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Abstract 
 

We investigate shear-wave polarization in the Hayward fault zone near Niles Canyon, 

Fremont, CA. Waveforms of 12 earthquakes recorded by a seven-accelerometer seismic array 

around the fault are analyzed to clarify directional site effects in the fault damage zone. The 

analysis is performed in the frequency domain through H/V spectral ratios with horizontal 

components rotated from 0 to 180°, and in the time domain using the eigenvectors and 

eigenvalues of the covariance matrix method employing three component seismograms. The 

near-fault ground motion tends to be polarized in the horizontal plane. At two on-fault stations 

where the local strike is N160°, ground motion polarization is oriented N88°±19° and N83°±32°, 

respectively. At third on-fault station the motion is more complex with horizontal polarization 

varying in different frequency bands. However, a polarization of N86°±7°, similar to the results 

at the other two on-fault stations, is found in the frequency band 6-8 Hz. The predominantly 

fault-normal polarized motion at the Hayward fault is consistent with similar results at the 

Parkfield section of the San Andreas fault and the Val d’Agri area (a Quaternary extensional 

basin) in Italy. Comparisons of the observed polarization directions in several cases with models 

of fracture orientation based on the fault movement indicate that the dominant horizontal 

polarization is near-orthogonal to the orientation of the expected predominant cracking direction. 

The results help to develop improved connections between fault mechanics and near-fault ground 

motion. 
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1. Introduction 

 

Large fault zones contain belts of damaged rocks with high crack density and granular 

materials that extend over widths ranging from tens to hundreds of meters (Ben-Zion & Sammis 

2003, and references therein). These damage zones have reduced elastic moduli that lead to 

amplification of seismic motion (e.g., Cormier and Spudich, 1984; Li & Vidale, 1996; Calderoni 

et al., 2010). Low velocity fault zone layers having sufficiently coherent geometrical and 

material properties over length scales of several km or more produce trapped waves that result 

from constructive interference of critically reflected phases (Ben-Zion and Aki, 1990; Li & 

Leary, 1990; Li et al., 1997; Ben-Zion 1998). 

Trapped waves with considerable motion amplification have been observed along many 

active faults (e.g., Ben Zion et al., 2003; Peng et al., 2003; Mizuno et al., 2004; Lewis et al 

2005), as well as in dormant fault damage zones (Rovelli et al., 2002; Cultrera et al., 2003). The 

basic form of trapped waves is Love-type with particle motion parallel to the fault zone layer (i.e. 

fault-parallel and vertical). However, small changes in the fault zone geometry can produce 

converted SV and P phases with particle motion normal to the fault. Examinations of large 

seismic data sets recorded by numerous fault zone stations indicate that while signatures of rock 

damage are abundant along faults, clear trapped waves are observed only in spatially-limited 

fault sections (e.g. Mamada et al., 2004; Pitarka et al. 2006; Lewis and Ben-Zion, 2010). 

In several recent studies polarization of shear waves near faults was found to be 

predominantly fault-normal. Rigano et al. (2008) observed in some faults of Mt. Etna (the 

Tremestieri, Pernicana, Moscarello and Acicatena faults) that seismic signals are strongly 

polarized and their orientation is never fault-parallel as would be expected for trapped waves. 

Using both volcanic tremor and local earthquakes, Falsaperla et al. (2010) found a strong 

polarization at seismological stations in the crater area of Mt. Etna, with polarization directions 

varying site by site but everywhere transversal to the orientation of the predominant local 

fracture field. Similarly, Di Giulio et al. (2009) found very stable polarization angles on Mt. 
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Etna, in the NE rift segment and in the Pernicana fault at Piano Pernicana, with horizontal 

polarization that again was never parallel to the fault strike. Di Giulio et al. (2009) ascribed the 

effect to local fault properties hypothesizing a role of stress-induced anisotropy and 

microfracture orientation in the near-surface lavas. Their basic idea was that, similarly to 

anisotropy along faults (Cochran et al., 2003; Boness & Zoback, 2004; Peng & Ben-Zion, 2005), 

polarization might be dependent on the crack orientation in the shallow crust.  

In the present paper we investigate ground motion polarization across the Hayward fault 

near Niles Canyon, Fremont, California. Using seismic records of seven accelerometer stations 

installed by the USGS since January 2008, we observe a tendency of on-fault stations to be 

polarized in the horizontal plane. This polarization in the region surrounding the fault shows a 

high angle in relation with the fault strike. Numerical models of the fracture distribution in the 

fault damage zone indicate that the polarization direction is orthogonal to the expected fracture 

cleavage developed by the fault activity. The same orthogonal relation characterizes also other 

faults where ground motion polarization was investigated. The occurrence of a strong horizontal 

polarization may reflect reduced elastic stiffness in the fault-normal direction.  

 

2. Geological setting 

The Hayward fault belongs to the San Andreas system that separates the Pacific plate and 

the Sierra Nevada microplate, accommodating 75-80% (38–40 mm/year) of the present relative 

motion between Pacific and North American plates (e.g., Argus & Gordon, 2001, Wakabayashi 

et al., 2004), with a total dextral displacement of around 600 km. The San Andreas system is 

composed of a set of major dextral strike-slip faults, whose activity and distribution has 

irregularly shifted during the transform fault system history (Wakabayashi, 1999). Most faults 

show pull-apart basins and local transpressional structures related to step-overs and bends.  

The Hayward fault exhibits a quite complex structure, with a general strike of N340°. It is 

predominantly a strike-slip right-lateral fault with about 100 km of offset during the past 12 Ma 
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and at least a few hundred meters of east-up displacement over the past 2 Ma (Kelson and 

Simpson, 1995; Graymer et al., 2002). The active surface trace of the Hayward fault is well 

documented from both geomorphic evidence and from the offset of man-made structures 

(Lienkaemper et al., 1991), revealing that it is undergoing a significant creep (Savage and 

Lisowski, 1993; Lienkaemper, 1992) with some aseismic patches accommodating 50% or more 

of the long-term fault displacement. In spite of this, the fault has also experienced moderate to 

large earthquakes as the ~6.8 magnitude earthquake that occurred in 1868, whose rupture in 

surface was at least 30 km long or more (Lawson, 1908; Lienkaemper et al, 1991; Yu and Segall, 

1996; Bakun, 1999). A Paleoseismic study performed in a trench on the Southern Hayward Fault 

(Fremont) by Williams et al. (1992) concluded that at least six ruptures on the Hayward Fault 

occurred during the past 2100 years.  

The study area of the present work is located (Figure 1) in the southern sector of the fault 

in the Fremont district. Here the Hayward fault is largely aseismic and exhibits the highest 

surface creep rate (5 mm/yr) that is observed along the fault (Lienkaemper et al., 1991). A 

seismic reflection profile across the creeping trace of the fault indicates that the fault dip is about 

70° to the east in the 100 to 650 m depth range (Williams et al. (2005). 

 

3. Data 

In order to study ground motion polarization across the Hayward fault, we used data 

recorded by an array installed by researchers of the US Geological survey just across the fault 

near Niles Canyon, Fremont. The array was composed of seven stations equipped with K2 

Kinemetrics digitizer. Each accelerograph has a three-component set of accelerometers digitized 

at 200 sps. The stations were deployed in the backyards of single family homes and are shown in 

the inset of Figure 1 (colored labels) together with the surface creep trace of the fault (red line) 

traced by Lienkamper et al. (1991). The accelerographs were anchored to concrete and 

synchronized through a GPS receiver. The array recorded earthquakes since July 2008, including 
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around 30 events between July 2008 and March 2009, whose hypocenters were taken from the 

Northern California Earthquake Data Center (http://quake.geo.berkeley.edu/). The epicenters 

were located along the San Andreas fault system, with source depths in the range 5-16 km. From 

the seismic events recorded by the accelerograph array, we selected 12 events with a high signal-

to-noise ratio and with different focal mechanisms and source backazimuths ranging between 

N40W to N157E. The epicenters of these events are shown in Figure 1 with the projections of 

faults belonging to San Andreas system (cyan) and the array position (red triangle).  

 

4. Analysis and results 

The polarization analysis on the recorded seismic events was performed both in the time 

and in the frequency domains. The analysis in the frequency domain involved calculating the 

horizontal-to-vertical spectral ratios (HVSR) as a function of frequency and direction of motion, 

to investigate possible directional resonance effects and detect the frequency band where ground 

motion is mostly horizontal. The use of spectral ratios after rotation of the horizontal components 

was first introduced by Spudich et al. (1996), and subsequently exploited by Rigano et al. (2008) 

and Di Giulio et al. (2009) to detect horizontal polarization of ground motion in fault zones.  

In this paper, HVSRs are calculated at each station separately for each event. We 

analyzed a time window of length varying from 10 to 20 sec (depending on events magnitude), 

comprising the significant portions of recordings windowed by a Hannning taper. The spectra of 

horizontal motions were computed after rotating the NS and EW components by steps of 10°, 

from 0° to 180°. Amplitude spectra of the vertical and horizontal components were also 

smoothed with a running mean filter with a width of 0.5 Hz.  

The mean HVSRs averaged over the 12 selected events are shown in Figure 2. The 

stations are divided as “on-fault” if they are within tens of meters from the surface trace of the 

fault trace and “off-fault” if they are more than hundred meter from the surface trace. In the 

upper panels, the eighteen spectral ratios for different rotation angles (from 0° to 180°) are 
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shown for each station, while the lower panels represent contour plots versus frequency and 

direction of motion. The on- and off-fault stations do not differ significantly in the HVSR 

amplitude levels. For all stations, horizontal motions tend to exceed the vertical ones in the 

approximate frequency band 1-7 Hz by about factor of 3, on the average. Examining the top 

panels for on-faults stations (right column) suggests that the spectral ratio amplitudes at peaked 

frequencies show a distinct variation as a function of the rotation angle. However, a similar 

feature is also evident at ND4 station which is at about 400 meters from the fault trace. In a 

quantitative comparison between on-fault and off-fault stations it is difficult to infer a difference 

between their polarization tendency using spectral ratios of Figure 2.  

In order to better quantify the horizontal polarization of stations, the covariance matrix 

method (Kanasewich, 1981) was applied in the time domain. In this approach, a direct estimate 

of the polarization angle is achieved by calculating the eigen values of the covariance matrix 

using the three-component data (Jurkevics, 1988). The method solves the principal values which 

are interpreted to be the dominant polarizations. The results are used to estimate the angle 

between the geographic north and the projection of the largest eigenvector on the horizontal 

plane (see Appendix 1). The instantaneous polarization angle is estimated over 20% overlapping 

0.5s running windows of the seismic records, after bandpass filtering the data between 1 and 7 

Hz according to their spectral content (Figure 2).  

The covariance matrix is calculated separately in each window with the basic assumption 

that each window shows only one dominant (or null) polarization. This assumes motions that are 

purely polarized over the window duration. The eigenvalues and eigenvectors are found by 

solving the algebraic eigen problem: they are real and positive, since the covariance matrix is 

positive and semidefinite, and they respectively correspond to the axis length and to the axis 

orientation of the polarization ellipsoid that describe the particle motion in the data window. 

Compared to the previous applications of Rigano et al. (2008), Di Giulio et al. (2009) and 

Falsaperla et al. (2010), we use a hierarchical criterion to give a larger weight to time windows 
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associated with more horizontal polarization ellipsoids and with a preferred and marked 

elongation.  Details of the procedure are described in the Appendix 1.  

The obtained results on horizontal polarization are illustrated in Figure 3. For each 

station, the distribution of polarization angles of all the events are merged and plotted in the left 

panels as rose diagrams. In the right panels the same values are stacked and plotted versus time 

with zero time being the P wave arrival. The dots are shown with different colors depending on 

the hierarchical class (WH) associated to each polarization value (see Appendix 1). The smallest 

values (yellow) appear in the first part of signals: this indicates that in the P-wave window 

vertical motions predominate and horizontal polarizations are randomly distributed. The highest 

values of WH (purple to black) persist during the S and coda waves. As shown in Figure 4 

below, the difference between P waves and later arrivals is even more evident in the analysis of 

individual events. 

In the rose-diagrams of off-fault stations, the polarization angles are scattered with no 

clear prevailing direction (Figure 3). This is mostly evident at stations ND1, ND4, ND5. In 

contrast, the three on-fault stations ND3, ND6, and ND7 (right panel) show a better defined 

polarization direction in the horizontal plane which seems to be persistent independently of the 

earthquake mechanism, distance and azimuth. Stations ND6 and ND7 depict a polarization 

oriented in N83°±32° and N88°±19° directions, respectively. These are very stable and persistent 

features especially at ND7. The polarization at ND3 is oriented N146°±14°. However, Figures 4 

and 5 indicate that polarization at this station varies as a function of frequency, and this feature is 

clearer when observing the events separately.  

A detailed illustration of polarization results associated with one representative event (# 8 

in Table1) is presented in Figure 4. In panel A) the array geometry as well as the epicenter 

location and distance from the array are shown. Stations are grouped as on-fault (panel C) and 

off-fault (panel D). For each station, the velocity waveforms are depicted at the top. No evident 
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amplitude variations and differences between on-fault and off-fault stations are found in the time 

series. 

The HVSRs calculated for each station, are shown in the bottom panels. The amplified 

frequency band is underlined through a red dotted square. For on-fault stations ND6 and ND7, 

this frequency band (approximately 5-7 Hz) corresponds to the band where a E-W-oriented 

polarization was identified on the averaged results of Figure 3. The pattern of ND3 is more 

complex and will be discussed later on. The covariance matrix analysis is also performed for 

each station after bandpass filtering of seismic signals  in the amplified frequency bands. The 

resulting polarization azimuths are plotted versus time and through a rose diagram in the middle 

panels. At on-fault stations the polarization directions of Figure 4  are close to the ones obtained 

as average of the whole data set in  Figure 3. In contrast, off-fault stations show polarization 

directions and amplified frequency bands  that vary between stations. On these stations a 

different pattern of polarization is observed on each analyzed seismic event, leading to an 

isotropic distribution of azimuths when averaging the whole data set (see Figure 3). 

In order to verify whether the observed polarization could be ascribed to a source effect, 

the source polarization was modeled for direct P and S waves using the software ISOSYN 

(Spudich & Xu, 2003). The source-expected polarization was calculated as a function of focal 

mechanism, station distance and source backazimuth. This computation was made for the five 

earthquakes indicated with purple labels in Figure 1 (#1,4,8,10,12). For none of them the 

modeled source polarization was clearly identified on the array seismograms. The source 

polarization modeled for P and S waves for event #8 is shown in pane B) of Figure 4. The 

observed polarization was never consistent with the source expectation, leading to the conclusion 

that it is caused by a path or site effect. In any case, while the polarization expected for P waves 

in the horizontal plane is well recognized in the recorded first arrivals of events with a 

satisfactory signal-to-noise ratio, the polarization expected for S waves was never found. 

Because the distance between stations is more than a factor of 10 smaller than the distance 
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between the array and the seismic source, the source-expected directions are the same for all the 

stations. 

An interesting behaviour is observed on the HVRSs of station ND3 that highlight two 

different amplified frequency bands. In Figure 5 the HVSRs of ND3 for representative event #8 

(already used in Figure 4). The polarization distribution is bimodal corresponding to a peak 

between 1 and 5 Hz with H/V amplification up to a factor of 6, and a second peak in the 

frequency band 6-8 Hz with amplification up to a factor of 12.  

To separate the two directional effects, the covariance matrix analysis was performed in 

these two frequency bands (middle panels) For each frequency band the polarization angles 

versus time are plotted together with the band-pass filtered signals (EW, NS and Z components 

from top to bottom). The polarization angles are also plotted as rose diagrams by applying the 

hierarchical criterion described in the Appendix 1. The percentage of time windows exceeding 

the hierarchical selection is indicated as well.  

Similar analyses of events #4,5,9,10 at station ND3 confirm polarization directions that 

vary in the two frequency bands, consistently with results of Figure 5. The combined result of the 

polarization analysis performed in the frequency band 6-8 Hz on all these events (including #8) 

are depicted in the bottom panel of Figure 5 as two rose diagrams: the cyan diagram represents 

all time windows whereas the blue one is obtained by applying the hierarchical criterion. 

 

5. Discussion 

Quantifying and understanding the factors controlling horizontal ground motion 

amplification and dominant polarization in damaged fault zone materials is important for topics 

ranging from wave propagation in complex media to engineering seismology. Ben-Zion and Aki 

(1990) showed with analytical model calculations that a low velocity fault layer with realistic 

parameters can produce motion amplification over factor 10 near the fault zone. Cormier & 

Spudich (1984) and Spudich & Olsen (2001) found a large amplification for 0.6-1.0 Hz waves 
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within ~1-2 km wide low-velocity zone around the rupture of the 1984 Morgan Hill earthquake. 

Seeber et al. (2000) and Peng and Ben-Zion (2006) documented a factor 5 amplification of 

acceleration in a station located in the rupture zone of the 1999 Izmit earthquake on the Karadere 

branch of the NAF with respect to nearby off-fault station. Calderoni et al. (2010) observed a 

large difference in amplification between earthquakes occurring inside and outside the Paganica-

San Demetrio fault during the April 2009 L’Aquila earthquake sequences, central Italy. As noted 

in the introduction, classical trapped waves have motion polarities that are predominantly in the 

fault parallel and vertical directions (e.g. Ben-Zion, 1998). However, natural fault zone structures 

are generally sufficiently complex to produce mode conversions and/or replace the trapped 

waves with diffuse amplified wavefield. Indeed, numerous observations indicate that large 

motion near faults is often dominated by polarization in the fault-normal direction (e.g., Rigano 

et al. 2008; Di Giulio et al., 2009, Falsaperla et al. 2010). 

In the present work we performed detailed analyses of dominant polarization angles of 

seismic waves generated by local earthquakes and recorded at a small array of accelerometers 

near the Hayward fault (Figure 1). Similarly to previous seismological studies, the analysis 

demonstrates a predominant polarization direction of shear waves near the fault zone that is 

inconsistent with the fault strike direction. As discussed in the previous section, the observations 

cannot be ascribed to the seismic source. Since the possible influence of the seismic path was 

removed by averaging results of selected earthquakes coming from different azimuths, the 

dominant directions are likely to have a near-station origin. At off-fault stations deployed outside 

the fault damage zone, a somewhat scattered distribution of polarizations is observed. In contrast, 

near-fault stations installed close to the fault trace show a common and persistent polarization 

effect oriented in an average E-W direction, independently of earthquake backazimuth and 

distance. For station ND3, which is located relatively close to the fault, a variation is found 

between two frequency bands: in the range 1-4 Hz a polarization oriented in N146°±14° 

direction is observed, while in the range 5-8 Hz the polarization is oriented N86°±7° in 
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agreement with other fault zone stations (ND6 and ND7). Therefore, the mean polarization at 

stations associated with the fault damage zone forms an angle of about 70° with the fault strike 

direction. The observation of an effect strictly localized in the damage fault zone lead us to 

hypothesize a role of fracture systems (i.e. cracks). To check this hypothesis, we combine below 

modeling and additional observational results from different study areas where fault zone seismic 

data are available.  

The damage zone associated with the development of a fault is assumed to be 

characterized by brittle deformation on both sides of the fault, with lateral extent that could range 

up to 200 m (Caine, 1996). We note that large faults may include intense damage that is strongly 

asymmetric and may reflect preferred propagation direction of recent earthquake ruptures (e.g., 

Ben-Zion and Shi, 2005; Dor et al., 2006, 2008). However, in the following we focus on roughly 

symmetric damage products that reflect the early development stages of faults. Such damage 

zones are characterized by the presence of cracks (i.e. fracture systems referred also as fracture 

cleavages or Riedel fracture systems) with a systematic orientation. They are produced by the 

interaction of the tectonic stress and the near-fault local stress field associated with friction and 

fractures during the fault activity (Riedel 1929, Harding 1951, Hobbs et al., 1976). As a result, 

consistent and often very intense closely spaced fracture sets are generated. Individual fractures 

can reach up to several meters with spacing down to one tenth of their dimension.  

 

5.1 Interpretation of results 

Depending on the local stress tensor and the brittle rheology of the hosting rock (Mandl, 

2000), four types of fractures can develop: i) extensional fracture; ii) synthetic faulting or 

cleavage (i.e. with movement consistent with the main fault kinematics); iii) antithetic faulting or 

cleavage (i.e. with movement sense opposite to that of the main fault; iv) pressure solution 

surfaces. Their orientation depends on the direction of the resulting stress localized around the 

fault. The stress component due to the fault motion (the so-called kinematic stress component) 
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often exerts the major influence on the final fracture orientation. In such cases, the maximum and 

minimum principal stress axes form angles of ~45° with the fault plane consistent with the fault 

motion, and the intermediate stress lies on the fault plane normal to the fault slip vector. As a 

result, the fracturing (cleavage) developed along a fault creates a damage zone that is 

characterized by well oriented fracture systems. Extensional fractures will develop normal to the 

minimum compressional axis, forming an angle of ~45° from the fault plane. Synthetic cleavage 

will form an angle of ~15° from the fault plane as measured in the sense of the fault motion. 

Antithetic cleavage will form an angle of ~65° as measured in the same way. Pressure solution 

surfaces will develop at ~45° normal to the maximum principal stress axis. Depending on the 

stress and kinematic conditions, one (or more) of these fracture type will develop, because the 

development of one set inhibits the growth of the others in their vicinity, reducing the capability 

to accommodate the elastic stress field. Typically, in kinematic conditions (as in the San Andreas 

system accommodating the relative motion between adjacent blocks), the main fracture set that is 

expected to develop is the synthetic cleavage. 

To interpret the observed dominant polarization directions, we computed the direction of 

the synthetic cleavages expected for the Hayward fault, using the package FRAP (Salvini, 1999). 

The basic aspects of the package are described in Appendix 2. In agreement with Williams et al. 

(2005), the fault segment was modeled as a 20x8 km
2
 representative surface, with an average 

strike of N20°W, reaching 11.5 km depth and dipping 70° to East. No minor irregularities were 

added on the fault surface since the fault movement occurred over a large time scale. Although 

Graymer et al. (2005) showed that the Hayward fault separates very heterogeneous regions with 

different lithotypes, in this model the rock rheological parameters were chosen to be the same on 

the two sides of the fault. Rheological parameters were thus fixed as: density 2400 kg/m
3
, 

cohesion 5MPs, Poisson ratio of 0.25, friction angle of 30°, stress drop coefficient 50% and shale 

content 10%. The movement of the Hayward fault was set to be right-lateral strike-slip with a 

total displacement of 100 km. It is worthwhile to notice that the local stress analysis we 

Page 12 of 37Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 13 

performed is independent of the amount of displacement. The used displacement is just 

indicative of the expected maximum displacement for a fault segment of the chosen size and its 

amount influence only the fracture intensity. According to several works performed in the area to 

define the orientation of tectonic stress principal axis (e.g. Provost and Houston, 2003), the axis 

of maximum compression σ1 was set to be oriented N5° and the axis of minimum compression σ3 

was set to be at N95°. Both σ1 and σ3 were assumed at the horizontal plane and the intermediate 

axis σ2 was set vertical. As previously explained, for the Hayward fault the applied stress 

conditions were chosen to enhance the kinematic component caused by the fault movement, 

reducing the influence of the regional stress field.  

Panel a in Figure 6 shows a sketch of a map view with the regional stress field (red 

arrows), the right-lateral fault movement in N160° direction (black arrows) and the kinematic 

components of the local stress field (K1 and K3). The expected fracture systems (cleavages and 

extensional fractures) are also illustrated. The orientation of synthetic cleavage as a projection on 

the horizontal plane is represented in panel b as a rose diagram. To help developing a correlation 

with measured polarization, the combined results from the analysis of seismic data at stations 

ND6 and ND7 are also plotted as a rose diagram in panel c. Both circular histograms were fitted 

through a Gaussian curve, obtaining a mean direction of N91°±38° for polarization angle and a 

mean direction of N1.5°±4° for synthetic cleavages. A difference in angle of 89.5° between the 

mean polarization and expected synthetic cleavages is found, suggesting an orthogonal relation 

between horizontal polarization and orientation of the most probable fracture system. A 

consistent perpendicular relation between fractures strikes and polarization has been also found 

for two other fault zones, the Parkfield section of the San Andreas Fault (Pischiutta et al., 2010), 

and the Eastern Agri fault system (Pischiutta, 2010), where abundant polarization data are 

available. Detailed results from these studies will be published in a separate paper. Here we only 

show and discuss, for comparison with the results for the Hayward fault, the obtained mean 
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horizontal polarization obtained in those two study cases in the middle and bottom panels of 

Figure 6. 

Data of HRSN network operated by the Berkeley Seismological Laboratory in Parkfield 

area were analyzed in order to study the occurrence of polarization and its spatial distribution 

across the San Andreas fault. Figure 6 displays (panel f) the mean polarization of ~2000 

earthquakes recorded in 2004 at the borehole station MMNB installed in the fault damage zone. 

We find a predominant polarization effect in N 88 ± 39.7°. In the investigated sector the San 

Andreas is oriented in N140° direction (sketch in panel d of Figure 6), with an oblique right-

lateral kinematics having a compressive component as revealed by the presence of positive 

flower structures. The associated most probable modeled fracture fields are synthetic cleavages 

expected in the N171± 3.6 direction, as depicted in panel e of Figure 6. According to our results, 

the dominant polarization in the Parkfield section of the San Andreas fault is oriented at 83° to 

the mean direction of the most probable fracture system, thus well approximating 

perpendicularity. 

The Val d’Agri basin is the other case study where near-perpendicular relation between 

polarization and fractures was found. This area is characterized by many fault systems, being 

also well known for oil exploration (Menardi Noguera & Rea, 2000; Maschio et al., 2005; 

Improta & Bruno, 2007; Pastori et al., 2009). Figure 6 shows the results (panel i) for one station 

located near the Eastern Agri normal fault system (Cello et al., 2000, 2003; Barchi et al,. 2007). 

The polarization analysis was performed on several earthquakes and resulted in a mean 

polarization direction of N54°±12°. Similarly to the two previous case studies, in panel g the 

sketch representing the fault and its brittle deformation pattern is drawn, using in this case a 

vertical section. The fault strike (not shown) is along the NW-SE direction. The representation in 

a vertical section is required because, in a normal fault, all the expected fracture systems 

(cleavages, extensional fractures and pressure solution) have the same strike, only differing by 

the dip angle. To show their variations in dip they are plotted as a Schmidt lower hemisphere 
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projection in the inset of panel g. The modeling for this case indicates (panel h) that the most 

probable fracture systems is synthetic cleavage with a mean expected orientation of N139°±4°. 

Thus, also for this fault zone a transversal relation between the horizontal polarization and 

fracture field strike is found.  

The near-perpendicular relation between the dominant orientation of cracks and wave 

polarization can be explained by considering the effective rock stiffness in different directions. In 

intensely fractured rocks, possibly mixed with granular materials, the resistance to loadings is 

strongly anisotropic. The effective Young modulus normal to a highly damaged material is 

expected to be considerably lower than the moduli in the other directions. This is intuitive and 

consistent with recent theoretical and observational results. Griffith et al. (2009) numerically 

simulated uniaxial compression tests of models of fractured rock with assumed crack distribution 

taken from mapped fault zone rocks. The results indicated strong anisotropic reduction of the 

effective fault-normal Young modulus, or increasing compliance with increasing angle between 

the load and the main fractures direction. Burjanek et al. (2010) observed strong polarization 

effects on weak seismic events and ambient vibration recorded on the unstable rock slope above 

the village of Randa (Swiss Alps). They hypothesized a relation with parallel dipping faults 

associated to the slope instability. According to their model, the rock stiffness is anisotropically 

reduced by the presence of fractures and horizontal vibrations are more pronounced in the 

direction of deformation that is also perpendicular to fractures. Findings by Burjanek et al. 

(2010) are consistent with the results of the present study, where we demonstrate that the 

dominant direction off cracks in the fault damage zone may control the frequently observed 

dominant fault-normal polarization direction.  
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6. Conclusions 

We observed a strong horizontal motion polarization on the Hayward fault within a 

limited area corresponding to the fault damage zone. This finding is consistent with observations 

at other fault zones, both in strike-slip and extensional tectonic environments (Parkfield section 

of the San Andreas fault and Val d’Agri extensional basin, southern Italy, respectively). Similar 

polarization effects are also documented in fault zones of Mt. Etna volcano in Italy. Modeling of 

the fracture fields induced by the elastic stress and fault friction indicates an orthogonal relation 

between the wave polarization azimuth and the predicted strike of the synthetic fracture cleavage 

in the fault damage zone. For the Hayward fault with N160° strike and right-lateral movement, 

the observed mean polarization is oriented N91° and the synthetic cleavage is N175°, confirming 

a substantially perpendicular relation. For the Parkfield section of the San Andreas fault, where 

the kinematics is right-lateral with a compressive component, the mean polarization observed at 

station MMNB is also near perpendicular to the expected synthetic cleavage. Similarly, in the 

Val d’Agri basin characterized by extensional tectonics, the observed polarization is essentially 

perpendicular to the likely fracture systems produced in the damage zone by the normal fault 

movement. The comparison between fault fracture numerical modeling and polarization 

direction reveals that fault-induced crack systems play a major role in controlling the stiffness 

anisotropy in the fault damage zone, which in turn is responsible for the observed polarization. 

The results demonstrate the utility of using seismic signals with the employed relatively-simple 

and inexpensive technique to explore the distribution of fracture systems in fault zone 

environments. 
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FIGURES 

 

 

 
 

Figure 1 – Location of the accelerometric array area (red square). Cyan lines are the projection of the faults belonging 

to the San Andreas Fault System. Blue circles are the epicentres of the selected earthquakes with event date and 

estimated magnitude. The inset shows stations deployment near the Hayward fault trace at the surface as digitized by 

Lienkaemper et al., 2001 (red line). 
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Figure 2 – Average horizontal-to-vertical spectral ratios of each accelerometric station. The geometric mean is 

computed over the ensemble of the 12 events selected. In the upper panels, average spectral ratios are drawn separately 

for rotation angle from 0° to 180°; in the bottom panels, the same spectral ratios are shown in a color contour 

representation. 
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Figure 3 – Horizontal polarization angles computed from the covariance matrix analysis: for each accelerometric 

station, the results of the selected events are cumulated. The cumulated polarization angles are represented through rose 

diagrams (percentage at the bottom indicates the amount of time windows satisfying the hierarchical criterion) and are 

also plotted versus time, their color scale being related to the weight WH. 
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Figure 4 – Polarization analysis results for one representative event (#8 in Table 1). The array geometry with respect to 

the fault trace and the epicentre location are shown in panel (A). In panel (B) the source expected polarization for direct 

P and S waves is drawn. It was modeled using the software ISOSYN (Spudich & Xu, 2003) as a function of focal 

mechanism, station distance and source backazimuth. At the top of the two pictures, the expected polarization is 

depicted through red lines; the synthetic signals (N-S and E-W components) are shown at the bottom. 

(Panel C and D) Horizontal polarization results of on-fault  and off-fault stations, respectively.  For each station, the 

HVSRs and the covariance matrix analysis results are drawn with the same modality of Figures 2 and 3 respectively. 

Time series are EW, NS and z components from the top to the bottom. The covariance matrix analysis was performed in 

the frequency band where HVSRs of each station are amplified. Resulting polarization values are plotted in middle 

insets both versus time and as rose diagrams. The selected frequency band is illustrated at each station through a dotted 

red square in the HVSRs contour graphs. 
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Figure 5 – Polarization analysis results at station ND3 for one representative event (# 8 of Table 1). Top panel – 

Horizontal-to-vertical spectral ratios of station ND3. Similarly to Figure 2, contour plot of amplitudes with rotation 

angle versus frequencies is shown at the bottom, while at the top the amplitude spectra of rotated components are 

plotted. Middle panel - Covariance matrix analysis results in the frequency bands 1-3 Hz (top) and 6-8 Hz (bottom) are 

depicted with the same modality of Figure 4. Bottom panel - Covariance matrix analysis cumulated results in the 

frequency range 6-8 Hz of events #4,5,9,10 at station ND3:  the cyan diagram represents all time windows whereas the 

blue one is obtained by applying the hierarchical criterion (percentage of time windows exceeding the fixed thresholds 

is illustrated at the bottom). The inset shows the epicentral location of the selected events. 
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Figure 6 –  TOP: Horizontal polarization across the Hayward fault. A Sketch  in a map view is illustrated in Panel a) 

with the regional stress field (red arrows), the right-lateral fault movement in N160° direction (black arrows) and the 

kinematic components of the local stress field (K1 and K3). The expected fracture systems, as cleavages (black), 

extensional fractures (violet) and pressure solution (green) are also illustrated. The orientation of the most probable 

fracture field as a projection on the horizontal plane (synthetic cleavage) and modeled using the package FRAP 3 is 

represented in Panel b) as a rose diagram. To correlate theoretical trends with observed polarizations, results of stations 

ND6 and ND7 are cumulated and plotted as a rose diagram in Panel c). MIDDLE: Polarization across the San Andreas 

fault in Parkfield sector where the fault strike is along N140° direction. The fault sketch in panel d) is drawn with the 

same structure of Panel a). Similarly to the Hayward fault, the most probable fracture fields are synthetic cleavages, 

depicted in Panel e) through a rose diagram. The mean polarization of ~2000 earthquakes recorded in 2004 at the 
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borehole station MMNB installed in the fault damage zone is displayed in Panel f).  BOTTOM: Polarization in the Val 

d’Agri extensional basin. A station close to one of the border dip-slip faults is selected. Similarly to the previous case 

studies, in Panel g) the sketch representing the fault and its brittle deformation pattern is drawn, in this case as a vertical 

section. The fault strike (not shown) is along the NW-SE direction. As expected for a normal fault, all the theoretical 

fracture systems (cleavages, extensional fractures and pressure solution) have the same strike and only differ by the dip 

angle. To show their variations in dip, they are plotted as a Schmidth lower hemisphere projection in the inset of Panel 

g). The synthetic cleavage orientation modeled using the package FRAP 3 (Salvini, 1999), is depicted in Panel h) as a 

rose diagram. Results of the polarization analysis performed on several earthquakes are shown in Panel i). 

 

 

 

 

TABLES 
 

 

 

# Day/hr/min Lat.N Long.E 
Depth 

km 
M ND1 ND2 ND3 ND4 ND5 ND6 ND7 

1 2008/09/06   04:00 37.8620 -122.0075 16.61 
4.10 

Mw 
* * * * * * * 

2 2008/09/21   16:20 37.7245 -121.9783 10.41 
2.26   

Md 
  * *    

3 2008/10/10   23:19 37.8365 -122.2153 12.65 
3.05   

ML 
* * * *  * * 

4 2008/11/10   19:56 37.4335 -121.7750 10.02 
3.20   

Mw 
* * * * * * * 

5 2008/12/09   16:25 37.4835 -121.8095 6.13 
3.49   

ML 
* * * * * * * 

6 2008/12/21   17:35 36.6748 -121.3002 7.24 
4.00   

Mw 
* * * * * * * 

7 2009/02/15   22:05 36.8615 -121.5978 6.66 
3.29   

ML 
  *   *  

8 2009/02/21   19:01 37.6262 -121.9500 11.79 
3.20   

ML 
* * * * * * * 

9 2009/02/26   16:08 36.8627 -121.5997 6.70 
3.24   

ML 
 * *    * 

10 2009/03/08   14:47 37.4743 -121.8045 9.58 
3.50   

Mw 
* * * * * * * 

11 2009/03/18   02:26 37.4575 -121.7698 7.87 
3.11   

ML 

 

 
 *   *  

12 2009/03/30   17:40 37.2848 -121.6157 7.65 
4.30   

Mw 
* * * * * * * 

 

 

Table 1 – List of earthquakes selected for the analysis. 
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Appendix 1: Estimate of polarization angle through covariance matrix diagonalization 

Spectral ratios using the rotated horizontal components are a powerful tool to recognize 

directional site effects (see Spudich et al., 1996; Cultrera et al., 2003). However, the spectral ratio 

may be biased by anomalies in the denominator spectrum. According to Jurkevics (1988), a direct 

estimate of the ground motion polarization can also be inferred using the covariance matrix. 

In our implementation of this method, signals are detrended and the mean is removed, then 

they are bandpass filtered to restrict the analysis to the frequency band where HVRSs have 

previously revealed a significant (>2 at least) amplification. To diagonalize the covariance matrix, 

the code POLARSAC (La Rocca et al., 2004) is applied to the three components of motion in the 

time domain, using a partially overlapping moving window whose length is tailored depending on 

the predominant signal frequencies. After the matrix diagonalization, the eigenvalues 321 λλλ ff  

and eigenvectors iu
r

 (i varying from 1 to 3) yield the axis length and orientation of the polarization 

ellipsoid in each time window.  

The polarization vector is obtained from the vectorial sum: 

i

3

1i

iuPV
r∑

=

λ=                             (A 1.1) 

It is defined through four parameters that characterize the polarization ellipsoid: AZ, I, R, and P. 

These parameters, inferred from the eigenvectors of each time window, are defined as follows.  

AZ is the polarization azimuth measured as the angle between the geographic north and the 

projection of the main eigenvector on the horizontal plane:  

( )
( )








=

1131

1121

usignu

usignu
arctgAZ                 (A 1.2) 

where uj1  j = 1 ,…, 3 are the three direction cosines of eigenvector 1u
r

. The sign function has been 

introduced to take positive vertical component of 1u
r

 resolving the 180° ambiguity (Jurkevics, 

1988).  
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I is the apparent incidence angle, i.e. the angle between the eigenvector associated to the highest 

eigenvalue 1u
r

and z-axis and is given by: 

)uarccos(I 11=                                (A 1.3) 

R is rectilinearity, it ranges between 0 (spherical motion) and 1 (rectilinear motion) and indicates to 

what extent the three axes differ: 

1

32

2
1

λ
λλ +

−=R                   (A 1.4) 

P is planarity, it ranges between 0 and 1, indicating to what extent the motion is confined to a plane: 

21

32
1

λλ
λ
+

−=P                                 (A 1.5) 

Among these parameters, AZ is the one used to represent horizontal polarization in the present 

study. It is plotted through a circular histogram (rose diagram) computed from 0° to 360° at bins of 

10°. Bins that differ by 180° are cumulated together as having the same polarization direction, their 

separation having no physical meaning. In order to increase the weight of AZ values of time 

windows with higher degree of rectilinearity and more horizontal motion, a hierarchical criterion is 

applied in the azimuth statistics.  

The hierarchical criterion we establish excludes from the statistics values of AZ associated 

to R <0.5 and I < 45°, semi-spherical or near-vertical polarization solutions being not relevant to 

our study. The other R and I values in the intervals 0.5<R<1 and 45°<I<90° are normalized linearly 

between 0 and 1. A weight factor WH is obtained from the product WH=R*I, where 0 < WH < 1. 

The value of WH is used as a weight for the horizontal AZ values contributing to the rose diagrams 

of horizontal polarization.  

To visually illustrate the highly restrictive selectivity of our hierarchical criterion, two time 

windows are shown as examples in Figure A1.1 where the corresponding results of I, R and AZ are 

visualized through the polarization ellipsoid. The weight factors calculated for the two time 

windows are shown as well. 
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The first time window (identified by an orange square) is characterized by a moderately high 

weight (WH=0.71) that is controlled by a high incidence (87°) and highly rectilinear ellipsoid 

(R=0.88). The second time window (identified by a blue square) is relative to a very small weight 

(WH=0.06), lower by more than one order of magnitude than the previous one. In this second case 

the ellipsoid still has a moderately high value of incidence (60°) and it is still quite rectilinear 

(R=0.59). Nevertheless the polarization azimuth of the first ellipsoid will give a much higher 

contribute to the construction of the final polarization histogram.  

This hierarchical criterion is intentionally very restrictive, selecting only time windows with 

a high horizontal polarization degree, rejecting the others even though the polarization ellipsoid still 

is not so vertical and is elongated in a preferential direction.  

To ensure that the statistics are representative of the whole time windows analyzed along the 

signals and that the hierarchical criterion did not lead to exclude too many samples, the percentage 

of rejected time windows is calculated and plotted near each rose diagram. Moreover, the values of 

AZ are plotted versus time and along signals to detect any changes with the different seismic 

phases. The associated weights are represented through a colour scale, as shown in Figure 3. 
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Figure A1.1 – Polarization analysis performed on two time windows to show the influence of 

incidence and rectilinearity values on the construction of the polarization ellipsoid. For each 

window the R, I and AZ values resulting from the covariance matrix analysis are reported as well as 

the calculated weight factors. Moreover the polarization ellipsoids are drawn on the basis of the 

eigenvalues obtained from the diagonalization of the covariance matrix, and the incidence and 

azimuth angles are represented on a vertical and plane section, respectively. 
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Appendix 2 – The Frap Package 

The presence of faults results in the development of zones of local intense brittle deformations. Typically fault zones 

include an internal fault core, characterized by the presence of crushed and grinded material in complex pattern (Caine, 

1996). Its dimension and amount of evolution of the grinding process are related to the stress conditions and the fault 

displacement. The fault core is surrounded by the fault damage zone, characterized by the presence of an organized set 

of brittle deformations and dilations. Again, its width and intensity of deformation are functions of the stress conditions, 

fault plane geometry and displacement occurring in the fault zone during fault activity. 

The Frap Package is a tool that predicts the stress and brittle deformations in fault core and in the fault damage zones. It 

utilizes a combination of numeric and analytic approaches. 

The fault is discretised into a grid of quadrangular cells, with each being characterized by an attitude and a position in a 

reference frame. For each cell, the various components of the stresses that acted though time are computed (Figure 

A2.1).  

 

 

Figure A2.1 - Example of FRAP output showing the grid structure representing the fault zone. For each cell the 

stress/deformation components are analytically computed. The enlarged circle illustrates how to numerically compute 

the cumulative DF (or TSI, see text). The DF values of the cells falling on the displacement path of the cell are 

accumulated proportionally to the length of the path. 

 

The model considers four stress components. The first one is the regional stress tensor, often responsible of the fault 

development, evolution and movement. This component can be introduced as a fixed value (as in the present study) or 

may be derived from a spatial distribution function.  

The second tensor component is the overburden, that is the load of the material (e.g. rock, water) above the given cell. 

The vertical component is the ov1σ and can be computed as: 
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( )( )∫ ⋅=
S

Q

z

z

ov dzgzρσ 1                                          (A 2.1) 

where z is depth, ρ  is the density, g is the gravity acceleration.     

The overburden stress conditions are assumed to be uniaxial, that is the two main horizontal components assume the 

same value as a function of the rock rheology at the cell: 

ovovov 132
1

σ
υ

υ
σσ ⋅

−
==                                                                                                              (A 2.2) 

where  υ  is Poisson’s ratio.                     

The third component is the fluid isotropic pressure within the rock pores, that obviously induces a decrease in the brittle 

strength of the rocks. It is computed from the height of the fluid column Hcol and the fluid density Fρ : 

gHcolP F ⋅ρ⋅=                                     (A 2.3) 

The stress variation due to the pore elasticity component is considered negligible. 

The fourth component is referred in the package as the “kinematic stress” and is often the largest one in the fault zone. 

It is the component resulting from the brittle strain accumulation due to frictional resistance and failures associated with 

the fault. 

This component can be described as a tensor oriented with the k2σ  main component lying on the cell surface normal to 

the movement vector on the cell, the k1σ  main component forms an angle of 45° from the surface compatible with the 

movement (see Fig. A2.2, panel a). The k1σ  module is equal to the strength of the fault surface to fail, computed 

according to the Coulomb-Navier Criterion (see below). The k2σ  represents the null axis and has a 0 value. 

 Σ=k1σ   

 k2σ  = 0                 (A 2.4) 

Σ−=k3σ  

In this way, the resulting stress tensor on a cell will be the sum of all these components. The attitude of the kinematic 

stress tensor is a function of the cell surface attitude and the fault movement vector on the cell. Depending on the 

tectonic scenario, the kinematic component may be negligible, as in the case of no fault movement. In most cases, as in 

the fracture produced by the studied fault, it represents the most important stress component.  
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a)        b)  

Figure A2.2 – Panel a) Fault surface (violet) and orientation of the kinematic stress components (blue arrows) related to 

the fault movement (red arrows) for a perfect fault (i.e. without transtension or transpression component). Panel b) 

Strike and dip values of the fault plane in the σ1σ2σ3 reference system. 

 

The resulting stress is then compared to the strength in the cell zone as predicted by available failure criteria. In the 

present study we choose the Coulomb-Navier Failure Criterion: 

( )wN Ptanc −σϕ+=Σ                                                   (A 2.5) 

Where Nσ  is the stress component normal to the cell surface and is computed according to Jaeger et al. (2007) as 

follow: 

( ) θσθλσλσσ 2

1

22

2

2

3 cossinsincos +⋅+=N                    (A 2.6) 

λ and θ  being respectively the azimuth and the dip of the fault surface with respect to the fault surface (see Figure 

A2.2 panel b). 

The capability to produce fracture at each cell at a given time interval is represented by the deformation function fD  

(Storti et al., 1997) that represents the difference between the strength Σ  and the maximum shear 
*τ  acting on the cell 

surface (see Figure A2.2 panel b): 

Σ−= *τfD                        (A 2.7) 

Where, according to Jaeger at al. (2007), 
*τ  is given by : 

( )
( )

( )2

1

1

2

2

2

3

23

*

2sinsincos5.0

2sinsin5.0

sd

d

s

τττ

θσλσλστ

θθσστ

+=

⋅−+⋅=

⋅−⋅−=

                  (A 2.8) 

Thus from the resulting stress tensor at each cell is possible to compute the attitude of the different type of expected 

fracture sets (Riedel Fractures) as well as their probability to be produced from the statistic interpretation of the fD . 
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The various type of brittle deformations (e.g., see Mandl, 2000) include: the synthetic cleavage (R Riedel planes), the 

antithetic cleavage (R’ Riedel Planes), the extensional fractures ( T Riedel Planes), and the pressure solution surfaces (P 

Riedel Planes). The term cleavage is used to describe a fracture set characterized by a spacing significantly shorter than 

the fracture dimensions. 

The package then can compute the total brittle deformation for each cell through time along the trajectory that each cell 

follows along the fault during displacement (Fig. A2.1). 

In the present application the use of the package was limited to compute the attitude of the main fractures that develop 

at each cell of the fault surface (i.e. synthetic fractures, R Riedel).  

Finally, the resulting fracture field is output from the software and analyzed as structural elements by producing the rose 

diagrams shown in the article by the Daisy Package (Salvini et al., 1999), freely downloadable at 

http://host.uniroma3.it/progetti/fralab/. 
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