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Abstract 

Having a reliable site conditions estimate is an important step to analyze and predict earthquake 

ground motions. To provide this information for the Campania-Lucania region (southern Apennines, 

Italy), in the framework of a collaboration with regional civil protection agency, geologic units 

shown on 1:250,000 scale geologic map, have been sorted together into four categories based on 

age and geological similarities. According to the site classification defined in engineering building 

codes, we have assigned to each site classes, a value or range of values of the average shear-wave 

velocity to 30 m (Vs30) and of the site dominant period. Thus, we have digitized the category 

boundaries from the map tracing only the geologic contacts that separate units of different site 

classes. The accuracy of the site-conditions map is only limited by the number of Vs profiles, used 

to compute the Vs30, and geologic data available so far. Analyses with new data will allow updates 

and modifications of this map. Anyhow, the resulting site classification map may be an helpful tool 

to better characterizing the sites effects for those applications where amplification values at large 

scale are need, such as ground-shaking maps or seismic hazard maps.   

 

Introduction 

Local geologic conditions can amplify or deamplify seismic ground motion modifying shaking 

intensity both in the time and frequency domain (Bard and Bouchon, 1985; Bard et al., 1988). 

Studies of historic and recent earthquakes have indicated that damages at an unconsolidated site can 

be 10 times stronger than at rock site, even when their distance from the ruptured fault is the same. 

During both the 1906 San Francisco earthquake (M 7.8) and the 1989 Loma Prieta earthquake (Ms 

7.1), for example, the local amplification over soft soils was responsible for intensity variations as 

large as two degrees. Nearly all recent destructive events, such as Michoacan, Messico 1985, 

Spitak, Armenia 1988, Iran 1990, Philippines 1990, Northridge 1994, Kobe 1995 and so on, have 

had dramatic evidence of site effects. As a consequence, seismologists and engineers have 
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conducted many studies to quantify how the seismic energy is modified by physical properties of 

the near surface materials, and how engineering structures can behave during strong ground 

shaking. In this framework, a uniform estimate of site conditions is necessary component in the 

prediction of near-source ground motion. Recently, the measured shear-wave velocity (Vs) in 

shallow subsurface materials, has become the most common used parameter to define site 

classifications and to correct the predictions of spectral amplitude values. Vs parameter is an 

effective measure of the quality of foundation soils, because it depends on basic physical properties, 

such as density, porosity and degree of cementation of the materials through which the seismic 

waves propagate. To such purpose, many drilling programs have been conducted in several areas to 

establish important correlations between seismic response and average shear-wave velocity of 

various geologic units (Joyner and Fumal, 1985; Boore et al., 1993; Borcherdt, 1994). Joyner et al. 

(1981) proposed that velocity to a depth corresponding to one-quarter wavelength of period of 

interest, could represent the local site conditions. The need of having detailed subsurface 

information, and the complexity of using this approach, make the quarter-wavelength method 

difficult to apply.  

Recent works have recommended alternative techniques that simplify the use of Vs in ground 

motion predictions. Borcherdt et al. (1991) suggested that site conditions can be classified on the 

basis of the average shear-wave velocity to a depth of 30 m (Vs30), in agreement with the typical 

depth that can be reached with drill rigs in a single day. This allows sites to be classified 

unambiguously by using only one parameter. Recent code provisions for buildings and other 

structures (1998 and 2003 NEHRP-UBC Site Classifications, Eurocode 8, or EC8, 2003, and so on), 

have defined site classifications based on Vs30. 

Recognition of the importance of the ground motion amplification from regolith has led to the 

development of a standardized approach for mapping seismic site conditions measuring or mapping 

Vs30 (Park and Elrick, 1998; Wills et al., 2000; Holzer et al., 2005), as well as quantifying both 

amplitude- and frequency-dependent site amplification correction factors (Borcherdt, 1994) for 



 4
� 

future earthquake scenario studies. Boore et al. (1993, 1994, 1997) introduced site factors based on 

Vs30 in their empirical attenuation relationships to take into account for the potential modifications 

of ground shaking by local site conditions. These site factors can be used to correct large scale 

ground shaking maps, such as those provided in near-real time or seismic hazard map.  

A key aspect of ground-shaking maps calculation is represented by the estimation of Ground- Motion 

Predictive Equations (GMPEs). The GMPEs are empirical equations that provide strong ground-

motion parameters, given the earthquake magnitude and the source-to-site distance (Abrahamson 

and Silva, 1975; Akkar and Bommer, 2007; Boore and Atkinson, 2008). Nowadays, several authors 

have highlighted the importance of retrieving and/or refining the GMPEs also for low-magnitude 

seismic events (Frisenda et al., 2005; Massa et al., 2007) for which attenuation effects, related to the 

tectonic area of interest, can be predominant with respect to the source effects. In practice, these 

codes use corrective coefficients for peak parameters, based on geological maps obtained by 

grouping the main geological formation outcropping in the area of interest (Wald et al., 1999, 

Convertito et al., 2009, Emolo et al., 2010). 

At the present time, maps of seismic site conditions on regional scales are not always available 

because they require substantial investment in geological and geotechnical data acquisition as well 

as interpretation. Such maps are available for only a few regions, generally  in seismically active 

urban areas of the world.   

Park and Elrick (1998) classified geologic materials in southern California using the age units 

reported on geologic maps. They characterized three main general categories which roughly 

correlate with the common site-conditions terms: Quaternary sediments (Q), Tertiary sediments and 

soft rocks (T), and Mesozoic hard rocks (M).  

For the Italian territory, the Istituto Nazionale di Geofisica e Vulcanologia (INGV) introduced the 

role local geology in the seismic hazard evaluation at national scale (Luzi and Meroni, 2007; 

Cultrera et al., 2004). This has been achieved by grouping the geological formation of the 1:500,000 

Italian geological map into three classes A, B, C according to the EC8 provisions. 
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This article discusses our effort to build  a site classification map for the Campania-Lucania region 

(southern Apennines, Italy). This work is part of a collaboration with regional civil protection 

agency which requires that maps of peak ground acceleration (PGA), peak ground velocity (PGV), 

and instrumental intensity should be provided in the immediate post-event occurring in the 

Campania-Lucania, southern Italy (Convertito et al., 2009). The Campania-Lucania region is one of 

the higher seismic hazard region in Italy (Cinti et al., 2004). It has experienced numerous strong 

earthquakes from medium to large magnitude, with the most recent event represented by the 1980 

Irpinia earthquake (Ms 6.9) that resulted in about 3,000 deaths and enormous damages (Figure 2). 

The high density of inhabitants, the quality of buildings and the dissemination of industrial 

facilities, make the Campania-Lucania a region with seismic risk exposure rather high. To this aim, 

the geologic formations from 1:250,000 scale regional geologic map, have been sorted into four 

macro-classes described by units having similar age and physical properties (grain size, hardness 

and fracturing). These macro-classes have been considered representative of Quaternary alluvium 

(Q), Quaternary-Tertiary volcanic rocks (V), Tertiary sediments and soft rocks (T) and Mesozoic 

hard rocks (M), respectively. In order to design the Campania-Lucania site-conditions map, these 

categories have been digitized on a 1:250,000 scale regional geologic map, tracing only the 

geologic contacts that separate units belonging to different categories. According to the EC8 soil 

classes, we have assembled a database of Vs profiles by the National Strong Motion Network 

(RAN, Working Group ITACA, 2008), and used computed Vs30 to characterize QVTM units. 

Because of the wide extension of the map and to lack of Vs profiles in most geologic units, we have 

classified geologic units on the basis of the Vs measurements where available, and on lithological 

and age criteria for those units without Vs profiles. 

The site conditions map, built with our current level of information, provides an outline of surface 

geology characteristics that can be used to account for site effect in the ground-shaking maps. We 

stress that, the accuracy of this map will evolve as more shear-wave velocity measurements and 
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more geologic information become available, in order to highlight significant variations in site 

response for different geologic unit. 

  

Geological and seismological settings of the Campania-Lucania, southern Apennine region. 

Southern Apennine mountain chain (Italy) is a Neogene post-collisional east-verging thrust belt 

formed as the result of the west-dipping subduction of the Apulian-Ionian lithosphere (Doglioni et 

al., 1996). The belt is associated with the Tyrrhenian back-arc basin to the west, and with the 

Bradano foredeep to the east. During the middle Miocene-upper Pliocene, several compressive 

tectonic phases associated with the collision between the African and European margin, have 

determined thrusting and piling of different units toward stable domains of the Apulo-Adriatic 

foreland (Figure 1). From late Tortonian to Quaternary, all the system rapidly migrates eastward as 

a consequence of the retreating of the sinking foreland lithosphere (Patacca and Scandone, 1989, 

Patacca et al., 1990; Pescatore et al., 1999).  

The structural complexity of the Campania-Lucania region, is due to different paleogeographic 

domains involved in the southern Apennine thrust belt building. The basinal facies terrains have 

been involved in ductile deformations, while the carbonate platform sequences in brittle 

deformations. Additionally, the deformation did not proceed cylindrically but it was characterized 

by out-of-sequence thrust-propagation processes (Roure et al., 1991). During the upper Pliocene-

lower Pleistocene, the tectonic evolution has determined the mountain chain subdivision into the 

NNW-SSE-trending Molise-Sannio, and the WNW-ESE-trending Campania-Lucania region. 

Afterwards, in the Middle-Pleistocene, the southern Apennine wedge has uplifted and has been 

involved in a NE-SW extensional tectonic event. This stress regime has determined the 

development of large extensional and transtensional structures and it is still active and responsible 

of the present-day seismicity of the region (Anderson and Jackson, 1987). Most of earthquakes are 

located into the narrow upper-crustal seismic belt (30-50 km). In particular, two different clusters of 

crustal earthquakes can be identified: the westernmost with shallow earthquakes (depths < 20 km) 
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centred on the axis chain (Irpinia area), and the easternmost with deeper earthquakes (about 20-40 

km) located on the outer margin of the chain (Potentino area) and the foredeep. These earthquakes 

have different focal solutions indicating a pure extensional regime to the west (Irpinia area), and 

strike-slip regime to the east (Potentino area). Moreover, it is possible to recognize a third zone, 

located within the Apennine chain from the Vallo di Diana to the Agri Valley, characterized by low 

seismicity (Figure 2a).  

The larger seismic events occurred along the Apennine chain have shown normal faulting 

mechanisms in agreement with the regional NE trending extension. In this context, the Campania-

Lucania region is one of the most active seismic zones of the southern Apennine, where important 

extensional faults are in connection with the major seismic events that struck the area historically 

(Westaway, 1992). The location and magnitude of the historic earthquakes retrieved from the CFTI 

(Catalogo dei Forti Terremoti in Italia, Boschi et al., 1997), are shown in Figure 2b. Among these, 

there is the most recent event represented by the 1980 Irpinia earthquake (Mw 6.9) (Westaway and 

Jackson, 1987; Bernard and Zollo, 1989). More recent studies indicate that the 1980’ faulted area is 

currently interested by an intense seismic activity with the occurrence of  small to moderate-size 

events. For this area Cinti et al. (2004) assign a relatively high probability (about 30%) for a 

moderate to large earthquake to occur in the next 10 years.  

Developing of a site conditions map from geologic map   

The first step for the generation of a site-conditions map to be used as a Vs category map, consists 

in selecting an appropriate geologic map. Geologic maps show units that are distinguished by their 

ages, lithologies, grain size, and other factors that may be correlated with Vs. Usually, the most 

detailed geologic maps are at 1:50,000 scale, where units that have major influences on the 

amplification ground motion, the Quaternary units, are split in different units. For the time being, 

only maps at 1:100,000 scale are completed and available for the study region. In order to cover the 

whole area, we would have had to assemble several 1:100,000 geologic scale maps into a uniform 
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digital map. Another alternative is to use a 1:250,000 scale geologic map that includes completely 

the region. Although the most detailed geologic maps may provide a better site-conditions map, in 

the present paper, we have chosen to use a larger albeit less detailed map to completely cover the 

region of interest with a single map readily available, rather than to work with an unmanageable 

number of maps. Thus, we have used the 1:250,000 scale geologic map of southern Italy by Bonardi 

et al., 1988.  

The southern Apennine area is characterized by a widespread of Quaternary cover, a few outcrops 

of Pliocene clastic deposits, and various Tertiary sedimentary successions. These main units can be 

grouped in three belts ranging  from east to west, and identified as follows:  

1. successions with basinal to marginal facies, in age from Cretaceous to Miocene, tectonically 

lying on Plio-Pleistocene foredeep deposits;  

2. successions with shallow-water, basinal and shelf-margin facies, ranging in age from middle 

Triassic to Miocene (‘Lagonegro units’), overthrust on the previous ones;  

3. Triassic to Miocene carbonate platform successions (‘Appeninic platform units’), overthrust 

on the Lagonegro units;  

Moreover, volcanic rocks are extensively diffused in the Campania-Lucania region. The main 

volcanic vents are: the Campi Flegrei, an active volcanic complex located on the eastern border of 

the region, the Mt. Somma-Vesuvio, an active volcano situated in the central area near Naples, and 

the Mt. Vulture a not active volcano located on the western border of the region. 

All the units have been sorted into four different categories on the basis of lithological and age 

criteria, as proposed by Park and Elrick (1998). The resulting four classes, that are expected to have 

similar VS, are: Quaternary alluvial deposits (Q), Quaternary-Tertiary volcanic rocks (V), Tertiary 

sediments and soft rocks (T), and Mesozoic hard rocks (M). The four categories (QVTM) have been 

overlapped on the 1:250,000 scale regional map, tracing only the geologic contacts that separate 

units of different categories (Figure 3). 
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Shear-wave velocity of the proposed geologic categories 

As discussed before, the Vs30 is an important parameter used for classifying sites in recent building 

codes and to predict their potential to amplify ground-shaking. As a consequence, to each of the 

identified QVTM categories a Vs30 value or a range of values, must be assigned. The main 

complication with this approach is that shear-wave velocities are only measured at few discrete 

points, and a method of extrapolation is thus necessary for any point other than the sampled ones. 

Sometimes, there are too few measurements in a given geologic unit in order to adequately 

characterize its response. Or two geologically distinct units may have similar velocity distributions 

and thus exhibit similar responses.  

For the region considered in the present study, the only profiles currently available are those 

retrieved from the database of the National Strong Motion Network (RAN, Working Group ITACA 

(2008) - Data Base of the Italian strong motion data: http://itaca.mi.ingv.it). These velocity profiles 

present different depths. Among all the available profiles, we decided to use only profiles that can 

be correlated with the mapped category units.  

Therefore, plotting the location of  the site profiles on the QVTM map, we found twelve measured 

velocity profiles that fall within our site-conditions map. As shown in Figure 3, three fall within the 

Quaternary category, three within the Mesozoic category, four within the Tertiary category and only 

two profiles within the Volcanic category. For each profile of soil or rock, the representative 

average Vs30 has been  computed from travel time of the vertically propagating shear waves 

according to the theoretical modelling of a uniform soil layer on top of the bedrock : 

                                                                                                                                     

                                                                                                                                                           (1) 

 

 

where hi  and Vi denote the thickness in meters and shear-wave velocity in m/s of the ith formation 

or layer, in a total of N, existing in the top 30 meters.  

Vs 3 0= 3 0

∑ i= 1, N

h i

V i
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The Vs30 is an important parameter used for classifying sites in recent building codes and to predict 

their potential to amplify ground-shaking. In these classification codes the depth of the first 

resonant layer is connected not only at the frequency but also the amplitude of local site response.  

The shear-wave velocity profiles and the calculated Vs30 values for each category, are shown in 

Figure 4. Vs30 values calculated from profiles belonging to the Mesozoic class, are quite uniform 

ranging from 1122 to 1153 m/s (Figure 4a). These values are mostly representative of fractured hard 

rocks. 

The widespread Tertiary sedimentary successions, instead, are highly variable both in lithology and 

amount of deformation. Commonly, these units are subdivided on geologic maps into many 

formations based on age, grain size and lithology. We have found that the various flysch units that 

outcrop prevalently in the central sector of the southern Apennines, show Vs30 ranging between 

524 and 976 m/s depending on the weathering and amount of fracturing (Figure 4b). The only 

profile available for younger fine-grained deposits of the Tertiary age (Miocene and Pliocene), 

located in external area of the Apennine belt, shows a 365 m/s Vs30 value.  

Quaternary units typically present extremely variable velocity characteristics because they vary in 

thickness, grain size, density, porosity, and cementation. In the present study, we have found that 

these young soil deposits have Vs30 values ranging from about 192 to 506 m/s (Figure 4c). The few 

Vs profiles currently available suggest that Vs30 calculated for these units, are only crude 

approximations of the Vs characteristics of the Quaternary units. Furthermore, Vs measurements 

would allow to identify variations in thickness and grain size, and an attempt to subdivide those 

units in several classes should be made. 

Only two Vs profiles are available for Tertiary-Quaternary volcanic units. One of two has been 

measured in pyroclastic flows of the M.te Vesuvio, while the other one in sodic potassic lahars of 

the M.te Vulture. The average 618 m/s Vs30 value of these profiles, is typical of volcanic rocks 

which are harder than younger Tertiary deposits (Figure 4d). Generally, because of their lithologic 

variability, the volcanic rocks exhibit variable velocity characteristics. Units such as basalt, (hard 
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rocks but extensively fractured), and pyroclastic rocks (loose agglomerations of volcanic ash) tend 

to have velocities ranging from about 360 to about 1000 m/s depending on the weathering and 

amount of shearing. 

For each geologic category we have also computed a composite shear-wave profile following the 

method proposed by Wills et al. (2000). These profiles have been obtained by calculating the mean 

and standard deviation of shear-wave velocity  using a 1 m depth sampling. Composite profiles help 

to highlight possible deficiencies in the available data set and units that must be further subdivided.  

Figure 5 shows the composite profile for each geologic class along with the standard error. 

Although we have few profiles for each category, all composite profiles have clearly shown a 

variability of shear-wave velocity with depth and a large vertical variation of standard error. 

Moreover, as reported in Will at al. (2000), the shape and the variability of Vs profiles can also 

allow to identify where vertical variations along the Vs profile affect the Vs30 characteristic of a 

unit, where materials with differing Vs have been included in the same unit, or that a unit is 

extremely variable. The composite profile for Mesozoic class shows a relatively rapid increase in 

velocity from about 500 m/s at the surface to over 1600 m/s at 15 m (Figure 5a). Then, after three 

velocity inversions, it shows a highly variability until 72 m depth. The large standard deviation 

throughout the composite profile, reflects the variable shear-wave velocity related to different 

degree of deformations that rocks have undergone.  

The composite profile for Tertiary class shows a slow increase in velocity from about 600 m/s at the 

surface to over 1000 m/s at 95 m depth (Figure 5b). The apparent regularity in the profile is 

probably due to few data measured on sites that are near, located in the central sector of Appeninic 

chain. This composite profile is, then, representative only of the Tertiary units that outcrop in the 

central sector of the southern  Apennines. 

The composite profile for Quaternary class shows an almost steady increase in velocity until to 70 

m, and a more gradual increase both in velocity and in standard deviation from 70 to 95 m (Figure 

5c). The velocity values are higher than would be measured at a site on alluvium deposits. 
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Generally, alluvium deposits have Vs30 ranging from 180-360/s as reported in EC8 Site Classes 

(2003).  It’s probable that measurements have been done in basins where young and thin deposits 

are at the surface, while the harder materials are at shallow depth in the subsurface. In these 

situations, Vs profiles may include significant thicknesses of  harder rock that lies underneath thin 

layer of alluvium deposits. Given the small number of profiles measured in these units, we don’t 

have subdivided the young deposits based on thickness and grain size.  

For the Volcanic category we have calculated only the mean value, because up to this time only two 

shear-wave velocity profiles are available. The composite profile features rapid increase in velocity 

from about 400 m/s at the surface to over 1600 m/s at 80 m (Figure 5d). 

Clearly for these units, as the Quaternary units, is desirable to have more shear-wave velocity 

measurements and more geologic data in order to highlight significant variations in site response for 

mapped young sediments. 

 
Site-classification using the average shear-wave velocity   

In order to test the accuracy of our geologically defined site categories, we have classified each site 

category in terms of EC8 site classes comparing the lithological features and the Vs30 values 

inferred from the our analysis, with the EC8 categories. 

EC8 identifies 7 ground types A, B, C, D, E, S1 and S2, described by the stratigraphic profiles, that 

may be used to account for the influence of local ground conditions on seismic actions. Starting 

from class A, corresponding to hard rocks or hard rocks covered by very thin soil deposits, the code 

details grounds having gradually decreasing rigidity until ground types S1 and S2, much 

deformable. Following the provisions by EC8, sites can be classified according to the Vs30 

parameter, if it is available, otherwise the value of  NSPT (Standard Penetration Test). Recent 

developments of soil classifications include also the site predominant period as site class parameter 

(Japan Road Association, 1980, 1990). To a first order approximation, the dominant period is 

estimated as four times the S-wave travel time in the soil layer, assuming that medium can be 
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represented by a single soil layer, 30 m in width, with a constant shear-wave velocity.  

Table 1 lists outcropping formations of the Campania-Lucania region grouped into the four site 

classes QVTM built following the lithological and age criteria, the associated Vs30 values, the 

calculated dominant site period, and the categories from EC8. Our database is predominantly 

composed of ground types A, B and C, and we don’t have found any site belonging to class D. 

However, all measured Vs30 values fall within expected range for the unit within which are located. 

The QVTM map (Figure 3) has been compared with the Geological-Class map produced by 

Cultrera et al., Task 3.2 (2004), GNDT-INGV Project (framework program 2000-2002). This map 

has been built in order to introduce the role of local geology in the seismic hazard evaluation at 

nation scale. In this context, the geological units of the 1:500,000 Italian geological map (Servizio 

Geologico Nazionale,1978) have been grouped into the three classes A, B, C according to the EC8, 

using lithological and age criteria (Figure 6). Because of the large scale of the original geologic 

map, the small-size Quaternary basins characterizing the Apennines are often missed. The 

comparison between the two maps evidences the better detail of the QVTM map. In the National 

Geological-Class map shown in Fig.6, the volcanic units, extensively diffused in the Campania-

Lucania region, haven’t been characterized. In practice, it is better to consider these volcanic units 

as an additional class, due to their attenuation characteristics, that may greatly affect the ground 

motion values. Additionally, the QVTM map shows a better characterization of units that outcrop 

along the central sector of the Southern Apennines.  

 

Conclusions 

In order to account for site conditions in calculating seismic hazards or ground-shaking maps soon 

after a moderate-to-large earthquake, a possible way investigated by several authors (e.g, Wald and 

Mori, 2000; Wills and Clahan, 2006; Wills et al., 2000), is to build a site classification using the 

average wave velocity to 30 m, as indicator of the quality of sites.  



 14
� 

Using the available information of the local geology, we have developed some generalized site 

classes, according to the European norm, commonly referred to as EC8. The approach and geologic 

categories described in this work, results in a map, the QVTM site conditions map, that yields site 

conditions information for some units of the Campania-Lucania region. As underlined in Wills et al. 

(2000), the accuracy of a site-conditions map is limited by the number of Vs profiles available. It is 

clear that it is necessary to have a significant amount of data to represent each unit as a whole. Due 

to the  lack of sufficient VS profiles, we have not been able to highlight those areas with different 

thickness of younger deposits, nor to separate areas where coarser grain size might lead to higher 

velocities or others where finer alluvium might lead to lower velocities. Consequently, our approach 

has been to consider only the general geologic categories, alluvium, soft rock, and hard rock, which 

are correlated with the site conditions terms used in strong-ground motion attenuation equations.  

To further refine the proposed map, detailed information on Quaternary and Volcanic units are 

needed in order to underline significant variations in site response for mapped young sediments. 

However, the resulting site classification map may provide a basis as is or in conjunction with other 

factors, for more precise characterisations of the site conditions in probabilistic seismic hazard 

calculations.  
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Table          

Ground Type Age Site Natural 

Period (sec) 

(T=4h/)        

Vs30 
(m/s)  

Subsoil class and 
Vs30 (m/s) in 
EC8 
 

Carbonate platform 
successions 

Mesozoic (M) T < 0.15  Ranging from  

1122 to 1153  

A  (rock ) 

Vs > 800 

Sediments, soft rocks and 
flysh deposit 

Tertiary  (T) 0.15 = T < 0.3 Ranging from 

365 to 976 

B (stiff soil ) 

360 <Vs < 800 

Volcanic rocks Quaternary-

Tertiary          (V)    

0.12 =T < 0.3 Ranging from 

539 to 506 

B (stiff soil ) 

360 <Vs < 800 

Alluvium and gravel 
deposits  

Quaternary  (Q) 0.3 = T < 0.6 Ranging from 

192 to 506 

C (soft soil) 

180 <Vs < 360 

Very soft soils Quaternary  (Q) T = 0.6  D < 180 (very soft 

soil) 

 
Table I. Comparison between the QVTM categories, the computed site natural period and Vs30 values, and the EC8 
Site Classes (2003). 
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Figures 

 
 
Figure 1. Simplified geological map of central and southern  Apennines (from Cinque et al., 1993). 1) Continental and 
paralic Middle Pleistocene to Holocene deposits; Quaternary volcanoes. 2) Upper Pliocene-Lower Pleistocene marine to 
continental deposits, including the Bradano cycle. 3) Upper Tortonian to Upper Pliocene clastic deposits accumulated in 
piggy-back basins formed on top of the advancing nappes. 4) Appenninic nappes derived from internal paleogeographic 
domains, originally located between the European plate margins and the western carbonate-platform system.  
5) Appenninic nappes derived from the western carbonate-platform system related marginal areas. 6) Appenninic 
nappes derived from a basinal realm originally located between the western platform and eastern platform domains.  
7) Mt..Alpi unit. 8) Mesozoic-Tertiary carbonates of the Apulia foreland. 9) Frontal ramp of the Appennine thrust 
sheets. 10) Out-of-sequence thrust.  
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Figure 2. a) Map of recent instrumental seismicity with M > 2.5 recorded by the INGV in the period 1981–2002 in the 
region defined by the dashed rectangle (Gruppo di lavoro CPTI (1999)). Dimensions of the circles are proportional to 
magnitude.  
The black lines represent the surface projection of the three fault segments that broke in the 23 November 1980 
earthquake (M 6.9). b). Locations of the main historical earthquakes retrieved from the CFTI database (Catalogo dei 
Forti Terremoti in Italia; Boschi et al., 1997) within the region defined by the dashed rectangle. The box dimensions are 
proportional to magnitude. The best-constrained historical earthquakes are reported along with their date of occurrence 
(from Weber et al., 2007). 
 
 
 
 
 



 23
� 

 
Figure 3. The QVTM site-conditions map, 1:250,000 scale, (Cantore, 2008). White circles indicate the sites of Vs30 
measurements. 
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Figure 4. Shear wave velocity profiles and the calculated Vs30 for Mesozoic (a), Tertiary (b), Volcanic (d) and 
Quaternary (c) categories. 
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Figure 5. Composite profile for geologic Mesozoic (a), Tertiary (b) and Quaternary (d) categories. Shown are the mean  
and standard deviation shear-wave velocity at each meter depth. For sites classified as Volcanic class (d) the mean  
(dotted line), the minimum, and maximum profile are shown.  
 

 

 

 

 

 

 

 

 

 

 

 

 



 26
� 

 
 
Figure 6. a). Geological-Class Map at 1:500,000 scale (SGN, 1978), reclassified according to the EC8 (INGV-DPC 
2004-2006 S1 project).b). Zoom on the region of interest. 
 


