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Abstract. This study presents a neural-based algorithm for the automatic detection 
of landslides on Stromboli volcano (Italy). It has been shown that landslides are an 
important short-term precursor of effusive eruptions of Stromboli. In particular, an 
increase in the occurrence rate of landslides was observed a few hours before the 
beginning of the February 2007 effusive eruption. Automating the process of 
detection of these signals can help analysts and represents a useful tool for the 
monitoring of the stability of the Sciara del Fuoco flank of Stromboli volcano. A 
multi-layer perceptron neural network is here applied to continuously discriminate 
landslides from other signals recorded at Stromboli (e.g., explosion quakes, tremor 
signals), and its output is used by an automatic system for the detection task. To 
correctly represent the seismic data, coefficients are extracted from both the 
frequency domain, using the linear predictive coding technique, and the time 
domain, using temporal waveform parameterization. The network training and 
testing was carried out using a dataset of 537 signals, from 267 landslides and 270 
records that included explosion quakes and tremor signals. The classification 
results were 99.5% predictive for the best net performance, and 98.7% when the 
performance was averaged over different net configurations. Thus, this detection 
system was effective when tested on the 2007 effusive eruption period. However, 
continuing investigations into different time intervals are needed, to further define 
and optimize the algorithm.  
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Introduction 

During the last effusive eruption of Stromboli volcano (February 27, 2007) it was 
noted that the opening of the effusive vents was preceded by a few hours by an increase 
in the landslide rate [10]. Detection of the landslides can be considered a significant 
short-term precursor of such effusive eruptions of Stromboli. Furthermore, automating 
this task will help analysts in the classification task of these signals, and will 
simultaneously allow monitoring of the stability of the northwest flank of the volcano, 
known as “Sciara del Fuoco”, which showed significant instabilities during the 2002-
2003 eruption. 
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In this study, we implement a system for automatic detection of landslides that is 
based on a multi-layer perceptron (MLP) neural network [1]. Neural networks have 
been successfully applied in the field of volcano seismology [2, 6, 7, 12, 13] for the 
detection and discrimination of different types of seismic signals [5, 11]. This has been 
possible due to their flexibility and the possibility of arranging their architecture 
according to specific applications. 

Landslides on Stromboli volcano have a characteristic seismic waveform, with a 
higher spectral content than typical explosion quakes and volcanic tremor signals, and a 
cigar-shaped amplitude envelope. Usually, these two features are used by analysts to 
visually detect such signals. The neural algorithm also exploits these features to 
discriminate them. A first step of data manipulation is expected to reduce their 
dimension, extracting only the distinctive attributes that uniquely identify the seismic 
signals. In a second stage, the network performs the landslide classification and the 
system uses the net output to carry out the detection. 

In the following, we first briefly describe the seismic activity of Stromboli volcano 
and its monitoring network, then we introduce the dataset and illustrate the pre-
processing techniques that were applied for data parameterization. In section 4, we 
describe the MLP network and the automatic system. Section 5 shows the results, and 
the last section is devoted to conclusions.  

1. The volcanic activity of Stromboli 

The Strombolian activity is typically characterized by individual explosions that 
emit gasses and pyroclastic fragments, and which usually occur 6-7 times per hour. 
However, occasionally effusive phases occur. The December 2002 effusive phase was 
characterized by a large landslide on the “Sciara del Fuoco” flank of Stromboli, which 
generated a tsunami with a maximum wave height of about 10 m. After this episode, 
the northwest flank became unstable, and as many as 50 landslide signals were 
recorded per day. Furthermore, the last effusive episode of February 2007 was 
preceded by an increment in the landslide rate a few hours before.  

During these past two effusive eruptions, Vulcanian explosions took place on April 
5, 2003, and on March 15, 2007. The eruptive processes at Stromboli are such that the 
seismic signals generated span a wide range of frequencies [3]. At present, the typical 
signals recorded for Stromboli are: volcanic tremor, a continuous signal with a 1-3 Hz 
frequency range; explosion quakes, signals with no distinct seismic phases and with a 
1-6 Hz frequency range; landslides, with an emergent onset and a 1-10 Hz frequency 
range; and other seismic signals, such as long-period earthquakes (LP), volcano-
tectonic earthquakes (VT) and very long period events (VLP) that are associated with 
the explosions.

In January, 2003, the “Istituto Nazionale di Geofisica e Vulcanologia” (INGV) 
started to install a broadband seismic network for the monitoring of the volcanic 
activity of Stromboli [4]. The network is composed of 13 digital stations (as shown in 
Figure 1) that are equipped with three-component broadband Guralp CMG-40T 
seismometers, with frequency responses of 0.02-60s. The data are acquired with a 
sampling rate of 50 sps and are continuously transmitted via transmission control 
protocol/ internet protocol (TCP/IP) to the recording center in Naples at the Vesuvius 
Observatory (INGV) (www.ov.ingv.it/stromboli/).  
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Figure 1. The Stromboli Island monitoring network, indicating the 13 seismic stations (black triangles). 
The scale is expressed as UTC coordinates. Inset: location of Stromboli Island with respect to the Italian 
peninsula. 

2. The seismic data 

The dataset used to train and test the MLP network consisted of 537 records from 
five of the seismic stations (STR1, STRA, STR8, STR5, STRB; Figure 1). In 
particular, it was composed of 267 landslides and 270 signals that included 130 
explosion quakes and 140 tremor signals. For each event, a 24-s-long record was taken 
at a 50-Hz sampling frequency. 

Figure 2 shows the waveforms and the associated spectrograms of three typical 
signals recorded at Stromboli: an explosion quake (Figure 2A), a landslide (Figure 2B) 
and a tremor window (Figure 2C). From Figure 2 it is possible to see that the landslide 
has a particular cigar-like shape, it is higher in frequency than the explosion quakes and 
tremor signals, and its typical waveform has an emergent onset. 

The automatic system was tested for the analysis of the February, 2007, effusive 
eruption. Here, the time interval considered ranged from January 1, 2007 to June 1, 
2007 to include the beginning (February 27) and the end (April 2) of the eruption. 
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Figure 2. Seismograms and the associated spectrograms of (A) an explosion quake, (B) a landslide, and 
(C) a tremor window, recorded at Stromboli. 

3. Data pre-processing 

The MLP-based neural algorithm requires a preliminary phase of signal pre-
processing to perform the landslide classification. Finding which and how many 
features uniquely identify and describe a seismic signal is a critical task. It is important 
to obtain a vector representation of the seismic data with significant, and not redundant, 
features, and with a reasonable dimension, in order to reduce the computational burden. 

As indicated above, landslides have a well-known frequency content and a cigar-
like waveform, so that analysts can visually distinguish them from explosion quakes 
and tremor signals on seismograms. Thus, to exploit previous results [8], the proposed 
algorithm uses the linear predictive coding (LPC) technique [9] to obtain the spectral 
features. LPC predicts a signal sample through a linear combination of its p previous 
samples: 
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where s(n) is the signal sample at time n, s*(n) is its prediction, and p is the model 
order, the value of which is problem-dependent. The prediction coefficients ci, for i = 
1,.., p, are estimated through an optimization procedure that reduces the error between 
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the real signal and its LPC estimate. In our case, we extracted p = 6 LPC coefficients 
from each of the eight 5.12-s-long Hanning windows into which we divided the signals, 
with an overlap of 2.56 s. In this way, each signal is described by a vector of 48 
spectral features. 

The time-domain information of the signal is also taken into account, and 
computed as the correctly normalized difference between the maximum and minimum 
signal amplitudes within a 1-s-long window. Thus for a 24-s-long signal, we obtain a 
vector of 24 temporal elements.  

As a result, the pre-processing step is able to reduce the size of each seismic signal 
from 1200 samples to 72 coefficients (6 × 8 = 48 frequency features + 24 time 
features). This compression provided a good compromise between robustness and 
compactness of the signal representation. Robustness refers to the fact that such 
encoding accurately describes the properties of the seismic signals, while compactness 
means that it does not contain redundant information allowing a faster computational 
processing. 

4. MLP-based algorithm 

The neural network used for this landslide classification was a supervised feed-
forward MLP. The network architecture (shown in Figure 3) had an input layer of 72 
units, a hidden layer with a varying number of nodes, and an output layer with only one 
unit. The activation function of the hidden units is a non-linear hyperbolic-tangent 
function, expressed as: 
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while the output nodes use a logistic sigmoidal function, computed as: 
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The network output y is calculated as: 

)4())tanh((� �	
j i

iijjk xWwy �

where xi is the ith input unit, Wij and wjk are the weights on the connections from the 
input to the hidden layer and from the hidden layer to the output layer, respectively. 

The network undergoes supervised learning, meaning that the input is presented to 
the net together with the desired response or target vector. The difference between the 
target vector and the net output is calculated, and the weights on the connections 
between the units are adjusted according to a learning rule that minimizes the error in 
this approximation. The process is repeated until the net performance is acceptable. In 
the present study, a Quasi-Newton [1] learning algorithm and a cross-entropy error 
function [1] were used. For this binary problem of discrimination between landslides 
and the other seismic signals, this function is defined as: 
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The automatic system performed the analysis by applying the neural algorithm 
over 10-min-long seismic traces. The algorithm then used 24-s-long sliding windows of 

Landslides/ (explosion quakes, tremor signals) 4 1 70 

Table 2. The number of the hidden and output units, and the training cycles of the MLP network  
used for the classification task. 

Classification Task Hidden units Output units Training cycles 

Landslides/ (explosion quakes, tremor signals) 99.50 99.50 97.01 97.51 99.50 99.00 98.67 

Classification Task 
Different network configurations % Average 

Figure 3. The architecture of a multi-layer perceptron network.

The network was trained using just over 60% (5/8) of the total dataset, while the 
remaining data were used for the testing. Furthermore, to assess the net robustness, the 
final network performance was computed by averaging the percentages of correct 
classification over six different network configurations that were obtained through six 
different data permutations and random weight initializations (see Table 1). Other 
network parameters, such as the number of hidden units and the training cycles, were 
established empirically through trial-and-error processes (see Table 2), as they 
depended on the specific task. 

Table 1. The correct classification for each of the six net configurations, and the  averaged  network 
performance. 

Performance (% correct classification) 
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n
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where n is the number of training samples, t is the target vector, and y is the net output. 
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the signal that overlapped by 12 s, and outputs its probability of being a landslide. 
Figure 4 shows the net response for a typical landslide. Setting a user-defined threshold 
(e.g. 0.9), the system identifies the start and the end of each landslide signal. Figure 5 
graphically illustrates the system output over a 48 h time interval. 
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Figure 4. An example of the network response for a typical landslide. 

Figure 5. The output of the automatic system over a 48 h time interval. The dashed red line represents 
the user-defined threshold.

A set of tools was also developed for the use of the system output for different 
types of analysis, such as the percentage duration of the landslides, their daily number, 
and the duration of each landslide detected. 
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5. Results  

The implemented system has been used for the analysis of the February 2007 
effusive eruption. Figure 6 shows an example of the analysis performed over the period 
from 1/1/2007 to 1/6/2007. Figure 6A shows the percentage duration of the landslide 
signals over 24-h periods, where the red lines indicate the beginning and the end of the 
lava flow. Figure 6B shows the number of landslides per day, and Figure 6C shows the 
duration of each detected landslide (blue squares) and their daily average duration (red 
squares). An increase in March 2007 is evident, when the lava flow was active, and 
also during April 2007. 

Figure 6. Landslide analysis over the period from 1/1/2007 to 1/6/2007. (A) Percentage duration of 
landslides over 24-h periods, with the beginning and the end of the lava flow indicated by the red lines. (B) 
Daily number of landslides. (C) Duration of each landslide detected (blue squares) and the daily average 
duration (red squares).
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Figure 7A shows the seismogram of the February 27, and Figure 7B its associated 
percentage duration of landslide signals over a 10 min periods. Considering the 
occurrence of the first landslide and the beginning of the eruption (Figure 7A, first and 
second red arrows) and simultaneously the percentage duration of landslides (Figure 
7B), it can be seen that there is an evident increase in the landslide signals rate from 
09:00 GMT, about 4 h before the eruption started.  

Figure 7. (A) Seismogram of February 27. (B) Percentage duration of the landslides over 10-min periods. 
The first red arrow in (A) indicates the occurrence of the first landslide, while the second one indicates the 
eruption onset. 
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6. Conclusions 

In this study, we have presented a system for automatic landslide detection on 
Stromboli volcano. Usually this task is carried out visually by analysts, on the basis of 
their personal knowledge and using the spectral and temporal information of the signals 
analyzed. Automating this process would help analysts and allow objective event 
interpretation. Moreover, it will also be useful for monitoring of the “Sciara del Fuoco” 
flank.  

Therefore, we have here realized an early landslide classification stage through a 
MLP-based algorithm. The proposed system then needs to apply a user-defined 
threshold to identify the start and end of each landslide signal, and to provide a 
graphical representation of the detection, as illustrated in Figure 5. Moreover, other 
procedures have been implemented that can perform several types of analysis on the 
system output, such as those illustrated in Figure 6. Finally, the results shown in Figure 
7 suggest that the proposed system can be used as a short-term precursor detector.  

However, this study is still in progress with the testing of the algorithm on 
different time intervals, so as to improve its robustness and to provide a system for 
landslide analysis in real time. 
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