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Abstract 

New data of sea level changes for the Mediterranean region along the coasts of northern Africa are 

presented. Data are inferred from archaeological sites of Punic-Roman age located along the coast 

of Tunisia, between Tunisi and Jerba island and along the western coast of Libya, between Sabratha 

and Leptis Magna. Data are based on precise measures of presently submerged archaeological 

markers that are good indicators of past sea-level elevation. Nineteen selected archaeological sites 

were studied in Tunisia and four in Libya, all aged between ~2.0 and ~1.5 ka BP. The functional 

elevations of significant archaeological markers were measured with respect to the sea level at the 

time of measurements, applying corrections for tide and atmospheric pressure values. The 

functional elevations of specific architectural parts of the sites were interpreted, related to sea level 

at the time of their construction providing data on the relative changes between land and sea. 

Observations were compared against sea level change predictions derived from the glacio–hydro-

isostatic model associated with the Last Glacial cycle. The results indicate that local relative sea 

level change along the coast of Tunisia and Libya, has increased 0.2÷0.5m since the last ~2 ka. 

Besides minor vertical tectonic movements of the land, the observed changes are produced by 

eustatic and glacio–hydro-isostatic variations acting in the Mediterranean basin since the end of the 

last glacial maximum.  

 

1. Introduction 

This paper provides new data and interpretations on the relative sea-level change since the last ~2 

ka along the coastlines of North Africa, in Tunisia and western Libya, where the recent relative sea-

level changes have not yet been adequately constrained. For this purpose, coastal geoarchaeological 

installations and markers provide a powerful source of information from which the relative motions 

between the land and the sea can be estimated. Results are interpreted taking into account that sea-

http://ees.elsevier.com/quatint/viewRCResults.aspx?pdf=1&docID=1849&rev=0&fileID=82249&msid={0DFF7F3D-EE61-4F19-B96D-F3EFA493CF08}
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level change is the sum of eustatic, glacio–hydroisostatic and tectonic factors. While the first is 

global and time dependent, the other two also vary according to location and can be influenced by 

tectonics. 

Recent studies have proved that archaeological evidence from small tidal range areas such as the 

Mediterranean sea provide significant information for the estimation of relative sea-level changes 

since historical times, using ancient coastal structures (Schmiedt, 1965, 1974; Lambeck et al., 

2004b; Antonioli et al., 2007). The latter are interpreted for their functionality, being precisely 

defined by their relationship to sea level at the time of construction. The Mediterranean shores are 

unique in the world in displaying a large number of archaeological remains, often well dated and 

sometimes very well preserved, that can be successfully used to provide constraints on relative sea 

level. Ancient fish tanks, piers and harbors constructions generally built around 2±0.3 ka B.P. are 

the best indicators and provide a valuable insight of the regional variation in sea level in the last two 

millennia (Flemming, 1969; Schmiedt, 1974; Caputo and Pieri, 1976; Pirazzoli, 1976; Felici, 1998; 

Felici, 2000; Lambeck et al., 2004a, 2004b; Antonioli et al., 2007; Lambeck et al., in press, and 

references therein). Slipways and quarries carved along the coastlines and located near fish tanks 

and harbours or villas of the same age can provide additional data, both on the past water level and 

on their own functional elevation above sea level, although they are not very precise indicators 

(Flemming and Webb, 1986; Lambeck et al., 2004b). 

Archaeological evidence was examined from the North African coasts of western Libya and 

Tunisia, where maritime constructions since the Phoenician and Punic times can still be found. 

During the Roman age, extensive development of coastal installations occurred, as North Africa 

was an important Roman province. Here, many well-preserved remains are still present today. The 

best preserved sites provide information on their constructional levels that can be accurately related 

to the local mean sea level between ~2000 and ~1500 B.P. Unpublished archaeological markers are 

used as benchmarks recording the relative vertical motion between land and sea since their 

construction or formation. The heights of the significant markers were measured and compared with 

the present sea level, applying corrections for tide amplitude and pressure values at the time of the 

surveys. These data, together with their relative error estimation (elevation and age), are compared 

with sea-level predictions using the last prediction model of Lambeck and Purcell (2005) for the 

Mediterranean coast, recently applied in Lambeck et al. (2004b) and Antonioli et al. (2007) for the 

Mediterranean region. This model uses a new equivalent sea-level (esl) function (the ice-volume esl 

change; Lambeck and Chappell, 2001) that assumes a small continuous melting of the Antarctic ice 

sheet until recent times. The accuracy of these predicted values is a function of the model 

parameter’s uncertainties is defining the earth response function and the ice load history (esl). The 
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results provide new insights on the rates of relative sea level rise and on the vertical tectonic 

stability in this region during the last ~2 ka.  

 

2. Geodynamic setting of Tunisia and Libya 

Tunisia and Libya are located on the foreland of the African plate, facing the southern 

Mediterranean basin. The geological and geodynamic features of this region are driven by several 

lithospheric blocks that move according to their different structural and kinematic features including 

subduction, back-arc spreading, rifting, thrusting, normal and strike slip faulting (Mantovani et al., 

2001; Jolivet and Faccenna, 2000; Faccenna et al., 2001). The region is dominated by subduction in 

the Hellenic and Calabrian Arc and by collision between the African and Arabian plates with 

Eurasia (McKenzie, 1970; Jackson and McKenzie, 1988). Various processes, from continental 

collision to escape tectonics with major continental strike-slip faults, subduction of continental and 

oceanic lithosphere and associated back arc spreading, are still acting in this region.  Convergence 

and extension in the Mediterranean basin is a matter of debate to delineate the features of this area. 

Recently, new geological and geophysical data have been integrated into tectonic reconstructions 

(Bishop, 1975; Piqué, 2001; Faccenna et al., 2004; Jime´nez-Munt et al., 2003; Serpelloni et al., 

2007). Earthquake distribution outlines the current dynamics of the region, its plate boundaries and 

the quasi-aseismic domains as part of the North African areas of Libya and Tunisia. Unfortunately, 

these two countries are still lacking in adequate geophysical infrastructure such as geodetic (GPS) 

and seismological networks, preventing observation of the detailed current crustal activity in this 

part of the Mediterranean. 

 

3. Materials and methods 

Nineteen archaeological markers were surveyed along the coasts of Libya (4 sites) and Tunisia (15 

sites) (Table 1). Analysis was performed through four subsequent steps: 1) measurements of the 

elevation of the significant archaeological markers of maritime structures with respect to the present 

sea level; 2) correction of the elevation measurements for tide and atmospheric pressure effecting 

the level of the sea surface at the time of surveys, using the data and algorithms adopted by the 

Permanent Service Mean Sea Level (PSMSL, www.pol.ac.uk, as well as Woodworth, 1991; 

Woodworth and Player, 2003) for the Mediterranean Sea (atmospheric corrections are based on the 

inverted barometer assumption using the closest available meteorological data obtained at 

www.metoffice.com); 3) error estimation for ages and elevation measurements of the 

archaeological markers, after their functional heights were evaluated on the basis of accurate 

archaeological interpretations (age errors are estimated from the architectural features; elevation 

errors derive from the measurements, corrections and estimates of the functional heights. For 

http://www.pol.ac.uk/
http://www.metoffice.com/
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example, the lower limiting values for the quarries); 4) examination of the predicted and observed 

sea levels, by comparing the current elevations of the markers (i.e. the relative sea-level change at 

each location) with the sea-level elevation predicted by the last geophysical model for each 

location. Tectonic stability is hypothesized at the sites where the elevations of the markers are in 

agreement with the predicted sea-level curve. Conversely, an area has experienced tectonic 

subsidence or uplift when the elevations of the markers are below or above that of the predicted sea-

level curve. 

Field surveys were performed during September 2005 in Libya, and May 2007 and January 2008 in 

Tunisia. All elevation measurements were done by optical or mechanical methods during calm sea 

and they were related to the sea-level position for that particular moment. Since the investigated 

archaeological structures were originally used year round, the defining levels correspond to the 

annual mean conditions at the time of construction. The measurements are therefore reduced to 

mean sea level applying tidal corrections at the surveyed sites, using the data of the nearby available 

tide gauges or the tidal predictions of the PSMSL. Corrections are generally within a few cm (the 

mean amplitude of Mediterranean tides is <45 cm)  but, estimating and correcting for tide 

amplitudes is a crucial for the central part of the Gulf of Gabes (Tunisia), as this area is affected by 

large tides (Sammari et al., 2006).  

The functional heights of the archaeological benchmarks were defined in order to estimate the sea-

level change in each location. This parameter has been extensively described in Lambeck et al., 

2004b and applied in other studies (Auriemma and Solinas, 2009). It is defined as the elevation of 

specific architectural parts of an archaeological structure with respect to an estimated mean sea 

level at the time of their construction. It depends on the type of structure, on its use and on the local 

tide amplitudes. Functional heights also define the minimum elevation of the structure above the 

local highest tides. This information can also be deduced from previous publications (Schmiedt, 

1965, 1974; Flemming, 1969; Flemming and Webb, 1986), from historical documents (Hesnard, 

2004, Vitruvius), from the remnants of the Roman Age shipwrecks (which provided data on the size 

of the ships or boats and their draughts, as reported, for example, in Charlin et al., 1978; Steffy, 

1990; Pomey, 2003; Medas, 2003) and through rigorous estimation of the functional heights of the 

piers, by using and interpreting different type of markers on the same location (Lambeck et al., 

2004b). The use of these structures, their age and conservation, the accuracy of the survey and the 

estimation of the functional heights were all used in considering the observational uncertainties at 

each site. Concerning the functional height of quarries, found along the coast in Tunisia and Libya 

in proximity of coastal archaological sites, a value of at least 0.3 m was used. This value was 

estimated by the relationships between the lowest elevation of the mining place and sea level as 
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inferred by the quarry in Ventotene island (Italy), compared with the functional elevations of the 

fish tank and the pier located in close proximity (Lambeck et al., 2004b). The latter provide precise 

estimates of the elevation of the Roman markers related with sea level and were used to calibrate 

the elevation of the quarry. This value was successfully applied to the other quarries in the 

Mediterranean (Antonioli et al., 2007). Besides archaeological markers, in one case biological 

indicators such as Strombus bubonius and Lithophaga were used. The latter was found still in situ at 

El Grine, southeastern Tunisia. It was extracted from the limestone units and was chosen among 

those fossils placed at the highest elevations above sea level. Its elevation has been measured at 

+0.3 m with respect to the local mean sea level, after tidal and pressure correction were applied.  

 

4 Data along the coast of Tunisia 

The ~1,300 km coastlines of Tunisia is abundant with archaeological installations whose age goes 

back to the Punic age (Slim et al., 2004), although the best preserved sites are of the roman age of 

~2 ka B.P. (Fig.1a). Since the aim of this paper is to provide new analysis and interpretation on the 

sea level changes since the last 2 ka, the archaeological features of the investigated sites are 

discussed briefly; readers are referred to specific archaeological publications. The survey data show 

a general evidence of coastal submersion since the Roman age, from the elevation of urban 

structures, fish tanks, harbors, quarries and roadways (Fig.3). Some sites, such as the fish tank at 

Sidi Daoud equipped with channels tidal controlled for water exchange (see Lambeck et al., 2004b 

for description of channels systems of fish tanks), provide an excellent estimation of the intervening 

relative sea level rise since its construction 0.28±0.10 m (Fig.4b). Other significant sites are the 

harbors of Gigtis and Rass Segala (Fig. 4c) that provide relative sea level rise values of 0.37±0.30 m 

and 0.34±0.30 m, respectively, from the functional elevations of the pier surfaces (see Lambeck et 

al., 2004b, and Antonioli et al., 2007, for description of the functional elevations of piers). Valuable 

data came from the two submerged pools of Maamoura (Fig. 4a) and the seven pools of Sidi 

Mansour (Fig. 4d). These sites, perhaps used as fish tanks for small flat fishes or garum sauce (Slim 

et al., 2004), both provide relative sea level rise of 0.46±0.20 m and 0.46±0.30 m, respectively. 

Data are inferred from the functional elevations estimated from the relationships between the 

differential elevation among the pool floors, the narrow channels for water exchange and the 

presently submerged walking surfaces. The latter were dry and above the high tides at the time of 

their construction. More data arise from the submerged buildings walls of Salakta (Fig. 4i), El 

Kantara and the roadway of Sidi Salem (Fig. 4e). The latter is presently in the tidal range. The 

quarries of Ersifet and Mraissa (Fig. 4f) provided a relative sea level rise of 0.30±0.20 m and 0.48 

±0.10 m, respectively (see Lambeck et al., 2004b, and Antonioli et al., 2007, for description of the 
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functional elevations of quarries). The pavement of Lalla Hadria, the slipways of Carthage and the 

sewerage of Gammarth, are additional archeological markers that show a relative sea level rise 

ranging between 0.58±0.50 m and 0.28±0.3 m. These sites have been included in the analysis, 

although are less precise due to less constrained functional elevations. All these sites along the coast 

of Tunisia, are in agreement to show a relative sea level rise since the last ~2 ka, in the range of 

0.18±0.2 m and 0.43±0.3 m, with the exception of the less constrained markers as the slipway of 

Carthage (0.24 ± 0.5 m). The most precise data are from the fish tank of Sidi Daoud (0.05±0.1 m) 

(Tab.1).    

Besides the archeological remains, fossils of Lithophaga and Strombus bubonius were found. The 

first, placed at a corrected elevation of +0.310.05 m, was collected at El Grine, in SE Tunisia. The 

sample was dated through 
14

C analysis and provided an age of 5846- 5700 calibrated (CALIB 5.1,  

lab. N° DSH83). Its dating and position are in agreement with other biological data previously 

published (Jedoui et al 2003; Morahange and Pirazzoli, 2005 and references therein).  As regards 

the geological evidence of the Last Interglagial, a deposit containg Strombus bubonius at Monastir 

(Fig. 4g) occurs at 14 m above sea level. Its elevation varies between 0 and 32 m above current sea 

level, as also reported in Richards (1996) and Bouaziz et al. (2003).  

 

5.  Data along the coast of Libya  

The Mediterranean coasts of western Libya show several coastal archaeological installations, such 

as urban structures, pools, harbors and quarries. Unfortunately, some are not well preserved, 

preventing their use for this study. Approximately 200 km of the western Libyan coast from the 

ancient cities of Sabratha to Leptis Magna was investigated (Fig.2), where coastal installations such 

as the great harbor of Leptis Magna, the pools of Sabratha, and Villa Silin, can still be found. Other 

less precise sea level indicators, such as coastal quarries, provide additional information (Tab.1).  

The harbor of Leptis Magna is the most important archaeological site of this area and displays 

several sea level indicators consisting mainly in very well preserved piers with bollards (Fig.5a). 

This harbor, which was abandoned after it was filled by sand caused by the failure of the dam 

placed at the mouth of the river which exits into the harbor basin, was surveyed for the first time in 

1958 by Bartoccini (1960) who published exhaustive plans, including elevations of significant sea 

level indicators. In 2005, from the elevation of the piers (presently at 1.2 m above sea level) and the 

bollards, a relative sea level rise of 0.48±0.2 m since the last 2 ka is estimated. This value is in 

agreement with the observation performed by Bartoccini in 1958. Other indicators include stairs and 

bollards, and reflect the commercial use of the harbor, planned for large commercial ships.  
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At Sabratha the pools of the thermal area, equipped with channels opening toward the sea, indicate 

a sea level change of 0.48±0.2 m (Fig.5b). Minor relative sea level values are inferred from the 

coastal quarries of Villa Silin (Fig.5c) as well as the fish tanks of Wadi Jabrum (Fig. 5d) and 

Foundoug en Nagazza. A tidal notch of 40 cm height is also present at Villa Silin, at an elevation 

corresponding to the current sea level. 

Concerning the elevation of the MIS 5.5 transgression, fossil beaches are located between 5 and 10 

m a.s.l., close to the fish tank of Fondoug En Nagazza (Claudio Faccenna, personal 

communication). Based on the elevation of the MIS 5.5 highstand this outcrop is assigned to the 

Last Interglacial (LIG). 

 

6. The isostatic model 

The theory used here for describing the glacio–hydroisostatic process has been previously discussed 

in Lambeck et al., 2003 and its applications to the Mediterranean region have been most recently 

discussed in Lambeck et al. (2004a, b) and Lambeck and Purcell (2005). The input parameters into 

these models are the ice models from the time of the Last Interglacial to the present and the earth 

rheology parameters. These are established by calibrating the model against sea-level data from 

tectonically stable regions and from regions that are sensitive to particular subsets of the 

parameters: data from Scandinavia to constrain the northern European and Eurasian ice models 

(Lambeck et al., 1998, 2006), a re-evaluation of the North American data for improved Laurentide 

ice models (Lambeck et al., unpublished) and data from far-field sites to improve the ice-volume esl 

function (Lambeck, 2002). Iterative procedures are used in which far-field data are used to establish 

the global changes in ice volume and mantle rheology and near-field data are used to constrain the 

local ice sheets and mantle rheology. The procedure is then re-iterated, using the near-field derived 

ice models to improve the isostatic corrections for the far-field analysis. The Mediterranean data, 

from the intermediate field, have been previously included in this analysis mainly to establish 

constraints on regional mantle parameters and the eustatic sea-level function (Lambeck, 2002) and 

on rates of tectonic vertical movements (Lambeck, 1995; Antonioli et al., 2007). This paper uses the 

most recent iteration results for the ice models (Lambeck et al., 2006) which include improved ice 

models for the major ice sheets of Europe, North America, Antarctica and Greenland back to the 

penultimate Interglacial, as well as mountain glaciation models including the Alps (Lambeck and 

Purcell, 2005). This last addition impacts primarily on the sea-level predictions for northern Italy 

and Slovenia. The time-integrated ice volumes are consistent with the ice volume esl function 

previously established (Lambeck, 2002). The Italian data discussed in Lambeck et al. (2004a) have 

not been used in arriving at the new model parameters. 
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The adopted earth-model parameters are those that have provided a consistent description of the 

sea-level data for the Mediterranean region. The Mediterranean data alone have so far not yet 

yielded solutions in which a complete separation of earth-model parameters is possible, nor in 

which these parameters can be separated fully from eustatic or ice-model unknowns. However, the 

combination used here provides a set of very effective interpolation parameters that describe well 

the observational data and that allow for an effective separation of tectonic and isostatic–eustatic 

contributions to sea level. Also, the eustatic parameters determined from the Mediterranean region 

are consistent with those obtained from other regions of the world (Lambeck, 2002). The solutions 

indicate that three-layer rheological models largely suffice for the region: an effective elastic 

lithosphere with thickness 65 km, an upper mantle from the base of this lithosphere to the 670 km 

seismic discontinuity with an effective viscosity of 3x10
20

 Pa s and a lower mantle with an average 

effective viscosity of 10
22

 Pa s (earth model m-3) (Lambeck et al., 2004a).  

The new parameters yield better agreement with the observations than before: the terrestrial 

indicators lie on or above the prediction, the marine indicators lie mostly below the expected results 

and the transitional data points are also close to the predicted function (Antonioli et al., 2007). Of 

the earth-model parameters, the parameter most sensitive to the predictions is the upper mantle 

viscosity (model m-2 for which the effective upper mantle viscosity is 2x10
20 

Pa/s, while the other 

parameters are unchanged). These comparisons indicate some of the trade-offs between parameters 

that occur. Model m-3 with the new ice model leads to very similar results as model m-2 with the 

old ice parameters. However, the old ice model is less consistent with the sea-level data from North 

America than the new model, and so the former is adopted here. The predictions recently estimated 

for Sardinia (Antonioli et al., 2007) are characteristic of the sea-level rise in most parts of the 

Mediterranean: an initially rapid rise as eustasy dominates isostasy, but after ~6500 a, a much 

slower rate of increase as isostasy dominates eustasy right up to the present time. The rates of rise 

are dependent on the rheology as is illustrated for the comparison of the two model results m-2 and 

m-3 with a difference of ~1.5m at 7000 BP (Antonioli et al., 2007). 

 

7. Discussion  

The coastal archaeological sites of Punic-Roman age located along the coasts of Tunisia and Libya 

show that sea level has changed at 0.3-0.5 m since the last ~2 ka and that the region shows a vertical 

tectonic stability. The comparison between the elevation of the archaeological sites together with 

their uncertainties, and the predicted values of the sea levels for the different parameters used in the 

models, show that they always fall between the maximum and the minimum values of the predicted 

sea levels. Using a eustatic change of 13 cm during the last 2 ka (Lambeck et al., 2004b), produces 
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a glacio-hydro-isostatic contribution in the range of 0.2-0.4 m. This value is of minor amplitude 

with respect to those estimated in the central and northern Mediterranean (Lambeck et al., 2004b; 

Antonioli et al., 2007; Scicchitano et al., 2008); 

Besides the archaeological evidence of the relative sea level change along the coast of Tunisia and 

Lybia, biological data can be considered, as Tunisia has placed a key role in Quaternary sea level 

change studies in the Mediterranean, since the work of Flick and Pervinquiére (1904). Fossils of 

Lithophaga were found at El Grine (Southeastern Tunisia) and the most elevated samples were 

collected at an elevation of +0.3 m above sea level (corrected for barometric pressure and tides).  

This value implies crustal uplift or complex behavior of the sea level changes during the Holocene 

in this region. 

Jedoui et al. (1998) propose that, for this area, postglacial melting should not be responsible for the 

change. Moreover the elevation of the palaeo-beach deposit is regularly distributed in southern 

Tunisia and does not suggest any intervening tectonics in this area, and the vertical movements can 

be addressed only to isostatic rebound (Lambeck et al., 2003). Similar conclusions are suggested by 

Mohrange and Pirazzoli (2006). They estimate that the movements cannot be ascribed to tectonics 

but are likely related to post-glacial hydro-isostatic effects. 

In this region, the elevation of the LIG is shown by Strombus bubonius. At Monastir these fossils 

are found between 0 and 32 m above sea level, indicating in this coastal area the occurrence of 

vertical movements related to the Sknes-Krniss fault activity (Richards, 1986). Along the coast of 

Southern Tunisia and at the Sabkha el Melah, south of Jerba island, LIG is placed at 2÷6 m asl, 

inferring vertical tectonic stability (Jedoui et al., 2003).  

Results of U\Th analyses on biological data suggest that the LIG was characterized by at least two 

sea level high-stands. Owing to the uncertainties on estimated ages, the exact duration of each 

cannot be determined. It is reasonable to doubt the existence of these two cycles as they are not 

displayed in any other part of the Mediterranean coast. Conversely, on the basis of the elevation of 

the MIS 5.5 placed between 0 and 32 m in the Gulf of Hammamet (Monastir): i) the coasts of 

Tunisia in the gulfs of Hammamet and Gabes and at Cape Bon are subjected to minor vertical 

tectonic movements, as shown by the quasi normal elevation of the MIS 5.5 (up to 32 m, 

corresponding to a max uplift tectonic rate of ~0.26 mm/y in 124 ka and to an uplift rate of ~1.5 m 

over 5.7 ka); ii) the two supposed Tyrrhenian cycles are cut by discontinuities that could be 

interpreted as the result of a tectonic movement during the transgression; iii) the elevation of the 

submerged archaeological sites at -0.3 to -0.5 m, when compared with the sea level prediction 

model (Lambeck and Purcell, 2005) show tectonic stability for the last 2 ka cal B.P., thus not 

indicating crustal uplift (Fig.3). Hence, the relative sea level rise of ~4 m since the last 5.7 ka, is 
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neither eustatic nor isostatic. Excluding critical events (coseismic uplift, tsunami or large sea 

storms) as responsible for the location of the fossil of Lithophaga at 0.3 m asl at El Grine, and 

excluding tectonic influences on its position, a different explanation must be invoked for its 

elevation. The predicted sea level for this area (Lambeck and Purcell, 2005) at 5700 B.P. is 2.5 m 

lower than today. As the sample is currently at +0.3 m asl and as Lithophaga lives only underwater 

even during the lowest tides (assuming a minimum value of about -1 m), a minimum sea level rise 

of nearly 4 m is indicated. Hence, the current elevation of +0.3 m asl is not consistent with the sea 

level prediction valid for this stable region of the Mediterranean. On the other hand, this elevation is 

consistent with a Holocene sea level highstand. The latter has been recently re-estimated for this 

region by Stocchi et al. (2009), showing that the area of SE Tunisia is sensible to the time-history of 

the remote ice sheet of Antarctica.  

 

8. Conclusions  

The archaeological sites in this region of the Mediterranean provided good quality data that fill a 

gap on sea level change estimations for recent times. Particularly they are the best indicators of the 

relative sea level changes intervening during the last two millennia and allow calibration and 

improvement of the glacio-hydro-isostatic models for this region. 

The coastal archaeological data show that the coast of Libya underwent a relative sea level change 

in the range of 0.24±0.10 m and 0.48±0.10 m since the last 2 ka. During the same period, in Tunisia 

the relative sea level change is in the range 0.20±0.10 m and 0.58±0.30 m. These changes can be 

addressed to the eustatic contribution and the glacio-hydro-isostatic signal. As the former has been 

recently estimated in 0.13 m for the central Mediterranean (Lambeck et al., 2004b), the glacio-

hydro-isostatic contribution is about 75% less than in the central and northern Mediterranean 

(Lambeck et al., 2005; Antonioli et al., 2007; Lambeck et al., 2004; Scicchitano et al., 2007). The 

glacio-hydro-isostatic sea level predictions satisfactory fits all the archaeological data but the ma2a, 

ma2c, ma3a are the model parameters that are in better agreement with archaeological observations. 

Discrepancies are of a few cm and generally within the error estimation of the used technique. The 

largest discrepancies are ~0.7 m and arise only from the comparison with ma3c model parameter, 

while the best fitting model parameter is ma2c. The comparison with this model parameter infer an 

estimated esl for the past ~2 ka of 0.15±0.04 m, which is in good agreement with the results 

obtained for the central Mediterranean (Lambeck et al., 2004b) and with earlier conclusion that the 

eustatic sea level change is recent. 

Finally, the data show an overall vertical tectonic stability of the investigated coasts of Libya and 

Tunisia with the exceptions of Sidi Daoud and Mraissa, both located in northern Tunisa, along the 
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coast of Cape Bon. Excluding the prediction of provided by model ma3c, the discrepancies between 

predictions and field observations for these sites, infer tectonic uplift at average rates of 0.22 mm/y 

at Sidi Daoud and 0.14 mm/y at Mraissa, in agreement with independent data (Burollet, 1991; 

Bouaziz et al., 2003).  
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Figure captions  

 

Fig.1a Map of the investigated archaeological sites in Tunisia; b) elevation of the MIS 5.5 

(modified from Jedoui et al 1998). The black triangle is the position of the Lithophaga sampled at 

El Grine. 

 

Fig. 2 Map of the investigated archaeological sites in Libya. The elevation of the MIS 5.5 at is also 

reported in the map. The white triangle is the position of the MIS 5.5 at +6 m above sea level (C. 

Faccenna, personal communication). 

 

Fig. 3 Relative sea level change inferred from archaological sites in Tunisia and Libya. 

Archaeological elevations are compared against glacio hydro isostatic model with different Earth 

parameters (Lambeck and Purcell, 2005). Triangles are the sea level predictions from Lambeck and 

Purcell (2005) estimated at each location. 

 

Fig. 4 The investigated archaeological sites in Tunisia: a) The pools of Sidi Mansour; b) the fish 

tank of Sidi Daoud. Note the two channels (front and right) for the exchange of water; c) the Roman 
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age pier of Rass Segala; d) the pools at Maamoura, e) the roman road of Sidi Salem; f) the quarries 

at Mraissa; g) the MIS 5.5 fossil of Strombus Bubonius elevated at +5 m above sea level near 

Monastir; h) the submerged buildings and pools at Salakta; i) the submerged ruins of maritime 

installations at Salakta. 

 

Fig. 5 The investigated archaeological sites in Libya: a) The Harbour of Leptis Magna. Front: the 

pier at 1.2±0.2 m above current sea level. Back: the bollards and the stairways leading to the 

warehouses; b) the pools of the Baths of Oceanus (thermal installation) at Sabratha; c) the roman 

age coastal quarry at Villa Silin; d) the roman age fish tank at Wadi Jabrum. 

 

 

Table caption 

 

Table 1. (A) Site numbers (in brackets are listed according to the CAB data base); (B) names as 

indicated in Figures 4 and 5; (C) country; (D) type of archaeological remain; (E) and (F) are the 

WGS84 coordinates of the sites; (G) age estimates based on historical documentation; (H) 

functional elevation of the significant markers; (I) elevation error estimates; (K) limiting value of 

survey data: UL= upper limit, LL= lower limit; (L-O) are the predicted sea levels at 2 ka according 

to different parameters used in the model; (P) tectonic environment. 

Architectural features used to define sea level: P=pools; H=harbor; Q=quarry, N=notch, FT=fish 

tank, SW= slipway, S=sewerage, BW=breakwater, PV=pavement, RD=road, G=geology. The 

lowest cuttings of quarries are assumed to be at 0.30 m above high tide and the  sidewalk 

(crepidinae) in the fish tanks at 0.20 m above high tide. For the pools of Sidi Mansour and 

Maamoura, perhaps dedicated to small flat fishes or production of garum (roman fish sauce), the 

minimum functional elevation corresponds to at least 0.3 m above the maximum local high tide. 

The current elevation of the road at Sidi Salem above the mean sea level is 0.43 m. For this marker, 

assuming a maximum tidal range of 0.90 m (from the Tide Gauge of Humtsuk) to keep the road 

always dry, indicates a sea level change of at least 0.45 m or, conversely, a relative sea level change 

< 0.45 m (if the road could be submerged during max high tides). Elevation data are the average 

values of multiple measurements collected at the best preserved parts of the investigated structures. 

All elevation data are corrected for tides and atmospheric pressure. The maximum tidal range in 

northern Africa is ~0.40 m with the exception of a limited part of the Gulf of Gabes that is subjected 

to tides up to 1.8 m. Tidal corrections have been performed used the algorithms of the PMSLS 

(www.pol.ac.uk). The atmospheric pressure correction is for the difference in pressure at the time of 

observation and the mean annual pressure for the site and is based on the inverted barometer 

assumption using nearby station data from www.metoffice.com. 
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A 

Site No 

B 

Site name 

C  

 Country 

D 

Marker 

E 

Latitude 

        F       

Longitude 

 

 

G 

Age (ka) 

H  

Obs. rslc 

I  

σ obs. 

J 

Limit  

K  

ma3C 

L 

ma3A 

M 

ma2C 

N 

ma2A 

O 

Tectonics 

1 (9) Gammarth Tunisia S 36.921 10.296 1.8 -0.58 0.3 UL -0.83 -0.61 -0.68 -0.49 stable 

2 (8) Carthage Tunisia SW 36.845 10.327 2 -0.55 0.5 UL -0.93 -0.69 -0.78 -0.56 stable 

3 (10) Mraissa Tunisia Q 36.976 10.868 2 -0.48 0.1 LL -1.09 -0.84 -0.89 -0.67 uplifting 

 4 (7) Sidi Daoud Tunisia FT 37.002 10.894 1.8 -0.28 0.1 LL -0.97 -0.74 -0.78 -0.58 uplifting 

5 (6) Maamoura Tunisia P 36.455 10.804 1.5 -0.46 0.2 LL -0.62 -0.44 -0.52 -0.36 stable 

6 (13) Sidi Mansour Tunisia P 35.771 10.843 1.9 -0,46 0.3 UL -0.7 -0.47 -0.64 -0.44 Stable  

7 (11) Salakta 1 Tunisia P 35.388 11.042 1.7 -0,55 0.3 LL -0.6 -0.4 -0.55 -0.36 stable 

8 (12) Salakta 2 Tunisia BW,P 35.388 11.041 1.7 -0,58 0.3 UL -0.6 -0.4 -0.55 -0.36 stable 

9 (20) El Grine Tunisia G     33.655 10.568 5.0  0.31 0.05 LL 

    

stable 

10 (18) Sidi Salem 1 Tunisia RD 33.895 10.829 1.9 -0,20 0.3 LL -0.33 -0.12 -0.38 -0.19 Stable  

11 (14) Lalla Hadria Tunisia PV 33.789 11.059 1.9 -0,28 0.3 UL -0.38 -0.17 -0.41 -0.22 stable 

12 (16) El Kantara (Meninx) Tunisia BW 33.683 10.920 2 -0,31 0.3 UL -0.33 -0.11 -0.39 -0.19 stable 

13 (19) Ersifet Tunisia Q 33.559 10.944 1.8 -0,30 0.2 LL -0.26 -0.06 -0.31 -0.13 stable 

14 (17) Rass Segala Tunisia H 33.532 10.925 1.8 -0,34 0.3 UL -0.25 -0.05 -0.30 -0.13 Stable 

15 (15) Gigtis Tunisia H 33.533 10.680 1.9 -0,37 0.3 UL -0.2 0.01 -0.28 -0.10 stable 

16 (1) Sabratha Lybia P 32.808 12.486 2 -0.48 0.2 LL -0.43 -0.21 -0.44 -0.23 stable 

17 (5) Fondough en Naggaza Lybia FT 32.717 14.100 2 -0.24 0.2 LL -0.75 -0.52 -0.66 -0.44 stable 

18 (4) Wadi Jabrum Lybia FT 32.717 14.105 2 -0.37 0.2 LL -0.75 -0.52 -0.66 -0.44 stable 

19 (3) Villa Silin Lybia Q,N 32.709 14.178 2 -0.38 0.2 LL -0.76 -0.54 -0.67 -0.45 stable 

20 (2) Leptis Magna Lybia H 32.638 14.300 2 -0.48 0.2 UL -0.75 -0.52 -0.66 -0.44 stable 

 

Table 1 

 

Table




