault
model that obeys the CH constitutive law.  

We can clearly see that the dynamic system runs
through a rapid restrengthening phase just before reaching
its peak: the shear stress reaches its minimum before the ve-
locity attains its maximum value, vpeak. This is clearly shown
in Figure 7, where the vertical dashed line indicates the min-
imum in x (blue line) and the peak in v (red line). The same
behavior has been reported in mechanical lubrication mod-
els [Bizzarri 2012c]. As discussed by Tinti et al. [2004], this
result entails relevant seismological implications, in that we
cannot use the v time integration to retrieve the (equivalent)
slip-weakening distance up to the time when vpeak is attained,
as suggested by Mikumo et al. [2003].

5. Discussion and concluding remarks
In the present study, we have modeled repeated insta-

bility events through a one-degree-of-freedom mass-spring
fault analog model. The results obtained by using this analog
fault model are appropriate to simulate the dynamic motion
of  a fault when a rupture propagates as a classical expanding
crack, or when it is stopped by a strong barrier (for instance
by a velocity strengthening region), when the material prop-
erties of  the rupture surface are homogeneous, and when
the spatial distribution of  the stress on the fractured portion
of  the fault is either homogeneous or well represented by a

spatial average. When these conditions are met, the spring-
slider system is extremely effective in modeling repeated in-
stabilities on the same fault structure (primarily because of
its computational simplicity).

We have considered different governing laws in the RS
friction framework; namely the DR law, the RD law and the
CH law. The first two of  these laws are 'canonical', in that
they have been largely used in the previous literature. We
have also considered the CH law because it is simply a (lab-
oratory-based) extension of  the RD law. We emphasize that
besides having been the subject of  previous studies [e.g.,
Marone 1998, Rubin and Ampuero 2005, 2009, Bizzarri
2011], a systematic comparison of  the variety of  formula-
tions of  the governing laws is certainly beyond the scope of
the present study. 

By conducting numerical simulations of  seismic cycles,
and by adopting different laboratory-derived friction laws
and various physical configurations, we have essentially at-
tained three key objectives. First, we show that including the
RDT (     in Equation 3) dramatically affects the evolution of
a spring-slider system cycle. In particular, the inclusion of  the
RDT induces a ca. 30% reduction in the recurrence time of
subsequent instability events, with respect to the reference
case (see Table 2). This reduction is a stable feature that does
not depend on any specific governing law applied to the fault,
nor on the fault instability level. Moreover, we show that the
RDT entails a decrease (by ca. 27%-30 %) in the co-seismic
slip displacement that develops during each instability event
(Figures 1a, 2a, 3a). At the same time, we can also observe
the decreasing velocity peaks during a seismic instability
event (Figures 1b, 2b, 3b), a drop in the developed tempera-
ture due to frictional heating (Figures 1c, 2c, 3c), and finally
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Figure 7. Superimposition of  the slip velocity and the shear stress time histories, in the CH law case within a very narrow time window. The velocity peak
is reached only a few instants after the shear stress minimum is achieved.
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a dynamic overshoot reduction (Figures 1d, 2d, 3d). In par-
ticular, neglecting the seismic radiation (i.e., without the
RDT) results in a complete overshoot, while adding the RDT,
results in a reduction in the dynamic overshoot of  ca. 44% (in
the case of  the DR law and the RD law; see Figures 1d, 2d)
and of  ca. 51% (in the case of  the CH law; see Figure 3d).
These values are consistent with the exact estimates given
by McGarr [1994, 1999]; a simulation with inertia without
RDT yields an overshoot of  1/2, while the introduction of  the
RDT (still with inertia) results in a dynamic overshoot of  ca.
1/4 (so that the reduction is by a factor of  2; see also Savage
and Wood [1971], Beeler [2001] and Segall [2010]).

Overall, this suggests that neglecting the RDT indicates
stronger but less frequent earthquakes. 

Secondly, we propose a parametric study aimed to show
how different values of  c and vc can affect the simulated cycle
of  the CH law model. Our numerical experiments suggest that
as long as values c and the critical slip rate values vc (controls
the system dynamic phase onset) increase (see Section 2.3 for
further details), the duration of  the seismic cycle decreases. 

Thirdly, as a side result, we show a specific feature of  the
CH law model, which shows a phase diagram with a 'figure-
of-8'-shaped trajectory; in this case, a point in the phase space
(x,v) is reached twice for each instability event during the sys-
tem evolution (see Figure 6). This phenomenon is closely re-
lated to the rapid restrengthening mechanism that occurs
immediately after the dynamic stress release phase [see also
Bizzarri 2010a]. This rapid restrengthening is intimately re-
lated to the frictional heating, which is, in turn, proportional
to the degree of  instability of  the fault. Indeed, we have seen
from Figure A1c that a more unstable configuration leads to
more pronounced rapid restrengthening. This in turn results
in a different cycle time value; we observed that with the CH
law, the strong seismic configuration shows shorter recur-
rence times than less unstable configurations, contrary to the
general behavior expected in cases when the temperature
does not explicitly enter into the analytical expression of  the
governing model (such as the canonical DR law and RD law). 

As an overall conclusion, we highlight that our data
show the limits of  the canonical, widely used, equation of
motion formula for the 1-D spring-system, which neglects
the RDT; i.e., the energy lost in seismic wave propagation.
This contribution is inherently assumed in more elaborate 3-
D fault models [e.g., Bizzarri and Cocco 2005, Day et al.
2005, among many others], or it is introduced in the so-called
quasi-dynamic 3-D models [e.g., Cochard and Madariaga
1994, Lapusta and Liu 2009]. On the contrary, this contribu-
tion has been largely ignored in the literature that relates to
the 1-D mass-spring model, with some relevant exceptions
[Xu and Knopoff  1994, Beeler 2001, Beeler et al. 2002, Beeler
2006, Bizzarri 2012a]. Undoubtedly, such an analog fault sys-
tem is extremely efficient in modeling repeated instabilities
on the same fault structure (primarily because of  its compu-

tational simplicity). However, our findings emphasize that
the conventional equation of  motion can lead to biased re-
sults (regardless of  the choice of  a specific fault constitutive
equation), and that the RDT should be correctly included in
numerical models with a mass-spring system. In particular,
the dynamic overshoot obtained in the framework of  a
spring-slider system with inertia and with the RDT is com-
parable with that which results from 3-D models, and con-
sistent with observations from natural earthquakes. 

To conclude, we are aware that the spring-slider model
cannot be regarded as a tool to obtain exact, deterministic
earthquake predictions, and that even the concept of  the seis-
mic cycle is largely debated (see Bizzarri [2012d] and refer-
ences therein for a thorough review of  the subject).
Nevertheless, the mass-spring model can provide some use-
ful insight into a more elaborated (and realistic) extended
fault model, provided the radiation loss is adequately in-
cluded in the model.
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Appendix A
In Section 3.1, we saw that when we assume the DR law

or the RD law, the cycle time resulting from Configuration A
is greater than that obtained with the parameters of  Config-
uration B, regardless of  the adoption of  the RDT (see also
Table 2). This is clearly visible in Figures 1b and 2b. 

To better appreciate this result, we re-plotted Figures
1d, 2d and 3d without normalization (see Figure A1a, b, c,
respectively), to avoid any possible masking effects due to
normalization by constant A, which is different in the two
configurations. It is clear from Figure A1a, b that in the
strong seismic configuration (i.e., Configuration A) the stress
release is greater than in Configuration B: Dx(A) > Dx(B) (this
makes sense physically, since a more unstable fault is known
to produce a greater stress drop). Moreover, the minimum
velocity values are lower in Configuration A compared to
those from Configuration B, especially in the case of  the DR
law simulation: vmin

(A) < vmin
(B) (this is also clear from Fig-

ures 1b and 2b). From these conditions (Dx(A) > Dx(B) and
vmin

(A) < vmin
(B)) we can see that at the end of  the decelerat-

ing stage, the system has to recover more stress in the case of
Configuration A than in the case of  Configuration B. This is
essentially the cause of  the result Tcycle

(A) > Tcycle
(B).

From Table 2 (and from Figure 3b), it emerges that the
opposite occurs in the case of  the simulations performed by
adopting the CH law model, still regardless of  the introduc-
tion of  the RDT: Tcycle

(A) > Tcycle
(B) (although the difference

is relatively small). This apparent paradox can be solved by
looking at Figure A1c; from this plot, we can clearly see that
Dx(A) < Dx(B) and this (small) difference causes Tcycle

(A) to be
(slightly) greater than Tcycle

(B) with the CH governing law. At
this point, a question emerges: why do we have Dx(A) < Dx(B)

with the CH law? This is essentially due to the explicit de-
pendence of  the temperature T that appears in the analytical
expression of  the constitutive model (Equation 7). During
the co-sesimic phase, the variations of  T are important, and
they result in the very special shape of  the phase diagram at
high speeds (this issue is discussed in detail in Section 4). In
the strong seismic case (i.e., Configuration A, red curves),
after the rapid re-strengthening, the shear stress level is
higher compared to that attained in Configuration B (blue
curves). Correspondingly, the final shear stress level after the
dynamic overshoot is greater in Configuration A than in
Configuration B (so that we have Dx(A) < Dx(B)).
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Figure A1. Phase diagrams without normalization for the reference config-
urations and for the three different governing models considered in this study.
Panels (a), (b) and (c) correspond to Figures 1d, 2d and 3d, respectively. 
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