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ABSTRACT A probabilistic seismic hazard analysis was carried out for the SE sector of Sicily, an
area characterized by the highest levels of seismic hazard in Italy and by high
exposure, both in terms of cultural heritage and of critical industrial facilities.
Compared to the Italian reference hazard map (MPS04), this study is based on the
most updated information about regional seismic sources and ground-motion
attenuation. Epistemic uncertainties associated with the input elements of the
computational model were taken into account following a logic-tree approach. Special
care was devoted to defining the regional source zone model by considering four
alternative models that share the zones defining the boundary conditions of the study
area but differ in the seismotectonic characterization of SE Sicily. Seismic hazard was
assessed in terms of PGA, PGV, spectral acceleration and displacement on rock for
four return periods (30, 50, 475, 975 years). A disaggregation analysis was then
performed for some sites of interest. Results confirm the high hazard of the area, with
expected values of PGA (at 10% probability of exceedance in 50 years) slightly higher
than the reference MPS04 map. Strong differences emerge instead between the
acceleration uniform hazard spectra of this study and the reference ones for the longest
return periods.
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1. Introduction

The history of modern probabilistic seismic hazard analysis (PSHA) in Italy is in close
correlation with the evolution of seismic provisions and, particularly, of seismic zoning. In 2002,
the San Giuliano di Puglia earthquake (the collapse of a school and the subsequent death of 27,
6-year-old pupils) revealed the inadequacy of the Italian seismic zoning enforced in 1984, on the
basis of an elaboration (CNR-PFG, 1980) that combined a probabilistic seismic hazard
assessment, the maximum observed intensities and a risk indicator. Thus, in order to update the
seismic zoning, the National Civil Protection Department requested a new hazard map (in terms
of PGA) which was then released in 2004 [MPS04: MPS Working Group (2004), Stucchi et al.
(2011)], based on updated earthquake catalogue [CPTIO4: CPTI Working Group (2004)] and
seismic source zone model (Meletti ef al., 2008), and on a set of ground-motion attenuation
relationships derived from Italian and European data (Ambraseys et al., 1996; Sabetta and
Pugliese, 1996; Malagnini et al., 2000, 2002; Akinci et al., 2004; Morasca et al., 2006). The
MPS04 map was then adopted as the reference seismic hazard map for Italy in 2006 (Prime
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Minister’s Ordinance 3519/2006, Official Gazette n. 108, May 11, 2006) and it is still the
reference document for Regional administrations that intend to update the seismic zoning fixed
in 2003 for the whole of Italy (Prime Minister’s Ordinance 3274/2003, Official Gazette n. 105,
May 8, 2003). In 2009, a new building code [NTCO8: NTC (2008)] was finally adopted, where
the site-dependent design spectra come from the acceleration uniform hazard spectra computed
following the same hazard model of MPS04 (Montaldo et al., 2007; Stucchi et al., 2011).

In this paper, we present the results of a PSHA study carried out for the south-eastern sector
of Sicily, approximately corresponding to the Siracusa district territory, to the south of Catania
(Fig. 1a).

This is one of the areas of Italy with highest seismic hazard in the reference MPS04 map, with
expected PGA values (at 10% exceedance probability in 50 years) on rock reaching 0.278 g (Fig.
1b). In fact, as shown in Fig. 1a, strong past seismicity occurred in this region, including three
earthquakes above magnitude 6 (CPTI Working Group, 2004), that is the events of 1169 and 1542
(M,, 6.6 and 6.62, respectively) and the largest earthquake historically known in Italy, i.e., the M,,
7.41 event of January 11, 1693, which caused extensive damage and even total destruction
(intensity up to XI MCS) of several localities (Boschi et al., 1997; Boschi and Guidoboni, 2001).
Though consensus about the regional seismotectonic setting exists (e.g., Azzaro and Barbano,
2000), the debate is still open about the causative fault of the 1693 earthquake.

In the past, it was common opinion to consider the Malta Escarpment responsible for this
event: it is an important offshore extensional structure, well-known in the literature (e.g., Grasso,
1993), with evidence of recent activity. According to some interpretations, it is considered a first
order structural element, probably the limit between the African plate and the Adria microplate
(Meletti et al., 2000). Among others, Azzaro and Barbano (2000) suggest the association of the
1693 event to the Malta Escarpment.

More recently, however, new data and interpretations propose an inland source for this
earthquake: Sirovich and Pettenati (2001), on the basis of the inversion of macroseismic
observations, suggest a blind strike-slip structure parallel to the well-known Scicli line; Basili ef
al. (2008), according to new evidence from geological field analyses, propose a compressional
fault (Mt. Lauro), that is shorter than the Malta Escarpment but long enough to release strong
earthquakes.

The seismic risk of the study area is then enhanced by the fact that this region is characterized
by a high level of exposure, both in terms of cultural heritage (e.g., the city of Siracusa with the
ancient nucleus Ortigia, the baroque Cathedral of Noto) and critical industrial facilities, mostly
located in the coastal area of Priolo Gargallo, which hosts a huge number of petrochemical and
refinery plants. For these reasons, in this study, we performed a multi-parameter PSHA that is
more detailed than the reference MPS04 hazard model, paying particular attention to
characterizing the regional source model and relevant uncertainty. Specific analyses of seismic
hazard for this area were also carried out in the past (Decanini and Panza, 2000), but based on
deterministic scenarios.

Compared with the reference seismic hazard model, the present analysis provides hazard
estimates for several shaking parameters (PGA, PGV, spectral acceleration and displacement) and
takes into account the most updated information about the regional seismic sources (both area
and fault sources) and ground-motion attenuation models, while it shares the earthquake
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Fig. 1 - a) Seismicity in south-eastern Sicily from 217 B.C. to 2002 [from CPTI04 catalogue: CPTI Working Group
(2004)]. b) Values of PGA (in g) with 10% exceedance probability in 50 years in the reference national seismic hazard
map [MPS04: MPS Working Group (2004)]. The study area (box) and municipal boundaries are shown.
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ZS9+Mt.Lauro fault

Fig. 2 - The four seismic source zone models considered in this study. Model 1: ZS9 (Meletti et al., 2008); model 2:
ZS9 + Mt. Lauro fault; model 3: ZS9 + Malta Escarpment fault; model 4: ZS4 (derived from Meletti et al., 2000).

catalogue CPTIO4 and related completeness time-intervals (MPS Working Group, 2004) with
MPSO04. According to international practice in PSHA (Kulkarni et al., 1984; Coppersmith and
Youngs, 1986; SSHAC, 1997), a logic-tree approach was then followed to capture the epistemic
uncertainty associated with the input elements of the computational model.

2. Seismic hazard analysis

Computations were performed by using the new 2008 version of CRISIS, an Open Source
code developed by Ordaz et al. (1999) and recently significantly upgraded in the frame of the
Italian research project INGV-DPC S2 (agreement 2007-2009), funded by the National Civil
Protection Department. CRISIS is essentially based on the standard Cornell approach (Cornell,
1968) to PSHA and allows two types of seismicity models, both associated to Poissonian
occurrences, but based on different magnitude-frequency relations: truncated Gutenberg-Richter
and characteristic-earthquake models (Kiremidjian and Anagnos, 1984). In the new version of the
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Table 1 - Parameters of the Gutenberg-Richter model (A=exceedance rate of threshold magnitude M), b and s.d._b=b-
value and relevant standard deviation), M, and M, values for each source zone of ZS9 and ZS4 models (935 BG

corresponds to the background zone 935 of the two models including fault sources). The predominant style-of-faulting
of each zone is also listed (N=normal, R=reverse, S=strike-slip, U=undetermined).

Historical completeness | Statistical completeness
259 style-fault A b s.d. b A b s.d._ b M, Mmax
929 N 0.394 | -0.816 0.041 0.313 -0.793 0.037 4.64 7.29
930 u 0.146 | -0.979 0.042 0.106 | -0.892 0.051 4.64 6.60
932 S 0.118 -1.214 0.118 0.105 -1.082 0.116 4.64 6.14
933 R 0.166 | -1.389 0.100 0.159 | -1.244 0.089 4.64 6.14
934 R 0.043 -0.964 0.149 0.039 | -0.933 0.138 4.64 6.14
935 S 0.089 | -0.724 0.046 0.097 | -0.693 0.075 4.64 7.41
936 u 0.425 | -1.631 0.046 0.352 | -1.224 0.060 4.18 5.45
935 BG S 0.087 -0.900 0.093 0.095 | -0.986 0.078 4.64 6.60
254 style-fault A b s.d. b A b s.d. b M, Mmax
401 N 0.090 -0.764 0.052 0.116 -0.750 0.081 4.64 7.41
402 R 0.023 -0.795 0.144 0.022 | -0.894 0.000 4.64 6.14

program, also non-Poissonian occurrences are admitted in the form of non-parametric models,
thus allowing to take into account even very complex time-dependent earthquake recurrences. In
this study, only the Poissonian occurrence was considered, assuming the Gutenberg-Richter
model in case of area sources and the characteristic behaviour for fault sources.

The input elements required for the analysis are: a seismic source zone model with each zone
characterized in terms of seismicity rates, an earthquake catalogue with relevant completeness
time-intervals, a ground-motion predictive equation as function of source energy and distance.
Alternative models were considered for the above elements in the frame of a logic-tree approach
in order to explore the role of epistemic uncertainties on seismic hazard estimates.

Table 2 - Main features of the three ground-motion predictive models considered in this study (M, =moment
magnitude; R;,=Joyner-Boore distance; Ry, =hypocentral distance).

Ground Spectral Magnitude Source Distance
GMPM Area motion periods range ! range
distance
parameter (s) (m,) (km)
Europe, PGA (cm/s?)
Akkar (jz)fg)’"me’ Mediterranean,|  PGV(cm/s) 0.05 -3 5-7.6 Rip <100
Middle East PSA (cm/s?)
. PGA (g)
Boore & Atkinson World
PGV(cm/s) 0.01-10 5-8 ij < 200
(2008) (PEER NGA) PSA (g)
Cauzzi & Faccioli PGA (m/s?)
(2008) World SD (cm) 0.05 - 20 5-7.2 Rhyp < 150
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SOURCE COMPLETENESS MAG-FREQ GMPM
ZONES DISTRIB.

AkkarBommer 40
HISTORICAL GR BooreAtkinson 40
60 T~ CauzziFaccioli 20

zs9
30 AkkarBommer 40
STATISTICAL GR BooreAtkinson 40
40 T CauzziFaccioli 20
AkkarBommer 40
HISTORICAL GR —— BooreAtkinson 40
60 +char. CauzziFaccioli 20

zs9
+Mt.Lauro AkkarBommer 40
20 STATISTICAL GR BooreAtkinson 40
40 +char. CauzziFaccioli 20
AkkarBommer 40
HISTORICAL GR BooreAtkinson 40
60 +char. CauzziFaccioli 20

Zs9
+Malta E. e AkkarBommer 40
20 STATISTICAL GR BooreAtkinson 40
40 +char. CauzziFaccioli 20
AkkarBommer 40
HISTORICAL GR BooreAtkinson 40
60 CauzziFaccioli 20

ZS4
30 AkkarBommer 40
STATISTICAL GR < BooreAtkinson 40
40 CauzziFaccioli 20

Fig. 3 - Logic tree showing the alternative options considered in the analysis (italics indicate the weight values in
percentage assigned to each option).

2.1. Input elements

Special care was devoted to defining the regional seismic source zone model by taking into
account different hypotheses. In particular, four alternative models were considered (Fig. 2),
which share the zones defining the boundary conditions of the study area [i.e., zones 929, 930,
932, 933, 934, 936 of the ZS9 model by Meletti et al. (2008), developed for the MPS04 hazard
map], but differ in the seismotectonic characterization of SE Sicily:

1) ZS9: the same source zone used for the reference MPS04 map (i.e., zone 935) which covers
the whole study area was adopted,

2) ZS9+Mt. Lauro fault: zone 935 of model 1) was retained but, according to the DISS 3
database of seismogenic faults (Basili er al., 2008), the 1693 earthquake was related to the Mt.
Lauro compressional fault. The dimensions of this structure reported in DISS could produce
a lower magnitude than the one assigned to this event in the CPTIO4 catalogue on the basis of
a macroseismic approach [namely Boxer method, by Gasperini et al. (1999)], that is M,, 6.6
instead of 7.41. According to DISS, however, a smaller earthquake in a compressional
environment should be able to justify the damage observed during the 1693 event.

3) ZS9+Malta Escarpment fault zone: as model 2), but the 1693 earthquake was attributed to the
larger Malta Escarpment offshore extensional structure (e.g., Azzaro and Barbano, 2000).
Unlike the Mt. Lauro fault, the dimensions of this structure are compatible with the large
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Fig. 4 - Expected PGA values (in g) for 30, 50, 475 and 975-year return periods (i.e., at exceedance probability of 81%,
63%, 10% and 5%, respectively, in 50 years).

4)

magnitude (M,, 7.41) assigned to this event from macroseismic data. Moreover, evidence of a
tsunami generated by the 1693 earthquake (Gerardi ef al., 2008) inclines to make one think of
an offshore source rather than an inland one, as suggested instead by Tinti ef al. (2001). This
hypothesis is also supported by the offshore location of the epicentre, that results from an
algorithm for epicentral determination based on macroseismic data (Bakun and Wentworth,
1997) which is alternative to the Boxer method adopted for the CPTI04 catalogue.

Z.54: two source zones that derive from the ZS4 seismotectonic model (Meletti ef al., 2000) were
considered: the former (401), lying along the Ionian coast, is responsible for the largest, mainly
normal-fault earthquakes of the area (including the event of January 1693), and the latter (402),
corresponding to the compressional Iblean front, is characterized by minor seismicity.
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Fig. 5 - Median, 16™- and 84"-percentile hazard curves (annual frequency of exceedance, AFOE, vs. PGA) for the sites
of Siracusa and Priolo Gargallo.

The fault sources adopted in this study in models 2) and 3) are those that, in our opinion, are
based on stronger evidence. As stated above, a characteristic behaviour was assumed for these
faults, with characteristic magnitude corresponding to the one assessed for the 1693 earthquake
(i.e., M,, 6.6 for Mt. Lauro fault and 7.41 for Malta Escarpment). The remaining seismicity (with
magnitude lower than the characteristic one) was attributed instead to the background zone 935,
whose seismicity rates were recomputed with respect to the original ones used for MPS04 and,
thus, in model 1).

The seismicity of area sources was characterized from the CPTIO4 catalogue (CPTI
Working Group, 2004), which lists the damaging events that occurred in Italy from 217 B.C.
to 2002, by considering only its complete portions for different magnitude ranges. To this
purpose, the two alternative sets of completeness time-intervals defined for MPS04 [for
details, see MPS Working Group (2004)] were adopted: one assessed from historical
considerations, according to Stucchi et al. (2004), and one from statistical analysis, following
the methodology by Albarello et al. (2001). The differences between the two approaches can
be summarized as follows: the historical approach looks outside the catalogue, while the
statistical one looks inside it. In the first case, as for a modern seismic network, the historians
determine if and when the possible sources of information were active and, in such a way, they
define (in a procedure not yet standardized) the period when the catalogue can be considered
complete. On the contrary, the statistical approach looks only at the information reported in
the catalogue by assuming that the time-windows where seismicity is stationary are complete.
Then, for each zone, the earthquake rates were determined in the assumption that a truncated
Gutenberg-Richter relationship holds, through a least-squares fit of annual rates computed in
each magnitude bin, with maximum magnitude fixed to the largest value observed
(historically and geologically) in the past or assuming a precautionary value of M, 6.14 (as in
MPS04) for those zones where the observed value is below this threshold (i.e., zones 932,
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Fig. 6 - Expected PGV values (in cm/s) for 30, 50, 475 and 975-year return periods (i.e., at exceedance probability of
81%, 63%, 10% and 5%, respectively, in 50 years).

933, 934, 402). Table 1 lists the seismicity parameters of the area sources.

As concerns ground-motion predictive models (GMPMs), three recent studies were
considered: Akkar and Bommer (2010), Boore and Atkinson (2008), Cauzzi and Faccioli
(2008). These models derive from different strong-motion data sets and predict several
shaking parameters: peak values of ground acceleration and velocity (PGA, PGV) and
pseudo-acceleration or displacement (PSA or SD) elastic response spectra for different ranges
of spectral periods (Table 2). All models use moment magnitude and source distance (Joyner-
Boore distance for the first two models, focal distance for the latter) as explanatory variables
together with style-of-faulting classes.
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Fig. 7 - Expected acceleration values (in g), for 0.2 s period, for 30, 50, 475 and 975-year return periods (i.e., at
exceedance probability of 81%, 63%, 10% and 5%, respectively, in 50 years).

The above alternative input elements were combined into a logic tree (Fig. 3) made of 24
branches (16 in the case of PGV estimates, since only two GMPMs could be used), each one
characterized by a weight representing the reliability of the relevant choice. In particular, more
weight was given to the two area source models, since their use in PSHA (both in Italy and
worldwide) is more consolidated and common with respect to fault sources. For the two sets of
completeness time-intervals, the weights adopted for MPS04 were retained. Concerning the
GMPMs, a lower weight was attributed to the Cauzzi and Faccioli (2008) model only because, to
date, it has been used less extensively than the other two. An estimate of hazard was then derived
for each branch and the median (considering the weight assigned to every branch) was taken as
the reference value.
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Fig. 8 - Uniform hazard spectra in acceleration (in g) for Siracusa and Priolo Gargallo. Left: median spectra for 30, 50,
475 and 975-year return periods; right: median, 16"- and 84"-percentile spectra for the 475-year return period.

2.2. Results

Seismic hazard was computed on rock-site conditions, on a grid with node distance of 2 km
covering the study area, for the four return periods required by the NTC08 building code (i.e., 30,
50, 475, 975 years) in terms of PGA, PGV and spectral acceleration and displacement.

Maps in Fig. 4 show the computed PGA values for the four return periods considered (i.e.,
with probability of exceedance of 81%, 63%, 10% and 5% in 50 years). The expected values for
475 and 975 years range between 0.123-0.307 g and 0.168-0.414 g, respectively. Fig. 5 displays
the PGA hazard curves (median estimates along with relevant uncertainty, quantified as the
difference between 84" and 16" percentiles) computed at two of the most important sites of the
area: the city of Siracusa and the industrial site of Priolo Gargallo.

The distribution of expected PGV values for the same return periods is shown in Fig. 6: they
range between 7.3-19.1 cm/s and 10.8-27.7 cm/s, respectively for 475 and 975 years.
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Fig. 9 - Uniform hazard spectra in displacement (in cm) for Siracusa and Priolo Gargallo. Left: median spectra for 30,
50, 475 and 975-year return periods; right: median, 16"~ and 84™-percentile spectra for the 475-year return period.

Then, uniform hazard spectra in terms of acceleration and displacement were computed for
11 spectral periods in the range 0.05-3 s, that is the range covered by the three considered
attenuation models. Fig. 7 shows the distribution of acceleration values with probability of
exceedance of 81%, 63%, 10% and 5% in 50 years for the spectral period of 0.2 s, where the
absolute highest values (up to 0.704 g and 0.962 g for 475 and 975 years, respectively) are
reached.

Figs. 8 and 9 display the acceleration and displacement uniform hazard spectra for Siracusa
and Priolo Gargallo. The large uncertainty on the median hazard estimate is worth noting: in fact,
for the 475-year return period, the 84™-percentile curve nearly reaches the median spectrum
computed for the longest return period.

In order to understand which one of the input elements is the main responsible for this large
uncertainty in the hazard estimate (also evident from Fig. 5), we analysed the results from some
individual branches of the logic tree. In particular, the effect of alternative source zone models
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Fig. 10 - PGA hazard curves resulting from individual branches of the logic tree. Top: changing the source zone model,
for the same choices on completeness time-intervals and GMPM (i.e., historical completeness and Boore and
Atkinson’s equation); bottom: changing the GMPM, for the same choices on completeness time-intervals and source
zone model (i.e., historical completeness and ZS9 model).

and GMPMs was explored, since these are the two elements known to have the largest impact on
seismic hazard. Fig. 10 compares the PGA hazard curves computed at the two selected sites by
changing the source zone model (top panels), for the same choices on completeness time-
intervals and GMPM [i.e., historical completeness and Boore and Atkinson’s (2008) equation],
and by changing the GMPM (bottom panels), for the same choices on completeness time-
intervals and source zone model (i.e., historical completeness and ZS9 model). As shown in the
figure, the two curves obtained from the area source models (ZS9 and ZS4) display a clearly
distinct trend from the ones derived by the two models which include fault sources. However, the
large variability in the hazard estimate seems to be mainly attributable to the effect of different
GMPMs and, particularly, to Cauzzi and Faccioli’s (2008) predictive equation which leads to very
different results compared to the other two models.

A disaggregation analysis was then performed for PGA at some sites of interest in order to
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Fig. 11 - Disaggregation analysis of PGA hazard for the site of Priolo Gargallo.

determine at what extent the different possible sources (i.e., combinations of magnitude-distance)
contribute to the hazard of a site. For this purpose, the analysis was carried out for the branch of
the logic tree which provides the hazard values closest to the median hazard estimate, that is the
branch corresponding to ZS4 source zone model, historical completeness, Boore and Atkinson’s
(2008) attenuation predictive equation. Disaggregation results for the Priolo Gargallo site are
shown in Fig. 11: as expected, because the study area is located inside a source zone and very
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Fig. 12 - Comparison between the acceleration uniform hazard spectra computed in this study (solid lines) and the
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return periods, respectively.
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close to the considered faults, the hazard is dominated by near sources (distance <25 km) with
magnitude getting higher with increasing return period.

3. Discussion and conclusions

The results of this study confirm the very high level of seismic hazard in the area of SE Sicily.
In fact, considering the expected PGA at 10% probability of exceedance in 50 years (475-year
return period), nearly the whole inland area is characterized by values higher than 0.25 g, thus
falling into seismic zone 1, as established by the Prime Minister’s Ordinance 3274/2003.

Compared with the national reference seismic hazard map (MPS04), the spatial pattern of
expected PGA values for the 475-year return period looks rather similar but the estimated values
are slightly higher (compare Fig. 4 bottom left with Fig. 1b), reaching a maximum of 0.307 g vs.
0.278 g of MPS04. Comparable values of PGA result instead for the longest return period (975
years), with a maximum of 0.414 g vs. 0.403 g.

On the contrary, strong differences emerge between the acceleration uniform hazard spectra
derived in this study and the reference ones (i.e., the spectra computed following the same
computational scheme of MPS04 in the frame of the INGV-DPC 2005-2007 S1 project,
http://essel.mi.ingv.it/) used to define the seismic-design load according to the present NTCOS
building code. Fig. 12 (top panels) compares the two families of acceleration spectra (median
estimates) for the four considered return periods at the two selected sites of Siracusa and Priolo
Gargallo. Though maximum values are similar (major differences for 475 years), for the two
longest return periods, the median spectral shapes appear deeply different. In fact, the spectra of
this study display a plateau (portion of maximum acceleration values) shifted towards the left
(shorter periods) and a much faster decay with period than the reference S1 spectra. The effect of
the different decay is particularly strong for periods higher than about 0.5 s, with a nearly
complete overlap between the S1 475-year spectrum and the present 975-year curve. However,
due to the large uncertainty affecting both the reference and the present hazard estimates, the two
families of spectra do not result significantly different, though their dissimilar decay with period
makes the present median curves above 0.4 s nearly coincident with (or even lower than) the S1
16%M-percentile spectra (see Fig. 12, middle and bottom panels).

Major innovations with respect to the reference hazard estimates concern the regional source
zone model (four models including also fault sources instead of one with area sources only), the
use of most recent GMPMs and the adopted computation program [CRISIS instead of SEISRISK
IIT by Bender and Perkins (1987)]. Though further investigations are needed to clearly identify
which one of these new elements is the major responsible for the strong differences observed
between the two families of uniform hazard spectra, we believe that a key role is played by the
new set of GMPMs. In fact, while three out of the four source zone models considered here are
to some extent related to the ZS9 model used for MPS04, the set of GMPMs is completely
different from the one used for the reference hazard estimates. On the other hand, it is well-known
that GMPMs (and relevant aleatory variability) represent one of the most crucial input elements
in PSHA (e.g., Bommer and Abrahamson, 2006).
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