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 12 

Fragility curves (FCs) constitute an emerging tool for the seismic risk assessment of all elements at 13 

risk.  They express the probability of a structure being damaged beyond a specific damage state for 14 

a given seismic input motion parameter, incorporating the most important sources of uncertainties, 15 

i.e., seismic demand, capacity and definition of damage states. Nevertheless, the implementation of 16 

FCs in loss/risk assessments introduces other important sources of uncertainty, related to the 17 

usually limited knowledge about the elements at risk (e.g. inventory, typology). In this paper, it is 18 

developed a general methodology to merge into a single model the information provided by multiple 19 

FC models, weighting them according to their credibility/applicability. This combination enables to 20 

efficiently capture Inter-Model Variability (IMV) and to propagate it into risk/loss assessments, 21 

allowing the treatment of a large spectrum of vulnerability-related uncertainties, usually neglected. 22 

As case study, fragility curves for shallow tunnels in alluvial deposits, when subjected to transversal 23 

seismic loading, are developed with two conventional procedures, based on a quasi-static numerical 24 

approach. Noteworthy, loss/risk assessments resulting from such conventional methods show 25 

significant unexpected differences. Conventional fragilities are then combined in a Bayesian 26 
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framework, in which also probability values are treated as random variables, characterized by their 27 

probability density functions. The results show that this Bayesian Combined Model (BCM) 28 

efficiently projects the whole variability of input models into risk/loss estimations. This 29 

demonstrates that BCM is a suitable framework to treat IMV in vulnerability assessments, in a 30 

straightforward and explicit manner.   31 

 32 

1- INTRODUCTION 33 

In their original form, Fragility Curves (FCs) describe the probability of a structure being damaged 34 

beyond a specific damage state for various levels of ground shaking (e.g., ALA 2001; NIBS 2004). 35 

They are widely adopted in seismic expected loss and risk assessments, since they are a valuable 36 

tool to explicitly evaluate vulnerability of structures (e.g., NIBS 2004; Cornell and Krawinkler 37 

2000; Pitilakis et al 2006). Their applicability in estimating the probability of damage levels of 38 

particular element at risk contributes in the retrofitting decisions, emergency response planning and 39 

estimation of direct and indirect losses of built environments as well as lifeline systems (Pitilakis et 40 

al 2006; Kappos et al 2008; Azevedo et al 2010). Also, the use of fragility curves goes beyond the 41 

seismic risk analysis (e.g., Spence et al 2005), and it has been proposed as the general framework 42 

for vulnerability assessment in all natural risks (e.g., Douglas 2007; Shmidt et al 2011). 43 

Many methods are used to generate FCs, based either on past recorded damages (e.g., Basöz  44 

et al 1999 for bridges; Maruyama et al 2010 for expressway embankments; Rossetto and Elnashai 45 

2003 for buildings), analytical modeling of the structures behavior under input ground motion (e.g., 46 

Moschonas et al 2009 for bridges; Akkar et al 2005 for buildings), expert judgment (e.g., ATC-13; 47 

ATC-25), as well as, on a combination of such methods (hybrid methods, e.g., Kappos et al 2006 for 48 

buildings). All methods are based on the definition of a given set of damage states, possibly defined 49 

in terms of measurable quantities (Kappos 1997; Mackie and Stojadinovic 2003) and on an 50 

appropriate intensity measure (IM) describing ground motion (Pinto 2007; Mackie and Stojadinovic 51 

2003). Commonly, seismic FCs are represented as cumulative log-normal distribution (Shinozuka et 52 



al 2000; Wen et al. 2003; Ellingwood and Kinali 2009, NIBS 2004). This assumption reduces the 53 

problem into the definition of the several parameters (e.g., Kennedy and Ravindra 1984; Choun and 54 

Elnashai 2010). Aleatory and epistemic uncertainties are often not separated and the problem is 55 

further reduced to the assessment of the two parameters of the log-normal distribution, that is, 56 

median m and logarithmic standard deviation β. Given damage data (real or modeled), m and β are 57 

assessed through different methodologies, from purely statistical methods, either classical (e.g., 58 

Rossetto and Elnashai 2003; Shinozuka et al 2003) or Bayesian (e.g., Shinghal and Kiremidjian 59 

1996; Straub and Der Kiureghian 2008; Koutsourelakis 2010), to more physical assessment of 60 

critical points of structures, where seismic demand overcome structure capacity (e.g., Moschonas et 61 

al 2009; Nielson and DesRoches 2007). This procedure provides single best estimate FCs, which 62 

considers a composite variability parameter that does not explicitly separate out uncertainties (e.g., 63 

Bhargava et al 2002). 64 

All the steps toward the quantitative definition of FCs bring into the estimation procedures 65 

many uncertainties, both epistemic and aleatory. The most commonly analyzed uncertainty sources 66 

are the demand, capacity and damage state definition‟s uncertainties (e.g., NIBS 2004; Pinto 2007). 67 

Demand uncertainty reflects the fact that IM is not exactly sufficient, so different records of ground 68 

motion with equal IM may have different effects on the same structure (e.g. Karim and Yamazaki 69 

2001; Nielson and DesRoches 2007). Capacity uncertainty reflects the variability of structure 70 

properties as well as the fact that the modeling procedures are not perfect. Damage state definition 71 

uncertainties are due to the fact that the thresholds of the damage indexes or parameters used to 72 

define damage states are not known. Such uncertainties are usually assumed independent, while in 73 

many cases they are quantified through a single parameter based on expert judgement (e.g., NIBS 74 

2004).   75 

The variety of analysis techniques, structural idealizations, seismic hazard and damage 76 

models being used, strongly influence the derived vulnerability curve shapes, and different choices 77 

have been seen to result in significant discrepancies between the seismic risk assessments made by 78 



different authorities for the same location, structure type and seismicity (Rosseto and Elnashai 79 

2005). This inevitably leads to a large availability in literature of different FCs, even for similar or 80 

identical structures. As a matter of fact, even fragility curves derived from the same model or the 81 

same dataset may show important differences. As an example, Basöz and Kiremidjian (1998) 82 

developed different fragility curves for the same bridge damage data after the 1994, Northridge 83 

earthquake due to two different available sets of PGA values. Moreover, Shinozuka et al (2003) 84 

proposed fragility curves for the same dataset following another statistical analysis procedure. This 85 

significant variability has been explicitly shown in the ongoing European project SYNER-G (2010-86 

2013), where different FCs, derived from different approaches, have been collected for several 87 

European typologies of buildings in a single tool.  However, when FCs are applied in loss/risk 88 

assessments, in common practice only one single set of FCs is used (e.g. Kappos et al 2008; 89 

Azevedo et al 2010; Pitilakis et al 2010; Bommer et al 2008), usually referred to groups or 90 

typologies of structures. Often, if not always, there are no objective reasons to choose one set of 91 

curves instead of another, considering the large variety in FC , the variability of structures within 92 

each typology and the often inhomogeneous definition of typologies in different studies. In addition, 93 

the usually relatively poor knowledge about many or even most of the assets at risk further increases 94 

the (epistemic) uncertainty on the selection of one single set of FCs. However, the variability on the 95 

results due to different and subjective choices related to the vulnerability assessments is usually not 96 

considered at all, even if it may potentially introduce non predictable consequences in loss/risk 97 

assessments (e.g., Paté-Cornell 1996; Winkler 1996). 98 

 In seismic hazard, as well as in other fields, such Inter-Model Variability (IMV) is often 99 

assessed through Logic Trees, by mixing different approaches (Cornell and Merz 1975; McGuire 100 

1977; McGuire and Shedlock 1981; Giner et al 2002; Gruppo di Lavoro MPS 2004; SHARE 101 

project, 2009-2012) or fully treating all uncertainties (Kulkarni et al 1984; Coppersmith and Youngs 102 

1986; Electric Power Research Institute 1987; National Research Council 1988). In logic trees, 103 

alternative modeling choices are combined together, weighting each choice by its overall 104 



applicability/credibility. The result is a discrete set of different hazard curves, which means that, for 105 

each single value of the IM, a discrete set of “possible” probabilities is assessed, often expressed as 106 

hazard maps at different percentiles (e.g., Gruppo di Lavoro MPS 2004). However, Logic Trees 107 

have several important drawbacks (e.g., Bommer and Scherbaum 2008). Among them, we mention 108 

(i) the fact that each branch duplication largely increases the computational effort, making 109 

practically difficult its application in medium/large scale loss/risk assessments (e.g., SYNER-G 110 

2010-2013); (ii) the difficulty in defining a mutually exclusive and collectively exhaustive set of 111 

alternative models and (iii) the consequent impossibility to treat uncertainty if only one model is 112 

available, even when weakly constrained or not completely applicable. In addition, since Logic 113 

Trees consider only a discrete number of alternative models, the whole variability among models is 114 

never explored. A more structured method to treat IMV consists of the use of the Bayesian 115 

probability concept, which allows us to assign a „subjective‟ belief to different hypotheses, thing 116 

that is not conceivable in a classical framework (e.g., Lindley 1965; Gelman e al. 1995; Hofer 117 

1996). In practice, this means that future frequencies of events (i.e., their „probability‟) can be 118 

treated as random variables, characterized by their own probability density functions (Gelman e al. 119 

1995). Such an idea has found lately applicability also in different fields of natural hazard analysis 120 

(e.g., Wen et al 2003; Marzocchi et al 2008, 2010; Grezio et al 2010). 121 

In this paper, we propose an explorative application of the Bayesian probability concept to 122 

deal with IMV in vulnerability analysis in loss/risk assessments. In particular, we adopt a Bayesian 123 

framework to merge into a single overall prior model (Bayesian Combined Model, BCM) the 124 

information provided by different available methodologies, not necessarily homogeneous in their 125 

formulations, to be eventually fit to pertinent independent data, when available. Then, we evaluate 126 

the performance of BCM in propagating IMV into loss/risk assessments. Note that the goal of this is 127 

not to develop better or more refined FC models for one single asset, but to provide more reliable 128 

loss/risk assessments by propagating in them IMV. In fact, the epistemic uncertainty that emerges 129 

when FC models are selected in loss/risk assessment is relative to the applicability of FC, more than 130 



to FCs by themselves, and it can be modeled accounting for the IMV. Indeed, this uncertainty is 131 

usually significant when the vulnerability of a specific target area is modeled starting from generic 132 

fragility models and it is not necessarily related to their structural analyses. In this, the presented 133 

approach differs significantly from Bayesian FC approaches, since they have different goals (e.g., 134 

Straub and Der Kiureghian 2008; Koutsourelakis 2010). 135 

 In the followings, we first develop the Bayesian framework in which different and non-136 

homogeneous FC models can be combined in order to propagate IMV in loss/risk assessments 137 

(section 2). The applicability of this procedure is then discussed (section 3), showing that it may 138 

potentially treat a broad range of different sources of IMV in loss/risk assessments. Its practical 139 

applicability is finally demonstrated and discussed through one realistic, though simplified, case 140 

study (section 4).   141 

 142 

2- BAYESIAN COMBINATION MODEL (BCM) FOR VULNERABILITY ASSESSMENT 143 

The ultimate goal of all Fragility Curves (FC) models is to assess the probability that a given 144 

damage state is reached or exceeded, given the occurrence of a certain level of the Intensity Measure 145 

(IM) that describes the size of hazardous phenomena (e.g., ground shaking). The punctual 146 

probability of each damage state (πi) can be obtained from the FCs, that is, for m damage states: 147 
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where Fi(IM) indicates the FC (exceedance probability) relative to damage state i. In Eq. 1, the 149 

index runs from 0 (no damages) to m (collapse) and, by definition, πi > 0 and sum to 1.  150 

 Given the occurrence of an earthquake, FC models and the assumed repair cost for each 151 

damage state, it is possible to assess the expected losses for a given set of elements. In practice, the 152 

expected cost to repair the generic k-th element at risk depends on its actual damage state, and can 153 



be written as fraction of the total replacement cost (RC
(k)

): 154 

i

(k)(k)

i
CDFRC=C         (2) 155 

where the index i indicates the i-th damage state, and CDFi (cost damage factor) is the fraction of 156 

RC
(k)

 necessary to repair the i-th damage state. Note that, for simplicity, in this application, 157 

uncertainty in CDFi is not included. However, also such uncertainties may be treated by sampling 158 

each CDFi value from specific probability distributions (Stergiou and Kiremidjian 2006).  159 

 Assuming a seismic scenario, with a Monte Carlo (MC) simulation, it is possible to obtain a 160 

sample of losses for each element at risk (eq. 1), and thus a sample of the expected total losses, for 161 

the entire set of elements (eq. 2). Assuming that damages, given an IM scenario, are statistically 162 

independent, a single random damage state i* can be selected for each element by comparing its i 163 

with a random number in the interval [0,1]. Given the obtained random damage scenarios, the total 164 

loss for the whole set of elements, for each realization, can be evaluated by summing over all 165 

elements, that is 166 


k

(k)

i
C=l         (3) 167 

After repeating this procedure many times, we obtain a sample of possible total losses, given the IM 168 

values at each element location provided by a seismic scenario. From this sample of possible losses, 169 

we can evaluate the loss curve for a given scenario IM = im, defined as  170 

);|); 


imlp(=Lc(im         (4) 171 

in which its dependence on the fragility model‟s results (through i) is explicitly reported. The 172 

average of expected losses lm reads: 173 
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       (5) 174 

 In risk assessments, losses for each im values are combined together. For example, in 175 

medium/large areas, the Average Annualized Earthquake Losses (AEL) is often adopted as risk 176 

index (e.g., FEMA 2008). AEL can be assessed as the average of losses lm(a,i) over all possible 177 



ground motion values IM = im, that is    178 

)dh(im)(im,l=)AEL(
m

IM




       (6) 179 

where dh(im) is the non-cumulative hazard, for an exposure time of 1 year. 180 

 Different FC models for the same element at risk result in different assessments of the 181 

probabilities πi  in eq. 1, and consequently different punctual assessments of losses (eqs. 4 and 5) 182 

and risk (eq. 6). Here, we indicate with πi
(Mk)

 the probability values resulting from the FC model Mk. 183 

With the goal of combining into a single high-level model the results of distinct standard FC 184 

models, without restriction in their formulation, as well as specific pertinent observations, the 185 

variability in i can be treated using the Bayesian probability concept, in which each probability 186 

value may be treated as a variable (e.g., Gelman et al. 1995). A schematic representation of this 187 

concept is reported in Fig. 1. It is beyond the goals of this paper to discuss the “philosophical” 188 

implications of this “probability of probability” assessment, but we stress that (i) this is a quite 189 

common procedure in dealing with this type of uncertainties, in many fields of science (starting 190 

from Mosimann 1962), including geophysics (e.g., Marzocchi et al. 2008, 2010; Grezio et al. 2010; 191 

Selva et al. 2010, 2012) and earthquake engineering (e.g., Paté-Cornell 1996; Wen et al 2003), and 192 

(ii) a similar philosophy is implicitly assumed whenever procedures like Logic Tree are adopted 193 

(e.g., Bommer and Scherbaum 2008 and references therein).  194 

 To assess the distribution ][π


, given a certain number of past data {D}, that is, a set of 195 

observed damage states due to a given IM value, we can make use of Bayes' rule, that is 196 

  ]][|}[{}{| ππDDπ


        (7) 197 

where ][π


 is the prior, ]|}[{ πD


 is the likelihood, and  }{| Dπ


 is the posterior probability 198 

distribution, the latter representing the final result of the inference. The choice of the functional 199 

form for prior and the likelihood distributions represents the core of the Bayesian inference and 200 

necessarily implies several assumptions about the modeled process (e.g., Gelman et al. 1995).   201 

 The  much more common situation in loss/risk assessmentsis the scarcity or even non-202 



availability of {D} for most of the structures or classes of structures at risk in the target area. If large 203 

datasets were available, both the construction of specific fragility curves, and/or the selection of 204 

appropriate ones, would be a rather simple task, and thus IMV would be almost negligible. On the 205 

other hand, a rather high availability of theoretical models is quite common, at least for many 206 

structure typologies (e.g., SYNERG 2010-2013). However, often, there are not objective reasons to 207 

select one specific FC model, among the available ones. This uncertainty is not necessarily related 208 

to each FC model itself, but it is essentially linked to scarce knowledge about the target stock (see 209 

discussion in section 3). Hence, this epistemic uncertainty is related to the application of FC in 210 

loss/risk assessments, rather than to FCs by themselves, and it can be modeled accounting for the 211 

Inter-Model Variability (IMV). Since this variability essentially affects the prior distribution ][π


, we 212 

concentrate our attention on how IMV can be modeled at this level, to be fitted to pertinent 213 

independent (i.e., not used in the prior) data through Eq. 2, when these are available. 214 

 The specific goal is merging the information brought by a given number of starting models 215 

(Mk, k=1,2, …,NM) into a single prior probabilistic model ][π


 that accounts for the variability on 216 

their results, that is, the Inter-Model Variability (IMV), allowing the whole variability around the 217 

input model results to be explored. The distributions ][π


 are, by definition, subjective (e.g., Gelman 218 

et al 1995). However, it is definitely more subjective to assume that only one of the available 219 

models is correct and/or applicable (Paté-Cornell 1996; Marzocchi et al. 2008). As a matter of fact, 220 

to assume one specific model means that the other FCs are assumed as wrong/non-applicable, even 221 

when they are almost equally acceptable. In addition, this assumption also implies that we do not 222 

distinguish at all between well-accepted and consolidated in literature models and less constrained 223 

ones. This may undoubtlylead to uncontrolled biases in the final loss/risk assessments and to wrong 224 

conclusions/decisions (e.g., Paté-Cornell 1996; Woo 1999).  225 

 The first step to set BCM consists in assigning a specific functional form to the prior 226 

probability density function ][π


 in Eq. 7. Given an IM value, the probabilities πi for all damage 227 



states represent a partition of the event „damage‟. In other words, damage states form a set of 228 

exhaustive and mutually exclusive events, that is, for each model and each IM value, the punctual 229 

probability of damage states (e.g., π0 for no damage,  π1 for minor damages, π2 for moderate 230 

damages, π3 for extensive and π4 for complete damages) sum to 1. In this case, a common choice in 231 

statistics is an m-dimensional Dirichlet distribution (e.g., Mosimann 1962; Gelman et al. 1995; in 232 

natural hazards: Marzocchi et al. 2008, 2010;  Selva et al. 2010, 2012): 233 

  )a;π(Dir=π
m


        (8) 234 

where the vector ][π


 = (0, 1, …, m) contains all punctual probabilities, and the vector a


 = (a1, 235 

a2, ..., am+1) contains the parameters of the Dirichlet distribution, that is, the hyper-parameters. Note 236 

that (i) the total variability of this prior distribution can be fully obtained by setting the hyper-237 

parameters a


 for all IM values, and that this is independent from the number of considered models, 238 

and (ii) the Dirichlet distribution automatically accounts for the correlation among the probabilities 239 

relative to the different damage states. Since the marginal distribution of the Dirichlet is a Beta 240 

distribution, which is unimodal, this functional choice implies the assumption that the transition 241 

among different FCs is expected to be soft, in other words, intermediate FCs are expected to exist 242 

and be applicable. The consequence of this on the applicability of BCM is discussed in section 3. 243 

The sum  i i
a  is inversely proportional to the total variance and thus represents a prompt of the 244 

global estimated IMV (e.g., Marzocchi et al. 2008).  245 

 The second step of BCM is to set the prior distribution, starting from the models results. 246 

Different procedures may be adopted, in which different levels of control of the average and/or the 247 

variance of the distribution ][π


 are set. For example, the means of ][π


 can be set as the (weighted) 248 

average of models‟  
)( Mk

π


, and variance according to the (subjective) credibility of each model (e.g., 249 

Marzocchi et al. 2010). Here, we prefer a procedure in which both means and variance are 250 

controlled by the input model, since we want to investigate the whole IMV. In this case, the 251 

probability assessments of different input FC models can be treated as independent samples from 252 



the unknown prior ][π


. Bayes‟ rule on a


 reads: 253 

]][|}[{}]{|[ aaMMa


       (9) 254 

where {M} stands for the models‟ i 
(Mk)

. Since in common practice the probabilities i are treated as 255 

perfectly known, instead of adding a further layer to the Bayesian model, we prefer to keep the 256 

model simple. Hence, we infer the best guess values of the hyper-parameters a


, starting from the 257 

results obtained by the set of input models Mk. To assess the best guess a*, we make use of a 258 

Maximum A Posteriori (MAP) estimation, that is, we select the parameters that maximize }]{|[ Ma


. 259 

The simplest choice for the prior ][ a


 is an improper non-informative uniform distribution, choice 260 

that makes MAP equivalent to a standard Maximum Likelihood (ML) method. To consider models 261 

with different credibility, the likelihood function  ]|}[{ aM


 can be weighted by the 262 

credibility/applicability of each model (e.g., Wang et al. 2004; Ahmed et al. 2005). In this case, the 263 

best guess hyper-parameters *a


 are selected by maximizing the weighted likelihood 264 

*);(}]{|[][ aDirM
m


    *a


= argmaxa(   kw

k

(Mk)

m
)a;π(Dir


) (10) 265 

where k runs over the models; the weight wk represents the subjective credibility of the k-th  model, 266 

its actual values matter in a relative, more than absolute, sense; )a;π(Dir
m


 represents the m-267 

dimensional Dirichlet probability density function with parameters a


; (Mk)
π


 is a vector containing 268 

the guessed probabilities from the FC model Mk for a given value of IM (from Eq. 1). Both mean 269 

and variance of }]{|[ M


 are controlled by the input models. The underlying assumption is that 270 

such input models well represent the whole IMV.  In particular, since the variance of ][


 is 271 

controlled by the models, it represents the a posteriori estimation of IMV, and it is small only when 272 

the input model are in agreement. In addition, since  i i
a *  changes at each IM level, the model 273 

permits different levels of IMV to be considered. 274 

 The obtained prior }]{|[][ M


  can be input in Eq. 7, and updated in light of new pertinent 275 

data, if any, in which case the IMV it will reshaped in agreement with new observations, that is 276 



  )πa;π(DirπDMππDMDπ
(Mk)

m


*,]|}[{}]{|][|}[{}{},{|     (11) 277 

where a standard choice for the functional form of the likelihood ]|}[{ πD


 is a Multinomial 278 

distribution (from Mosimann 1962). In the followings, to simplify the notations, we will always 279 

refer to the final result of BCM as ][π


, noted that this symbol may represent either the prior, or the 280 

posterior distribution. 281 

 It is worth to stress that, with this parameterization, peaks on specific probability values may 282 

arise only by a convergence of the input models, or by a large set of coherent observation {D}. Note 283 

also that BCM does not assume any functional form for FC models {M}, in order to extend its 284 

applicability to all non log-normal FC methodologies. Indeed, this is rather common both for 285 

seismic (e.g., Basöz and Kiremidjian 1998; Dueñas-Osorio et al. 2007) and non-seismic (e.g., 286 

Spence et al. 2005) vulnerability assessments. This possibility enables to make use as potential input 287 

models of the large set of studies available in literature, which is particularly important whenever 288 

uncertainty of epistemic type is treated (e.g., Marzocchi et al 2008, 2010).  289 

 The last step of BCM model is to propagate IMV in loss/risk assessment. Indeed, BCM 290 

models the variability in the probability assessments provided by different FC input models, which 291 

is the input for loss (eqs. 4 and 5) and risk (eq. 6) assessments. Hence, the IMV on i  propagates in 292 

loss/risk assessments, providing variability in their numerical assessments. In other words, instead 293 

of single punctual assessments, BCM provides an estimate on the uncertainty on those values, since 294 

the probabilities i  are not assumed as perfectly known.  295 

 In particular, for each single sample of i, different loss curves Lc can be evaluated through eq. 296 

4. As a consequence, Lc will follow, at all IM levels, a probability density function [Lc]. The 297 

variability on Lc can be visualized by assessing expected losses at different levels of confidence, for 298 

all IM levels, that is: 299 

    ximLcp((im)Lc
(x)(x)

 ])[;| 


      (12) 300 

and the best guess estimation of the loss curve Lc
*
 can be obtained averaging over all possible i: 301 



  


i ii

x

i
xxLcddimLcimLc i

1

)(*
][);()( 




    (13) 302 

The approximation is valid for an adequate selection of percentiles xi (e.g., Choun and Elnashai 303 

2010). On the other hand, the variability on Lc
(x)

, at different confidence level x, represents the 304 

variation induced by IMV in loss assessments.   305 

 As for the loss curve Lc, BCM estimates an entire distribution also for the mean loss 306 

assessment [lm]. Also in this case, at each level of IM = im, we can define the mean loss at different 307 

level of confidence 
(x)

m
l  as the quintiles of the distribution [lm] as in Eq. 12, and the best guess value 308 

lm* as in eq. 13. As a consequence, this variability is transferred to AEL assessment. A proxy of the 309 

variability of AEL can be assessed obtained by assessing it with different levels of confidence on lm, 310 

that is 311 

(im)dh(im)l=AEL
(x)

m

IM

(x)

        (14) 312 

and, again, the best guess AEL, indicated as AEL*, can be obtained as 313 

     


π

ii

i
(x

xxAEL])d[AEL(=AEL )(*
1

)




    (15) 314 

As for the loss curves Ls, also in this case AEL
(x)

, when plotted as a function of x, shows how likely 315 

is it that a given AEL results an underestimation of the true one, and thus it represents a prompt of 316 

the variability induced in AEL by IMV. Similar considerations can be extended to all possible risk 317 

indexes. 318 

 In summary, BCM allows us to assess both best guess values and confidence on the estimation 319 

of losses and risk, propagating the IMV on vulnerability to the final results of loss/risk assessments. 320 

Noteworthy, such estimates have a lower likelihood of being biased than single models‟ results, 321 

since they account for more information (e.g., Woo 1999). On the other hand, the assessment of 322 

confidence on best guess values is of major importance (e.g., Paté-Cornell 1996), since it enables 323 

meaningful comparisons among losses/risks in different areas, as well as different losses/risks in the 324 

same area, in a multi-risk perspective (e.g., Grüntal et al 2006).  325 



 It is worth noting that BCM strongly differs from Bayesian inference procedures for fragility 326 

assessment proposed in literature (e.g., Shinghal and Kiremidjian 1996; Straub and Der Kiureghian 327 

2008; Koutsourelakis 2010), as well as from FCs evaluated at different confidence levels (without 328 

composite -values, e.g., Kennedy and Ravindra 1984), where a distribution form is assumed (log-329 

normal) and distributions‟ parameters are inferred in order to assess the „best‟ curve for a given 330 

structure. On the opposite, BCM is targeted to produce more accurate loss/risk assessment by 331 

including IMV on FCs. Indeed, having different goals, BCM is not in alternative to such 332 

approaches, since they simply focus on different and complementary issues. This is clearly 333 

demonstrated by the fact that the results of one (or more) of these models may be input to BCM,  by 334 

randomly drawing N probability assessments from the model }{
)( M




, and use each sample as single 335 

estimation with weight wi=w/N  in Eq. 5, where w represents the weight of the overall model M. Of 336 

course, if large dataset of pertinent past data are available (same structures, large range of IMs), all 337 

models should lead to the same results, since IMV would be negligible in this case. Such data would 338 

enable us also to discriminate among different FC models, rejecting the ones that cannot „explain‟ 339 

them (probabilities too far away from observed frequencies). This results also in BCM, since the 340 

application of Eq. 11 (Bayes‟ rule) with a large dataset would lead to posterior distributions highly 341 

peaked (very small variability) on the observed frequencies (Gelman et al 1995). 342 

 343 

3. APPLICABILITY OF BCM  344 

The uncertainty modeled by BCM essentially corresponds to the practical impossibility, common in 345 

many applications, to unequivocally select one specific FC model for a given structure (or typology 346 

of structures), because of the lack of background for one specific selection and the lack of resources 347 

to produce structure specific FCs (one for each element in the analyzed area).The presented 348 

procedure may be applied virtually to most of the sources of IMV, that is, whenever the selection of 349 

one specific FC model is highly disputable, for example: 350 

1. FC models developed for similar configurations, but with different procedures that imply 351 



significantly different results. For example, FCs obtained by different statistical 352 

procedures of the same empirical or numerical damage data, FCs obtained by different 353 

numerical procedures (e.g. dynamic or quasi-static analysis) or slightly different 354 

characteristics of the same structure, or FCs referred to the same structural class which 355 

were derived based on analytical or empirical procedures. 356 

2. Lack of structure-specific FC models, leading to select nonspecific or generalized FC 357 

models from literature (e.g., FCs developed in different areas, with different construction 358 

practices)  359 

3. FC models developed for slightly different input IMs, among which it is difficult to 360 

distinguish in long-term aggregated hazard assessments (e.g., different incidence angle of 361 

seismic waves for bridges)  362 

4. Rough description of structures in the application area, leading to difficulty in classifying 363 

them into a well-defined taxonomy or, in the opposite, a rough taxonomy leading to 364 

broad classes (e.g., different number of floors in a generic typology of buildings)  365 

Note that cases 1 and 2 are somehow different from cases 3 and 4. Indeed, in cases 1 and 2, one 366 

„true‟ model equal for all elements is expected to exist, and thus i should be sampled at once for all 367 

identical elements. On the opposite, in cases 3 and 4, the variability is expected within the target 368 

stock, and the „true‟ FC is expected to be different from element to element. Consequently, the 369 

probability i should be sampled independently for each element.  370 

 In section 2, we discussed that the choice of a Dirichlet distribution implies a rather soft 371 

transition in the set of applicable FCs, implying a limitation on the definition of broad/mixed 372 

typologies in the taxonomy. This limitation applies for the IMV described in cases 3 and 4, above, 373 

since only there, „different‟ typologies are mixed up. For example, one typology can mix up 374 

structures with different number of floors, but cannot mix up masonry and RC structures, or RC 375 

structures designed with or without seismic code.  376 

 377 



4- CASE STUDY: LOSS/RISK ASSESSMENT FOR TUNNELS 378 

To show the applicability of the BCM, a case study is considered. It has the goal of showing in 379 

details how BCM models IMV and it propagates this uncertainty into loss/risk assessments. To 380 

control all the parameters, we select a relatively simple application, that is, two input FC models 381 

and no past data. This configuration permits a simpler check of all steps, but any more complicated 382 

application do not introduce further either technical, or theoretical issues. This application is related 383 

to the IMV described in case 1 in section 3, that is, FCs obtained by different statistical approaches: 384 

due to the lack of adequate pertinent past data, these two approaches and the derived FCs can be 385 

considered to be equally applicable. 386 

 The final goal of this application is to assess the expected seismic losses and risk for a 387 

segment of bored tunnel (metro line) with a length of 1 km. Such a segment is assumed to be 388 

composed by 10 elements with a length of 100 m, each one of them laying in a specific soil type, as 389 

shown in Fig. 2A. The length of such segments is set so that the occurrence of damages in each 390 

element can be reasonably considered independent. The RC (repair cost) for each segment is set to 391 

0.5 million euro, while the value CDFi (cost damage factor) for each damage state is reported in 392 

Table 1, col. 8, based on the repair model that is proposed by Werner et al (2006) for drilled tunnels 393 

in California. Such assumptions and values are indicative, but they are realistic for a preliminary 394 

application. For the application area, we consider the hazard curve in Fig. 2B, which is a reasonable 395 

hazard for the city of Thessaloniki, Greece (Pitilakis et al 2007). To concentrate on the effects of 396 

IMV in vulnerability assessment, we assume the hazard perfectly known, i.e., not affected by 397 

epistemic uncertainty. 398 

 Two different procedures to develop FCs for shallow tunnels in alluvial are then considered, 399 

based on the same modeling procedure. The vulnerability assessment is based on a quasi-static 400 

numerical analysis (Argyroudis and Pitilakis 2012), and the dataset of damages produced by this 401 

model are then used to estimate two different sets of log-normal FCs, through two quite common 402 

approaches, that is, linear regression method (M1, appendix A) and maximum likelihood method 403 



(M2, appendix A). Such FC models represent a set of two equally acceptable procedures to derive 404 

FCs, and both could be independently selected to perform loss/risk assessments. Both procedures 405 

are repeated for two different tunnel typologies, differentiated by the soil conditions in which 406 

tunnels are built, i.e., soil C and D according to Eurocode 8 classification. All the obtained FC 407 

models (M1 and M2, for both typologies) consider Peak Ground Acceleration (PGA) as IM, and use 408 

3 damage states (minor, moderate, and extensive-to-complete). The parameters are reported in 409 

Table 1.  410 

 The FCs of all models are reported in Fig. 3. We can note that M1 and M2 provide quite 411 

different results, in both soils. Given a PGA value, the punctual probabilities of the damage states 412 

(πi, Eq. 1), as assessed by such models, are quite unlike, for both soils C and D. In sections 4.1 and 413 

4.2, we will show that such differences lead to significantly different loss/risk estimations. 414 

 The results of these models are used to analyze the capability of BCM to combine and 415 

propagate IMV in loss/risk assessments. The analysis is divided in two parts. In section 4.1, we 416 

apply the BCM to one specific segment of tunnel built in soil C, in order to show how IMV 417 

propagates for one element and how different choices influence the results. In section 4.2, the 418 

preferred BCM model is applied to the schematic tunnel (metro line), analyzing the effect of IMV 419 

on the loss/risk assessments in a larger area, with different soil characterizations and with more than 420 

one element at risk.  421 

 422 

4.1- ONE ELEMENT: SINGLE TUNNEL ELEMENT IN SOIL C 423 

 We first consider one single tunnel element in soil C. In Fig. 4, we report the loss/risk 424 

assessment results for each single model. In panels A1, we report the results of the loss assessment 425 

for one specific scenario, in this case set to PGA = 0.6 g, in terms of the loss curve Lc, as assessed 426 

by the input models M1 and M2. The difference between the expected losses is significant, and it 427 

results in quite different probability estimations, being M1 results significantly larger than the 428 

corresponding values for M2. It is important to note that these considerations are not a specific 429 



characteristic of the selected scenario: in panel A2, lm(PGA) for all PGA values are reported as 430 

assessed by both models. In Fig. 4, panel A3, we report the risk index AEL for both models, 431 

considering the hazard curve in Fig. 2B.   432 

 To model IMV among such models, we first have to set their (subjective) credibility. To do so, 433 

we consider that models M1 and M2 have equal credibility, since based on the same data and on 434 

equally credible statistical procedures. Therefore, our best guess weighting scheme is w1=0.5, 435 

w2=0.5. The sensitivity in this choice is then tested.  436 

 In Fig. 5, panels A1 to A3, we report the results of the loss/risk assessments for the best guess 437 

weighting scheme. In particular, we report best guess values and confidence intervals for all the 438 

assessments reported in Fig. 4, that is Lc, lm and AEL. AEL
(x)

 as obtained by model BCM is plotted 439 

as a function of x, indicating the confidence at which the true unknown AEL value is smaller than 440 

the various AEL values. For comparison, the punctual losses and risk index evaluated by M1 and 441 

M2, and best guess for BCM, are reported. Noteworthy, this variability in both loss and risk 442 

assessments cannot be dealt by variations of the β-value (e.g., Ferson and Ginzburg 1996) since, 443 

whatever β-value is used, any single choice provides only punctual probabilities (Eq. 1) and does 444 

not model the variability on such probabilities (eq. 1), and consequently cannot propagate it in 445 

risk/loss assessments (eqs. 2, 3 and 4). 446 

 In Fig. 6, we report the same results as above, with other weighting schemes. In particular, we 447 

select three further weighting schemes: 0.7 and 0.3; 0.9 and  0.1 and 0.1 and 0.9. The results are 448 

essentially the same, but here the distributions tend to move toward the model with greater weight. 449 

However, it is important to note that, also in this case, both mean values and confidence intervals 450 

still preserve memory of the less weighted model, and this memory tends to decrease for increasing 451 

difference on weights of models.  452 

 453 

4.2- MANY ELEMENTS AND TYPOLOGIES: SEGMENT OF METROLINE IN SOILS C & D 454 

 In this application, one seismic scenario consists of a PGA value for each one of the segments 455 



and, for simplicity, (i) all the sites within the same soil type are assumed with equal PGA, and (ii) 456 

the PGA in soil type D is assumed equal to 1.3 times the PGA in soil type C. With these 457 

simplifications, the seismic scenario is completely defined by the selection of one PGA value for 458 

soil C. As exemplificative scenario, we select again a PGA value in soil C of 0.60 g.  Also the 459 

comparison between BCM and „standard‟ procedures results more complicated. Indeed, we have 460 

two models (M1 and M2) related to two typologies of tunnel (built in soil C and D), thus we must 461 

consider 4 possible combinations for standard FCs: M1 in Soil C and M1 in Soil D is indicated as 462 

M11; M1 in soil C and M2 in soil D as M12, and so on.  463 

 In Fig. 7, we report the same results that we reported in section 4.2, obtained by the best guess 464 

BCM model (equal weights) and compared with M1 and M2 results. In particular, the loss curve Lc 465 

for a scenario of PGA = 0.6 g (panel A1), the mean loss for all PGA levels (panel A2) and the risk 466 

index AEL (panel A3) are reported. Interestingly, the IMV is only very slightly reduced by staking a 467 

larger number of elements, and confidence intervals well describe the variability among the four 468 

possible combinations. In addition, in panel B, we report the distribution of losses for a scenario of  469 

PGA = 0.6 g. 470 

  Note that, to produce these results, an unknown unique „true‟ model for each tunnel typology 471 

(soil) is assumed to exist, since all the elements of the same type are assumed identical and BCM 472 

variability represents alternative models for such a typology. In practice, this means that the 473 

distribution [i], at each run of the model, it is sampled only once for all identical elements (i.e., in 474 

the same soil). As discussed in section 3, this is not always the case for all types of IMV. 475 

 To show the potentiality of BCM, we consider a further application, adding a third input FC 476 

model. As third FC model we consider the one proposed by ALA (2001) for alluvial (all soil types) 477 

tunnels with good construction. As first assumption, definition of minor and moderate damage states 478 

of M1/M2 is assumed equal to the one of M3. Since M3 does not include extensive-to-complete 479 

damages, this damage state is assumed not possible (


≈ 0, i.e.,


 = 


 · 10
-5

, for 480 

numerical reasons). Note that this addition implies an abrupt increase on the possible combinations 481 



(i.e. eight: M111, M112, M121, M122, M211, M212, M221 and M222). On the contrary, with BCM 482 

this addition implies only the setting of a further weighting factor. In Fig. 8, we report the same 483 

results of Fig. 7, using as input the three models with weighting factors w1=0.45, w2=0.45, and 484 

w3=0.10. As expected, the distributions of losses and risk again well represent the input variability, 485 

and large tail toward smaller values of loss is present, since M3 estimations forecast significantly 486 

smaller losses. 487 

 488 

4.3- DISCUSSION OF RESULTS  489 

The results in Figs. 4 to 8 clearly show that the expected risk/losses are essentially „fragility model‟-490 

dependent. The loss curves Lc for a given scenario, as well as mean losses lm and the risk index AEL 491 

show significant differences, when M1 and M2 are applied. For example, in Fig. 4, it is shown that, 492 

for one tunnel segment built  in Soil C, the estimations of M2 are systematically greater than the M1 493 

ones. Such differences are even more evident when the effects are stacked over a larger set of 494 

elements (Fig. 7). It is also evident that such differences are quite unreasonable, considering that M1 495 

and M2 can be considered equally acceptable, but their results are highly incompatible. Note, for 496 

example, that the mean expected loss for M1, combination M11, results in the tail of the expected 497 

loss distribution of M2, combination M22 (see Fig. 7B). Such differences lead to the conclusion that 498 

at least one of the models M1 or M2 is significantly biased.  499 

 This apparent paradox is related to a lack in uncertainty evaluation, even though all the 500 

principal sources of uncertainty (demand, capacity and damage state definition) have been formally 501 

introduced in both M1 and M2 FCs. Interestingly, this uncertainty cannot be modeled simply by 502 

increasing the β-value, which formally describes only the error in the position of the medians mi, 503 

since whatever parametrical choice is adopted, any single fragility cannot neither model nor 504 

propagate IMV in loss/risk assessments.  505 

 On the contrary, BCM allows us to describe and propagate the uncertainty related to the 506 

impossibility to choose among single FC models (IMV). As expected, BCM distributions generally 507 



include all the values that either M1 and/or M2 produce, when equal applicability is assumed (Figs. 508 

5 and 7). The losses forecasted by BCM cover the whole variability previewed by both input models 509 

M1 and M2 (Fig. 7B), and do not simply average them. Of course, the frequency of each single loss 510 

depends on how likely it is for all input models (Figs. 7 and 8).  511 

 The most likely area for expected losses and risk lays between the ones of the input models, 512 

i.e., in the area in which all models provide likely values. In our opinion, this is highly reasonable, 513 

given the assumption that M1 and M2 are equally acceptable and likely (equal weights).  In the Soil 514 

C case (Fig. 5), the best guess estimates of BCM are close to the mean of input models. On the 515 

opposite, the non-compatibility between FCs for soil D, moderate and extensive-to-complete 516 

damages (Fig. 3), leads to best guess estimates slightly shifted toward smaller values (Fig. 7A).  517 

 If equal acceptability is not assumed, BCM adapts its behavior to this information, provided 518 

by the models‟ weights. In practice, BCM‟s loss/risk estimates move toward the most likely model‟s 519 

ones, preserving in its variability memory of the less likely model‟s ones (Fig. 6, upper panels). This 520 

variability tends to disappear only when the difference in acceptability is rather high (Fig. 6, lower 521 

panel).  522 

 Noteworthy, the addition of further input models does not imply any supplementary neither 523 

theoretical nor computational effort, as it is demonstrated by the application in Fig. 8, where a third 524 

model is considered.  525 

 526 

5. FINAL REMARKS 527 

The choice of one single set of FCs is often largely subjective, and different fragility may lead to 528 

significantly different expected loss and risk assessments.  Hence, this uncertainty, of epistemic 529 

type, strongly increases the possibility of biased loss/risk estimations and consequently weakens 530 

their practical usability (Fournier d'Albe 1979; Paté-Cornell 1996). 531 

 We have developed a Bayesian methodology (Section 2) that allows us to account and 532 

propagate into loss/risk assessments a large spectrum of uncertainties related to the application of 533 



FC models in vulnerability assessments (Section 3), essentially linked to scarce knowledge about 534 

the target stock. This epistemic uncertainty is relative to the application of FC in loss/risk 535 

assessments, more than to FCs by themselves, and it can be modeled accounting for the Inter-Model 536 

Variability (IMV). This kind of variability cannot be treated by the standard uncertainty treatment 537 

(e.g., Ferson and Ginzburg 1996) and  it is usually neglected. On the other hand, we have shown that 538 

the Bayesian Composition Model (BCM), explicitly modeling the variability in probability, 539 

appropriately and efficiently describes IMV by combining the results of different standard fragility 540 

analyses and pertinent data, explicitly quantifying the influence of such an uncertainty in loss/risk 541 

assessments. BCM considers, eventually with different weights, many inhomogeneous sources of 542 

information, independently from their formulation and their statistical representation. In addition, 543 

BCM does not involve a dramatic increase of the computation effort.  544 

 The quantification of IMV in loss/risk assessments is important, since it (i) significantly 545 

reduces the likelihood of biased cost/risk assessments, increasing their usability in practical 546 

applications, and (ii) explicitly assesses the confidence on loss/risk results. This permits meaningful 547 

and robust comparisons among losses/risks in different areas, as well as different losses/risks in the 548 

same area, in a multi-risk perspective (e.g., Grüntal et al 2006). Indeed, risk hierarchization is 549 

ultimately one of the most important goals of any loss/risk assessment. The probability that BCM 550 

results are biased is lower than the ones based on single models, since it is based on more 551 

information (e.g., Woo 1999). Obviously, to achieve the goal of an unbiased estimation in a real 552 

application, any pertinent information should be included, opportunely weighting models according 553 

to their different reliability/applicability.  554 
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 734 

Figure 1: The Inter-Model Variability (IMV) is assessed on the punctual probability of the i-th 735 

damage state, i.e., i, is represented through the probability density function [i]. In this case, as IM 736 

we used the Peak Ground Acceleration (PGA). 737 

 738 

Figure 2. Panel A: Hypothetical metro line with circular cross section and total length 1000m, 739 

passing through alluvial deposits of soil type C and D (EC8), divided in ten equal segments of 740 

100m. Panel B: Hazard curve for soil C. 741 

 742 

Figure 3. Set of fragility curves for circular tunnel following model M1 and M2, (a) for soil C and 743 

(b) for soil D. The considered damage states are minor, moderate and extensive-to-complete.  744 

 745 

Figure 4. M1 and M2 loss/risk assessments. In particular, we report: in panel A1 the loss curve Lc 746 

for a scenario PGA=0.6 g; in panel A2 the mean loss curve lm; in panel A3, the risk index AEL. 747 

 748 

Figure 5. BCM loss/risk assessments with the best guess BCM model (w1=w2=0.5), compared with 749 

input models M1 and M2. In particular, we report in panel A1 the loss curve Lc for a scenario 750 

PGA=0.6 g  and in panel A2 the mean loss curve lm. In here, the estimates for models M1 and M2 751 

are compared with BCM‟s best guess (Lc* and lm*) and confidence intervals. In panel A3, the risk 752 

index AEL for models M1 and M2 are compared with BCM‟s best guess AEL* and AEL
(x)

. 753 

 754 

Figure 6: BCM loss/risk assessments, compared with M1 and M2 assessments, for one tunnel 755 

element in soil C, with different weighting schemes: BCM with w1= 0.7, w2 = 0.3 is reported in 756 

panels A; BCM with w1= 0.9, w2 = 0.1 in panels B; BCM with w1= 0.1, w2 = 0.9 in panels C. In all 757 

panels, as in Fig. 5, we report the results for (i) the loss curve Lc for a scenario PGA=0.6 g,  (ii) the 758 

mean loss curve lm, and (iii) the risk index AEL.  759 

 760 

Figure 7: Results of the loss/risk assessment for the metro line in Fig. 2. We report, as in Figs. 5 and 761 

6, the results for (i) the loss curve Lc for a scenario PGA=0.6 g in panel A1; the mean loss lm as 762 

function of PGA in panel A2; the risk index AEL in panel A3. In panel B, it is reported the 763 

distribution of losses for the same scenario as for Lc (PGA=0.6 g). For comparison, we report as 764 

vertical lines the average losses lm for M1 and M2 (configurations M11 and M22) for the scenario.  765 

 766 

Figure 8: Same as Fig. 7, but with the addition of M3. The weighting scheme is w1=w2=0.45, 767 

w3=0.10.  768 

 769 



Table 1. Definition of damage states for the development of analytical fragility curves for tunnels 770 

and estimated parameters of the fragility curves based on different methods 771 

Damage State 

(dsi) 

Range of 

damage 

index 

(DI) 

Centr

al 

value 

of DI 

M1 - SOIL C M2 - SOIL C M1 - SOIL D M2 - SOIL D 

CDF 

mi (g)  mi (g)  mi (g)  mi (g) 

0. No damage 
Μ/ΜRd ≤ 

1.0 
- - - - - - - - - 0 

1. Minor 

1.0< 

Μ/ΜRd ≤ 

1.5 

1.25 0.55 

0.70 

0.52 

0.55 

0.47 

0.75 

0.41 

0.60 

0.10 

2. Moderate 

1.5< 

Μ/ΜRd ≤ 

2.5 

2.00 0.82 0.80 0.66 0.82 0.25 

3. Extensive-

to-Complete 

2.5< 

Μ/ΜRd ≤ 

3.5 

3.00 1.05 1.39 0.83 1.91 0.75 

 772 

773 



APPENDIX A: VULNERABILITY ASSESSMENT THROUGH FRAGILITY MODELS 774 

Recently, new analytical fragility curves for shallow metro tunnels have been proposed based on 775 

numerical simulation, considering both structural parameters, local soil conditions and variation of 776 

input ground motion (Argyroudis and Pitilakis, 2012). The quantification of the damage states is 777 

based on a damage index (DI) that is defined as the exceedance of strength capacity of the most 778 

critical sections of the tunnel  (i.e. ratio of the developing moment (M) to the moment resistance 779 

(MRd) of the tunnel lining). The definition of damage states is then based on the range of damage 780 

index values (Table 1, col. 1-3). From the evaluated damage index, as a function of the PGA at the 781 

ground surface, the set of fragility curves relative to a discrete number of Damage States can be 782 

derived. Three different damage states are considered due to ground shaking: minor, moderate and 783 

extensive-to-complete damage (d1, d2, and d3 respectively). Fragility curves (FC) are usually 784 

represented as a two-parameter (median and log-standard deviation) lognormal cumulative 785 

distribution functions. The development of FCs requires the definition of 4 parameters, 3 medians 786 

mi and 1 value of β, which are estimated in literature following different procedures.  787 

 Two procedures are adopted here: (i) a linear regression method (e.g. Nielson and 788 

DesRoches 2007; Pinto 2007), herein referred to as M1, and (ii) a maximum likelihood method 789 

(ML, e.g. Saxena et al. 2000; Shinozuka et al. 2000, 2003; Kim and Feng 2003; Straub and Der 790 

Kiureghian 2008), herein referred to as M2.  791 

 M1 has been recently published in Argyroudis and Pitilakis (2012). Such fragility functions 792 

are reported in Table 1, col 4 5, and plotted in Figure 2 (light blue) for the case of circular (bored) 793 

tunnel in soil type C and D. As regards M2, while ML is normally used starting from real data 794 

(Kalbfleish 1977), with the same philosophy it is here used with synthetic data produced by a 795 

model. In particular, as for M1, the starting database for M2 consists of the result of the coupled 796 

numerical analysis, i.e., the earthquake parameter (PGA) and the consequent damage index for the 797 

modeled tunnel (PGAi, DIi). By defining one threshold in DI for each damage state (t1,t2, and t3), the 798 



data can be transformed as the result of a Bernoulli trial experiment, associating each PGA to the 799 

consequent expected damage state, i.e., (PGAi, yi), where yi is equal to 1 or 0 depending on whether 800 

or not the tunnel section sustains the damage state, that is equal to 1 if it is observed the i-th damage 801 

state, 0 otherwise. To account for the uncertainty on damage state definition, for each starting datum 802 

(PGAi, DIi), a Monte Carlo simulation is performed, by producing N = 500 couples of (PGAi, yi) 803 

data, each one obtained by comparing out the observed value for the damage index (DIi) with 804 

randomly sampled thresholds. The thresholds are sampled from uniform distributions in their 805 

confidence intervals (Table 1, col. 2). The fragility curves are assumed to be log-normally 806 

distributed, with different medians mj and equal β-value. The best guess values for the parameters 807 

(mi’ and β’) are obtained by numerically maximizing, as a function of mj, and β, the likelihood 808 

function L. The obtained values (m’ and β’) account for the demand uncertainty, since different 809 

seismic records as input for the coupled numerical analysis are used, and the damage state definition 810 

uncertainty by randomly selecting the DI thresholds (Eq. A.2). Among the principal sources of 811 

uncertainties, only the capacity uncertainty is not yet considered. Thus, it is added to the results of 812 

the analysis as the square root of the sum of squares of β’ and 0.3 (e.g., NIBS 2004).  813 

 The obtained β”-value, which includes also capacity uncertainty, is then put into the 814 

likelihood function that, this time, is a function of the medians mj only. The best guess medians 815 

(mi’’) are obtained by numerically maximizing ln(L’) and, together with the total β’’-value, represent 816 

the best guess parameters for the log-normal distribution. From this analysis, we obtain the final 817 

parameters for M2, as reported in Table 1, col. 6-7 and plotted in Figure 2 (dark blue). 818 


