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 Abstract 

The study of geodynamics relies on an understanding of the strength of the 

lithosphere. However, our knowledge of kilometer-scale rheology has generally been 

obtained from centimeter-sized laboratory samples or from microstructural studies of 

naturally deformed rocks. In this study, we present a method that allows rheological 

examination at a larger scale. Utilizing forward numerical modeling, we simulated 

lithospheric deformation as a function of heat flow and rheological parameters and 

computed several testable predictions including horizontal velocities, stress directions, 

and the tectonic regime. To select the best solutions, we compared the model 

predictions with experimental data. We applied this method in Italy and found that the 

rheology shows significant variations at small distances. The strength ranged from 

0.6±0.2 TN/m within the Apennines belt to 21±6 TN/m in the external Adriatic thrust. 

These strength values correspond to an aseismic mantle in the upper plate and to a 

strong mantle within the Adriatic lithosphere, respectively. With respect to the 

internal thrust, we found that strike-slip or transpressive, but not compressive, 

earthquakes can occur along the deeper portion of the thrust. The differences in the 

lithospheric strength are greater than our estimated uncertainties and occur across the 

Adriatic subduction margin. Using the proposed method, the lithospheric strength can 

be also determined when information at depth is scarce but sufficient surface data are 

available.  

 

Index terms: 8002 Continental neotectonics; 8163 Rheology and friction of fault 

zones; 8031 Rheology: crust and lithosphere; 8020 Mechanics, theory and modeling. 
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 1. Introduction 

The strength of the lithosphere has an important influence on a number of geodynamic 

problems, including the bending of the lithosphere and its gravitational collapse 

(Bodine et al., 1981; Rey et al., 2001). One-dimensional lithospheric strength is 

usually represented by a diagram of shear stress versus depth (Brace and Kohlstedt, 

1980) and strongly depends on the km-scale rheology of the constituent rocks. This 

influential but poorly understood constitutive property is usually extrapolated from 

cm-sized laboratory samples (Hirth and Kohlstedt, 2003; Zhang and Karato, 1995), 

from structural studies of naturally deformed rocks (Twiss, 1977; Tullis, 2002; Evans, 

2005), or from a larger-scale perspective (Sibson et al., 1979; Thatcher, 1983; Bird, 

1994; Pollitz et al., 2000; Handy, 2004; Thatcher, 2009). 

Assessing the rheological properties of rocks for the broad range of thermodynamic 

conditions that exist in the lithosphere remains a daunting task. Rock rheology 

depends on the mineralogy, fluid content, mineral grain size, temperature, pressure, 

and deformation history of the material (Karato, 2008). This information is very 

difficult to determine at depth; as a result, a variety of rheological models have been 

developed. For several years, lithosphere deformation has mainly been described by a 

model consisting of a weak lower crust between a relatively strong upper crust and 

uppermost mantle (Brace and Kohlstedt 1980; Zoback and Townend 2001; Burov and 

Watts, 2006). Following Jackson (2002), we will refer to such a model as the “jelly-

sandwich model”. Jackson (2002) alternatively proposed a model with a weak mantle and 

a relatively strong lower crust in which the strength of the lithosphere is carried mainly by 

the brittle crust; we call this the “crème-brulée model” after Burov and Watts (2006).  A 

third model, named “banana split”, has been proposed in high-deformation zones where 

processes such as shear heating, grain-size reduction, chemical alteration, and phase 

changes weaken the major lithospheric faults, resulting in very low shear stress values 

(Burgmann and Dresen, 2008). These models differ in the integrated strength and 

shear-stress envelopes they posit and represent different views of the rheological 

properties of the lithosphere. 

Knowing the rheology and the strength of the lithosphere gives us insight into the 

spatial and frequency-size distributions of the seismicity (Lamontagne and Ranalli, 

1996; Doglioni et al., 2010). An intriguing key point is the definition of the 
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relationships among the strength of the lithosphere, the rheological parameters, the 

stress-axis orientation, and the strain-rate magnitudes. Gross rheological 

characteristics for the western United States were obtained by Flesh et al. (2000) 

using the magnitude of the strain-rate tensor and the magnitude of the total deviatoric 

stress tensor. Alternatively, Zoback and Townend (2001) assumed the strength of the 

lithosphere to be 3 TN/m and estimated the average strain rate of the intraplate 

lithosphere by varying heat flow, conductivity, heat productivity, and rheological 

parameters using a Monte Carlo technique. A similar approach was followed by 

Zoback et al. (2002) in constructing their “steady-state failure equilibrium” model, 

which was able to provide a first-order constraint on the rate of lithosphere 

deformation. More recently, GPS and/or stress-data inversion procedures have been 

used by Becker et al. (2005), Townend and Zoback (2006), and Keiding et al. (2009) 

to study the deformation field within the elastic regime. Here, we present a method for 

use in lithosphere-rheology studies. By means of forward numerical modeling, we 

tested different rheological behaviors to compute the strength of the lithosphere and 

the shear-stress distribution at depth. We applied this method in central Italy and used 

several datasets (stress orientations, focal mechanisms, and GPS measurements) to 

select the best set that were of rheological parameters.  

Across the margin of the continental subduction in Italy, we found a sharp variation in 

the strength of the lithosphere; the upper plate region showed a weak mantle, which is 

a “crème-brulée”-like behavior, whereas the forearc showed higher strength, 

especially in the lithospheric mantle. Our approach thus reduces the uncertainty in the 

choice of laboratory flow laws and complements field work. 

 2. Study area and data 

The Apennines are a fold-and-thrust seismic belt that represents the NW-SE trending 

extensional boundary between the continental Adriatic microplate to the NE and the 

young Tyrrhenian crust to the SW (Figure 1). Along the axis of the belt, large normal 

faults overlie compressional structures, a feature that is interpreted as the back-arc 

extension of the west-directed Adriatic subduction (Doglioni, 1998). Compressional 

features are present to the east, toward the Adriatic Sea. The thrust system 

progressively migrates eastward (Pialli et al., 1998; Doglioni et al., 1999) and shows 
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tectonic activity in the Holocene from the Po Plain (Vannoli et al., 2004) to the Mid-

Adriatic Ridge (Scrocca et al., 2007). To the west toward the Tyrrhenian Sea, the 

extension has been accompanied since the Miocene by a thinning of the earth’s crust, 

volcanic activity, and high heat flows (Pialli et al., 1998, and references therein).  

In the first stage of this work, we analyzed the results from a large-scale model that 

includes Italy and its surroundings (inset of Figure 1). We then focused on the east 

side of the Central Apennines, which we further divided into three areas of different 

tectonic behavior (extension, intermediate, and compression). We utilized two 

datasets: SHmax

The World Stress Map database includes 352 borehole breakouts (238 with A-, B-, 

and C-quality; Heidbach et al., 2008), 1023 earthquake-fault-plane solutions (all of B 

and C quality, M>4.0), two formal inversions of earthquake focal mechanisms (B 

quality), and 14 fault data of C quality in the model area. The stress data clearly 

identify the existence of an extension perpendicular to the axis of the Apennines and 

compression perpendicular to the Southern Alps and the thrust of Northern 

Apennines, as also shown by Meletti et al. (2008). 

 orientations from the World Stress Map database (Heidbach et al., 

2008) and GPS data (Devoti et al., 2010). In the following discussion, we first 

describe the data at the model scale and then in detail for the central Apennines. 

The horizontal velocities in Italy were derived from the analysis of continuous GPS 

observations collected between 1998 and 2009 (Devoti et al., 2010). The time series 

are specified with respect to the ITRF2005 and the Eurasian Plate. The complete GPS 

velocity field is derived from a distributed-session approach and shows a standard 

deviation of ∼0.5 mm/yr. The geodetic strain rates indicate extension along the 

Apennines of 50–80x10-9 yr-1 and areas of compressive tectonics of 30–50x10-9 yr-1

We considered the east side of the Central Apennines as being divided into three areas 

of different tectonics. Listed from the axis belt to the east (Figure 1), these are the 

extensional belt axis (EX), the deep internal thrust (IT), and the external thrust (ET). 

In the EX, the orientation of S

. 

The GPS kinematic description of the crustal deformation shows a high coherence 

with the seismotectonic setting of the Italian area. 

Hmax is mostly NW–SE. The tectonic regime can be 

inferred by earthquake focal mechanisms (Frepoli and Amato, 1997), quaternary 

fault-slip data (Boncio et al., 2004), stress data, and morphotectonic and 
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paleoseismological data (Michetti et al., 1996). The velocity field obtained from 

continuous GPS data also shows extension between the western and eastern sides of 

the Apennines (Devoti et al., 2008). The western boundary of the EX region coincides 

with the surface projection of an active, regional-scale, east-dipping, low-angle, 

extensional detachment fault (see Boncio and Lavecchia, 2000). The following values 

of filtered surface heat flow have been reported in the literature, with a variability of 

ca. 20 mW/m2: 65–75 mW/m2 (Della Vedova et al., 2001), 50–80 mW/m2 (Pasquale 

et al., 1997), and 60–80 mW/m2

The IT region is situated between the Apennines and the coastal Adriatic zone. The 

few available focal mechanisms are normal at shallow depths and transpressive at 

greater depths (~17–25 km). Negredo et al. (1999) proposed that the tectonic regime 

in this area changes with depth; the deeper sedimentary layers are undergoing flexure 

and contraction while the shallower sedimentary layers are undergoing extension, 

with the transition located at a depth of ~15–18 km. The complexity of the IT requires 

modeling of the deeper sedimentary layer, the top of which is located at ~18 km. The 

heat-flow density in the IT is lower than that in the EX, with estimates ranging from 

40 mW/m

 (Pauselli and Federico, 2002).  

2 (Pasquale et al., 1997) to 45–60 mW/m2 (Pauselli and Federico, 2002) or 

50–75 mW/m2

Along the external thrust (ET), morphotectonic analyses indicate Holocene activity 

(Vannoli et al., 2004), whereas the offshore direction of S

 (Della Vedova et al., 2001). 

Hmax, being mainly arc-

perpendicular, shows no dominant orientation and cannot be related to a simple 

rotation of the Adriatic microplate (Barba et al., 2008). Based on a statistical analysis 

of the migration and shortening rates of the folds and thrusts, Basili and Barba (2007) 

reported the activity of the easternmost anticlines, both onshore and offshore. Through 

an analysis of several seismic profiles, Scrocca et al. (2009) confirmed that the 

shallowest sediments are deformed and dislocated by compression. Shortening rates 

of up to 3 mm/yr were identified (Lavecchia et al., 1994; Scrocca et al., 2007; Basili 

and Barba, 2007). Geodetic analyses, however, are not yet suitable for the study of 

compression because of the paucity of onshore sites (D’Agostino et al., 2008) and 

must instead rely on distant GPS sites, which are located along the Dinarides (as in 

Caporali, 2009, DPC-S1). The lithosphere in the ET is cold, and the heat-flow density 
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is ~40 mW/m2 (Pauselli and Federico, 2002) with the highest values (40–65 mW/m2

The amount and type of available data for the model area and for each of the three 

individual regions, with corresponding values and ranges, are listed in Table 1. 

) 

proposed by Della Vedova et al. (2001). 

 3. Method  

We studied the strength of the lithosphere using a trial-and-error procedure (Figure 2) 

that minimizes the deviations of the model predictions from surface data. Using the 

finite-element code SHELLS (Kong and Bird, 1995; Bird, 1999), we performed 

several numerical experiments in which the heat flows, the rheological parameters, 

and the magnitudes of the basal shear tractions were varied to compute testable 

predictions of several parameters such as horizontal velocities, SHmax

The method we devised has several advantages. The two-step approach allows for the 

calculation of detailed results in small areas while maintaining results that are reliable 

at a larger scale. The use of independent datasets helps to reduce systematic error and 

is useful in estimating the extent of random error. Averaging over the best models 

reduces the dependence on measurement errors and provides more robust results. 

 directions, and 

tectonic regimes. We performed this modeling in two steps. We first modeled the data 

over the whole Italian region (inset of Figure 1) and then considered only the stress 

data in central Italy (Table 1). We selected a set of the best models as determined by 

their fit to independent datasets of observations from Italy. For each numerical 

experiment i, we determined the shear stress 𝜏𝜏𝑠𝑠𝑖𝑖 (𝑧𝑧) at depth and the integrated strength 

Σi = ∫ 𝜏𝜏𝑠𝑠𝑖𝑖 (𝑧𝑧)𝑑𝑑𝑧𝑧, and we averaged these quantities over the set of best models. 

3.1. Model setup and boundary conditions 

We used the thin-shell finite-element code SHELLS (Bird, 1999), which allows faults, 

topography, and rheology to be incorporated into a laterally varying crustal structure. 

The model covers the entire area of Italy (inset of Figure 1) and adopts the same mesh 

as that used by Barba et al. (2008; 2010). Our grid consists of 5126 triangular 

continuum elements and 822 fault elements. The model is composed of two layers 

(crust and mantle) of variable thickness plus topography. Temperature and strength 

are depth-dependent, as is the shear-stress tensor. Physical and rheological parameters 
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do not vary laterally but do vary from the crust to the mantle (Table 2). We derived 

the crust and lithosphere thicknesses from the literature (Nicolich, 2001; Marone et 

al., 2003; Calcagnile and Panza, 1981; Babuska and Plomerova, 2006). For the faults, 

we adopted the composite seismogenic sources from DISS v.3.0.2 (DISS Working 

Group, 2006; Basili et al., 2008), i.e., source models that incorporate one or more 

seismogenic faults with similar parameterizations in the same source and are not 

segmented. We also incorporated active faults that are not included in the DISS 

database, such as those from Papanikolaou and Roberts (2007), and those that were 

included in later versions of the database, such as the Apennine external thrusts 

(Scrocca et al., 2007).  

The boundary conditions were set in the Eurasian reference frame and were the same 

for all experiments. These conditions show the best fit with the data in Barba et al. 

(2008; 2010). At the southern edge (the AF and IO borders in Figure 1), we applied 

the Eurasia-Nubia convergence condition (Serpelloni et al., 2007); thus, the “TR” 

edges were subjected to reflection symmetry across the North–AF thrust. All of the 

“EU” edges are fixed with respect to Eurasia. For the “AD” edge, we set the edge-

orthogonal velocities to zero while the edge-parallel components were left free.  

Basal shear tractions directed towards the northeast were applied below the Apennines 

(see dashed areas, inset of Figure 1) at a depth of 400 km with uniform magnitude. In 

the horizontal plane, these tractions are translated by means of simple shear into 

tractions at the base of the model lithosphere through the assumed rheology (see Bird 

et al., 2006). Here, the magnitude of the basal shear tractions plays the role of a single 

free parameter (see below) and ranges from 15 to 50 MPa.  

3.2. Free parameters 

We considered the heat flows, the rheological parameters, and the magnitudes of basal 

shear tractions as free parameters. We explored the range of uncertainty in each 

parameter by a trial-and-error procedure with discrete sampling steps (Table 2).  

Each combination of heat flow (qEX, qIT, and qET), set of rheological parameters (R1-

4), and magnitude of basal shear tractions (Φ) constitutes an independent simulation. 

For each combination, the model predictions were computed with the SHELLS finite-

element code (Bird, 1999).  
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In exploring the range of heat-flow values for each of the three studied areas (EX, IT, 

and ET), we assigned a single uniform value (qEX, qIT, and qET

We defined four different sets of rheological parameters (R1–R4 in Table 2) that 

represent distinct and possible behaviors of the lithosphere within the study region. 

These parameters correspond to the different strengths of the lithosphere. The 

parameters R1 to R4 (Table 2) are listed in order of increasing strength Σ and 

deepening brittle-ductile transition, from more ductile to stronger and more brittle, for 

both the crust and mantle. Among the laboratory rheological parameters, our choices 

range approximately from Westerly granite wet (R1) to anorthosite (R4) for the crust 

and from plagioclase (R1) to olivine (R4) for the mantle (Watts, 2001; Burgmann and 

Dresen, 2008). Each set includes crust and mantle parameters and is uniform over the 

entire model. 

, respectively) to 

represent the average heat flow in all elements within each area. Outside of these 

areas, the steady-state heat-flow density was derived from the literature (Pasquale et 

al., 1997, 1999; Verdoya et al., 2005).  

We applied northeastward basal shear tractions Φ under the Apennines in the range of 

15–50 MPa to represent the mantle flow–lithosphere interactions (Doglioni, 1987). 

This range of basal tractions corresponds to a shortening of 0.1-3 mm/yr across the 

Apennines external thrust (Barba et al., 2008) and thus accounts for the shortening 

reported in the literature (Lavecchia, 1994; Vannoli et al., 2004). Basal shear tractions 

are considered here as a discrete random variable; they contribute to the final 

uncertainties and are not further discussed herein.  

3.3. Rheological modeling 

The critical value of the shear stress 𝜏𝜏𝑠𝑠(𝑧𝑧) (above which failure of the lithosphere 

occurs) is defined as the least of three upper limits, i.e., 

𝜏𝜏𝑠𝑠 = 𝑚𝑚𝑖𝑖𝑖𝑖�𝜏𝜏𝑠𝑠
𝑓𝑓𝑟𝑟𝑖𝑖𝑟𝑟 , 𝜏𝜏𝑠𝑠

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 𝜏𝜏𝑠𝑠
𝑟𝑟𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙 � 

given by empirical relations for brittle frictional sliding, dislocation creep, and plastic 

deformation (Bird, 1989; 1999). For frictional sliding, we have the following:  

𝜏𝜏𝑠𝑠
𝑓𝑓𝑟𝑟𝑖𝑖𝑟𝑟 (𝑧𝑧) = 𝑔𝑔 ∙ 𝑧𝑧 ∙ �𝜌𝜌𝑙𝑙𝑖𝑖𝑙𝑙ℎ𝑜𝑜 − 𝜆𝜆 ∙ 𝜌𝜌𝐻𝐻2𝑂𝑂� ∙ 𝛿𝛿 = 𝜌𝜌𝑙𝑙𝑖𝑖𝑙𝑙ℎ𝑜𝑜 ∙ 𝑔𝑔 ∙ 𝑧𝑧 ∙ (1 − 𝜆𝜆′) 
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where z is the depth, g is gravitational acceleration, 𝜌𝜌𝑙𝑙𝑖𝑖𝑙𝑙ℎ𝑜𝑜  is the density of the crust or 

mantle, 𝜌𝜌𝐻𝐻2𝑂𝑂  is the mean density of water, λ is the efficacy of the pore pressure, λ' is 

the pore-fluid factor, and 

𝛿𝛿 =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝛾𝛾 − 1
2𝛾𝛾

(extension; �̇�𝑟1 = 0)

𝛾𝛾 − 1
2

(compression; �̇�𝑟2 = 0)

𝜔𝜔 + �
𝛾𝛾 − 1

2𝛾𝛾
− 𝜔𝜔� ∙ �sin �2 ∙ 𝑙𝑙𝑙𝑙𝑖𝑖−1 �̇�𝑟2

|�̇�𝑟1| −
𝜋𝜋
2�� (transtension; |�̇�𝑟1| < �̇�𝑟2)

𝜔𝜔 + �
𝛾𝛾 − 1

2
− 𝜔𝜔� ∙ �sin �2 ∙ 𝑙𝑙𝑙𝑙𝑖𝑖−1 �̇�𝑟2

|�̇�𝑟1| −
𝜋𝜋
2�� (transpression; |�̇�𝑟1| > �̇�𝑟2)

� 

 

𝜔𝜔 = 𝑠𝑠𝑖𝑖𝑖𝑖(𝑙𝑙𝑙𝑙𝑖𝑖−1𝜇𝜇) 

𝛾𝛾 =
1 + 𝜔𝜔
1 − 𝜔𝜔

 

where µ is the coefficient of friction of the continuum and �̇�𝑟1 and �̇�𝑟2 are the two 

principal values of the horizontal strain rate. For dislocation creep, we have the 

following: 

𝜏𝜏𝑠𝑠
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑧𝑧) = 𝜑𝜑 ∙ 𝑟𝑟𝑥𝑥𝑟𝑟 �

𝛽𝛽 + 𝜉𝜉𝑧𝑧
𝑇𝑇

� ∙ �̇�𝑟𝑠𝑠 

(Bird, 1989) where 𝜑𝜑 = 𝛼𝛼
2
�2 ∙ �−�̇�𝑟1�̇�𝑟2 − �̇�𝑟1�̇�𝑟𝑧𝑧 − �̇�𝑟2�̇�𝑟𝑧𝑧�

1
𝑖𝑖−1 with �̇�𝑟𝑧𝑧 = −(�̇�𝑟1 + �̇�𝑟2) and  

𝑟𝑟�̇�𝑠 =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

�̇�𝑟2 − �̇�𝑟𝑧𝑧
2

(extension; �̇�𝑟1 = 0)

�̇�𝑟𝑧𝑧 − �̇�𝑟1

2
(compression; �̇�𝑟2 = 0)

��̇�𝑟1
2 + �̇�𝑟2

2 ∙ sin �𝑙𝑙𝑙𝑙𝑖𝑖−1 �̇�𝑟2

|�̇�𝑟1|� (transtension; |�̇�𝑟1| < �̇�𝑟2)

��̇�𝑟1
2 + �̇�𝑟2

2 ∙ sin �𝜋𝜋2 − 𝑙𝑙𝑙𝑙𝑖𝑖−1 �̇�𝑟2

|�̇�𝑟1|� (transpression; |�̇�𝑟1| > �̇�𝑟2)

� 

where 𝛼𝛼, 𝛽𝛽, 𝜉𝜉, and n are material constants, T is the temperature, 𝑟𝑟�̇�𝑠 is the shear strain 

rate, and the tectonic regime depends on the ratio �̇�𝑟2
�̇�𝑟1

. As for the shear stress �̇�𝑟𝑆𝑆 , we 

emphasize that, in both the thrusting regime and the normal faulting regime, the 

location of the brittle/ductile transition is clear: it is the greatest depth of frictional 

behavior on any fault, which is also the greatest depth of frictional behavior on the 

most active fault set. However, in the strike-slip regime, the transition is less clear. 
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Applying the rule that the transition is found at the greatest depth of frictional 

behavior on any fault would create two discontinuities: one at the �̇�𝑟1 = 0 axis, where 

normal faulting appears/disappears, and one at the �̇�𝑟2 = 0 axis, where strike-slip 

faulting appears/disappears. Furthermore, the transition depth near these lines (on the 

deeper side) would be defined by the less active fault set, which becomes totally 

inactive as the line is approached. Choosing the alternate rule of taking the deepest 

frictional behavior on the most active fault set still results in two discontinuities, 

although at different places, with both in the strike-slip quadrant (�̇�𝑟1 < 0, �̇�𝑟2 > 0). To 

avoid these discontinuities, we followed the method of Bird (1999) and applied a 

sinusoidal smoothing to both the frictional and creep laws before computing the 

transition depth from the combination of values. This approach allows smoothing of 

the transition depth across each of the transpressional and transtensional wedges and 

satisfies the continuity conditions at �̇�𝑟1 = 0, �̇�𝑟1 = −�̇�𝑟2, and �̇�𝑟1 = 0. 

The temperature T as a function of depth z is assumed to be in a conductive steady 

state given by the following (Bird, 1989): 

𝑇𝑇(𝑧𝑧) =

⎩
⎪
⎨

⎪
⎧ 𝑇𝑇𝑠𝑠 +

𝑞𝑞 ∙ 𝑧𝑧
𝑘𝑘𝑟𝑟

−
𝐻𝐻 ∙ 𝑧𝑧2

2𝑘𝑘𝑟𝑟
, 𝑧𝑧 ≤ 𝑧𝑧𝑟𝑟

𝑇𝑇𝑟𝑟 +
(𝑞𝑞 − 𝐻𝐻𝑧𝑧𝑟𝑟) ∙ (𝑧𝑧 − 𝑧𝑧𝑟𝑟)

𝑘𝑘𝑚𝑚
, 𝑧𝑧𝑟𝑟 < 𝑧𝑧

� 

where q is the surface heat-flow density, kc and km are the conductivities of the crust 

and mantle, respectively (k in Table 2), zc is the thickness of the crust, Ts and Tc

For plastic deformation, we set the shear stress limit to τ

 are 

the temperatures at the surface and at the base of the crust, respectively, and H is the 

radiogenic heat-production rate within the crust (zero in the mantle). 

s
plast=500 MPa. This value, 

based on the plasticity limit of olivine (Griggs et al., 1960), has been shown to 

represent the deformation mechanisms in the mantle (Zang et al., 2007). Thus, we set 

τs(z)=min(τs
fric,τs

creep,τs
plast) where τs depends on the strain rate, temperature, and 

rheological parameters. The strength and shear stresses are studied in the continuum 

rather than along the modeled faults, and they thus represent the average behaviors of 

the three studied areas. 
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3.4. Model predictions and assumptions 

The SHELLS program adopts the thin-shell approximation, i.e., it uses the vertical 

integration of lithospheric strength over triangular shell elements to reduce three-

dimensional problems to two dimensions. With this approximation, the resulting 

horizontal velocity vectors are independent of depth. Model predictions include 

horizontal velocities and anelastic strain rates, which can be tested by comparison 

with GPS and stress data under some assumptions.  

The shear stress is integrated along the z axis by means of one-km steps at each of the 

seven Gaussian integration points in each finite element (continuum or fault). The 

problem is reduced to two dimensions, and the corresponding strain solution is 

computed using only the in-plane terms. The vertical normal stress, assumed to be 

lithostatic, is then added to the result. Thus, bending stresses such as those occurring 

in the outer rises of subduction zones are not represented. Because vertical shear 

tractions on vertical planes are neglected, this approach can be successfully applied 

when the stress pattern is not affected by short-wavelength lateral changes in strength 

or density. 

Over long time periods, velocity discontinuities exist across faults; these 

discontinuities are not observed in most short-term geodetic measurements. Over 

short time periods, temporary fault locking causes “interseismic” elastic strain. To 

quantitatively compare the horizontal anelastic velocities with the interseismic 

velocities obtained from GPS, we performed a correction for changes in the elastic 

strain rates that occur because of temporary fault locking (Savage, 1983; Liu and Bird, 

2002). To constrain the stress regimes and stress directions under Andersonian 

conditions, we used data taken from the World Stress Map, which includes earthquake 

data. However, the P axis of individual earthquakes and the σ1 stress orientations may 

diverge (McKenzie, 1969; Townend, 2006; Arnold and Townend, 2007). Assuming 

the continuum elements to be isotropic, the predicted principal stress axes have the 

same directions as the principal axes of the surface strain rates. Often, the maximum 

compressive horizontal stress (SHmax) shows good agreement with the directions of 

greatest compressive strain rate derived from GPS (Viganò et al., 2008; Keiding et al., 

2009) although stress and strain rates can sometimes represent processes occurring on 

different timescales (Townend and Zoback, 2006). 
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The predicted stress regime (actually the strain-rate regime) is determined by the 

orientations of the principal strain-rate axes within the elements and off the modeled 

faults. The modeled SHmax

In this work, the above assumptions satisfy the actual conditions fairly well; in fact, 

only a small percentage of the stress data in the three study areas is derived from a 

single focal mechanism in the IT and ET (Table 1), whereas in EX the stress ellipsoid 

cannot be recovered for only three data sets out of 76. Moreover, most of the faults 

are blind (Meletti et al., 2008) and are significantly deeper than the borehole data. 

Only two sets of borehole data were taken at depths below 4 km in the IT and ET. For 

the EX, the situation appears to be different because most of the data are derived from 

single-earthquake mechanisms and the active faults are relatively shallow. However, 

it appears that the model stress pattern is sufficiently smooth and that the S

 direction was computed using the arctangents of the strain-

rate eigenvalues �̇�𝑟1 and �̇�𝑟2. The regime was based on the relative stress magnitudes 

under the incompressible-flow assumption in a crust with no pre-existing faults where 

the vertical strain rates �̇�𝑟𝑧𝑧 = −(�̇�𝑟1 + �̇�𝑟2) were inferred from the horizontal rates. Close 

to the faults, anelasticity and fault slip affect the results and must be taken into 

account when the top of the fault is shallow with respect to the depth of the breakouts.  

Hmax

3.5. Model selection 

 

directions inferred from earthquakes are mostly oriented NW–SE, i.e., parallel to the 

main trend of the fault, with reduced scatter (Figure 1). This observation was 

previously made by Barba and Basili (2000) for well-studied earthquakes in the area 

and suggests that the assumptions are also fairly well justified for the EX. 

The model goodness-of-fit for the simulation experiments was evaluated by the 

following tests: 

- The horizontal velocities computed in a locked-fault state were compared with 

182 interseismic GPS measurements in Italy (Devoti et al., 2010). The RMS of 

the residuals between the measured and computed velocities defines the GPS 

misfit, σgps

- The directions of the principal stress axes, specifically, the directions of the 

principal axes of the anelastic strain rates, were compared with the directions 

of S

. 

Hmax from the World Stress Map 2008 (Heidbach et al., 2008) located 



 

14 

within the model boundary. The average of the absolute angular differences 

between the measured and predicted directions (L1-norm) defines the SHmax 

misfit for Italy, σstress. The average absolute deviations between the measured 

and predicted directions within the three studied areas define the local SHmax 

misfits: εEX, εIT, and εET

- The model-predicted tectonic regimes (extension, compression, and strike-

slip) in the continuum were compared with the focal mechanisms from the 

World Stress Map 2008 located within the study region. The percentage of 

predictions not matching the observed focal mechanisms defines the regime 

misfit for Italy, σ

. 

reg

We selected the most realistic simulations through a two-step comparison with the 

observed data. In the first step, we modeled the data over the whole region of Italy 

and discarded the simulations that showed any misfit (σ

.  

gps, σstress, or σreg) greater than 

the 66th-percentile value of the misfit distribution (Figure 3a). The remaining 

simulations were scored according to the corresponding local SHmax misfits (εEX, εIT, 

and εET

3.6. Detailed IT crust model and tectonics 

). The N best models for each region (EX, IT, and ET) were those exhibiting 

the lowest corresponding misfits (Figure 3b). In the second step, we computed the 

average shear stress 𝜏𝜏𝑠𝑠(𝑧𝑧), the strength Σ = ∫ 𝜏𝜏𝑠𝑠(𝑧𝑧)𝑑𝑑𝑧𝑧, and the associated RMS for 

the N best simulations for each region. Thus, 𝜏𝜏𝑠𝑠(𝑧𝑧) and Σ were computed in each of 

the three study areas (Figures 4 and 5) and constitute our results.  

Assuming only one crustal layer in IT, the rheological parameters fall in between the 

EX and ET solutions (Table 3), as expected. However, the IT area is the transition 

zone across the margin between the Adriatic and the Tyrrhenian crust; the IT shows 

more complexity than the EX and the ET and cannot be represented satisfactorily by 

one crustal layer. In fact, two sedimentary layers are included in the crust of the 

flexured Adriatic lithosphere (Doglioni et al., 2007), which exhibits a differential 

behavior at depth (Negredo et al., 1999). Moreover, in the case of compressive 

tectonics the critical shear stress for brittle frictional sliding within the lower 

sedimentary layer can be close to the critical value for plastic deformation. Thus, we 

take a step forward and represent the upper crustal layer with the rheological 
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parameters R1, a weak behavior corresponding to the overriding Tyrrhenian plate, and 

the lower sedimentary layer with R4, which has a high strength and corresponds to the 

subducting Adriatic plate. Here, we do not differentiate the mantle. Following such an 

approach in the IT area adds some freedom that we can minimize by assuming the 

same rheological parameters as in the adjacent areas and constraining all the 

remaining quantities in the numerical model. Here, we compute the average strength 

from the N best models Σ = 〈Σi〉. Then, similarly to Zoback and Townend (2001), we 

accommodate variations in the shear stress 𝜏𝜏𝑠𝑠(𝑧𝑧) by satisfying the strength constraint 

Σ = ∫ 𝜏𝜏𝑠𝑠(𝑧𝑧)𝑑𝑑𝑧𝑧 where the strength, the heat flow qIT

We calculated the shear stress 𝜏𝜏𝑠𝑠(𝑧𝑧) for compressive and transpressive tectonic 

behaviors as follows. On average, the base of the upper crust is at a depth of 18 km. 

To determine τ

, and the strain-rate eigenvalues 

(�̇�𝑟1 and �̇�𝑟2) are derived from the numerical model.  

s(z), we used the average heat flow (qIT = 53 ± 5 mW/m2) and strain-

rate modulus (�̇�𝑟 = ��̇�𝑟1
2 + �̇�𝑟2

2 = (8 ± 2) × 10−16 𝑠𝑠−1) of the N best models for the IT. 

Within the N best models, the IT area showed compressional and transpressional 

tectonics that correspond to a horizontal strain-rate ratio with a wide range (�̇�𝑟2 �̇�𝑟1⁄ =

0 − 0.7). To represent the tectonic behavior, we chose the extreme ends from this 

range of modeled ratios and determined that τs

In the ET and EX, one layer within the crust is satisfactory, whereas in the IT the 

solution with two sedimentary layers is satisfactory only for depths shallower than 30 

km. Understanding earthquakes deeper than 30 km in the IT (see Figure 5) would thus 

require a study using a different approach, which is outside the scope of this work. 

(z) for �̇�𝑟2 �̇�𝑟1⁄ = 0.7 corresponds to 

transpressive tectonics, whereas it is 0 for the case of pure compression. 

3.7. Model uncertainties 

To define the uncertainty of the results (the computed strengths Σ), we constructed a 

frequency distribution of the free parameters for a number of simulations. Here, N was 

chosen rather arbitrarily with the goal of balancing the robustness and significance of 

the results. If very few simulations are selected, the results depend on the 

measurement errors, whereas a larger value of N helps to obtain more robust results. If 

too many simulations are selected, the results depend on the ranges of the input 

parameters. We found it adequate to average the quantities over the best N = 50 
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models. However, a larger value of N was shown to be equally valid because the heat-

flow and rheological parameters, which were our independent variables, were stable 

up to N = 200. We determined the uncertainty of the shear stress τs(z) through an 

examination of the percentiles of its frequency distribution. For practical 

considerations, we here report the 5th, 25th, 75th, and 95th

 4. Results 

 percentiles of the best 50 

models (Figure 5). The uncertainties of the results include the variabilities in the heat-

flow values, sets of rheological parameters, and magnitudes of the basal tractions for 

the three independent parameters.  

We varied the heat flow, the rheological parameters, and the basal shear tractions in 

the appropriate ranges (Table 2) while performing 2016 simulations. Moving from 

east to west, we found a progressively shallower brittle-to-ductile transition in the 

crust and a sharp variation in the strength; the upper-plate region showed a very weak 

mantle, with a “crème brulée”-like behavior (Figure 5), whereas the forearc showed 

higher strength (Figure 4), especially in the lithospheric mantle. 

The values at which the 66% cumulative percentage curves occur (Figure 3) are σgps= 

1.55 mm/yr, σstress= 33°, and σreg= 78%. In the first step, 1333 simulations were 

discarded. The remaining 683 simulations were scored according to their εEX, εIT, and 

εET values. The shear stress τs

Figure 5 displays the average shear stress at depth and the associated uncertainties 

corresponding to the best 50 models for the three areas. The large difference in the 

strengths translates to different rheological behaviors. The EX area showed to be very 

weak, with the strength concentrated within the upper crust. The mantle below the EX 

area appeared to be ductile. The ET area exhibited the largest strength of the three 

areas; this strength concentrated in the crust, which has a brittle rheology, and 

 and total strength Σ were computed for the three study 

areas. The integrated strength and the associated uncertainties (standard deviation and 

percentiles) are shown in Figure 4. Here, it is clear that the strengths in the three target 

areas assumed significantly different values, and this result depended very little on the 

choice of the number N. The model-predicted stress orientations and interseismic 

velocities corresponding to the best 50 models showed little deviation from the 

observed data (Figure 6) within most of the study area.  
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especially in the upper mantle, which behaves plastically. The IT area was somewhat 

transitional. The upper mantle exhibited the same plastic behavior as the ET, although 

with a reduced strength. The crust showed a more complicated behavior. The shallow 

sedimentary layer was predicted to be brittle. For the deeper sedimentary layer, the 

rheology depends on the parallelism between the transport direction of the thrust and 

the local stress direction; for pure compression, the rheology was plastic whereas for 

significant along-strike motion the rheology was predicted to be brittle.  

For the ET area, the best 50 simulations according to their εET values indicated a 

strength of Σ= 21 ± 6 TN/m within the compressive regime. In the crust, the peak 

shear stress was τs = 406 ± 94 MPa at a depth of 16–19 km. The shear-stress profile 

evidenced the plastic behavior of the upper mantle with a thickness of 25 km. The 

average deviations for the best 50 simulations were εET = 38°, σgps = 1.48 mm/yr, 

σstress =3 3°, and σreg = 43%. The very high stress error εET is likely the result of 

crustal heterogeneities not incorporated into the model. Thus, stress directions in ET 

were not always well predicted (Figure 6), but this issue had only a small effect on the 

resulting strength. The resulting heat-flow density was qET = 45 ± 4 mW/m2, the 

strain rate ranged from 10-17–10-15 s-1, and the set of rheological parameters 

corresponded to average-to-high strength (Table 3 and Figure 5). For the IT area, the 

strength according to the εIT was Σ= 9 ± 4 TN/m and the tectonic regime was 

transpressive. In the crust, we found that τs = 188 MPa for transpressive mechanisms 

(τs = 327 MPa for reverse mechanisms) at a depth of 10 km for the upper sedimentary 

layer and τs = 380 MPa for transpressive mechanisms within the lower sedimentary 

layer (Figure 5). Here, the rheological behavior appears to be more complex because 

brittle frictional sliding was predicted for transpressive mechanisms in a 4-km thick 

layer, whereas in pure compression the lower sedimentary layer reached the plastic 

limit. Figure 7 illustrates the behavior of a thrust fault under the conditions 

determined for the IT area. The shear-stress profile for the upper mantle indicates that 

plastic behavior occurred within a thickness of 10 km. The average deviations were 

εIT = 23°, σgps = 1.50 mm/yr, σstress = 31°, and σreg = 58%. The tectonic-regime misfit 

here seems high; however, it was computed based on very few data (see Table 1), 

which makes the comparison with the regime nonsignificant. In contrast, the stress 

directions were well predicted (Figure 6). The heat-flow density was qIT = 53 ± 5 
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mW/m2, the strain rate ranged from 10-17–10-15 s-1, and the strength was high. The EX 

area showed an extensional regime; according to the εEX, the strength was Σ= 0.6 ± 

0.2 TN/m. In the crust, the peak τs was τs = 64 ± 7 MPa and was localized at a depth 

of 9–11 km. The upper mantle exhibited ductile behavior, with a peak of τs = 30±20 

MPa (Figure 5). The average deviations for the 50 best simulations were εEX = 14°, 

σgps = 1.54 mm/yr, σstress = 33°, and σreg = 32%. We found a heat-flow density of qEX 

= 66 ± 4 mW/m2, a strain rate of 10-17–10-15 s-1

The heat-flow values that we determined within the three areas (q

, and a very weak lithosphere (Table 3). 

EX, qIT, and qET

 5. Discussion 

) are 

consistent with the values reported in the literature (Pasquale et al., 1997; Della 

Vedova et al., 2001). To understand the entirety of the model’s limitations, we also 

compared, in the three areas, the average topographic elevations computed assuming 

local isostasy with the average actual topography used in the numerical model. We 

found that the differences were less than 200 m, with a positive residual in EX and a 

negative residual in ET (see the horizontal dashed lines in Figure 5). These 

differences, which are less than those obtained by Carminati et al. (2001) along a very 

similar profile, depend on the model assumptions, as the plate flexure was not 

modeled. We consider these differences to be acceptable and consistent with the 

model’s limitations.  

The strength of the lithosphere can vary drastically within a few kilometers across a 

subduction margin, changing from a strong upper mantle in the continental 

lithosphere to a weak crust and ductile upper mantle in the accretionary prism. A trial-

and-error approach was used to determine the basic parameters to calculate Σ—i.e., 

the rheological parameters and heat flow—and to find the values that minimized the 

differences between the measured data and the predicted quantities. The uncertainties 

associated with the heat flow and the strength were relatively low, which suggests that 

it is possible to determine the heat flow and the average rheological behavior when 

sufficient surface data related to the deformation are available. The approach used in 

this paper does not require extrapolation of laboratory rheologies from cm-sized 

samples to a large-scale scenario.  
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Our results proved to be stable within the stated uncertainties. However, a lower value 

of the plasticity limit for the upper crustal sediments, e.g., τs
plast 

The results of our model agree with those of Dragoni et al. (1996) in that the crust 

accounts for nearly all of the lithospheric strength of the EX because the mantle exerts 

a negligible resistance to deformation. A clue to the existence of an aseismic mantle 

also comes from Chiarabba et al. (2009), who, by means of tomographic studies, 

observed low P-wave velocities within the upper mantle. Our results confirm that the 

upper mantle below the extensional area is aseismic. 

= 250 MPa, can 

reduce the thickness of the brittle layer. The uncertainties in the shear stress and the 

strength because of crustal thickness and strain rate are negligible, but they affect the 

depth at which the peak shear stress occurs. The shear-stress profile also depends on 

the choice of rheological stratification within the crust. Although our method 

performs well at reconstructing the total strength, the average rheological behavior, 

and the heat flow, the model requires knowledge about the thicknesses of the 

sedimentary layers within the crust to reconstruct the details of shear-stress profiles.  

The ET area, which is part of the Adriatic domain, exhibited the highest strength. 

High values of Σ depend on a stronger rheology and a lower heat-flow density. Such 

high strength favors the accumulation of deformations on pre-existing structures or 

along weaker detachment layers within or at the border of the Adriatic microplate 

(Lavecchia et al., 1994; Ivancic et al., 2006; Scisciani and Calamita, 2009). The 

increase in lithospheric strength when moving eastward from this area toward the 

Adriatic Sea has been well documented (Dragoni et al., 1996; Tesauro et al., 2009; 

Pauselli et al., 2010). Our results, which were obtained by minimizing misfits with 

respect to GPS measurements, SHmax

The IT showed greater rheological complexity than the other two areas. To account 

for the change in tectonic stress at depth and/or the vertical separation in the 

seismicity, two crustal sedimentary layers are required in the IT model, with a 

discontinuity at a depth of 18 km. Because of the limitations of the thin-shell 

approach, changes of the tectonic regime with the depth (e.g., extension at the surface 

or compression at depth) cannot be reproduced. Conversely, the stress axes were well 

, and focal-mechanism solutions, confirm a 

difference of approximately 1–1.5 orders of magnitude between the strength Σ of the 

EX and those of the IT and ET. 
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reproduced, and we focused on the behavior at depth within the compressive volume. 

When two sedimentary layers are modeled, the shear-stress profile for the deeper 

layer strongly depends on the angle between �̇�𝑟1 and �̇�𝑟2. Plastic deformation occurs for 

nearly pure compression. However, frictional sliding takes place for transpressive and 

strike-slip mechanisms, which makes the lateral ramps, i.e., the portion of the thrust 

with some or significant along-strike movement of the compressed material, the least 

resistant and the most prone to earthquakes. Figure 7 illustrates the behavior of a 

thrust fault under the conditions determined for the IT area. The brittle frictional 

sliding predicted by the shear stress model at a ∼20-km depth (Figure 5) in the case of 

transpression is represented by the lateral ramps (labeled “B” at a ∼20-km depth in 

Figure 7), whereas the plastic behavior predicted in pure compression is illustrated by 

the frontal ramp (labeled “P” in Figure 7). The brittle and plastic behaviors coexist to 

varying degrees depending on the parallelism of the transport direction with the local 

SHmax

These results suggest that oblique thrusts and the formation of lateral ramps are 

favored during the evolution of a thrust system because they require less energy. If we 

assume that the total energy involved in the process is constant, we can expect that the 

formation of lateral ramps allows the thrust system to focus the energy on the frontal 

ramp where along-dip movement occurs; in this way, it plays a major role in the 

evolution of a thrust system at depth. Moreover, the coexistence of brittle and plastic 

behaviors along the deeper portion of the thrust indicates that the seismogenic 

behavior of the area depends on the angle between the thrust strike and the regional 

compressive stress direction. This observation could benefit seismic-hazard studies. 

 direction. This coexistence can be generalized to areas with characteristics 

similar to IT. It could be worth exploring the range of heat flows and rheological 

parameters where a plastic-to-fragile transition is predicted to occur along the strike of 

the thrust. 

Field data (Vannoli et al., 2004), seismicity (Frepoli and Amato, 1997), and borehole 

breakouts (Montone et al., 2004) all address compression and extension, but they do 

not provide any information about strength. This work is the first to use all of the 

available surface geophysical data to quantify the strength of this area; furthermore, 

the strength was determined without extrapolating laboratory rheologies from 

centimeter-sized samples to a large scale. Our approach allows us to identify sharp 
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transitions between strong and weak behaviors when information at depth is scarce 

and to complement laboratory and field work with respect to time, horizontal distance, 

and depth. 

 Acknowledgements 

We thank Peter Bird for discussions and for making his code SHELLS available. 

Three anonymous reviewers greatly helped in improving the manuscript. Michele 

M.C. Carafa was supported by a grant from DPC-INGV project S1 (2008-2010). 

 References 
Arnold, R., and J. Townend (2007), A Bayesian approach to estimating tectonic stress from 

seismological data, Geophys. J. Int., 170(3), 1336-1356. 

Babuska, V., and J. Plomerova (2006), European mantle lithosphere assembled from rigid 

microplates with inherited seismic anisotropy, Phys. Earth Planet. Int., 158, 264–280, 

doi:10.1016/j.pepi.2006.01.010. 

Barba S. and R. Basili (2000), Analysis of seismological and geological observations for 

moderate-size earthquakes: the Colfiorito Fault System (Central Apennines, Italy), 

Geophys. J. Int., 141, 241–252. 

Barba, S., M.M.C. Carafa, and E. Boschi E. (2008), Experimental evidence for mantle drag in 

the Mediterranean, Geophys. Res. Lett., 35, L06302, doi:10.1029/2008GL033281.  

Barba, S., M.M.C. Carafa, M.T. Mariucci, P. Montone, and S. Pierdominici S. (2010), 

Present-day stress-field modelling of southern Italy constrained by stress and GPS data, 

Tectonophysics, in press, doi:10.1016/j.tecto.2009.10.017. 

Basili, R., and S. Barba (2007), Migration and shortening rates in the northern Apennines, 

Italy: implications for seismic hazard, Terra Nova, 19(6), 462–468, doi: 10.1111/j.1365-

3121.2007.00772.x. 

Basili, R., G. Valensise, P. Vannoli, P. Burrato, U. Fracassi, S. Mariano, M. Tiberti, and E. 

Boschi (2008), The database of individual seismogenic sources (DISS), version 3: 

Summarizing 20 years of research on Italy’s earthquake geology, Tectonophysics, 453(1-

4), 20–43. 

Becker, T. W., Hardebeck, J. L., and G. Anderson (2005) Constraints on fault slip rates of the 

southern California plate boundary from GPS velocity and stress inversions. Geophys J. 

Int., 160, 634-650. 



 

22 

Bird, P. (1989), New finite element techniques for modeling deformation histories of 

continents with stratified temperature-dependent rheologies, J. Geophys. Res., 94(B4), 

3967-3990.  

Bird, P. (1999), Thin-plate and thin-shell finite-element programs for forward dynamic 

modeling of plate deformation and faulting. Comp. Geosci., 383–394. 

Bird, P., Z. Ben-Avraham, G. Schubert, M. Andreoli, and G. Viola (2006), Patterns of stress 

and strain rate in southern Africa, J. Geophys. Res., 111, B08402, 

doi:10.1029/2005JB003882. 

Bodine, J. H., M. S. Steckler, and A. B. Watts (1981), Observations of flexure and the 

rheology of the oceanic lithosphere, J. Geophys. Res., 86(B5), 3695-3707. 

Boncio, P., and G. Lavecchia (2000), A structural model for active extension in Central Italy, 

J. Geodyn., 29, 233-244. 

Boncio, P., G. Lavecchia, and B. Pace (2004), Defining a model of 3D seismogenic sources 

for seismic hazard assessment applications: the case of Central Apennines (Italy), J. 

Seismol., 8, 407-425. 

Brace, W. F., and D. L. Kohlstedt (1980), Limits on lithospheric stresses imposed by 

laboratory experiments, J. Geophys. Res., 85(B11), 6248–6252. 

Burgmann, R., and G. Dresen (2008), Rheology of the lower crust and upper mantle: 

Evidence from rock mechanics, geodesy and field observations, Ann. Rev. Earth Plan. 

Sci., 36, 531-567, doi:10.1146/annurev.earth.36.031207.124326.  

Burov, E. B. and A. B. Watts (2006), The long-term strength of continental lithosphere: "jelly 

sandwich" or "crème-brûlé"?, GSA Today, 16, 4-10. 

Calcagnile, G., and G. F. Panza (1980), The main characteristics of the lithosphere-

asthenosphere system in Italy and surrounding regions, Pure Appl. Geophys., 119(4), 

865–879. 

Caporali, A. (2009), Present day horizontal velocities of permanent GPS stations and the 

implied regional strain rate field, 1st annual meeting of Seismological Projects, 19-21 

October 2009, Rome, http://portale.ingv.it/l-ingv/progetti/progetti-finanziati-dal-

dipartimento-di-protezione-civile-1/progetti-dpc-convenzione-2007-2009/progetti-s/first-

annual-meeting/ 

Carminati E., F. Toniolo Augier and S. Barba (2001), Dynamic modelling of stress 

accumulation in central Italy: Role of structural heterogeneities and of rheology, 

Geophys. J. Int., 144, 373-390. 



 

23 

Chiarabba, C., P. De Gori, and F. Speranza (2009), Deep geometry and rheology of an 

orogenic wedge developing above a continental subduction zone: Seismological 

evidence from the northern-central Apennines (Italy), Lithosphere, 1, 95-104. 

D’Agostino, N., S. Mantenuto, E. D’Anastasio, A. Avallone, M. Barchi, C. Collettini, F. 

Radicioni, A. Stoppini, and G. Fastellini (2008), Contemporary crustal extension in the 

Umbria-Marche Apennines from regional CGPS networks and comparison between 

geodetic and seismic deformation, Tectonophysics, 476(1-2), 3-12. 

Della Vedova, B., S. Bellani, G. Pellis, and P. Squarci (2001), Deep temperatures and surface 

heat flow distribution. In: Anatomy of an orogen, The Apennines and adjacent 

Mediterranean basins, Vai G.B., Martini I.P. editori, Kluwer Academy Publishers, 

Dordrecht, The Netherlands, 65-76. 

Devoti, R., F. Riguzzi, M. Cuffaro, and C. Doglioni (2008), New GPS constraints on the 

kinematics of the Apennines subduction, Earth Planet. Sci. Lett., 273, 163–174.  

Devoti R., G. Pietrantonio, A. Pisani, F. Riguzzi and E. Serpelloni, (2010) Present day 

kinematics of Italy, In: (Eds.) Marco Beltrando, Angelo Peccerillo, Massimo Mattei, 

Sandro Conticelli, and Carlo Doglioni, The Geology of Italy, Journal of the Virtual 

Explorer, Electronic Edition, ISSN 1441-8142, volume 36, paper 2. 

DISS Working Group (2006), Database of Individual Seismogenic Sources (DISS), Version 

3.0.2: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and 

surrounding areas, http://www.ingv.it/DISS/. Available at 

http://hdl.handle.net/2122/2412. 

Doglioni, C., S. Barba, E. Carminati, and F. Riguzzi (2010), Role of the brittle-ductile 

transition on fault activation, Phys. Earth Planet. Int., doi:10.1016/j.pepi.2010.11.005 

Doglioni, C., E. Gueguen, P. Harabaglia, and F. Mongelli (1999), On the origin of W-directed 

subduction zones and applications to the western Mediterranean, In: Durand, B., Jolivet, 

L., Horvath, F., and Séranne, M. (eds.), The Mediterranean basins, Tertiary extension 

within the Alpine orogen, Geol. Soc. Lon. Sp. Publ., 156, 541-561.  

Doglioni, C., F. Mongelli, and G. P. Pialli (1998), Boudinage of the Alpine belt in the 

Apenninic back-arc, Mem. Soc. Geol. It., 52, 457-468. 

Doglioni, C., E. Carminati, M. Cuffaro, and D. Scrocca D. (2007), Subduction kinematics and 

dynamic constraints, Earth Sci. Rev., 83, 125-175, doi:10.1016/j.earscirev.2007.04.001. 

Dragoni, M., C. Doglioni, F. Mongelli, and G. Zito (1996), Evaluation of stresses in two 

geodynamically different areas: stable foreland and extensional backarc, Pure Appl. 

Geophys., 146(2), 319-341. 



 

24 

Evans, B. (2005), Creep constitutive laws for rocks with evolving structure, Geol. Soc. Lon. 

Sp. Publ., 245, 329–346. 

Flesch L. F., W. E. Holt, A. J. Haines and B. Shen-Tu (2000), Dynamics of the Pacific-North 

American Plate Boundary in the Western United States, Science, 287, 834-836. 

Frepoli, A., and A. Amato (1997), Contemporaneous extension and compression in the 

Northern Apennines from earthquake fault-plane solutions, Geophys. J. Int., 129, 368–

388. 

Griggs, D.T., F.J. Turner, and H.C. Heard (1960), Deformation of rocks at 500° to 800°C. In: 

Griggs, D.T., Handin, J. (Eds.), Rock Deformation. Geol. Soc. Am. Mem., 79, 39–104. 

Handy, M. R., and J. P. Brun (2004), Seismicity, structure and strength of the continental 

lithosphere, Earth Planet. Sci. Lett., 223(3-4), 427-441. 

Heidbach, O., M. Tingay, A. Barth, J. Reinecker, D. Kurfeß, and B. Müller (2008), The 

World Stress Map database release 2008, doi:10.1594/GFZ.WSM.Rel2008 

Hirth, G, and D.L. Kohlstedt (2003), Rheology of the upper mantle and the mantle wedge: a 

view from the experimentalists. In: Eiler J. (Ed.), Inside the Subduction Factory, 83–105, 

Geophys. Monograph 138, Am. Geophys. Soc. Washington, DC. 

Ivančić, I., D. Herak, S. Markušić, I. Sović, and M. Herak (2006), Seismicity of Croatia in the 

period 2002–2005, Geofizika, 23(2), 87–103. 

Jackson, J. (2002), Strength of the continental lithosphere: Time to abandon the jelly 

sandwich? GSA Today, 12(9), 4–10. 

Karato, S. (2008), Deformation of Earth Materials: An Introduction to the Rheology of Solid 

Earth, Cambridge University Press. 

Keiding M., B. Lund, and T. Árnadóttir (2009), Earthquakes, stress, and strain along an 

obliquely divergent plate boundary: Reykjanes Peninsula, southwest Iceland, J Geophys. 

Res., 114, B09306, doi:10.1029/2008JB006253. 

Kong X. and P. Bird (1995), SHELLS: A thin-shell program for modeling neotectonics of 

regional or global lithosphere with faults, J. Geophys. Res., 100(Bll), 22,129-22,131. 

Lamontagne M. and G. Ranalli (1996), Thermal and rheological constraints on the earthquake 

depth distribution in the Charlevoix, Canada, intraplate seismic zone, Tectonophysics, 

257(1), 55-69.  

Lavecchia G., F. Brozzetti, M. Barchi M., J. Keller, and M. Menichetti (1994), 

Seismotectonic zoning in east- central Italy deduced from an analysis of the Neogene to 

Present deformations and related stress fields, Bull. Soc. Geol. Am., 106, 1107-1120. 



 

25 

Marone F., M. van der Meijde, S. van der Lee, D. Giardini (2003), Joint inversion of local, 

regional and teleseismic data for crustal thickness in the Eurasia-Africa plate boundary 

region, Geophys. J. Int., 154, 499–514. 

McKenzie D.P. (1969), The relation between fault plane solutions for earthquakes and the 

directions of the principal stress, Bull. Seismol. Soc. Am., 59, 591–601. 

Meletti C., F. Galadini, G. Valensise, M. Stucchi, R. Basili, S. Barba, G. Vannucci, E. Boschi 

(2008). The ZS9 seismic source model for the seismic hazard assessment of the Italian 

territory. Tectonophysics, 450 (1), 85–108. doi:10.1016/j.tecto.2008.01.003. 

Michetti, A. M., F. Brunamonte, L. Serva, and E. Vittori (1996), Trench investigations of the 

1915 Fucino earthquake fault scarps (Abruzzo, central Italy): geological evidence of 

large historical events, J. Geophys. Res., 101(B3), 5921–5936. 

Montone, P., M.T. Mariucci, S. Pondrelli, and A. Amato (2004), An improved stress map for 

Italy and surrounding regions (central Mediterranean), J. Geophys. Res., 109(B10), 

10410. 

Negredo, A.M., E. Carminati, S. Barba, R. Sabadini, (1999), Dynamic modelling of stress 

accumulation in central Italy, Geophys. Res. Lett., 26, 1945–1948. 

Nicolich, R. (2001), Deep Seismic Transects. In: G. B. Vai and P. Martini (Eds.), Anatomy of 

an orogen: the Appennines and Adjacent Mediterranean Basins, Kluver Acad. 

Publishers, 47-52. 

Rey, P., O. Vanderhaeghe, and C. Teyssier (2001), Gravitational collapse of the continental 

crust: definition, regimes and modes, Tectonophysics, 342 (3-4), 435-449. 

Papanikolaou, I.D., and Roberts G.P. (2007), Geometry, kinematics and deformation rates 

along the active normal fault system in the Southern Apennines: implications for fault 

growth, J. Struct. Geol., 29, 166-188. 

Pasquale, V., M. Verdoya, and P. Chiozzi (1999), Thermal state and deep earthquakes in the 

Southern Tyrrhenian, Tectonophysics, 306, 435–448. 

Pasquale, V., M. Verdoya, P. Chiozzi, and G. Ranalli (1997), Rheology and seismotectonic 

regime in the northern central Mediterranean, Tectonophysics, 270, 239-257. 

Pauselli, C., and C. Federico (2002), The brittle/ductile transition along the Crop03 seismic 

profile: relationship with the geological features, Boll. Soc. Geol. It., 121, 25-35. 

Pauselli C., G. Ranalli, and C. Federico (2010), Rheology of the Northern Apennines: Lateral 

variations of lithospheric strength, Tectonophysics, in press, 

doi:10.1016/j.tecto.2009.08.029  

Pialli, G., M. R. Barchi, and G. Minelli (Eds.) (1998), Results of the CROP 03 deep seismic 

reflection profile, Mem. Soc. Geol. Ital., 52, 657 pp. 



 

26 

Pollitz, FF, G. Peltzer, and R. Burgmann (2000), Mobility of continental mantle: evidence 

from postseismic geodetic observations following the 1992 Landers earthquake, J. 

Geophys. Res., 105(B4), 8035–8054. 

Pondrelli, S., Salimbeni, S., Ekstrom, G., Morelli, A., Gasperini, P., Vannucci, G. (2006), The 

Italian CMT dataset from1977 to the present, Phys. Earth Planet. Inter., 159, 286–303. 

Savage J. C. (1983), A dislocation model of strain accumulation and release at a subduction 

zone, J. Geophys. Res., 88, 4984– 4996. 

Scisciani, V., and F. Calamita (2009), Active intraplate deformation within Adria: Examples 

from the Adriatic region, Tectonophysics, 476(1-2), 57-72. 

Scrocca, D., M. Livani, S. Bigi, and E. Carminati (2009), Seismotectonic charaterization of 

the central-northern Apennines accretionary prism, 1st annual meeting of Seismological 

Projects, 19-21 October 2009, Rome, http://portale.ingv.it/l-ingv/progetti/progetti-

finanziati-dal-dipartimento-di-protezione-civile-1/progetti-dpc-convenzione-2007-

2009/progetti-s/first-annual-meeting/ 

Scrocca, D., E. Carminati, C. Doglioni, and D. Marcantoni (2007), Slab retreat and active 

shortening along the central-northern Apennines. In: Thrust belts and Foreland Basins: 

From Fold Kinematics to Hydrocarbon Systems, O. Lacombe, J. Lavé, F. Roure and J. 

Verges (Eds.), Frontiers in Earth Sciences, Springer, 471-487. 

Serpelloni, E., G. Vannucci, S. Pondrelli, A. Argnani, G. Casula, M. Anzidei, P. Baldi, and P. 

Gasperini (2007), Kinematics of the Western Africa–Eurasia plate boundary from focal 

mechanisms and GPS data, Geophys. J. Int., 169(3), 1180–1200. 

Sibson, R.H., S.H. White, and B.K. Atkinson (1979), Fault rock distribution and structure 

within the Alpine Fault Zone: a preliminary account, Bull. R. Soc. N.Z., 18, 55–65. 

Thatcher, W. (1983), Nonlinear strain buildup and the earthquake cycle on the San Andreas 

fault, J. Geophys. Res., 88(B7), 5893–5902. 

Thatcher W. (2009), How the continents deform: the evidence from tectonic geodesy, Ann. 

Rev. Earth Plan. Sci., 37, 14.1–14.26. 

Townend J. (2006), What do faults feel? Observational constraints on the stresses acting on 

seismogenic faults, In Earthquakes: Radiated Energy and the Physics of Faulting, edited 

by R. Abercrombie, A. McGarr, H. Kanamori, and G. Di Toro, American Geophysical 

Union Geophysical Monograph Series, 170, 313–327. 

Townend, J., and M. D. Zoback (2006), Stress, strain, and mountain building in central Japan, 

J. Geophys. Res., 111, B03411, doi:10.1029/2005JB003759. 

Tullis, J. (2002), Deformation of crustal materials, Rev. Mineral., 51, 51–95 



 

27 

Twiss, R. J. (1977), Theory and applicability of a recrystallized grain size paleopiezometer, 

Pure Appl. Geophys., 115, 227–44. 

Vannoli P., R. Basili and G. Valensise (2004), New geomorphic evidence for anticlinal 

growth driven by blind-thrust faulting along the northern Marche coastal belt (central 

Italy), J. Seismol., 8, 297-312. 

Verdoya M., V. Pasquale and P. Chiozzi (2005), Thermo-mechanical evolution and rheology 

of the northern sector of the Tyrrhenian–Apennines system, J. Volcanol. Geotherm. Res., 

148(1–2), 20–30.Watts, A.B. (2001), Isostasy and Flexure of the Lithosphere, Cambridge 

University Press. 

Viganò A. , Bressan G., Ranalli G. and S. Martina (2008),Focal mechanism inversion in the 

Giudicarie–Lessini seismotectonic region (Southern Alps, Italy): Insights on tectonic 

stress and strain, Tectonophysics, 460(1-4), 106-115. 

Zoback M.D. and J. Townend (2001), Implication of hydrostatic pore pressure and high 

crustal strength for the deformation of intraplate lithosphere, Tectonophysics, 336, 19-30. 

Zang, S.X., R.Q. Wei, and J.Y. Ning (2007), Effect of the brittle fracture on the rheological 

structure of the lithosphere and its applications in the Ordos, Tectonophysics, 429, 267-

285. 

Zhang, S., S-I. Karato (1995), Lattice preferred orientation of olivine aggregates deformed in 

simple shear, Nature, 375, 774–77. 

Zoback, M.D., J. Townend and B. Grollimund (2002), Steady-state failure equilibrium and 

deformation of intraplate lithosphere, Int. Geol. Rev., 44, 383-401. 



 

28 

Figure captions 

Figure 1. Study area. The gray ribbons represent composite seismogenic sources 

(Basili et al., 2008), the black arrows indicate GPS-measured horizontal velocities 

(Devoti et al., 2010), and the gray bars represent SHmax

 

 orientations from WSM08 

(Heidbach et al., 2008). The dashed line represents the section of Figure 5, and the 

light-gray triangles are finite elements. The inset shows the model edges, the 

boundary condition codes, the area of application of the basal tractions and their 

direction, and the model faults. The “beach balls” represent characteristic earthquakes 

for the three areas (EX, Normal fault, 26/9/1997, Mw = 5.7; IT, 21/10/2006, Mw = 

4.3; ET, Thrust fault, 3/7/1987, Mw = 5.1; data from Pondrelli et al., 2006). EX: 

extensional tectonics along the Apennines; IT: internal thrust (deeper thrust, mixed 

kinematics); ET: external thrust. 

Figure 2. Flow chart of the trial-and-error procedure. σgps, RMS of residuals between 

the measured GPS velocities and the model velocities in the locked-fault state; σstress, 

average angular difference between the measured and predicted SHmax directions; εEX, 

εIT, and εET, as in σstress but with SHmax directions located in the specified area;  σreg

 

, 

percentage of predictions not matching the observed focal mechanisms.  

Figure 3. (a) Cumulative percentage curves for GPS misfit, SHmax misfit, and bad 

regime. The thick black line shows the number of simulations passing the first-step 

selection as a function of the cumulative percentage. The vertical black line indicates 

the first selection level at 66%. (b) The SHmax misfit of the 200 best simulations 

according to εEX, εIT, and εET

 

. 

Figure 4. Strength versus simulation number. Black (solid colored) line, strength 

average; solid gray (dashed colored) lines, 95% confidence limits; error bars, standard 

deviation.  

 

Figure 5. Rheological profiles of the three studied areas. The trace A-A’ of this 

section is shown in Figure 1. Thick black lines, average rheological profiles for the 
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EX, IT, and ET; light gray (light green) bands, 5th–95th percentile intervals; dark gray 

(dark green) bands, 25th–75th

 

 percentile intervals. For the internal thrust (IT), the 

profiles for the transpressive regime (black line; lateral ramps labeled “B” at a ∼20-

km depth in Figure 7) and for pure compression (dotted line; frontal ramp labeled “P” 

in Figure 7) are shown. The labeled thin lines indicate the features included in the 

model and projected onto the section A-A’: topography (T, 10X vertical scale; 

brown/blue colors indicate above and below the sea level); the base of the 

sedimentary layer (S); the depth of the Moho (M) with its error (grid); the base of the 

lithosphere (L); the Alto-Tiberina normal fault (NF); and the thrust faults (TF). The 

dashed lines S and M represent the subducting layers; S, M, NF, and TF are modified 

from Doglioni et al. (1998) with the exception of the starred Moho (M*), which was 

introduced in the construction of the mechanical model. The dashed horizontal lines 

within the topography panel represent the topographic elevations computed assuming 

local isostasy for the three areas; the predicted average elevation differs by less than 

200 m from the observed average topography. The dots represent the earthquakes that 

occurred in the study area during the period 2005–2009. The scale for the shear stress 

(0–500 MPa) is the same for the three rheological profiles. Horizontal and vertical 

scales are the same with the exceptions of topography (10X). 

Figure 6. Model outputs. (a) Modeled SHmax

 

 orientations and tectonic regimes 

compared with WSM08 data (Heidbach et al., 2008); (b) GPS velocities (black) with 

1σ error (data from Devoti et al., 2010) and modeled interseismic velocities (gray 

arrows). 

Figure 7. Sketch of the rheological behavior of the internal thrust. Gray, brittle 

frictional sliding; silver, dislocation creep; dark gray, plastic deformation. Along the 

lateral ramps at intermediate depth (∼20 km), the model predicts brittle frictional 

sliding (B) whereas in the frontal ramp it predicts plastic behavior (P).  
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 Table captions 

Table 1. Summary of the data used to constrain the model. ALL, data within the 

model boundary; EX, IT, and ET, data within the three target areas. Data marked with 

(*) are listed for reference only and do not constitute an independent misfit measure. 

 

Table 2. Model parameters. 

 

Table 3. Frequency distribution of the 50 best experiments for each area as a function 

of heat-flow density and rheological parameters. The gray shading indicates more 

frequent combinations. R1–4 are as in Table 2. 

 

 



Data type Misfit 
name 

Types of stress indicators N. of data vs.  
Quality Ranking 

S

 

Hmax 

 A B C D 

σ

Earthquake focal mechanisms 

stress 

2 (*) 3 700 316 
Well bore breakouts 36 (*) 98 104 114 
Hydraulic fractures 8 (*) 5 3 4 

Overcoring data - (*) 1 11 55 
Geologic fault-slip data - (*) 1 14 - 

Others 1 (*) - 1 18 
All data (ALL) 47 108 833 507 

ε

Earthquake focal mechanisms 

EX 

1 (*) - 74 2 
Well bore breakouts - (*) - 1 1 

Geologic fault-slip data - (*) - 1 - 
All data (EX) 1 - 76 3 

ε

Earthquake focal mechanisms 

IT 

- (*) - 3 2 
Well bore breakouts - (*) 4 7 6 

Overcoring data - (*) - - 1 
All data (IT) - 4 10 9 

ε
Earthquake focal mechanisms 

ET 
1 (*) - 1 3 

Well bore breakouts 1 (*) 6 10 21 
All data (ET) 2 6 11 24 

    
Data type Misfit 

name 
 N. of data vs.  

Deformation mechanism 
   NF SS TF U 
Tectonic 
regime 

σ All data (ALL) reg 391 377 316 411 

    
Data type Misfit 

name 
 N. of data  

vs. area 
   ALL EX IT ET 
GPS σ All data (ALL) gps 182 17 5(*) 4(*) (*) 
 
Table 1. Summary of the data used to constrain the model. ALL, data within the model boundary; 
EX, IT, and ET, data within the three target areas. Data marked with (*) are listed for reference only 
and do not constitute an independent misfit measure. 
 



 

Table 2. Model parameters. 
 

Symbol Represents Crust Mantle No. 
Steps 

ρ Mean density (kg·mlitho -3 2850 ) 3300 1 

k Thermal conductivity (W·m-1·K-1 3.0 ) 3.4 1 

H Radioactive heat production (W·m-3 8.0 10) 0 -7 1 

T Surface temperature (K) s 273 1 

ρ Mean density of water (kg·mH2O -3 1030 ) 1 

q Heat flow density in EX (mW/mEX 2 61-64-…-79 ) 7 

q Heat flow density in IT (mW/mIT 2 40-43-…-61 ) 8 

q Heat flow density in ET (mW/mET 2 40-43-…-61 ) 8 

Φ Shear basal traction intensity (MPa) 15-20-…-50 8 

𝛼𝛼 Pre-exponential constant in creep 
rheology (MPa) 2.11 0.0128 1 

𝛽𝛽 Temperature coefficient 
in creep rheology (K-1

R1 

) 

8625 18028 

4 
R2 9625 18528 

R3 10650 19028 

R4 11650 19528 

𝜉𝜉 Depth coefficient in creep rheology 
(K m-1 0 ) 0.0171 1 

n Stress exponent in creep rheology 2.4 1 

τs
Critical shear stress in plastic 

rheology (MPa) 
plast 500 1 

µ Standard coefficient of friction 0.85 1 

λ efficacy of the pore pressure 1 1 
 
 



 

Table 3. Frequency distribution of the 50 best experiments for each area as a function of 
heat-flow density and rheological parameters. The gray shading indicates more frequent 
combinations. R1–4 are as in Table 2. 
 
 

Area EX IT ET 
Rheology R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 

H
ea

t f
lo

w
 (m

W
/m

2

79 

) 

- 1 - - - - - - - - - - 
76 - 1 - - - - - - - - - - 
73 3 1 - - - - - - - - - - 
70 7 - - - - - - - - - - - 
67 11 - - - - - - - - - - - 
64 13 - - - - - - - - - - - 
61 13 - - - - - - 5 - - - - 
58 - - - - - - - 7 - - - - 
55 - - - - - - 6 4 - - - 3 
52 - - - - - 2 10 3 - - - 2 
49 - - - - - 6 1 1 - - 4 1 
46 - - - - - 3 - - - - 7 5 
43 - - - - - 2 - - - 15 4 4 
40 - - - - - - - - - 5 - - 

Total 47 3 0 0 0 13 17 20 0 20 15 15 
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