

Earthquake fault dynamics: Insights from laboratory experiments

G. Di Toro, A. Niemeijer, E. Spagnuolo, M. Violay, S. Smith, N. De Paola, A. Bistacchi, G. Pennacchioni, F. Di Felice, G. Romeo, R. Han, T. Hirose, K. Mizoguchi, M. Cocco, T. Shimamoto.

Acknowledgements

- S. Nielsen (1)
- G. Di Toro (1, 2)
- A. Niemeijer (1, 4),
- E. Spagnuolo (1),
- M. Violay (1),
- S. Smith (1),
- N. De Paola (5),
- A. Bistacchi (6),
- G. Pennacchioni (2),
- F. Di Felice (1),
- G. Romeo (1),
- R. Han (7),
- T. Hirose (7),
- K. Mizoguchi (7),
- M. Cocco (1),
- T. Shimamoto (3),

. . .

Earthquakes are caused by fracture and frictional slip on faults. *Friction* is a key parameter in understanding the physics seismic source.

Let's investigate friction under Earth crust conditions.

Fault surface in dolomite, Southern Alps, Italy

Arrest or propagation of dynamic rupture

Friction law

Energy balance:
dissipation,
heat,
seismic radiation

Rupture velocity

Slip velocity, rise time

Friction and energy

No direct access to the "earthquake engine"...

Let's try to re-create it in the lab?

Synopsis

- Friction controls earthquake physics
- No direct access to the "earthquake engine"
- Earthquake simulation in the lab: friction machines
- Examples of experiments and typical results
- Lubrication processes and rock types
- Extrapolating the results: faults are weak during earthquakes
- Conclusions and future research

Experimental machines

LOW STRAIN (old-style shear or rotary)

HVRF (High-velocity, Rotary Shear machines)

SHIVA (Slow to High Velocity Apparatus)

Experimental machines are NOT designed to predict earthquakes!! They help our understanding of earthquake physics and thus improve modeling and risk assessment.

0.55 0.54 V=0.4 mm/s V= 4 mm/s Load Point Displacement (mm)

$$\mu = \mu_0 + A \ln \left(\frac{V}{V^*} + 1 \right) + B \ln \left(\frac{\Theta}{\Theta^*} + 1 \right)$$

$$d\Theta = 1 \quad \Theta$$
If rom Ma

 $\frac{d\Theta}{ds} = \frac{1}{V} - \frac{\Theta}{D_c}$, [from Marone, 1998]

Rate and State

 μ friction coeff.

A & B constants

 D_c critical slip 10⁻⁶-10⁻⁴ m

 θ (s) state variable

V slip rate - s slip

friction drop is small
velocity dependance is small
stress and velocity cover only part of seismic faulting conditions

The principle of ROTARY machines **Axial shaft** Rotating shaft **HOLDERS** (normal load (torque act.) PAIR OF CYLINDRICAL **SAMPLES**

Experimental conditions and earthquake conditions

Machine "1", Kyoto Univ., Japan, ca. 1990 (T. Shimamoto)

SERVO-CONTROL 200kW drive

Video examples of the experimental dynamics

METAGABBRO (Premosello-Italian Alps)

What do we measure?

FRICTIONAL resistance of the sample while it is sliding

SHORTENING of the sample under the effect of frictional wear

GAS EMISSIONS during the sliding

TEMPERATURES in or around the sample close to the slip surface

SLIDING VELOCITY is retrieved from rotative motion and sample radius

Example: s051 - rings of gabbro at 3 m/s and 20 MPa Acceleration = deceleration = 6 m/s²

Synopsis

- Friction controls earthquake physics
- No direct access to the "earthquake engine"
- Earthquake simulation in the lab: friction machines
- Examples of experiments and typical results
- Lubrication processes and rock types
- Extrapolating the results: faults are weak during earthquakes
- Conclusions and future research

High velocity friction; lubrication

Large slip & slip-rate
Intermediate normal stress
Considerable WEAKENING

After Di Toro et al., 2005

The key is **high work rate** generating heat density

Latent heat of chemical processes and phase transitions (decarbonation, gelification, dehydration, serpentinization, poorly known tribolchemical processes...)

Dynamic fault slip, heat and friction:

- Large, fast slip means concentrated heat
- > Heat triggers a variety of weakening mechanisms
- Under favourable conditions melt is produced

In its most straightforward manifestation, elevated heat density induces *temperature rise* and eventually yields to *melting...*

But not always!
(maybe even seldom)

Observed processes in HV rock friction:

Silica gel lubrication (quartz rocks)

Thermal decomposition and nanopowders (limestones)

Thermal decomposition and pressurization (dolostones)

Clay-gouge weakening, dehydration and press. (clay-gouges)

Flash heating (small slip amounts)

Melt lubrication (all silicate built rocks)

A very inclomplete classification of rock types and frictional processes

	Cohesive	Non-cohesive & clays
Silicatic	Melting Silica gel lubrication Flash heating Dehydration	
Carbonatic	Decarbonation Plastic yielding Dehydration Flash heating Nanopowder lub.	Flash heating Decarbonation Nanopowder lub.

For most process and rock types lubrication is observed at high velocity

With gouge - Brantut et al., 2008

[Fault zone rich in kaolinite

[dehydratation at ~1m/s, ~1 MPa]

Clay-clast aggregates (FE-SEM image) (e.g., Bouteraud et al., 2008)

Synopsis

- Friction controls earthquake physics
- No direct access to the "earthquake engine"
- Earthquake simulation in the lab: friction machines
- Examples of experiments and typical results
- Lubrication processes and rock types
- Extrapolating the results: faults are weak during earthquakes
- Conclusions and future research

Extrapolation

How to upscale lab to EQ conditions?

Larger σ_n , V, accelerations

Larger size than sample

Complex slip time-history

Complex geometry

Different petrology/chemestry

Different fabric

SEISMICITY, statistics of a fault population, correlations, criticality....: the process from a global point of view – YESTERDAYS TOPIC

Conclusions

- No direct access to the "earthquake engine"
- Earthquake simulation in the lab: friction machines
- High POWER (hich slip vel. and normal load combined)
 yields lubrication
- Various lubrication processes depending on rock types
- Extrapolating the results: power laws and geometry problems
- We barely start to measure and understand...

