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Abstract. Hypocenter and focal mechanism of an earthquake can be
determined by the analysis of signals, named waveforms, related to the
wave field produced and recorded by a seismic network. Assuming that
waveform similarity implies the similarity of focal parameters, the anal-
ysis of those signals characterized by very similar shapes can be used
to give important details about the physical phenomena which have
generated an earthquake. Recent works have shown the effectiveness of
cross-correlation and/or cross-spectral dissimilarities to identify clusters
of seismic events. In this work we propose a new dissimilarity measure
between seismic signals whose reliability has been tested on real seis-
mic data by computing external and internal validation indices on the
obtained clustering. Results show its superior quality in terms of cluster
homogeneity and computational time with respect to the largely adopted
cross correlation dissimilarity.

1 Introduction

In seismically active areas often occurred earthquakes that produce very similar
waveforms (multiplets). A high level of similarity between the waveforms is a
clear indication of events generated in a small seismogenetic volume, with similar
source mechanisms. These events can be associated with both tectonic [1, 2]
and volcanic activity [4]. Based on the similarity between complete seismograms
of microearthquakes occurred on the San Andreas Fault, Geller and Mueller
deduced that their hypocenters can’t be distant from each other by more than
a quarter of the dominant wavelength [3].

The definition of the new dissimilarity was inspired by a simple observation: a
seismic signal is characterized by the overlapping of several wave trains (seismic
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phases) which, because of their different travel path, arrive at the recording
point at different times. They relate to both body waves and surface waves. The
body waves concerning the irrotational component of the displacement field (P)
propagate faster than those concerning the solenoidal one (S) and even more
than the surface or guided waves.

The common hypocentral location methods, based on P and S phases arrival
times inversion, are generally not accurate enough for a reliable relative location
of very close hypocenters (hypocentral spacing much smaller than the typical
distance between the stations of the seismic network) and modeling of the focal
mechanisms distribution in the source region. To determine differential arrival
times with high accuracy, techniques exploiting waveform similarities have been
proposed [1, 7].

The dissimilarity functions based on signal cross correlation have been used
to measure the difference degree between seismic events [8, 9] and to provide
more precise estimates of the differences in arrival times of P and S phases of
similar events [10, 11]. A new challenge needs to identify, some groups containing
similar signals with respect to a predetermined criterion, in a large set of three-
component signals.

Clustering technique and the related algorithms can be adopted to face that
challenge. In the general case, cluster analysis play a central role in the design
of data analysis systems [12]. Moreover, clustering allows analysts to discover
the nature of the data for further analysis. Dissimilarity (similarity) functions
are a fundamental ingredient of clustering procedures, and their discrimination
ability can be measured by means of clustering validation indices [13]. Clustering
validation indices can be divided into internal and external ones: the former gives
a reliable indication of how well a partitioning solution captures the inherent
separation of the data into clusters, the latter measures how well a clustering
solution agrees with the gold solution for a given data set [15]. A gold solution
of a generic dataset, can be also inferred by analyzing the data, i.e., by the use
of internal knowledge via data analysis tools such as clustering algorithms.

A basic consideration about cross-correlation and/or cross-spectral dissim-
ilarities, is that they are effective in forming subsets of similar events just if
earthquakes included in each set are very close in space, magnitude and focal
parameters domains and the waveforms recorded have a good signal to noise
ratio. Another of its drawback is the computation time, that will necessary af-
fect the adopted clustering algorithm. This is a very important point since the
development of dense seismic networks, with 3 components broadband sensors,
permit to collect a lot of seismological data that should be processed by cluster-
ing techniques.

In this paper we propose a new dissimilarity measure able to catch difference
in shapes between waveforms. It has been used in conjunction with a hierarchical
clustering algorithm and applied to a dataset of earthquakes waveforms and to
another dataset of signals generated by bursts, both recorded by an Ocean Bot-
tom Seismometers with Hydrophone (OBS/H) deployed in the southern Tyrrhe-
nian sea. We compared its discrimination ability with that of a cross correlation
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based dissimilarity. Results show the effectiveness of using the proposed dis-
similarity, in terms of cluster homogeneity validation index and computational
time.

2 Dissimilarities definitions

In this section the two dissimilarity measures used in this work are described.
The first one is the classical cross correlation dissimilarity, the other one is the
new designed mesure called cumulative shape dissimilarity.

We recall that the cross correlation between two vectors x1 and x2, both of
length n, is so defined

Rx1,x2(k) =

¨Pn−k−1
i=0 (x1(i+ k)− µx1)× (x2(i)− µx2) if k ≥ 0

Rx2,x1
(−k) otherwise

for k = 1− n, .., n− 1, and where µx1 and µx2 indicate the means of x1 and
x2 respectively. Consequently, the cross correlation dissimilarity between x1 and
x2 is

δR(x1, x2) = 1− 1

σxσy
max

k=1,..,2n−1
Rx1,x2(k − n). (1)

Where σx and σy are the standard deviations of x1 and x2 respectively. Such
dissimilarity is largely used to catch difference in shape between seismic signals,
but in this context it has also shown some drawbacks. In fact, it is ineffective in
forming subsets of similar events if earthquakes included in each set are not very
close in space, magnitude and focal parameters domain, and noise is present
in the recorded signal. Moreover, for a signal of length n its computational
time is O(n2). The definition of the new dissimilarity was inspired by a simple
observation: a seismic signal is characterized by two types of waves: body waves
and surface waves. The body wave, especially the first P and S arrival times, are
less sensitive to the travel path and clearly have no phase overlapping. Moreover,
these seismic phases have often the better signal to noise ratio, so we can use
them to discriminate one wave from the others. A seismic dataset is often a set of
aligned (or not1) signals which contain the two types of body waves: P wave and S
wave. Both waves have a magnitude peak with high energy. Consideration about
the nature of the data, leads to state the main properties of a good dissimilarity
measure for seismic signals :

– it should give high weight to the difference among the initial part of the
signals;

– it should be low sensitive to background and impulsive noise;

1 many technics are used to cut and to align the signals: a common phase is the
pre-processing of the signal with denoising, P phase identification and cut.
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– it should be capable of detecting where two wave shapes are similar regardless
of magnitude.

The first two properties, can be satisfied by a dissimilarity acting on the
cumulative energy of the signals rather than on their original waveforms. Of
course, the peaks of the P wave and S wave are well visible on cumulative energy
plot whereas the tail of the signal has a tiny impact. All the properties are finally
satisfied by a dissimilarity that take into account the evaluation of the difference
between cumulative energies.

Given two vectors x1 and x2 both of the same length n, and let s1 and s2 be

their cumulative sums si(k) =

Pk

r=1
x2
i (r)Pn

r=1
x2
i
(r)

(i = 1, 2), we can calculate their abso-

lute difference sd(k) = |s1(k) − s2(k)|. Finally, the new proposed dissimilarity,
called cumulative shape dissimilarity δs is defined as:

δs(x1, x2) =
X
k

|sd(k + 1)− sd(k)|
maxj |sd(j + 1)− sd(j)|

. (2)

Note that δs represents the sum of the derivative of the difference between
the cumulative sums of x1 and x2. In figure 1 we report 4 examples of signal, in
figure 2 their cumulative sums and the pairwise dissimilarities. Finally, in figure 3
we show the value of |sd(i+1)−sd(i)| used to compute δs(x1, x2). Such example
shows how similar shapes have lower dissimilarity values. It is important to note
that the new measure δs have a remarkable computational time of O(n).
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Fig. 1. (a) event 1 (b) event 6 (c) event 32 (d) event 79

3 Evaluation of a dissimilarity measure

In order to evaluate the performance of a dissimilarity, we have adopted three
different indices. Two of them are related to the partitioning inducted by a
clustering algorithm which make use of the dissimilarity, while the other one
does not consider any partitioning information.

When using a dissimilarity measure in conjunction with a clustering algo-
rithm, it is possible to evaluate its performance by means of clustering internal
and external indices: the former gives a reliable indication of how well a parti-
tioning solution captures the inherent separation of the data into clusters [15],
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Fig. 2. (a) cumulative energy of the events; (b) difference between cumulative energies
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Fig. 3. Derivative at sample point i of the difference between cumulative energies
(|sd(i+ 1)− sd(i)|) (a) event 1 - event 32 (b) event 1 - event 79 (c) event 1 - event 6

the latter measures how well a clustering solution agrees with the gold solution
for a given data set. A gold solutions for a dataset is a partition based on external
knowledge of the data in classes, that can be also inferred by the use of internal
knowledge via data analysis tools such as clustering algorithms. When the gold
solution is not known, the internal criteria must give a reliable indication of how
well a partitioning solution, and indirectly the used dissimilarity, captures the
inherent separation of the data into clusters.

Let X a set of generic items X = {x1, . . . , xN}, and P = {p1, · · · , pt} a
partitioning of X.

In our experiment we have adopted the Homogeneity (H) and Separation

(S) internal indices [15] of a partitioning P produced by a clustering algorithm
by using the dissimilarity δ, whose formulas are here reported:

H =
1

|X|

tX
i=1

X
x∈pi

1− δ(x, µi) (3)
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Fig. 4. Plan of the bursts experiment

S =
1P

i ̸=j |pi||pj |
X
i ̸=j

|pi||pj |δ(µi, µj) (4)

where µi represent the centroid of a cluster pi.

Note that both of the indices have to be considered: if ∀x, y 0 ≤ δ(x, y) ≤ 1,
they assume value in [0, 1] and, the closer H and S are to 1, the better the
partitioning of the data, and consequently the used dissimilarity.

When the gold solution is known, the so called external indices can be com-
puted. Giving the partitioning C = {c1, · · · , cr} corresponding to the gold solu-
tion for the dataset, an external index measures the level of agreement between
C and P. External indices are usually defined via a r × t contingency table T ,
where Tij represents the number of items in both ci and pj , 1 ≤ i ≤ r and
1 ≤ j ≤ t. For our experiment we have used the Adjusted Rand index[14].

RA =

P
i,j

�Tij
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j
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2 )]

(N2 )

(5)

where Ti. = |ci| and T.j = |pj |. Also in this case, the closer RA is to 1, the
better the partitioning of the data, and consequently the used dissimilarity.

Besides the assessment of a dissimilarity function by making use of cluster-
ing validation indices, it is also possible to use an a priori information differ-
ent form the gold solution. In the following, we will define a new index, called
Dissimilarity Optimality index which make use of the sort of data items.

Let us assume now that X is a partially ordered set of generic items, whose
sorting permutation P = (i1, i2, . . . , iN ) is known. In this case, the goodness of
a generic dissimilarity δ on X can be established by comparing the sorting it
induces on X with the sorting permutation P . In particular, what we expect
from a good dissimilarity δ is that for each item xi, its closest item with respect
to δ is xi+k with a small |k| ≥ 1. The Dissimilarity Optimality index is so defined:

do =
nX

i=1

|i− j − 1|
N − 2

with j = argmin
1≤k≤N,k ̸=i

δ(xi, xk) (6)

do ≈ 0 is what we expect in case of good dissimilarity measure.
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4 Experimental Results

On the 6th September 2002, at 01:21 UTC, a strong earthquake (MW 5.9) oc-
curred in the northern Sicilian offshore. The seismic event was recorded by the
Istituto Nazionale di Geofisica e Vulcanologia (INGV ) network and located at
about 50 km in NNE direction, from the Palermo city. In the following months,
more than a thousand of aftershocks were located in the same epicentral area
[17]. In December 2009, to better monitoring the seismicity of the Palermo 2002
epicentral area, the Gibilmanna OBSLab of INGV installed an Ocean Bottom
Seismometers with Hydrophone (OBS/H ) near the epicentral area of the main-
shock, at a depth of about 1500 m. The 3 Component velocity signals (Up-Down,
Nord-Sud, East-West) was digitized with a 21 bit datalogger with a sampling
frequency of 200 Hz. The OBS/H recorded several teleseismic and regional earth-
quakes and about 250 local micro-events not located by the on land network.
The magnitude of the local events ranges between −0.5 and 2.5 ML, and the
delay between the S wave and P wave arrival times (TS − TP ) ranges between
0.2 s and 5 s. A visual analysis of the seismograms revealed some similarity. To
better characterize the recorded micro-seismicity we located 159 micro-events,
with Signal to Noise ratio greater than a selected threshold, with a 3C single
station location technique based on the polarization analysis of the signals [16].
Among this microevents, 95 of them have been selected for our study. The result-
ing dataset, is denoted as Palermo earthquake dataset, and is finally composed
by only the Up-Down component of 95 signals of length 3000 sample points.
Between April 7 and May 8 2010, was carried out a multidisciplinary geophysical
investigation in the framework of the MEDOC project. In the first part of the
experiment 4 wide angle seismic profiles, crossing the entire Tyrrhenian basin in
East-West direction were acquired together with a fifth profile between southern
Sardinia and Sicily. The seismic energy was produced by airgun bursts operating
on the Sarmiento de Gamboa vessel, located at constant distance between them,
placed at different distances from the OBS/H, and recorded with high signal
to noise ratio. In particular, the airgun bursts occurs at regular interval times
of 45s and the seismic sensor of the OBS/H records for each burst a signal si
at time ti that express the variation of the pressure level over time. Figure 4
shows the arrangement of the experiment. The acquired data define what is here
named as bursts dataset, that can be considered a controlled dataset builded in
order to have a well characterized set of signals to be used as a benchmark for
problems involving seismic signals. The main assumption, is that close temporal
explosions occurs at similar distances from the OBS/H. It is finally composed
by the Up-Down component of 919 signals of maximum length 12000 sample
points.

4.1 Results on bursts dataset

In order to test the relative merit of each distance over the bursts dataset we
cutted the signals to a size useful to catch the meaningful part of the simulated
burst. In particular we considered the first 1000 points of each signal because this
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Fig. 5. Diagram of coverage proximity for w between 1 and 17

part has an higher signal to noise ratio as explained in section 2. The performance
of dissimilarities on this dataset has been measured by using the Dissimilarity
Optimality index. This is due to the fact that the conducted experiment involves
that signals recorded at closer instant times, should reveal similar shapes. The
values of the distance optimality index for the cross correlation dissimilarity and
the cumulative shape dissimilarity are 0.0033 and 0.0071 respectively.

Both values are very close to 0 and their difference is very small.
We have also studied how the distance optimality index changes in terms

of a temporal window w. In particular, for each signals xi recorded at instant
time ti, we have computed the rate of how many times its closest signal xj with
j = argmin

1≤k≤N,k ̸=i
δ(xi, xk) falls into a temporal window w, i.e |tj − ti| ≤ w. We

indicate this rate as coverage proximity. Figure 5 shows its computation for w
ranging from 1 until 17.

The results (see figure 5) show that cumulative shapes have a coverage prox-
imity of 80% vs 88% of cross correlation (8% difference) for w = 1. Anyway,
this difference decreases very fast to 1% for w > 1 . We can conclude that the
performances of the two measures over the bursts dataset are almost equal.

4.2 Results on Palermo earthquake dataset

This dataset is composed by 95 signals of length 3000 sample points. The per-
formance dissimilarities on this dataset has been measured by using the Homo-
geneity, Separation and Adjusted Rand indices. This is due to the fact that the
we dispose of a gold solution established by the expert taking into considera-
tion both its knowledge about the phenomena and the result of a hierarchical
clustering algorithm using cross correlation dissimilarity. In particular, the spa-
tial distribution of the hypocenters of the acquired data, suggests at least four
well separated hypocenters clouds, close to the Palermo 2002 cluster [17]. This
4 clusters, had finally been splitted into 9 clusters with a variable number of
events, by using the average link clustering algorithm in conjunction with the
cross-correlation dissimilarity. The same clustering algorithm has been used to
compute all the indices since it has been adopted by the expert to establish the
gold solution. The first result is that the partitioning computed by the average
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Fig. 6. Internal indices for the considered dissimilarities: (a) Homogeneity; (b) Sepa-
ration

link clustering in conjunction with the cumulative shape dissimilarity is perfectly
equal to the gold solution (adjusted rand index equal to 1). Moreover, in order
to better characterize this partitioning, we have computed its homogeneity and
separation.

We report in figure 6(a,b) the homogeneity and separation indices of the two
dissimilarities for different partitionings of K clusters ranging between 2 and 20.

The results show that the cumulative shape outperforms the cross-correlation
in term of homogeneity and performs almost equally on separation.

5 Conclusion and future work

In this paper, a new dissimilarity measure between seismic signals called cumu-
lative shape dissimilarity has been proposed. A number of tests have been done
on two different dataset of earthquake events. The former is characterized by
synthetic signal without gold solution in spite of the latter that, due to its real
nature, have a gold solution proposed by an expert providing 9 cluster with a
variable number of elements. Such datasets have been used to compare the cumu-
lative shape dissimilarity with the cross correlation dissimilarity, that is actually
largely adopted to differentiate waveforms in the context of seismic signals. In or-
der to evaluate the goodness of the proposed measure, due to the heterogeneity of
the two dataset, several indices have been considered (Dissimilarity Optimality,
Homogeneity, Separation and Adjusted Rand). The test returns that the pro-
posed measure have Dissimilarity Optimality and a Separation indices almost
equal to the cross correlation ones, and a superior Homogeneity for all clusters
values ranging from 2 to 20 (in average 1%). Anyway, the relevant difference
has to be noted on the computational time, in particular cumulative shape mea-
sure is faster than cross-correlation (O(n) vs O(n2)). Future developments will
be devoted to an extension of the cumulative shape on all the three-component
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signals, a new version taking into account weights for the signal samples, and to
the study of the better conjunction between the new proposed dissimilarity and
several kind of clustering algorithms.
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