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Abstract The definition of probabilistic models as mathematical structures to describe the
response of a volcanic system is a plausible approach to characterize the temporal behavior
of volcanic eruptions, and constitutes a tool for long-term eruption forecasting. This kind
of approach is motivated by the fact that volcanoes are complex systems in which a com-
pletely deterministic description of the processes preceding eruptions is practically impos-
sible. To describe recurrent eruptive activity we apply a physically-motivated probabilistic
model based on the characteristics of the Brownian passage-time (BPT) distribution; the
physical process defining this model can be described by the steady rise of a state variable
from a ground state to a failure threshold; adding Brownian perturbations to the steady load-
ing produces a stochastic load-state process (a Brownian relaxation oscillator) in which an
eruption relaxes the load state to begin a new eruptive cycle. The Brownian relaxation os-
cillator and Brownian passage-time distribution connect together physical notions of unob-
servable loading and failure processes of a point process with observable response statistics.
The Brownian passage-time model is parameterized by the mean rate of event occurrence,
µ , and the aperiodicity about the mean, α . We apply this model to analyze the eruptive his-
tory of Miyakejima volcano, Japan, finding a value of 44.2(±6.5 years) for the µ parameter
and 0.51(±0.01) for the (dimensionless) α parameter. The comparison with other models
often used in volcanological literature shows that this pysically-motivated model may be a
good descriptor of volcanic systems that produce eruptions with a characteristic size. BPT
is clearly superior to the exponential distribution and the fit to the data is comparable to
other two-parameters models. Nonetheless, being a physically-motivated model, it provides
an insight into the macro-mechanical processes driving the system.
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Introduction

Volcanoes can be viewed as complex physical systems in which a completely deterministic
description of the processes occurring before or during an eruption is practically impossible.
This fact motivates the definition and development of probabilistic models as mathematical
structures to describe physical phenomena: this is a response to the problem in which we do
not have direct access to the physical processes, but we can have a record of the response
of the system. In particular, if some characteristic properties of the response of the system
(e.g. event times) can be associated with a random variable, and if it is possible to express
a probability function for the random variable, then it is possible to define a probabilistic
model for the response of the considered system.

A time series of eruptions from a single volcano can be treated as a stochastic point pro-
cess with individual eruptions as (random) independent events in time. Statistical analysis
of both repose time and erupted volume catalogs have been performed for a large number of
volcanoes (e.g., Wickman 1976; Klein 1982; Mulargia et al 1985, 1987; De la Cruz-Reyna
1991; Burt et al 1994; Marzocchi and Zaccarelli 2006), mainly for those with frequent erup-
tive activity and where detailed catalogs exist. The main objective of this kind of analysis is
to develop probabilistic models to understand the past eruptive activity of the volcano and
to forecast its future behavior.

When treating eruptions as events in time, several simplifying assumptions must be made
(Klein 1982; Ho 1991): although the onset date of an eruption is generally well constrained,
the duration some times is harder to determine and/or is rarely reported. In our analysis, we
ignore eruption duration since we take the onset date as the most physically meaningful,
and measure repose times from one onset date (of an eruptive episode) to the next. In this
way, our modeling intends to describe the waiting times of the long-term physical processes
governing renewed volcanic activity. Once the volcanic system has been perturbed and a
new eruptive episode has started, the short-term behavior of the eruptive activity may follow
different patterns during the gradual decline of activity; in this context, sporadic eruptive
activity in a short time window (with respect to the repose time) after the onset of a new
eruptive episode cannot be described using the former long-term model. Thus, the definition
of repose time from this point of view is not exactly equivalent to the classic concept of
non-eruptive period; this assumption seems justified because most eruption durations are
much shorter than typical effective repose intervals (e.g., Klein 1982).

Some distinct conceptual models have been proposed to describe the eruptive behavior of
different volcanoes around the world. The most frequent solutions describe the eruptive
activity in terms of (1) a homogeneous Poisson processes in the time domain (e.g., Klein
1982; De la Cruz-Reyna 1991; Marzocchi and Zaccarelli 2006), (2) Time-Predictable pro-
cesses (e.g., Burt et al 1994; Sandri et al 2005; Marzocchi and Zaccarelli 2006) or (3) Size-
Predictable processes (e.g., Burt et al 1994; Marzocchi and Zaccarelli 2006). In our analy-
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sis, none of these existing models successfully explains the eruptive activity of Miyakejima
volcano, which seems to show a more regular behavior and a characteristic size for the
erupted volumes. Other probabilistic models often used in literature were also tested, as
for example the Loglogistic process (e.g., Connor et al 2003; Watt et al 2007), and a non-
homogeneous Poisson process modeled using a Weibull process (e.g., Ho 1991; Bebbington
and Lai 1996a,b). In this paper we present an interesting, physically-motivated, probabilistic
model based on the Brownian passage-time distribution which has not been used before for
volcanological problems; we apply it to analyze the time series of repose times (as defined),
τ , of Miyakejima volcano, and compare its performance respect to other models often used
in volcanology.

The Models

Most of the models considered here are based on generic distributions that characterize
renewal processes that in general may have some physical meaning and applicability. A re-
newal process has the property that the inter-occurrence times are independent and identically-
distributed, positive, random variables having a common distribution F(τ). We have also
considered for test two non-renewal processes: the size-predictable (SPM) and the time-
predictable (TPM) models.

Brownian Passage-Time Model (BPT)

A particularly interesting renewal model is the Brownian passage-time model (BPT). It was
originally introduced by Matthews et al (2002) and Ellsworth et al (1999) to provide a
physically-motivated renewal model for earthquake recurrence. It is based on the properties
of the Brownian relaxation oscillator (BRO). A BPT model considers an event (earthquakes
in Matthews’ model or renewed eruptive activity in our case) as a realization of a point
process in which new eruptive activity will occur when a state variable (or a set of them)
reaches a threshold (X f ) and at which time the state variable returns to a base ground level
(X0). Adding Brownian perturbations to steady loading of the state variable X produces a
stochastic load-state process. An eruption relaxes the load state to the characteristic ground
level and begins a new cycle. The load-state process is a BRO, while intervals between
events have a distribution known as Brownian passage-time distribution. Note that this is
the name used in physics literature; in the statistics literature it is often known as Inverse
Gaussian or Wald distribution (Matthews et al 2002).

In the conceptual model of Matthews et al (2002), the loading of the system has two com-
ponents: (1) a constant-rate loading component, λ t, and (2) a random component, ε(t) =
σW (t), that is defined as a Brownian motion (where W is a standard Brownian motion and
σ is a non-negative scale parameter). Standard Brownian motion is simply integrated sta-
tionary increments where the distribution of the increments is Gaussian (which might be
motivated by central-limit arguments if we consider perturbations as the sum of many small,
independent contributions), with zero mean and constant variance. The Brownian perturba-
tion process for the state variable X(t) (see figure 2 in Matthews et al (2002)) is defined as:

X(t) = λ t +σW (t) (1)
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An event will occur when X(t)≥ X f ; event times are seen as “first passage” times of Brow-
nian motion with drift (Matthews et al 2002), which means that eruptive episodes take place
when the threshold X f is first reached. The BRO are a family of stochastic renewal pro-
cesses defined by four parameters: the drift or mean loading (λ ), the perturbation rate (σ2),
the ground state (X0), and the failure state (X f ). On the other hand, the recurrence properties
of the BRO (repose times) are described by a Brownian passage-time distribution which is
characterized by two parameters: (1) the mean time or period between events, (µ), and (2)
the aperiodicity of the mean time, α , which is equivalent to the familiar coefficient of vari-
ation (defined in equation 3). The probability density for the BPT model is given by:

f (t; µ;α) =
( µ

2πα2t3

) 1
2 e

{
− (t−µ)2

2α2µt

}
(2)

The state variable X(t) is a formal parameter of a point process model and represents a
constant-rate mean path that embodies a macroscopic view of a uniform loading of the
volcanic system. It may summarize the macro-mechanics of the volcanic system controlled
by one or more physical variables. An explicit definition of the driving physical parameters
may be unrealistic and impossible to demonstrate from our analysis. Independently of its
physical nature, the state variable should be a parameter that accumulates with time during
repose episodes, up to a critical value beyond which the system becomes perturbed enough
and a new eruptive process may be triggered. Then, the eruptive process relaxes the system
and the state variable returns to a ground level and a new cycle starts. The perturbation
factor ε(t) represents the total sum of all other factors which may play a role in the recurrent
eruptive process considered and/or that may randomly disturb the state variable producing
the aperiodicity of the mean time between eruptions (e.g. effects from tectonic environment,
changes in the magma rate supply, compositional changes).

Other models often used in volcanological problems

Poisson Process in the time domain: random model of eruption occurrences

The Poisson process is an important model often used to describe the patterns of eruption
occurrences in volcanoes (e.g., Klein 1982; Mulargia et al 1985). It is mainly applicable to
major eruptive activity involving a significant release of mass and energy (De la Cruz-Reyna
1991). In a Poisson process the repose times follow an Exponential distribution. It charac-
terizes a random volcano, which is one that is ready to erupt at any time. An alternative
possibility is that the eruption sequence is periodic to some degree, and that a certain repose
time is favored; if eruptions were periodic, the distribution of repose times would be peaked
instead of containing an exponentially decreasing number of larger times, as predicted by
the Exponential model. In order to explore the degree of departure from a homogeneous
Poisson process, we calculate the coefficient of variation, η , given by

η =
σ
µτ

(3)

where µτ and σ are, respectively, the average and standard deviation of the repose times τ
(Marzocchi and Zaccarelli 2006). The coefficient η may help us to quantify if and how much
the statistical distribution of τ differs from a Poisson process: for a Poisson process (and then
an Exponential distribution of τ), η = 1; more clustered distributions have η > 1 and for
more regular recurrent times η < 1 (e.g., Cox and Lewis 1966; Marzocchi and Zaccarelli
2006).
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Renewal models described by Weibull, Gamma, Lognormal and Loglogistic distributions

In renewal models, the random variable τ represents the lifetime or time to failure of a sys-
tem. To analyze the intrinsic characteristics of this kind of probabilistic models, it is often
more informative to consider the hazard function (also known as hazard rate, or intensity
function) of the model than to look at the shape of the Probability Density Function (PDF)
or Cumulative Distribution Function (CDF) directly; for this reason we make extensive use
of the hazard function to compare the different renewal models considered. The hazard func-
tion describes the instantaneous failure rate, or the conditional density of failure at a given
time, considering the information that no event occurred until that time. A more detailed
description of the hazard function concept can be found forward in this paper.

The Exponential distribution (and its implicit homogeneous Poisson process) has a con-
stant hazard function, highlighting its characteristic no-memory property. However, when
processes like wearing, improvement, learning and growth are implicit in the physical sys-
tem, then it is necessary to consider models where the hazard function must be a function
of time. The Weibull, Gamma, Lognormal and Inverse Gaussian (the last one is described in
the next section) are the models with those characteristics that are widely used in the litera-
ture.

The Weibull is one of the models most used in volcanological applications (e.g., Ho 1991,
1996; Bebbington and Lai 1996a,b). The Weibull process (WEI(ν ,θ )) is one of the possible
generalizations of the Exponential case; θ and ν may be interpreted, respectively, as the de-
gree of clustering/periodicity and the underlying activity (e.g., Bebbington and Lai 1996a).
If the volcanism is waning or developing, the model is generalized to allow the rate of vol-
canic events (which is constant in the homogeneous case) to be a decreasing or increasing
function of time (Ho 1996). This can be defined as a non-homogeneous Poisson process
(Bain 1978). The Gamma distribution (GAM(ν ,θ )) provides an alternative generalization of
the Exponential distribution but with different characteristics with respect to the Weibull; in
fact, if we consider the hazard function for the Gamma model, the event rate may increase
initially, but after some time the system would reach a stable condition and then it tends to a
constant hazard rate (Bain 1978). This is considerably different in the Weibull model where,
for θ > 1, the hazard function tends to infinity as the time tends to infinity. The Lognormal
model has been considered for periodicity tests by some authors (e.g., Bebbington and Lai
1996a). In this case, the hazard function has a similar behavior as the Gamma model but with
the difference that the asymptotic event-rate goes to zero as the time goes to infinity. Finally,
we also consider the possibility of a Loglogistic model, characterized by two parameters: µ ,
a location parameter, and σ , a scale parameter, which has been used by some authors (e.g.,
Connor et al 2003; Watt et al 2007) to successfully describe data in some volcanological
applications.

Time predictable (TPM) and Size predictable (SPM) models

TPM and SPM are widely used in both seismological and volcanological literature. Both of
them imply a functional relationship between size (of eruptions) and repose times. In the
case of TPM, the time to the next eruption depends on the time required for magma entering
the storage system to reach the eruptive level (Burt et al 1994). It can be described using a
general definition of the form τi ∝ [Vi]

β , where ∝ stands for ’proportional to’ (Sandri et al
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2005). A reliable application of a TPM requires that the size (e.g. erupted volume, explosiv-
ity index, etc.) of the eruptions has to be significantly correlated to the logarithm of the time
to the next eruption (Marzocchi and Zaccarelli 2006). The applicability of this model relies
on two main assumptions: (1) eruptions occur when a threshold of the magma volume in the
storage system is reached, and (2) the magma input in the storage system is a well defined
function of the reservoir to be filled to reach that threshold; the specific case of β = 1 means
that the input rate is constant (Marzocchi and Zaccarelli 2006).

On the other hand, in a SPM the duration of the repose time of the volcano (i.e. the time
since the last eruption) is the parameter which is useful to forecast the size of the next
eruption. As for the TPM case, the most general functional relationship between volumes
and repose times for a SPM is of the form Vi ∝ τβ

i (e.g., Marzocchi and Zaccarelli 2006).
In this case, the model relies on two main assumptions: (1) the output of each eruption is
determined only by the magma accumulated since the last eruption, and (2) as in the previ-
ous case, the magma enters in the plumbing system at a rate described by a ’well defined’
function of the magma volume in the reservoir.

Miyakejima volcano and data set

Miyakejima volcano

Miyakejima island, located about 200 km south of Tokyo (Fig. 1), is one of the most active
basaltic volcanoes in Japan. Its recurrent eruptive behavior has been observed but up to now
a detailed quantitative analysis based on its past activity has not been performed. In most
historical eruptions, basaltic lava and scoria erupted mainly from flank fissures (Tsukui and
Suzuki 1998) and most eruptions lasted a short time (a day to a month). The latest eruptive
episode started in June 2000 and a caldera formed at the summit; since then, the volcano
has been showing some seismic swarms accompanied by important gas emissions for more
than 9 years. On the basis of surface phenomena observed, many authors divided the 2000-
2010 eruptive period into at least four stages (e.g., Nakada et al 2005; Ueda et al 2005):
(1) magmatic intrusion (1 day), (2) summit subsidence (10 days), (3) Explosion (40 days),
and (4) gas emissions accompanied by small seismic swarms, deformation and explosions
(>9 years). The total volume of tephra erupted was about 0.009 km3 (DRE), which is much
smaller than the volume of the resulting caldera (0.6 km3) (Nakada et al 2005).

(FIGURE 1 (MAP OF MIYAKEJIMA...) SOMEWHERE AROUND HERE)

Here we analyze a data set containing the repose periods and volumes of lava and tephra
emitted by Miyakejima volcano based on the historical data published by Tsukui and Suzuki
(1998) and from the Global Volcanism Program catalog (Simkin and Siebert 2002 onwards).
The data set was updated introducing information of the last eruption (June 2000) from
Nakada et al (2005) (Table 1).

Data set of eruptions and completeness of the catalog

In order to extract unbiased information from a catalog it is necessary to check for its com-
pleteness. This issue is well known in seismology where the completeness of catalogs is
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Table 1 Summary of the eruptive history of Miyakejima (this table updates the catalog provided by Tsukui
and Suzuki (1998). The volume of the 2000 eruption is from Nakada et al (2005); some dates missing in
Tsukui and Suzuki (1998) are from the Global Volcanism Program (Simkin and Siebert 2002 onwards). The
VEI values are calculated based on the DRE volumes using the criteria defined by Newhall and Self (1982).
Eruption numbers accompanied by (∗) mark are those considered in the present study (after the completeness
analysis).

Num. Kind Date DRE volume (km3) VEI

29∗ 2000 Scoria 2000 Jun 27 (AD) 0.009 3
28∗ 1983 Scoria + Lava 1983 Oct 03 (AD) 0.007 2
27∗ 1962 Scoria + Lava 1962 Aug 24 (AD) 0.006 2
26∗ 1940 Scoria + Lava 1940 Jul 12 (AD) 0.015 3
25∗ 1874 Scoria + Lava 1874 Jul 03 (AD) 0.010 3
24∗ 1835 Lava 1835 Nov 11 (AD) <0.001 <2
23∗ 1811 Scoria 1811 Jan 27 (AD) <<0.010 2

1769 (?) Lava 0.001
22∗ 1763 (?) Lava 1763 Aug 17 (AD) 0.001 3

Shinmio Explosion Breccia (SMB) 0.031
1763 Scoria 0.033

21∗ 1712 Lava 1712 Feb 04 (AD) 0.001 2
20∗ 1643 Scoria 1643 Mar 31 (AD) 0.009 3

1643 Lava 0.003
19∗ Kamakata Lava (KKL) 1595 Nov 22 (AD) <0.001 <2
18∗ Benkenezaki Lava (BKL) 1535 Mar (AD) 0.003 2
17∗ Enokizawa Lava (EZL) 1469 Dec 24 (AD) 0.002 2
16 Son-ei Bokujo Ash (SBA) 1154 AD (?) 0.040 3

1154 Scoria <<0.010
15 Nanto Lava (NTL) 1085 AD (?) 0.012 2

Kamane Scoria (KMS) 10-11C AD (?) 0.010
14 Miike Explosion Breccia (MKB) 838-886 AD 0.040 3

Oyama Scoria 0.030
Oyama Lava 0.012

13 Kazahaya Scoria (KHS) 832 AD 0.007 2
12 Mitoribata Scoria (MBS) 1290 yBP 0.007 2
11 Daihannya-yama Scoria (DHS) 500 AD 0.010 3

Anegakata Lava 0.001
10 Sabigahama Explosion Breccia (SHB) 320 AD (?)<0.010 2

Togahama-south Lava (TSL) <0.001
9 Togataira Ash (TGA) 260 AD 0.040 3

Togataira Scoria (TGS) 0.005
Usuki-west Scoria (UWS) n.d
Igayazawa Scoria 0.010

8 Tairayama Lava (TYL) 2050 yBP 0.001 3
Tairayama Scoria (TYS) 0.020

7 Izu Scoria (IZS) 600 BC 0.050 3
6 Hatchodaira Accrtionary Lapilli (HCA) 2500-3000 yBP 0.200 4

Furumio Explosion Breccia (FMB)
Hatchodaira Scoria (HCS) 0.170
Nagane Scoria (NGS) 1450 BC n.d.

5 Tsubota Scoria (TBS) 3000 yBP(?) 0.010 2
4 Mizutamari Explosion Breccia (MZB) 3500 yBP(?) 0.062 3
3 Igaya-east Scoria (IES) 3660 yBP <<0.010 2
2 Igaya Accrtionary Lapilli (IGA) 4000 yBP 0.090 3

Izushita Lava (ISL) (?)0.001
1 Ofunato Explosion Breccia (OFB) 7000-8000 yBP 0.150 4



8

often checked by analyzing the Gutenberg-Richter law and/or the time evolution of the rate
of occurrence of events. In volcanology however, the incompleteness of a catalog of erup-
tions may be more difficult to evaluate because there are only weak indications that a general
power law applies (Simkin and Siebert 2002 onwards), and also because we know that vol-
canoes may have different eruptive regimes in their history and then the eruptive rate may
change with time (e.g., Ho 1991; Marzocchi and Zaccarelli 2006; Coles and Sparks 2006).
Because of this difficulty, when we talk about the completeness of a given eruptive sequence,
we understand it as a period of “uniformity” in the data set.

To analyze the completeness of the catalog we plot the cumulative number of eruptions in
time, as seen in Figure 2a, and identify changes in the statistics of the repose times. Changes
in the statistics of the sequence are identified applying a change point strategy (CHPT). The
change point hunting methods aim to find one or more statistically significant change points
in a sequence of data. Here we use a method based on the two-sample Kolmogorov-Smirnov
statistics (a non-parametric test for equal distributions), which has been proposed and tested
by Mulargia and Tinti (1985) and Mulargia et al (1987).

(FIGURE 2 (CUMULATIVE NUMBER OF ERUPTIONS...) SOMEWHERE AROUND
HERE)

The cumulative plot in Fig. 2a shows a curve with a slope changing with time. Changes
in the slope may be due to different factors as changes in the eruptive regime and/or under-
reporting of eruptions in past time (incompleteness of the catalog). Applying the CHPT
strategy, we identify one change point (with 0.01 significance level threshold) between the
eruptions 16 and 17 of the catalog (1154 and 1469 AD respectively, see table 1). It means
that we can consider the catalog to be “uniform” in the period from 1469 up to now (13
eruptive episodes), and then our analysis is oriented to describe the eruptive regime of the
volcano within this period. It is important to remark that volcanoes may change eruptive
regime through time: our analysis and the derived eruption forecasting assessment is based
on the eruptive regime shown by the volcano in the last (around) 540 years, and is valid only
under the assumption that in the future it will behave in the same way.

Data Analysis and Results

Our analysis consists of four groups of tests which can be summarized as: (1) test of a SPM
and a TPM; (2) test of a homogeneous Poisson process in the time domain, (3) tests of
the Brownian passage-time model, and (4) test of other possible renewal models describing
different processes (e.g. recurrent, non-homogeneous Poisson); in this case we have consid-
ered as possible candidate distributions four models often used in volcanology: Lognormal,
Gamma, Weibull, and Log-logistic.

We estimate the model parameters for each candidate model using a Maximum Likelihood
Estimate (MLE) approach, and use the Akaike Information criteria (AIC, Akaike 1974) for
the model selection; the AIC is a tool based on the concept of entropy, and offers a rel-
ative measure of the information lost when a given model is used to describe some data
(a trade-off between accuracy and complexity of the model). On the other hand, SPM and
TPM models are tested by regression analysis of repose times and sizes (erupted volumes
and VEI).
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Estimating the parameters of the considered models

Fig. 3 shows the plots of erupted volumes against the time since the last eruption (Fig. 3a) for
a SPM, and against the time to next eruption (Fig. 3b) for a TPM. In these figures we cannot
see any clear relationship between sizes (i.e. volumes) and the times (from last eruption or
to the next one). This is confirmed by the R-square statistic (reported in each panel), which
in both cases is very low (R2 < 0.06). Furthermore, if we consider the slope of the best fitted
line and the associated errors (see Fig. 3), in both cases the slope of the fitted line does not
significantly differ from zero; using a F-test (Ho : slope = 0), the hypothesis Ho cannot be
rejected (at a significance level of 0.05). Then there is no strong evidence suggesting either
a SPM or TPM as a successful model for Miyakejima, so at least from these data we cannot
extract any information, even if we group sizes using the VEI. However, we should be aware
of the potential problems that can be faced when working with erupted volumes due to the
quality of the reported values and/or the real possibility to have an accurate quantification of
the volume of magma involved during the process. The 2000 Miyakejima eruption is a nice
example, since there are strong evidences that the explosive volume is just a fraction of the
total volume of magma involved, because a large volume of magma moved laterally into a
large dyke (e.g., Nakada et al 2005; Ueda et al 2005). This may be an unavoidable source
of ‘noise’ that could eventually hide a potential relation among repose times and erupted
volumes. Likewise, we should highlight here that this lack of evidence may be also a direct
consequence of the eruptive behavior of the volcano; later in this paper we make a discus-
sion about the erupted volume distribution and also about how TPM or SPM could coexist
with a renewal model.

(FIGURE 3 (PLOT OF TIMES SINCE PREVIOUS...) SOMEWHERE AROUND HERE)

Next we test the hypothesis of a homogeneous Poisson process, in which the repose times
τ follow an Exponential distribution. Fig. 4 shows the empirical cumulative distribution
of observed data and the best (maximum likelihood) Exponential distribution fitting the
data. A one-sample Kolmogorov-Smirnov test rejects this hypothesis (at a significance level
of 0.05). Furthermore, if we calculate the coefficient of variation η (equation 3) we get
η = 0.51, which confirms the non-random distribution and the possibility of a recurrent be-
havior (i.e. η < 1).

(FIGURE 4 (CDF OF THE EXPONENTIAL DIST....) SOMEWHERE AROUND HERE)

Now we test a set of trial probabilistic models (which were briefly described in a previous
section). The characteristic parameters of each model (BPT, Lognormal, Gamma, Weibull
and Log-logistic) were estimated using a maximum likelihood approach. Table 2 summa-
rizes the functional form of the PDF, estimated (MLE) parameters (and uncertainties), and
the AIC (Akaike 1974) for all the probabilistic models considered. Using a Kolmogorov-
Smirnov test, we cannot reject the Weibull, BPT, Lognormal, Gamma, and Loglogistic hy-
pothesis (at significance level of 0.05), which means that, from a statistical point of view,
all these probability models successfully explain the observed data. Fig. 5 shows the Cumu-
lative Distribution Function (CDF) of the candidate distributions and the empirical CDF of
the observed data (τ); as reference, the CDF of the Exponential distribution is also included.

(FIGURE 5 (PLOT OF CDF OF BPT, WEI, LOGN...) SOMEWHERE AROUND HERE)
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Based on AIC values listed in table 2, five out of six models have AIC values in the
range 107.3 ≤ AIC ≤ 110.2 (Weibull, BPT, Gamma, Lognormal and Loglogistic), being
the Weibull the model with the lowest AIC. All these two-parameters models perform bet-
ter than the exponential distribution, whose AIC value is significantly higher. To test it we
simulate 1000 exponential catalogs and fit these catalogs using the exponential and each 2-
parameters distributions; we find that more than 99% of the cases provide an AIC difference
smaller than 2.5, which is much smaller than the 7-9 units of AIC difference that we have in
the real catalog. On the other hand, the AIC differences found for the five two-parameters
models are not significantly different. This fact demonstrates that the BPT model is able to
describe the data with similar performance as the other models normally used in volcanolog-
ical applications, however, the BPT model can be an interesting alternative to describe this
kind of data since it may be directly linked to a physical system which may provide signifi-
cant insights for the interpretation of the observed eruptive behavior. For instance, the mean
repose time µ of the BPT (44.2 ±6.5 years), or its reciprocal, the mean rate of occurrence,
is the natural scale parameter of first-order interest, as it measures the typical frequency
at which eruptions occur. Changing the mean re-scales time but does not otherwise alter
the shape of the probability distribution. The aperiodicity (α = 0.51 ± 0.01) is chosen as
a second parameter because it is a natural shape parameter of the BPT family, and it is a
dimensionless measure of irregularity in the event sequence (Matthews et al 2002); in other
words, it is a measure of the aperiodicity of the mean. As α tends to 0, the sequence tends
to be perfectly periodic, while as α grows, the sequence tends to a (homogeneous or non-
homogeneous) “Poisson-like” process. In particular, the higher α parameter (for α > 1), the
more possibility that a given “Poisson-like” sequence has a clustered character (i.e. non-
homogeneous Poisson process).

Distribution analysis of erupted volumes

Using the eruption size data (volumes and VEI), it was not possible to find any evidence to
support either a TPM or a SPM (highlighting that the unavoidable uncertainties in the vol-
ume estimation or the possible recurrent behavior of the volcanic system may play an im-
portant role to avoid the definition of a clear relationship between repose times and erupted
volume). The question that arises is then, within this framework, how should the erupted
volumes be distributed? We perform an analysis of the erupted volumes (within the period
of completeness of the catalog) and the results are summarized in Fig. 6. A Lognormal dis-
tribution provides a good explanation of the erupted volume data (hypothesis not rejected
using a one sample Kolmogorov-Smirnov test at a significance level of 0.05); it means that
there exists a preferred or more common erupted volume (the mean erupted volume is 0.012
±0.004 km3, assuming that not considerable bias exist in the volume database). In other
words, we can consider that the logarithm of the erupted volumes are normally distributed.
This result can support the hypothesis of a recurrent source model, as suggested by the
Brownian passage-time distribution for the repose times, and may also explain the poor res-
olution of the TPM, since if there is a preferred size and a preferred repose time, then the
data in a time-size space should tend to group in a cluster; from this point of view the BPT
model would not be incompatible with a TPM model.

(FIGURE 6 (CDF OF ERUPTED VOLUMES...) SOMEWHERE AROUND HERE)
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Table 2 Candidate distributions, PDF, estimated (MLE) model parameters and uncertainties, and Akaike
Information Criteria (AIC)

Model Probability Parameters AIC
Density (MLE)

Weibull θνθ tθ−1 e{−νθ tθ} ν−1 = 49.9 (±5.6) y. 107.3
(ν , θ ) θ = 2.7 (±0.7)

Brownian
(

µ
2πα2t3

) 1
2 e

{
− (t−µ)2

2α2 µt

}
µ = 44.2 (±6.5) y. 108.3

Passage-time α = 0.51 (±0.01)
(µ , α)

Gamma νθ tθ−1

Γ (θ) e−νt ν−1 = 9.1 (±3.8) 108.3
(ν , θ ) θ = 4.9 (±1.9)

Lognormal 1
σt

√
2π e

{
− (ln(t)−µ)2

2σ2

}
µ = 3.68 (±0.15) 109.1

(µ , σ ) σ = 0.51 (±0.11)

Loglogistic e
ln(t)−µ

σ

σ
(

1+e
ln(t)−µ

σ
)2 µ = 3.72 (±0.15) 110.2

(µ , σ ) σ = 0.29 (±0.07)

Exponential ν e−νt ν−1 = 44.2 (±12.8) y. 116.9
(ν)

Implications of Brownian model for Eruption Forecasting Assessment

As emerged from the model comparison analysis performed, five of the considered models
(Weibull, BPT, Gamma, Lognormal, and Loglogistic) successfully described the Miyake-
jima data set. Weibull, Gamma, Lognormal and Loglogistic models have been widely used
in volcanological literature, and their implications for the interpretation of the data have
been discussed in many research papers (e.g., Bain 1978; Ho 1991, 1996; Bebbington and
Lai 1996a,b; Connor et al 2003; Watt et al 2007). Here we concentrate in analyze the intrin-
sic characteristics of BPT model, and explore the implications that this tool may have for
eruption forecasting.

Repose times for recurrent eruptive activity that may be described using a Brownian passage-
time distribution may be used to define a model for time-dependent, long-term eruption
forecasting. This distribution has some noteworthy properties as (1) the probability of hav-
ing renewed eruptive activity at time t = 0 is 0 (i.e. just after the last eruptive period); (2) as
t → ∞ the hazard function is finite. In other words, it increases steadily from zero at t = 0
to a finite maximum near the mean recurrence time. The first property should be analyzed
carefully since it may lead to misunderstanding if used improperly. As described in the in-
troductory part, in our analysis we ignore eruption duration since we take the onset date
as the most physically meaningful; then we measure repose times from one onset date to
the next. Following this approach, our modeling intends to describe the waiting times of
the long-term physical processes governing the onset of renewed volcanic activity. When an
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eruption starts, the short-term behavior of eruptive activity might follow different patterns
during the gradual decline of activity; this means that sporadic eruptive episodes in a short
time window after the onset of a new eruptive episode cannot be described using the former
long-term model.

We now consider the random series of events t1 < t2 < .. . < ti . . ., and the repose times
τi = ti+1 − ti, (i = 1,2, . . .). If the sequence of random variables {τ} is independent and
distributed according to a function F(τ), then the original series of events {ti} is called a
renewal process. For a history-dependent point process, the conditional intensity function
λ (t|Ht) of the form

λ (t|Ht) = h(x) =
f (x)

1−F(x)
=

f (x)
S(x)

(4)

for x = (t − tL), defines the hazard function. Here, Ht is a history of occurrence times
{ti; ti < t} before time t, including the information that no event occurred either in the
intervals (t, ti+1) or in the interval (tL, t), and where tL is the last occurrence before the
considered time t (e.g., Bain 1978; Ogata 1999). Then h(x) is the ratio of the probability
density function f (x) to the survival function S(x) and it may be defined as the event rate at
time t conditional on survival until time t (or later).

The hazard function describes instantaneous failure rate, or the conditional density of failure
at time x given that no event occurred until time x. An increasing hazard function at time x
indicates that an event is more likely to occur in a given increment of time (x,x+∆x) than it
would be in the same increment of time in an earlier age. It is also useful in the specification
of a point process since it may be directly linked with the probabilistic forecast of an event
occurrence.

Fig. 7 shows the hazard function of the BPT model for Miyakejima volcano (see also Fig.
5 for the corresponding cumulative distribution functions). Hazard functions of the other
candidate models are also included for comparison. For the BPT model, the failure rate is
zero (0) immediately after an event, then it grows to a peak and then asymptotically tends
to a finite value at long times compared to the mean time. Fig. 7 can help to understand
the different behavior of the different candidate models and to compare them with the BPT
model. The main characteristic of the Exponential model is the constant hazard function,
implying a random occurrence of volcanic events in time. All the other models are more
or less similar up to the mean recurrence time, at which point their behavior diverges. For
example, the hazard function of the Weibull model starts at zero and increases to infinity,
while for the Lognormal model, the asymptotic failure rate goes to zero. The Gamma model
also has a finite asymptotic failure rate, but the function grows more smoothly.

(FIGURE 7 (HAZARD FUNCTION OF BPT...) SOMEWHERE AROUND HERE)

We can calculate the conditional probability Pr(x, x+∆ t) that an eruption will happen in a
time interval (x, x+∆ t], given an interval of x = (t − tL) years since the occurrence of the
previous eruption. Let T be the time to the next eruption, then

Pr(x, x+∆ t) = P(x < T ≤ (x+∆ t) | T > x) (5)

for x being the time since last eruption, as defined before. If F(τ) denotes the cumulative
distribution function of the repose times τ , then F(x) = Pr(T ≤ x), and F(x+∆ t) = Pr(T ≤
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(x+∆ t)) for x ≥ 0, while the survival time function S(x) is S(x) = 1−F(x) = Pr(T> x), for
x ≥ 0. Then, the probability that an eruption occurs in the next ∆ t interval is (e.g., Bowers
et al 1997)

Pr(x, x+∆ t) =

∫ x+∆ t
x f (s)ds
1−F(x)

(6)

(note that for small ∆ t, Eq. 6 may be approximated to F(x+∆ t)−F(x)
1−F(x) . Equation 6 can be in-

terpreted as the conditional probability that an eruption will occur in the time interval (x,
x+∆ t), given an interval of x years since the occurrence of the last event. We can use this
equation to calculate probabilities of eruption and forecast future events. For example, Fig.
8 is the evolution of Pr(x, x+∆ t) as seen from the time immediately after the last eruption in
2000 for different values of ∆ t.

(FIGURE 8 (ERUPTION FORECASTING FOR MIYAKEJIMA...) SOMEWHERE AROUND
HERE)

Discussion

Renewal processes characterized by six different probabilistic models, plus a TPM and a
SPM, have been applied to analyze the repose times between eruptive episodes of Miyake-
jima volcano during the last 540 years (the period for which the catalog has been consid-
ered complete). From our analysis we conclude that the two-parameters models (Weibull,
Gamma, Lognormal, Loglogistic, and BPT) are able to explain the observed data, and show
a better fit compared to the exponential distribution. While the former four models have been
widely used in volcanological literature, the BPT model seems to be a new interesting alter-
native to describe volcanological data. The BPT is based upon a simple physical model (the
Brownian relaxation oscillator), and is parameterized by the mean rate of event occurrence,
µ , and the aperiodicity about the mean, α . The Brownian passage-time family differs from
other usual candidate distributions for long-term eruption forecasting in that it may be more
readily interpreted in terms of the volcanic processes. The Brownian relaxation oscillator
and Brownian passage-time distribution connect together physical notions of unobservable
loading and failure processes of a point process with observable response statistics (i.e. event
recurrence in time).

The definition of a general model to describe eruptive activity is a difficult task due to dif-
ferent factors such as the intrinsic complexity of eruptive processes and the difficulty of
getting complete catalogs with sufficient observations. The BPT model may be considered
as a first-order approximation to describe different kinds of volcanic systems, which can
span from random volcanoes (Poisson-like processes), up to perfectly periodic systems. The
non-homogeneous Poisson process model of Ho (1991), characterized by a Weibull distri-
bution, was a first attempt of generalization to describe with a single model different kinds
of processes. However, the Weibull is a model that possesses some intrinsically undesirable
features that are difficult to support from a physical point of view in volcanological applica-
tions. For example, hazard rate functions of Weibull variates (Fig. 7) either start at zero and
increase to infinity or start at a finite value and decrease to zero. This asymptotic behavior
may be unrealistic in many physical systems and specifically in a volcanological application
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may lead to unnecessary assumptions.

Conversely, the BPT model possesses many interesting features which make it a plausi-
ble model to describe the activity of different volcanoes. If we consider its hazard function,
the failure rate is zero immediately after an event. Then it grows to a peak and then de-
clines to a finite asymptotic rate at times long compared to the mean rate. These are unique
properties among the set of candidate models considered. These properties provide a more
realistic asymptotic behavior of the failure rate. The BPT model may be regarded as a de-
layed Poisson process (Ellsworth et al 1999), for which the failure rate is zero for a finite
time following an event and then steps up to an approximately constant failure rate at all
succeeding times.

To measure how much the BPT model approaches a Poisson-like or a periodic process,
we can consider the α parameter. The more periodic the process, the more α approaches
zero. The value α = 0.51 ± 0.01 found in this work for the aperiodicity in Miyakejima
volcano indicates a clear recurrent behavior in this volcanic system. To compare eruptive
activity of different volcanoes with the results obtained in Miyakejima, we analyzed some
catalogs from published works in other volcanic areas: for instance, we considered the data
from (1) Mt Ruapehu and (2) Mt. Ngauruhoe -New Zealand- (tables 2 and 3 in Bebbington
and Lai (1996b)), (3) Kilauea and (4) Mauna Loa -Hawaii- (tables 1 and 2, respectively, in
Klein (1982)), and (5) Mt. Etna (Marzocchi and Zaccarelli 2006).

Fig. 9 is a plot of the estimated parameters α and µ assuming a BPT model for the vol-
canoes cited before. The µ (y axis) is just a scale parameter measuring the mean recurrence
time, whereas the (dimensionless) α parameter (x axis) may provide a good framework
to compare different volcanic systems; for instance, if we consider the results in Fig. 9
it is evident that all considered volcanoes but Miyakejima have α > 1. This is consistent
with the different results provided by the authors; for example, if we consider Mauna Loa
(α = 1.28±0.4) and Kilauea (α = 3.02±1.49) volcanoes, α parameter indicates that those
volcanoes have more Poisson-like or a clustered behavior, which is in agreement with the
results of Klein (1982) who concluded that Hawaiian eruptions are largely random phenom-
ena displaying no periodicity. The high α value for Kilauea, could indicate clustering of
eruptions (i.e. non-homogeneous Poisson processes). For Ruapehu (α = 1.26± 0.36) and
Ngauruhoe (α = 1.4± 0.33) volcanoes, the α parameter indicates also a Poisson-like be-
havior, which is also in agreement with the results of Bebbington and Lai (1996b); in those
cases, the authors examined both the homogeneous Poisson and Weibull as possible models
to describe the eruptive patterns of both volcanoes, concluding that both of them are more
Poisson-like processes even if they are satisfactorily modeled by a Weibull renewal process.

(FIGURE 9 (ESTIMATED PARAMETERS (ALPHA AND MU)...) SOMEWHERE AROUND
HERE)

Another important consideration should be done with respect to the TPM/SPM models.
As discussed in previous sections, it is not possible to define a clear relationship between
repose times and eruption sizes from Miyakejima volcano; additionally, we found that there
is a preferred erupted volume. Given the recurrent behavior of Miyakejima volcano (inferred
from the α value of the BPT model), we argue that it is coherent that for preferred repose
times it is possible to have preferred erupted volumes. It means that BPT model may be used
in volcanoes that tend to produce eruptions of similar sizes. It implies also that it is possible
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that a TPM or SPM model could coexist within our BPT model for recurrent volcanic activ-
ity. In fact, The BRO may be extended to models that are not renewal processes; in particular
stochastic versions of TPM and SPM may be derived from randomized boundary conditions
in the Brownian oscillator (Matthews et al 2002).

Concluding remarks

The intrinsic complexity of volcanic systems motivates the definition of probability models
as mathematical structures to describe the response of the considered systems. Here, we put
forward a new model borrowed by seismology named Brownian Passage Time (BPT). The
application to the past eruptive activity of Miyakejima volcano shows that BPT fits signif-
icantly better the eruptive time occurrence than the exponential distribution. Despite the fit
is comparable to the one obtained by the other two-parameters models considered, BPT has
some interesting features that allow us to interpret straightforwardly and more realistically
the long-term behavior of the volcano.

The Brownian passage-time family of distributions describes the response of a conceptual
physical system defined as a Brownian relaxation oscillator (BRO). BRO and BPT together
connect physical notions of unobservable loading and failure processes of a point process
with observable event-time statistics. BPT model is characterized by two parameters: the
mean repose time (µ) and the aperiodicity of the mean (α). While µ is just an scale param-
eter that provides information about the typical frequency at which eruptive events occur,
α is a dimensionless parameter that measures the aperiodicity of the mean response of the
system, and for this reason this parameter may be useful to compare different volcanoes
spanning from periodic-like to Poisson-like systems.

For the Miyakejima volcano, the mean repose time is µ = 44.2 ± 6.5 years, while the
dimensionless aperiodicity parameter is α = 0.51 ±0.01. This value for α parameter is an
evidence of recurrent eruptive activity of Miyakejima volcano, and the first such recognized
example.

The BPT model provides some insights for time-dependent, long-term eruption forecast-
ing. For instance, if we consider the hazard function, some noteworthy properties can be
defined: the probability of having renewed eruptive activity just after an eruptive cycle is
very low, then it increases steadily from zero to a finite maximum near the mean recurrence
time. Finally, for times greater than the mean recurrence time the hazard function tends to
a finite constant value, indicating that for long repose times the system tends to behave as a
Poisson process.
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Fig. 1 Map of the Miyakejima volcano and location in the Izu island group, Japan.
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Fig. 2 (a) Cumulative number of eruptions with time, and Change Point analysis, Miyakejima volcano. (b)
The cumulative volume of erupted material (DRE) is also shown for reference.
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1469.
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