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Abstract 

We present a reconstruction of the central Marche thrust system in the central-

northern Adriatic domain aimed at constraining the geometry of the active faults deemed to 

be potential sources of moderate to large earthquakes in this region and at evaluating their 

long-term slip rates. This system of contractional structures is associated with fault-

propagation folds outcropping along the coast or buried in the offshore that have been active 

at least since about 3Myr. The ongoing deformation of the coastal and offshore Marche thrust 

system is associated with moderate historical and instrumental seismicity and recorded in 

sedimentary and geomorphic features. In this study, we use subsurface data coming from 

both published and original sources. These comprise cross-sections, seismic lines, subsurface 

maps and borehole data to constrain geometrically coherent local 3D geological models, with 

particular focus on the Pliocene and Pleistocene units. Two sections crossing five main faults 

and correlative anticlines are extracted to calculate slip rates on the driving thrust faults. Our 

slip rate calculation procedure includes a) the assessment of the onset time which is based on 

the sedimentary and structural architecture, b) the decompaction of clastic units where 
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necessary, and c) the restoration of the slip on the fault planes. The assessment of the 

differential compaction history of clastic rocks eliminates the effects of compaction-induced 

subsidence which determine unwanted overestimation of slip rates. To restore the 

displacement along the analyzed structures, we use two different methods on the basis of the 

deformation style: the fault parallel flow algorithm for faulted horizons and the trishear 

algorithm for fault-propagation folds. The time of fault onset ranges between 5.3-2.2 Myr; 

overall the average slip rates of the various thrusts are in the range of 0.26-1.35 mm/yr. 

 

Key Words: slip rate, 3D geological model, structural restoration, seismogenic source, 

thrust tectonics, northern Apennines, Adriatic Sea 

 

1. Introduction 

The slip rate, together with other geometrical parameters of seismogenic sources, is 

one ingredient of the seismic hazard models, useful for determining the activity rates of the 

faults, i.e. how often they generate earthquakes, and for understanding the long-term fault 

behavior. Slip rate calculation can be performed using different methodological approaches at 

different space and time scales (paleoseismological trenches, restoration of seismic 

exploration data, numerical modeling, GPS velocities). 

The measurement of slip rates along buried or offshore tectonic structures can be 

carried out through the use of seismic data and exploration wells. The large amount of data 

for oil exploration in the Adriatic Sea and the surrounding areas, made available in part from 

the ViDEPI database (http://unmig.sviluppoeconomico.gov.it/videpi/en/) and in part from 

scientific papers, allow reconstructing three-dimensional models relative to some key 

chronostratigraphic horizons. In this study we investigate the area around the Conero 

promontory (Marche Adriatic coast, Northern Apennines, Italy), where Plio-Pleistocene 
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contractional tectonic structures are well known and have maximum principal stress axes 

oriented perpendicular to the mean structural trends (Boncio and Bracone, 2009; Heidbach et 

al., 2010). The ongoing activity of the more external Apennine thrust fronts is questioned on 

the basis of seismic line interpretations (Coward et al., 1999; Di Bucci and Mazzoli, 2002) 

and geomorphic analysis (Troiani and Della Seta, 2011), but is supported by historical and 

instrumental seismicity (Calderoni et al., 2009; Chiarabba et al., 2005) and geological-

geomorphological studies (Carminati et al., 2003; Lavecchia et al., 2003, 2007; Negredo et 

al., 1999; Scrocca, 2006; Scrocca et al., 2007; Vannoli et al., 2004; Wegmann and Pazzaglia, 

2009). Considering also the occurrence in the area of several historical and instrumental 

earthquakes (e.g. 1269, 1474, 1690, 1870, 1924, 1930) with M > 5 (see Rovida et al., 2011) 

and an important seismic sequence in 1972 (Console et al., 1973) many of the outer structures 

in the Umbria-Marche Apennines were included in the Italian database of seismogenic 

sources (Basili et al., 2008; DISS Working Group, 2010; see also Kastelic et al. in this issue). 

The capability of these thrust faults to also generate tsunamis and their potential threat level 

on the Adriatic coast has been evaluated by Tiberti et al. (2008). 

In this study we develop a workflow for the calculation of slip rates using 3D 

modeling of subsurface data for the restoration of some structures that runs from the Marche 

coastal anticlines to the more external Apennines thrust front in the Adriatic offshore. The 

surrounding areas were investigated in works dealing with the identification of potential 

seismogenic sources (Basili and Barba, 2007; Vannoli et al. 2004) and the evolution of the 

external Apennines thrust fronts (Cuffaro et al. 2010; Scrocca et al. 2007). Our study focuses 

on the evaluation of the onset age of activity, displacement, and shortening of the thrusts. The 

aim of this paper is to give a quantitative estimate of slip rates for the considered time 

interval on thrust faults in this sector of the Umbria-Marche Apennines, some of which are 
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deemed to be seismogenic structures, contributing to earthquake recurrence time studies and 

seismic and tsunami hazard modeling. 

 

2. Geologic and tectonic framework 

The investigated area is located in the central Marche (central Italy) coastal and 

offshore zones (Fig. 1) and covers part of the external domain of the Umbria-Marche fold and 

thrust belt (Umbria-Marche Apennines). The Umbria-Marche Apennines is part of the larger 

Outer Northern Apennines, an arc-shaped northeast-verging thrust belt that originated in the 

Middle Miocene by the complex tectonic interaction between the African and European 

plates; this tectonic process is still active and determines active thrusting along the Adriatic 

coast (e.g. Barchi et al., 1998; Barchi et al., 2001; Pialli et al., 1998, Vai and Martini, 2001). 

The inner contractional tectonic structures have been deactivated and dissected by 

extensional structures which started to affect the Umbria-Marche Apennines in the Gelasian. 

The compression-extension pair progressively migrated in time and space from West to East 

generating an overprint of contractional and extensional features in adjacent regions (e.g. 

Barchi, 2010; Elter et al., 1975; Frepoli and Amato, 1997). 

The deep and shallow geometry of the Umbria-Marche fold and thrust belt was 

provided by Barchi et al. (1998) and Pialli et al. (1998) using the regional seismic line 

CROP03 as well as by Bally et al. (1986), Coward et al. (1999) and Scarselli et al. (2007) 

using shorter profiles, giving different structural interpretations. Concerning the deformation 

style of the region, different models have been proposed: a thin-skinned model in which the 

contractional structures are all detached on an undeformed basement deepening from about 5 

km in the Adriatic Sea to about 8 km below the Adriatic coastline and to 13-14 km below the 

Umbria-Marche Apennines (Bally et al., 1986); a combined thin/thick-skinned model in 

which the basement is partially involved in the contractional deformation and multiple 
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detachment levels at different depths control the development of different wavelength 

structures (Barchi et al., 1998) and leads to shortening rates in the order of 1.5-3.0 mm/yr 

(Basili and Barba, 2007); a thick-skinned model characterized by the involvement of the 

basement in the major thrusts which would have reactivated pre-existing Triassic faults 

within the basement (Coward et al., 1999; Lavecchia et al., 2003). 

Reconciling these different interpretations is beyond the scopes of this work and we 

thus adopt the thin/thick-skinned model for which we have the largest amount of coherent 

data. Our study area is characterized by at least two main detachment levels that control the 

geometry of the contractional structures: a deep detachment located at the base of the 

Mesozoic-Paleogene sedimentary cover (within the Anidriti di Burano fm., Triassic 

evaporites) and a shallower detachment level located at the base of the Schlier fm. (Early 

Miocene) in the Neogene foredeep clastic successions (Barchi et al., 1998). The deep 

detachment controls the development of northeast-verging anticlines bounded by major thrust 

ramps and backthrusts, separated by wide synclines (Umbria-Marche folds). The anticlines 

have a wavelength of 5-10 km, and detach at a depth of 6–10 km. The shallow detachment 

controls the formation of short-wavelength folds (of the order of tens to hundreds of meters) 

detached at 2 km of depth, and involving the terrigenous foredeep and/or wedge-top 

successions (Barchi et al. 2001; Massoli et al. 2006). The shallow detachment level produces 

folds with less developed lateral continuity (non-cylindrical), a characteristic that strongly 

affects the thickness distribution of the Pliocene sediments deposited in the sub-basins 

developed in the foredeep (Argnani and Gamberi, 1995; Coward et al., 1999). Below the 

Umbria-Marche folds, the interpretation of the deep CROP03 seismic profile revealed that 

the upper part of the basement is also partly involved in the contractional structures with a 

wavelength of 25-35 km (Barchi et al., 1998). In the inner part of the Apennines, the Umbria-

Marche folds layer comprises seven long-wavelength folds; our study area (Fig. 1) includes 
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the more external ones, i.e. the Coastal Anticline and the Offshore Anticline. The onset age of 

these two structures was constrained by the analysis of the syntectonic deposits, and is of 

Piacenzian (3.1 ± 0.5 Ma) and of Gelasian (2.2 ± 0.4 Ma), respectively (see Basili and Barba, 

2007 for a summary). 

The main terrigenous units in our study area are characterized by Neogene-

Quaternary clastic wedges representing the foredeep turbidites of the Umbria-Marche 

Apennines. The foredeep deposits overlay a Jurassic-Paleogene multilayer known as Umbria-

Marche stratigraphic succession (Cresta et al., 1989) which crops out in correspondence of 

the main north-east and east-verging anticlines and synclines of the Umbria-Marche 

Apennines to the west (Fig. 1). The lower part of the Umbria-Marche stratigraphic succession 

is characterized by evaporitic upper Triassic rocks, Anidriti di Burano fm. (Martinis and 

Pieri, 1964), overlying the basement, formed by Paleozoic and Triassic clastic rocks 

(continental and shallow marine environment) and metasedimentary rocks (Mirabella et al., 

2008). Both the basement and evaporites do not have surface exposure in the study area and 

were identified in boreholes only (Anelli et al., 1994; Bally et al., 1986; Barchi et al., 1998). 

The late Messinian-Quaternary sedimentary record is exposed along the Adriatic 

coastal belt where it is largely incomplete because of uplift and erosion. It is instead 

preserved in the subsurface of the Adriatic Sea and the Po Plain (Bigi et al., 1999; Calamita et 

al., 1999). The main events recorded by the sedimentary successions are: a sahelian cycle in 

the early Messinian (Ricci Lucchi, 1986a, b); a middle Messinian increment of anoxic 

episodes due to a crisis of salinity in the Mediterranean region with consequent evaporitic 

(Gessoso Solfifera fm.) sedimentation (Gelati et al., 1987); a post-evaporitic sandstones and 

mudstones formation up to 900 m thick (Barchi et al., 2001; Bassetti et al., 1994). 

Both the Gessoso Solfifera fm. and the Messinian sediments are marked by strong 

angular unconformities due to sub-aerial erosion. The Pliocene succession overlies the 
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Messinian sediments with a low-angle unconformity which is appreciable only in seismic 

reflection profiles (e.g. Coward et al., 1999). In many places the Zanclean succession was 

completely eroded before the onset of the Piacenzian-Gelasian deposits (Calamita et al., 

1999; Cantalamessa et al., 1986) which are composed of thin-bedded turbidites and can be up 

to 1000 m thick. The Gelasian - uppermost Pleistocene is mostly composed by epibathyal 

mudstones and is preserved only in wide tectonic lows between the Metauro and Esino rivers 

(Bally et al. 1986; Calamita et al. 1994; De Donatis and Mazzoli, 1994). In the outer Marche, 

the middle-upper Pleistocene fluvial and marine terraces are carved and deposited into the 

Piacenzian units along the Metauro River and into the Gelasian to lowermost Pleistocene 

units between the Metauro and Esino rivers (Elmi et al., 1987; Vannoli et al., 2004). 

 

3. Data and Method 

For this study we build up a 3D geological model using seismic and well data that 

come from public datasets (ViDEPI, Fantoni and Franciosi, 2010) and an original re-

interpretation of published data (Esino section, Fig. 2). The data were collected with different 

aims and in a wide temporal range; for this reason we firstly homogenized all these datasets 

in terms of stratigraphy, local name of key horizons and geological age. Then we use the 

dataset to build a general 3D model of the area which helps us to understand the full 

tridimensional geometries of the observed structures. From this model we select the key 

structures and the best oriented sections onto which applying the restoration algorithms. As a 

first step of the restoration process, it is necessary to decompact the clastic sedimentary units 

associated with the target time interval. After decompaction, we adopt the more appropriate 

restoration algorithm for fault (Trishear, Fault Parallel Flow; Egan et al., 1997; Erslev, 1991; 

Hardy and Ford, 1997; Kane et al., 1997) and fold based on the deformation type. For each 

structure we determine the onset age at the site where we perform the restoration. The onset 



Maesano et al., October 2012, accepted manuscript. Marine and Petroleum Geology 

 

age is defined as the maximum and minimum ages of the first stratigraphic interval affected 

by synsedimentary tectonics, i.e. those showing evidence of having being tilted or faulted or 

characterized by growth strata. The restoration then allows calculating the total amount of 

slip on the fault for the structure to regain the initial condition, i.e. when the reference 

horizon is undeformed. From this information we calculate the average slip rates from the 

determined onset age to present. The following sections illustrate details of the procedure and 

the data we used. 

 

3.1 Geological and seismic dataset 

We consider an irregular grid of seismic reflection lines crossing the study area (Fig. 

1) and analyze those with the better coverage of the seismogenic sources (offshore and 

onshore) and the most external front of the Apennines thrust system. We also make use of 

isobaths and isopachs maps, publicly available in the ViDEPI database, covering the study 

area partly integrated with unpublished confidential data used for validation. Both isobaths 

and isopachs were in units of time (millisecond), so that no conversion was needed to make 

them consistent with the seismic reflection lines. Logs from onshore and offshore wells were 

used to constrain the stratigraphic properties of the sedimentary formations (Fig. 1). 

The stratigraphic horizons are constructed by interpolating isobaths and seismic 

reflector traces (Fig. 2). Then the general structural and stratigraphic framework is interpreted 

using the 3D model (Fig. 3) both in map and section views. 

The horizons chosen for the slip rate calculations are, whenever possible, the most 

recent and most continuous; namely the top of the Gessoso Solfifera fm. (Messinian; ges in 

Fig. 4), top Cellino unit (upper Zanclean; Dattilo et al., 1999; P1 in Fig. 4), and top of Morro 

d’Oro and Tortoreto units (Piacenzian; Dattilo et al., 1999; P2 in Fig. 4). Other horizons are 

visible within the strata of the Canzano unit (Gelasian p.p.-Pleistocene; Dattilo et al., 1999) 
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but they cannot be used as markers because of the lack of age constraints. For what concerns 

the Plio-Pleistocene interval, we take into account the chronostratigraphic subdivision of 

Gradstein et al. (2004) to easily compare and integrate older data; for all other purposes, we 

adopt the substage names and ages according to the new subdivision by Gibbard et al. (2009). 

The interpretation of the seismic lines is calibrated by using the stratigraphic logs of 

deep wells drilled in the area. From the same logs we derive the velocity model (first column 

of Table 1) to convert the section from time to metric units. The seismic stratigraphy clearly 

shows four main lithological units (Table 1). From the bottom up they are: a) late Triassic 

Evaporites (Anidriti di Burano fm.; Martinis and Pieri, 1964); b) a carbonatic multilayer 

(Lower Jurassic - Early Oligocene); c) a middle Oligocene - upper Miocene turbiditic 

succession; d) the Pliocene foredeep succession. The most continuous reflectors in this 

stratigraphy are the Aptian - Albian Marne a Fucoidi fm. (a marly interval within the 

carbonatic multilayer, t fuc in Fig. 2 and Fig. 4) and the Messinian Gessoso Solfifera fm. 

(ges, Fig. 2). Depth conversion of relevant cross sections are obtained using the velocity 

intervals recorded in the deep well logs closest to each section, thereby reducing the 

associated uncertainty with respect of using a single velocity distribution for the entire model. 

The regional section from Fantoni and Franciosi (2010), named here Conero section (Fig. 

4B), is already available in metric units and is thus considered as a separate dataset for 

comparison with other available data. 

 

3.2 Construction of the 3D geological model and site selection 

Once the homogenized tridimensional dataset is obtained (Fig. 3), we extract local 3D 

models (Fig. 5) of the areas selected for the decompaction procedure; then, from the 

decompacted models, we take 2D sections for the restoration of the remaining deformation 

and for slip rate calculation. To this end, we choose the following seven sites, from west to 
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east, (see Fig. 1 for location): Pesaro-Senigallia (PS), Conero Onshore North (ConN), Conero 

Onshore South (ConS), Conero Offshore North (ConM N), Conero Offshore South (ConM 

S), Colosseo (Col), Clara (Cl1). The chosen sites are those that have good-quality local data 

and are located in places that satisfy the requirement of being representative of five major 

thrust faults. Three of these faults have also been recognized as potential seismogenic sources 

and are included in the Database of Individual Seismogenic Sources (Basili et al. 2008; DISS 

working group, 2010): Pesaro-Senigallia ITCS032, Conero onshore ITCS008, Conero 

offshore ITCS031; the other two faults are characteristic of the easternmost front of the 

Apennines; Colosseo is a backthrust and Clara is the leading frontal thrust.  

 

3.3 Restoration 

3.3.1 Decompaction 

The decompaction of sediments is necessary to remove the effects of rock volume 

change due to porosity reduction through time. The decompaction process backstrips a layer 

of sediments from the model and allows the underlying rocks to vertically decompact as a 

result of the overburden removal. In case of inactive anticline, strata dipping away from the 

anticline are generated by differential compaction of sediments onlapping the anticline limbs; 

in active anticlines, the observable configuration is the result of buckle folding and flexural 

slip as well as sediment compaction. The strain component induced by active folding adds to 

the strain due to differential compaction, thus increasing total stretching in syntectonic 

sediments (Carminati et al., 2010). We discriminate the two components of deformation and 

subtract the compaction effects so that the remaining vertical separation in growth strata 

between anticlines and synclines can be attributed to tectonic processes only (faulting and 

folding). 
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The decompaction algorithm is based on an exponentially decaying porosity with 

increasing depth of the sediments and follows the principles described by Sclater and Christie 

(1980). The effects of decompaction are more evident in syntectonic layers that were subject 

to differential load through time and were deformed near the free surface (where strata have 

relatively high porosities) and were subsequently buried to significant depths. Conversely, the 

effects of decompaction on displacement measurement along the fault plane are not 

considered for the pre-tectonic sequences because the displacement loss due to compaction is 

negligible (Taylor et al. 2008) and the horizon thickness is constant on both sides of the fault. 

In this study, we apply the decompaction workflow to the Colosseo and Clara 

structures (Fig. 5) where the Plio-Pleistocene interval shows evidence of synsedimentary 

tectonic activity (e.g. growth strata) and thus underwent differential lithostatic load. This 

interval is represented by siliciclastic foredeep successions that can be assumed 

approximately homogeneous for original porosity and elastic properties. We model them as a 

sediment mixture with an equal proportion of sand and shale. We do not apply the 

decompaction workflow to the pre-tectonic Meso-Cenozoic carbonatic succession because it 

has constant thickness (e.g. no growth strata). 

In our sections, the effects of decompaction are more important in the depocenters 

(syncline axes), where the sedimentary load is greater, than in the structural highs (anticline 

axes) where the sedimentary load sharply decreases. Not considering decompaction leads to 

an overestimation of shortening and slip on the driving thrust fault. 

We extract the information from our dataset and build up a local 5-km-wide swath 

model (2.5 km on both sides of the trace; Fig. 5) around the section, considering that the 

geometry of the structures in this section is almost cylindrical for a range of few kilometers 

and taking into account that the section crosses the central part of the intervening structures, 

thereby avoiding possible boundary effects. 
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Figure 6b shows the effects of decompaction at the top Gelasian horizon for the 

Colosseo and Clara anticlines and related depocenters when the lithostatic load of the 

overlaying Holocene and Pleistocene sediments is removed. Overall, in the section (Fig. 6a) 

the measured change in thickness within the Gelasian layer ranges from a minimum of 23% 

in correspondence of the structural highs (ramp anticline, where the load is minimum) to a 

maximum of 59% in the structural lows (syncline, where the load is maximum). The average 

value of thickness change for the entire model is 39%. 

 

3.3.2 Fault parallel flow, Unfolding, Trishear 

Based on the type of deformation observed in each structure, the algorithms that can 

be used to remove the tectonic deformation are different (Fig. 5). For faulted horizons it is 

appropriate to use the Fault Parallel Flow (FPF) algorithm (Egan et al., 1997; Kane et al., 

1997) that is designed to kinematically model hangingwall blocks where deformation is 

accommodated by fault-parallel shear. Where the stratigraphic horizons are not offset by the 

faults, but only warped by fault-propagation, the use of the trishear algorithm is instead 

recommended (Erslev, 1991; Hardy and Ford, 1997). 

We apply the algorithms on 2D sections extracted from the 3D model. FPF is used for 

the restoration of the deeper and older stratigraphic markers (i.e. Marne a Fucoidi fm., 

Aptian-Albian; Scaglia Cinerea fm., Aquitanian; and Gessoso Solfifera fm., Messinian) in the 

Pesaro-Senigallia, Conero Onshore North, Conero Onshore South, Conero Offshore North 

and Conero Offshore South sites. 

After restoring the fault plane offset, the residual deformation due to parallel folding 

is restored by applying the unfolding algorithm that calculates the shortening while 

preserving the line length of the involved horizons. We apply the unfolding procedure with 

respect to local pin lines relative to each structure, so the final shortening value must be 
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considered as related to the single fold-fault system analyzed. The values of shortening 

obtained by unfolding the residual deformation may include a minor slip component that we 

are not able to restore with FPF and a component related to the buckling and folding during 

contraction. We calculated both the slip-driven shortening (obtained only from the measured 

slip on the fault) and the total shortening which also includes the buckling and folding 

components. 

For the Colosseo and Clara sites that are dominated by fault-propagation folding we 

apply the trishear method. Trishear is a kinematic model in which the decrease in 

displacement along the fault plane is accommodated by heterogeneous shear in a triangular 

zone radiating from the fault tip (Allmendinger, 1998; Zehnder & Allmendinger, 2000; 

Erslev, 1991). Trishear explains tectonic features that cannot be explained by self-similar, 

parallel-kink fold models (Suppe and Medwedeff, 1990) such as the changes in layer 

thickness and dip of fold forelimb, the footwall synclines, the rounded and angular fold 

hinges, the fold geometry and strain changes in proximity of the fault (Cardozo and 

Aanonsen, 2009).  

The FPF, the unfolding and the trishear algorithms are applied to restore portions of 

the sections chosen as close as possible to structural culminations for horizons of known age, 

thereby providing the amount of displacement for a specific time interval and obtaining the 

average slip rate on the thrust planes and the relative shortening value. 

 

4. Description and analysis of the studied structures 

This section illustrates the tectonic deformation observed in the five studied structures 

at each site (from West to East) and the workflow used for the restoration; their 

correspondence with seismogenic sources of the DISS (DISS Working Group, 2010; Fig. 1) 

is also indicated, where applicable, by the DISS identifier (see Basili et al., 2009).  
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1) Pesaro-Senigallia structure (site: PS). The Esino section crosses the Pesaro-

Senigallia structure not far from the coastline (Fig. 4A). The PS site is a main thrust ramp that 

affects the Mesozoic carbonatic succession and can be related to the southern termination of 

the seismogenic source ITCS032. The offset was calculated on the top of the Marne a Fucoidi 

fm. (Aptian-Albian) because the upward propagation of this structure into younger units is 

not clear. The Marne a Fucoidi reflector depicts a hangingwall anticline with a subvertical 

forelimb. The offset is estimated using the FPF algorithm. The unfolding procedure is then 

used for restoring the residual folding and calculating the relative horizontal shortening. 

2 and 3) The Conero Onshore and the Conero Offshore structures are two close 

structural highs well imaged also by the gravimetric anomalies (ISPRA, ENI, OGS, 2009) 

that in this area have the highest relative values and that are affected by a sharp change with 

respect to the surrounding region (Fig. 7). The positive Bouguer anomaly in this area can be 

related with the exhumation of the Mesozoic carbonatic succession that is strongly uplifted 

by the Conero Onshore and Conero Offshore structures. These structures have a closure 

toward north-northwest, where the deformation transfers to the structures of the coastal and 

offshore anticlines along the coastline between Pesaro and Senigallia (ITCS032 and 

ITCS043). The reduction of exhumation is also imaged by the decrease of both the 

gravimetric gradient and the Bouguer anomalies values. 

Conero onshore (sites: ConN and ConS). The northeastern part of the Esino-BR5-11 

section and central part of the Conero section cross the Conero Onshore structure (ITCS008) 

in its northern termination (ConN) and in its central portion (ConS) respectively (Fig. 1). The 

ConN site (Fig. 4A) is a ramp anticline controlled by the continuation toward the north of the 

tectonic structure exposed in the Monte Conero area (see ConS). In this site we observe a 

displacement of the Messinian (ges) and Pliocene (P1, P2) stratigraphic horizons due to the 

propagation of a NE-verging thrust ramp probably rooted in the Mesozoic carbonatic 
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succession. In this case we use FPF to restore the observed deformation along the main ramp 

thrust. The ConS site (Fig. 4B) shows a ramp anticline with a subvertical-to-overturned 

forelimb. In this site the structure directly controls the exhumation of the Meso-Cenozoic 

succession in the Monte Conero area. In the ConS site there is a clearer geomorphic 

expression of the ramp anticline than in the ConN site, where the Miocene and Pliocene 

succession is better preserved. We restore the deformation using the FPF algorithm, applied 

to the Lower Jurassic marker and then unfold the residual deformation to calculate the total 

shortening. 

Conero Offshore (site: ConM N and ConM S). The sites ConM N and ConM S 

represent the northern and central parts of the Conero offshore structure, respectively 

(ITCS031). This structure is a thrust well imaged in the ViDEPI dataset (BR9) and other data, 

south of the Esino-BR5-11 section (ConM N), by the presence of an important anticline. In 

this site, we interpret the structure as being a fault bend fold related with the northward 

continuation of the deeper splay imaged in the Conero Offshore South site (see ConM S). The 

fault bend fold offsets the Gessoso Solfifera horizons. The deformation is restored by using 

the FPF algorithms applied to the Gessoso Solfifera and to the top of the Scaglia Cinerea 

(Aquitanian) horizons, offset by the main thrust ramp, and the unfolding algorithm for the 

remaining deformation. In this site we do not consider the offset of secondary splays. The 

Conero section crosses the central part of the Conero Offshore structure. The ConM S site 

shows five splays; each single splay is connected to a main detachment located within the 

Anidriti di Burano fm. (Fig. 4B). In this site we use the Marne a Fucoidi fm. (Aptian-Albian) 

as a marker for the restoration because this horizon has a good lateral continuity in the 

section. The deformations have to be measured by backstripping each single structure, 

connected one by one to the main detachment. After the restoration with the FPF, we observe 
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a residual folding that is restored using the unfolding procedure and quantify the residual 

horizontal shortening of the structures. 

4) Colosseo structure (site: Col). The Colosseo structure is an important backthrust 

connected to the main frontal thrust of the more external Clara structure (Cl1 in Fig. 1). East 

of the ConM S site, 20 km ENE of the Conero promontory, the Conero section crosses a 

NNW-SSE trending anticline related to the propagation of the backthrust. The Col site (Fig. 

4B) is well imaged also by the isobaths of the base of the Pliocene (Fig. 1) and by the 

gravimetric data (Fig. 7). A secondary west dipping thrust is connected to the backthrust, 

whose offset is not significant. We model the backthrust-related fault propagation anticline 

and decompact the top of Pliocene by unloading the Pleistocene syntectonic succession. The 

decompaction reduced the vertical separation between the anticline and the adjacent basins 

and thereby reduced the slip on the fault plane necessary to obtain the observed deformation. 

After the decompaction, we apply the trishear workflow to a simplified model of the anticline 

and use the best fit grid values to restore the tectonic structure. The thrust controlling this 

anticline is not associated to any seismogenic source. 

5) Clara structure (site: Cl 1). The Clara structure is related to the propagation of 

tectonic deformation onto the most external thrust of the Umbria-Marche belt in the Adriatic 

offshore. The northeastern part of the Conero section (Fig. 4B) crosses this structure in 

correspondence of the Clara 1 well (site Cl1). After the decompaction, the structure was 

restored using the trishear workflow which allows restoring all the Pliocene fault propagation 

folding deformation and the offset observed inside the Mesozoic carbonatic succession. This 

thrust system is currently not associated to any seismogenic source. 

 

5. Results and discussion 



Maesano et al., October 2012, accepted manuscript. Marine and Petroleum Geology 

 

Our results are shown in detail in Table 2 and summarized in map view in Fig. 8. For 

each structure we report the onset age, the total amount of slip on the thrust faults driving the 

deformation, the shortening driven by the slip (S.D.), the total shortening along the structures, 

and the slip rate averaged in the time interval from faulting onset to present. We consider all 

the structures as pure dip slip ramp thrust and the studied section are dip-parallel oriented so 

that no component of slip outside the section trace is considered. 

1) Pesaro-Senigallia. We do not have specific data to address the onset age of this 

structure. We thus rely on the available data in the literature and adopt the age of 2.6-3.6 

Myr, reported by Basili and Barba (2007) as an average value from estimations for the coastal 

anticline given by Argnani (1998), De Donatis et al. (1998), Coward et al. (1999) and Di 

Bucci and Mazzoli (2002). The amount of slip on the main thrust fault in the section is 1,339 

m. Given the time of activity considered here, the average slip rate is 0.37-0.52 mm/yr. The 

total shortening measured along the structure is 1,985 m. This site crosses the structure near 

its southern termination and thus we cannot consider these values as maximum rates for the 

structure. 

2) Conero Onshore. Data for age determination in this structure are available only in 

the ConN site. Here the thickness of strata in the Cellino (Zanclean) and Morro d’Oro and 

Tortoreto (Piacenzian) units are constant on both sides of the thrust fault. The thickness is 

constant also on the Canzano unit strata on the anticline back limb. These observations 

suggest that the activity of this structure did not begin before 2.6 Myr. Other literature data 

for the offshore anticline given by Argnani (1998), De Donatis et al. (1998), Coward et al. 

(1999) and Di Bucci and Mazzoli (2002) suggest that the activity should have started no later 

than 2.2 Myr. The amount of slip on the main thrust fault in the ConN site is 2,972 m and in 

the ConS site is 2,632 m. Given the time of activity here considered, in the ConN site the 

average slip rate is 1.14-1.35 mm/yr whereas in the ConS site the slip rate is 1.01-1.20 
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mm/yr. Both sites cross the structure near the axial culmination and we can thus consider 

both values as good proxies of the maximum rates for this structure. However, Fantoni and 

Franciosi (2010) hint at Zanclean strata onlapping the back limb of the anticline at the ConS 

site, which would suggest an earlier onset age (3.6 Myr) implying slower rates of 

deformation. The total shortening along the ConN structure is 4140 m, whilst the ConS 

shortening cannot be computed without considering also the ConM S thrusts. 

3) Conero Offshore. In this structure the thickness of strata in the Cellino (Zanclean) 

unit is constant. This observation suggests that the activity of this structure did not begin 

before 3.6 Myr. Based on the presence of an unconformity in the Piacenzian strata we 

propose that the activity of this structure should have begun no later than 3.0 Myr ago. The 

amount of slip on the main thrust fault in the ConM N site is 1,751 m and in the ConM S is 

2,741 m. Given the time of activity here considered, in the ConM N site the average slip rate 

is 0.49-0.58 mm/yr whereas in the ConM S site the slip rate is 0.76-0.91 mm/yr. The ConM S 

site crosses the structure near the axial culmination and we can thus consider these values as 

good proxies of the maximum rates for this structure. For the ConM N site we restore only 

the offset of the main thrust fault, neglecting the contribution of secondary splay faults, 

therefore the slip rate in this site is slightly underestimated. The total shortening measured in 

the ConM N is 1955 m. The shortening calculated for the ConS and ConM S structures is 

7367 m. 

4) Colosseo. This structure is characterized by growth strata within the Zanclean unit. 

We can thus assign an onset age younger than 5.3 Myr (base of Zanclean) and older than 3.6 

Myr (top of Zanclean). The amount of slip on the main thrust fault in the section is 1956 m 

(trishear angle: 60°, P/S: 4). Given the time of activity here considered, the average slip rate 

is 0.37-0.54 mm/yr. The main axial culmination of this structure is located several kilometers 
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south of the site and the obtained rates could be much lower than the maximum rates for this 

structure. The total shortening is 1182 m. 

5) Clara. The same observations for Colosseo can be transferred here. Considering 

that the Clara thrust is the upward prolongation of the basal detachment, we favor the 

hypothesis that Clara is slightly older than Colosseo. The amount of slip on the main thrust 

fault in the section is 1,385 m (trishear angle: 50°, P/S: 2). Given the time of activity 

considered here, the average slip rate is 0.26-0.38 mm/yr. This site crosses the structure on 

the axial culmination and we can thus consider these values as good proxies of the maximum 

rates for this structure. The total shortening is 1229 m. 

Vannoli et al. (2004) calculated the slip rates of the Pesaro-Senigallia thrust, averaged 

on a long stretch of the northern Marche coastal belt (Fig.1), using geomorphic markers for 

the Upper Pleistocene and obtained slightly lower slip rate values (0.24-0.36 mm/yr) with 

respect to our long-term slip rates (0.37-0.52 mm/yr). Although the difference is not 

remarkable, it can be explained in one of two ways other than the mere fluctuation of 

uncertainty: 1) the slip rates were higher during the earlier stage of the fault development and 

progressively decreased, so that the long-term slip rates represent an average value between a 

faster initial phase and the slower recent activity; 2) the long-term slip rates, measured using 

the Marne a Fucoidi reflector which lies under the shallower detachment in the Miocene 

succession, is partitioned onto a few shallow anticlines above the detachment that is not 

totally captured by the geomorphic features used to constrain the short-term slip rate. 

Overall, our reconstruction of onset ages of various thrusts suggests that the activity 

of the northern Apennines in the Conero area has migrated farther to the east at the end of the 

Messinian thereby forming the present-day leading front (Clara and Colosseo). The thrust 

activity has then relived (Piacenzian-Gelasian) in the west in a series of trailing younger 
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structures (Conero Offshore, Pesaro-Senigallia, and Conero Onshore) while, just south of our 

study area, the Mid-Adriatic Ridge was also forming (Scrocca, 2006). 

The older offshore structures (Clara and Colosseo) are also those that recorded the 

least amount of slip whereas Conero Onshore, despite its younger age, is one with the highest 

amount of slip. Notice that Colosseo, and Conero Offshore North measuring sites cross the 

relevant structures very distant from their axial culmination thereby providing an 

underestimated value of the cumulative slip. 

Overall, the calculated slip rates are distributed in the range 0.26 - 1.35 mm/yr (Fig. 

8). In an ideal SW-NE profile across our study area, the calculated slip rates decrease with 

increasing distance from the coast, i.e. thrust faults located closer to the coast (Conero 

Onshore and Conero Offshore) are three-four times faster than those located far offshore 

(Colosseo and Clara). Clara appears to be the weakest structure because it is the oldest and 

slowest. Conero Onshore is instead the youngest and fastest. 

On the other side of the Adriatic Sea, in the external Dinarides domain, Kastelic and 

Carafa (2012) obtained average long-term slip rates that also decrease with increasing 

distance from the coast and in the same order of magnitude of our results. This comparison 

suggests a similarity in mode and rate of thrusting in the two confronting thrust belts. 

The Conero onshore and offshore structures are out-of-sequence thrusts with onset 

age significantly younger than the early outer propagation of the external fronts (e.g. Clara); 

our data do not allow to state if the inner and outer structures have acted contemporaneously 

or if their activity was asynchronous during their evolution. However, the present-day activity 

of the Conero onshore and offshore structures is also supported by the interpretation of 

seismic lines by Cuffaro et al. (2010). 

In general, all the analyzed faults in our study are oriented orthogonally with respect 

to the present stress field (Heidbach et al., 2010, Montone et al., 2012) and the entire study 
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area is characterized by seismicity in the upper 10 km of the crust with magnitude up to 3.5 

(Castello et al., 2006; ISIDe, 2012) and by stronger earthquakes as reported in the historical 

catalog (CPTI11, 2011) which suggest that all the studied structures can be considered active. 

The recent earthquakes of 20 and 29 May, 2012, in Emilia-Romagna, Ml 5.9 and 5.8, 

respectively, reactivated thrust faults (Burrato et al., 2012) in an analogous structural setting 

within the Outer Northern Apennines providing yet another confirmation of the ongoing 

activity and seismogenic potential of this type of structures. 

Our results have to be considered as average slip rates from the onset time of the fault 

to the present assuming that all the studied faults are active. Our dataset does not allow 

making calculations of the differential slip rates for the Plio-Pleistocene time interval. 

Geologic information, with resolution higher than our data, about younger sedimentary units 

is needed to assess the details of the faults recent activity. 

 

6. Conclusions 

In this study we use the 3D modeling of geologic subsurface data to reconstruct the 

deformation history of a series of thrust-related anticlines in the central-northern Adriatic 

domain. 

The main results of this study are: 

1) The onset age of the offshore Adriatic thrust front is older than the more internal coastal 

structures, suggesting a possible shift of the tectonic activity toward the inner portion of the 

tectonic wedge, as also proposed in other studies (Cuffaro et al., 2010). 

2) The Conero onshore and offshore structures show the highest deformation rates. 

3) Slip rates calculated in five of the seven sites can be attributed to seismogenic sources of 

the DISS contributing to better characterize them. The other two calculated slip rate values, 
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could be used to characterize faults not yet mapped in the DISS or be used for comparison 

with analog thrust faults in the Apennines and other thrust belts. 
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Figure 1: Map showing the main geological and structural features in and around the 

study area. Stars indicate the position of the reference points used to calculate the slip rates 

for the studied structures (PS: Pesaro-Senigallia; ConN: Conero North; ConS: Conero South; 

ConM N: Conero Offshore North; ConM S: Conero Offshore South; Col: Colosseo; Cl1: 

Clara 1). Well: 1) Offagna1, 2) Brezza1, 3) Filottrano1, 4) Chiaravalle1, 5) Monsano1, 6) 

Colosseo1, 7) Elga1. Cross sections: A) Esino-BR5-11 section, B) Conero section. 

Seismogenic source identifiers (e.g. ITCS###) as in DISS 3.1.1 (DISS Working Group, 

2010). 



Maesano et al., October 2012, accepted manuscript. Marine and Petroleum Geology 

 

 

Figure 2: Seismic data (top) and geological re-interpretation (bottom) of the Esino 

section (after Scarselli et al., 2007) (location in figure 1) showing the geometry of the deep 

structures calibrated with the available boreholes and other seismic sections in the area. The 

section exemplifies the different styles of deformation of the deep structures with respect to 

the shallow structures. The deep structures involving the Umbria-Marche carbonate 

succession are characterized by long wavelength folds whereas the shallow structures are 

detached from the underlying carbonates and characterized by shorter wavelength folds. 
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Figure 3: 3D model derived from seismic sections cross cutting the Pesaro-Senigallia 

(PS), Conero North (ConN) and Conero Offshore North (ConM N) structures and chrono-

isobaths of Messinian-to-Pleistocene horizons.
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Figure 4: Geological cross sections: A) Esino-BR5-11 section, obtained from the 

ViDEPI database and original data (see figure 2 for seismic data and interpretation); B) 

Conero section, modified from line 6 in Fantoni & Franciosi (2010). Stratigraphic horizons: 

a) main seismic reflectors identified in all the analyzed seismic lines; b) other seismic 

reflectors. Simplified local stratigraphy: t bas, top of the acoustic basement; t ev, top of the 

Anidriti di Burano fm.; t fuc, top of the Marne a Fucoidi fm., ges, top of Messinian; P1, top 

of Cellino unit (Zanclean), P2, top of Morro d’Oro and Tortoreto units, (Piacenzian), t plio, 

Gelasian; for simplicity stratigraphic terms not cited in the text are omitted. For other 

symbols see figure 1.
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Figure 5: Workflow adopted for the slip rate calculation. Legend of the geological 

cross section is the same as in figure 4. The workflow uses the cross section selected from the 

general 3D model to build local scale tridimensional models on which the decompaction 

algorithm is applied (when possible). The tectonic strain is restored using trishear or fault 

parallel flow and unfolding algorithms. The parameters used in the trishear workflow are the 

fault tip coordinates (X,Y), the trishear angle, the ramp angle, the P/S ratio (propagation of 

the tip vs slip on the fault) and the displacement (Allmendinger, 1998; Erslev, 1991).
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Figure 6: Decompaction data for the Colosseo and Clara 1 structures. a) Effects of the 

decompaction on the 3D model; the topographic relief in the Gelasian anticline is reduced 

after unloading the Pleistocene succession. The depth marker in the corner of the model 

indicate a rebound from about 1,680 m to about 1,000 m. b) the diagrams show the 

relationship between the thickness of the sedimentary load (e.g. the Pleistocene succession) 

and the amount of decompaction. Notice that in correspondence of structural highs (i.e. where 

load thickness is smaller) the effect of decompaction is smaller.
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Figure 7: Gravity anomaly gradient map of the studied area obtained from spatial 

interpolation of the Italian Gravity Map (ISPRA, ENI, OGS, 2009). Low values (blue tones) 

indicate no significant variation of the gradient; high values (yellow to red tones) correspond 

to sharp variations of the gravimetric anomaly; the plus and minus signs indicate the relative 

maxima and minima of the Bouguer anomalies, respectively. Major changes in gradient 

roughly fit with tectonic structures. The highest anomaly and the sharper gradient are in the 

Conero area where the Mesozoic carbonatic succession is exhumed.
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Figure 8: Synthesis map of the results of Table 2. All slip rates (SR) are in mm/yr and 

shortening values (Sh) are in m. 
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TABLES 

 

Age / (key formations) L.U. Interval velocity (m/s) 

Pleistocene  

2,010 

2,720 

2,980 

Gelasian 

d Piacenzian 

Zanclean 2,980 

Upper-Middle Miocene / (Gessoso-solfifera) 

c 

3,395 

Lower Miocene / (Schlier-Bisciaro) 

Oligocene 

Eocene 

Paleocene 

Top Lower Cretaceous / (Marne a Fucoidi fm.) 

4,151 4,151 

b 

Lias – top  Lower Cretaceous 5,600 5,600 5,600 

Triassic / (Anidriti di Burano) a 6,100 6,100 6,100 

Upper Paleozoic / (phyllites)  5,100 5,100 5,100 

Permian / (basement rocks)   6,000 6,000 6,000 

 

Table 1: velocity model for the Umbria-Marche succession, derived from logs of 

deep wells drilled in the area. Column L.U. (Litological Units) refers to the units cited in the 

text. The actual velocity values used for the depth conversion are those in the first column on 

the left of the velocity intervals. 
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Structure Name Code 

 

Coordinates 

(decimal 

degrees) 

 

Dataset 
Seismogenic 

source DISS 

Reference 

horizon for 

restoration 

Restoration 

method 

Length 

(m) 

Ramp 

dip (°) 

Slip 

(m) 

Shortening 

(m) 

Onset age 

(Myr) 

Slip rate 

(mm/yr) 

  Lat Lon        S.D. Total max min min max 

Pesaro-Senigallia PS 43.366 13.194 this work ITCS032 t fuc FPF + Unfold 13391 28 1339 1182 1985 3.6 2.6 0.37 0.52 

Conero Onshore 

North 
ConN 43.401 13.254 ViDEPI ITCS008 ges FPF + Unfold 19544 38 2972 2341 4140 2.6 2.2 1.14 1.35 

Conero Offshore 

North 
ConM N 43.414 13.355 ViDEPI ITCS031 

ges + Scaglia 

cinerea 
FPF + Unfold 6658 40 1751 1341 1955 3.6 3.0 0.49 0.58 

Conero Onshore 

South 
ConS 43.336 12.353 

Fantoni & Franciosi, 

2010 

ITCS008 Up. Lias 

FPF + Unfold 20624* 

30 2632 2279 

7367* 

2.6 2.2 1.01 1.20 

Conero Offshore 

South 
ConM S 43.354 13.412 ITCS031 t fuc 30 2741 2374 3.6 3.0 0.76 0.91 

Colosseo Col 43.376 13.511 
Fantoni & Franciosi, 

2010 
not mapped P1 

Decomp. + 

Trishear 
19592 53 1956 1177 1182 5.3 3.6 0.37 0.54 

Clara 1 Cl1 43.492 13.544 
Fantoni & Franciosi, 

2010 
not mapped P1 

Decomp. + 

Trishear 
14389 38 1,385 1091 1229 5.3 3.6 0.26 0.38 

Table 2: Summary of results. Reference horizons are those used for the restoration of the deformation (see figure 4). For the age of onset 

the maximum and minimum values are indicated (bold when resulting from the dataset used in this work, italics when adopted from literature 

data). Minimum and maximum slip rates result from dividing slip by the maximum and minimum age, respectively. The section length and 

shortening marked with * are the cumulative values for the ConS and ConM S structures. 


