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Abstract 

A methodology for constructing a probability map of lava inundation by considering the past eruptive 

behavior of the Mt Etna volcano is described. The basic a priori assumption is that new vents will not form 

far from existing ones and that such a distribution can be performed using a Gaussian kernel. The 

methodology is based on several steps: computation of susceptibility map that provides the spatial 

probability of vent opening; evaluation of the temporal probability for the occurrence of the hazard during 

the considered time interval; characterization of the expected eruptions; numerical simulations of lava flow 

paths, and elaboration of the hazard map. The application of MAGFLOW code, a physical-mathematical 

model, for simulating the lava flow paths represents the central part of this methodology for the hazard 

assessment at Etna. The simulation approach, to assess lava flow hazard, provides a more robust and 

locally accurate analysis than a simple probabilistic approach and accounts for the influence of the actual 

topography on the path of future lava flows. 

 

Introduction 

Mt Etna in Sicily (Italy) is one of the most active volcanoes in the world, and during the past 400 years it 

erupted over sixty times from vents on its flanks, while eruptive activity at its summit was nearly 

continuous. Its eruptions are often characterized by lava flows that spread along its flanks. Such eruptions 

can potentially reach the villages located to medium-low elevations. Even the area where city of Catania is 

settled was reached in the past by the flows outpoured from eruptive fractures opened at lower elevations. 

In the last century, the village of Mascali was destroyed by lava flows in 1928, while the villages of 

Fornazzo in 1979 and Randazzo 1981 were threatened by lava flows. More recently, several tourist 

facilities have been repeatedly destroyed, with serious damage to the local economy specifically in the 

2001 and 2002-03 eruptions.  

The analysis of lava flows as a volcanic hazard at the Mount Etna is of special importance for the 

authorities and Civil Defense to take decisions in case of an eruptive crisis. In order to estimate the amount 

of damage that can be caused by a lava flow, it is useful to be able to predict the size and extent of such 

flows. A map showing areas that would be likely affected by future volcanic activity is extremely useful for 

long-term land use planning. Several hazard maps have already been proposed to help in risk 

management at Mt Etna. Some of these maps (e.g., Andronico and Lodato, 2005; Behncke et al., 2005) 

are mainly based on detailed databases and past eruptions, where the morphology of the volcano is only 

qualitatively considered despite its fundamental effect in determining lava paths. An alternative approach is 

to estimate the probabilities of lava-flow inundation from the combined estimate of the probability of an 

eruption occurring anywhere on the volcano, the probability of the eruption location, the probability of a 
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lava flow being generated, and the probability of specific lava-flow parameters. Wadge et al. (1994) have 

already used this approach for Mount Etna, where 380 lava flows were simulated by using both a 

stochastically chosen vent site and a set of parameters from a library of such parameters for lava flows 

erupted between 1763 and 1989. Favalli et al. (2009) applied the same approach and obtained hazard 

maps by simulating the inundation areas for a large number of possible future eruptions using an empirical 

relationship for the maximum length of lava flows. 

On the base of our experience in modeling of the lava flow dynamics during past Etna eruptions, we 

present a new methodology for the identification of the zones that have the highest probability of being 

affected by lava flows, taking into account the location, extent and eruptive history of the source areas. The 

application of physical-mathematical models for simulating the lava flow paths represents the central part 

of this methodology for the hazard assessment at Etna. Recently, we have made significant progress in 

the hazard assessment at Etna through the development of accurate and robust physical-mathematical 

models able to forecast the spatial and temporal evolution of lava flows. With such simulations, one can 

explore a large number of eruption scenarios and these can specifically be used to estimate the extent of 

the inundation area. The probability of vent opening, the temporal probability, and the results obtained 

from the numerical simulations, are processed in order to obtain a final map showing for a given area at 

Mount Etna the probability of being affected by lava-flow inundation during the considered time interval. 

 

Methodology  

Lava-flow hazard can be defined as the probability for a given area being inundated by a lava-flow during a 

considered time interval. Many different approaches have been used for the generation of lava-flow hazard 

maps. However, we consider that any methodology for the elaboration of a volcanic hazard map, for a 

specific volcanic area and a specific time interval, should necessarily compute the following steps:  

computation of susceptibility map that provides the spatial probability of vent opening; evaluation of the 

temporal probability for the occurrence of the hazard during the considered time interval; characterization 

of the expected eruptions; numerical simulations of lava flow paths, and construction of the hazard map.  

 

Vent opening spatial distribution   

The spatial probability of vent opening, named here as volcanic susceptibility, can be a critical step for the 

evaluation of the lava flow hazard (Cappello et al., 2009). The estimation of the probability of volcanic 

eruptions is necessary to estimate the recurrence rate of volcanic events up until the time of investigation. 

Such estimates are based mainly on the past eruptive behavior of the volcano obtained from geological 

field observations, chronological and geophysical data. During recent years, new insights on the behavior 

of Mt Etna have been gained regarding the understanding of past eruptive activity, the dynamics of the 

volcano, the magma transfer processes, and the geophysical and geochemical monitoring. We use two 

different kinds of datasets. The first dataset collects the main volcanological parameters of all eruptions at 

Mt Etna since 1607: beginning and end of the eruption, the extent of the invasion area, the lava volume 
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erupted and the geographic coordinates of main vents (Coltelli et al., 2009). The second dataset comprises 

the geographic coordinates of faults, dikes and eruptive fractures (Neri et al., 2009). 

In order to estimate the spatial recurrence rate 
�

xy (eruptive vent density) we use the most common and 

largely used spatial point process model, which is based on the kernel technique. A kernel function is a 

probability density function (PDF) that is symmetric about the origin and spreads probability away from the 

event (Diggle, 1985). It is used to obtain the intensity of volcanic events at a sampling point P(x,y), 

calculated as a function of the distance to nearby structures and a smoothing constant h. Different kernel 

functions can be used including the Cauchy kernel (Martin et al., 2004), the Epanechnikov kernel (Lutz and 

Gutmann, 1994) and the Gaussian kernel (Connor and Hill, 1995). It is widely agreed that the shape of 

kernel function chosen in this type of analysis generally has a trivial impact on probability calculations 

compared to other parameters (Connor and Hill, 1995; Lutz and Gutmann, 1994). We used the Gaussian 

function for the Mt Etna because vents are treated as discrete events in time and space, and the Gaussian 

model responds well to the patterns generally recognized in volcano distributions, such as clustering of 

vents. The formula for bivariate Gaussian kernel is given by: 

 

                                                   λ�� � ������∑ �� �������	
�                                                      (1) 

 

where di is the distance from the point P(x,y) to the i-th vent location, h is a smoothing parameter that 

controls the size of the zone to which each data point contributes an increased intensity, and N is the 

number of volcanic events considered in the calculation. Due to the fact that N occurs in the denominator, 

the integral λxy across the map will be unity. Therefore the spatial density is a bivariate probability density 

function.  

Probability estimate made using Eq.1 depends on the value chosen for h. The choice of the kernel function 

with appropriate values of h has some consequences for the parameter estimation, because it controls 

how λxy varies with distance from existing structures. Using a bivariate Gaussian kernel, events will have a 

high estimated probability in proximity to existing vents if the value chosen for h is small, but low estimated 

probability away from the vent. On the other hand, a large value of h will yield a more uniform estimate of 

probability distribution across the region. In the Gaussian kernel, the smoothing factor is equivalent to the 

standard deviation of a symmetric, bivariate Gaussian distribution. Therefore, the choice of the smoothing 

coefficient depends on the combination of several factors including size of the volcanic fields and degree 

of clustering. An optimum value of smoothing coefficient varies proportionally with the volcanic field size 

and vent density. A possible approach consists in comparing the observed nearest-neighbor distance 

between the vents with the expected distribution of nearest-neighbor distances (Weller at al., 2006). Based 

on the bivariate Gaussian kernel, the cumulative distribution function for fraction of vents located within 

distance D of their nearest neighbor is: 

 

                                                                   ���,�� � erf�D/�h√2��                                                              (2) 
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As shown in Fig.1, plots for h = 750 m and h = 2200 m give the upper and lower bounds to curves 

generated by plotting cumulative nearest-neighbor distances of volcanic events at Mt Etna. A medium 

value (1500 m) between the lower and upper bounds has been chosen.  

 

 
Fig. 1: Plots of cumulative probability density functions 

 

In order to calculate the final spatial PDF, we use the following datasets: location of faults, location of 

fractures, and location of dikes. We calculated the spatial density λxy for each dataset and a relevance 

value for each PDF has been given, which measures its importance and the quality of the dataset with 

respect to the evaluation of the susceptibility. We used a procedure of back analysis for determining the 

better weights for the different datasets: 5% to faults, 5% to dikes and 90% fractures. Finally, the PDFs 

and their relative values are combined through a weighted summation to obtain the single spatial density 

containing all information.  

 

Rate of volcanic activity and probability estimates 

We calculated the temporal recurrence rate λt using an approach based on the repose-time method (Ho et 

al., 1991). In this method the duration of an eruption is ignored; only the onset date is considered as the 

most physically meaningful parameter and repose times from one onset date to the next are measured. 

Based on the definition of repose times, a volcanic recurrence rate λt is defined using a maximum 

likelihood estimator that averages events over a specific period of volcanic activity:  

 

                                                                           λ� � ��������                                                                           (3) 
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where E is the total number of eruptions, To is the age of the oldest eruption, and Ty is the age of the 

youngest eruption. Mulargia et al. (1985) demonstrated that the time series of occurrence of flank 

eruptions at Mt Etna follow a stationary Poisson process. So the frequency of eruptions is represented by  

a Poisson distribution, a discrete distribution that describes the number of random events on an interval in 

space or time. Therefore the cumulative probability of having at least one eruption in a time interval �t is 

given by:  

                                                                 ��∆�� � 1 � ����∆�                                                                       (4) 

 

Once the spatial density (events per kilometer) and the temporal recurrence rate (events per year) are 

defined, we calculate the probability of an event occurring at each grid point P(x,y) by using a Poisson 

distribution.  

If λxy represents the intensity function normalized to unity across the entire area and λt represents the 

regional recurrence rate, then: 

     

                                                      �	
����� � 1� � �1� ����∆���1� �����∆	∆
�                                               (5) 

 

where N(t) represents the number of future volcanic events that occur within time �t and area �x�y. We 

selected �x�y as 1 km2, and a time period of interest equal to 50 years (Fig. 2). 

 

 
Fig. 2: Spatio-temporal vent opening probability map 
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Characterization of expected eruption 

For the characterization of volcanic events, we used the knowledge of the main volcanological parameters 

of all eruptions at Mt Etna since 1607 to fix three different values of emitted lava volume (Tab. 1): 30, 100 

and more than 100 million of cubic meters (i.e. 200). Then we established short-medium and large times of 

eruptions, setting respectively to 30 and more than 30 days of simulation (i.e. 90). Combining these values 

with random distribution, we obtained six possible functions representing the variation of flux rate in 

relation to the time of eruption. The shape of the curves has been considered as a kind of bell, in which the 

eruption starts from a low value of flux rate, reaching its maximum value after a 1/4 of the entire time of 

simulation. After 2/3 of the maximum time of simulation reaches 1/3 of the maximum value, finally, 

gradually decreases until the end of the eruption is reached (Fig. 3).  
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Tab. 1: Statistics obtained analyzing the past eruptions of Mt. Etna 

 

 

 
Fig. 3: Values of flux rate-days of eruption used for the simulations 
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After calculation of the spatial-temporal vent opening probability map, which assigns a probability of 

activation to each vent in the grid, we need to estimate maps that assign a probability to each type of 

considered effusion rate and duration (event probability), devised on the basis of the emission behavior 

analysis of the study area. 

For every type i of eruption, the location of volcanoes are been used to estimate the probability pi for each 

point P(x,y) of the grid. When i is a type of category, ni is the total number of events in a category, then: 

 

                                                                             p��x,y� � ∑ d���
����                                                             (6) 

 

where dj is the distance between the point P(x,y) and the j-th volcano if dj is less or equal to h. 

So the value of pi(x,y) at a given point depends on the number of vents found within a distance h of the 

point. If no vents are located within h of the point for a type of eruption, a virtual point is inserted at a 

distance 2h in order to obtain a probability greater than zero. The estimates pi(x,y) are then rescaled such 

that: 

                                                                             ∑ p����� �x,y� � 1                                                               (7) 

 

For each category of event types we calculated a related smoothing factor using Eq. 2.  

 

Numerical simulations of lava-flow hazards 

To predict lava flow inundation areas we employ the MAGFLOW code (Del Negro et al., 2006), which has 

been extensively used in lava flow hazard applications at Mount Etna. MAGFLOW is based on cellular 

automata (CA) in which the states of the cells are the thickness of lava and the quantity of heat. The states 

of the cells are synchronously updated according to local rules that depend on values of the cell and the 

values of neighbors within certain proximity. In this way, the CA can produce extremely complex structures 

from the evolution of rather simple and local rules. The evolution function of MAGFLOW is a steady state 

solution of Navier-Stokes equations for the motion of a Bingham fluid on an inclined plane subject to 

pressure force, in which the conservation of mass is guaranteed both locally and globally (Vicari et al., 

2007). However, this kind of evolution function induces a strong dependence on the cell geometry and 

position of the flux, with respect to the symmetry axis of the cell: flows on a horizontal plane spread 

preferentially in the direction of the mesh (the calculated length of lava flows depends on the relative 

directions of flow and the mesh). We solved this problem using a Monte Carlo approach, which allows 

obtaining cell geometry free results as well as calculating large-scale lava flows with no artificial anisotropy 

(Herault et al., 2008).  

Once the activation and the event probabilities are developed, numerical simulations were computed using 

the MAGFLOW model. The simulations were performed using the typical parameters of Etnean lava flows. 

A 1 km grid spacing of vents is defined in the study area, and a prefixed number of simulations are 

executed for each of them, each one characterized by its own effusion rate and duration.  
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Elaboration of the hazard map and eruption scenarios 

Finally, the resulting hazard map is thus compiled by taking into account the probability of vent opening, 

information on lava flows overlapping and their occurrence probability. This map is obtained by evaluating 

the hazard at each point in the study area as follows:  

• for each simulation, the hazard related to a generic point in the study area is computed as the 

product of the defined probabilities of occurrence (conditioned probability) if it is affected by the 

simulated lava flow, zero otherwise;  

• for each point, the conditioned probabilities are added over all the performed simulations.  

The value assigned to each point of the grid represents the probability of being affected by a lava flow 

during the considered time interval. The spatial probability of vent opening can be a critical step for the 

evaluation of volcanic hazard. The most important point in the evaluation of the susceptibility map is how to 

convert any dataset into a PDF because the opening of a new vent can depend on the characteristic of 

each dataset. By assigning the same probability of occurrence to all performed simulations, a more trivial 

criterion of hazard mapping is obtained, simply based on the number of simulated events that affect a 

given zone.  In Fig. 4 a preliminary hazard map of Mount Etna is shown. It is based on 5000 simulations of 

lava flow paths starting from more than 900 different potential vents. Most of the study area falls in class 1. 

Medium values of hazard are to be found close to the villages of Bronte and Linguaglossa. Only “Valle del 

Bove”, a huge depression in the eastern side of the volcano, is affected by the highest values of hazard. 

This map should help local authorities in making the necessary decisions to deal with ongoing eruptions 

and to plan long-term land use. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Preliminary hazard map of Mt Etna 
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Conclusions 

Hazard maps provide the probability of the future course of lava flows to enable quantitative hazard 

assessments and operational guidelines for, potentially, mitigatory actions to be undertaken. We have 

defined a methodology based on the numerical computer simulation of the flow paths over the surface of 

the volcano; these simulations are constrained by knowledge from former eruptions of Mt Etna. The 

simulation approach, to assess lava flow hazard, provides a more robust and locally accurate analysis than 

a simple probabilistic approach and accounts for the influence of the actual topography on the path of 

future lava flows. Generating multiple simulations it is possible to evaluate the probability of lava inundation 

anywhere on the surface of the volcano. This probability is captured as a hazard map, showing the relative 

frequency of lava flows that could potentially inundate specific areas. Such probability maps indicate the 

likely areas that could be affected but not which area will be covered by a specific eruption. 

Detailed quantitative hazard maps have been produced for Mt Etna using MAGFLOW, a physical-

mathematical model based on cellular automata to calculate lava flow paths. This new methodology of 

applying computer simulation techniques to the assessment of hazard from lava results in a map showing, 

at each location, the combined spatial and temporal probability to inundate areas. Obviously the accuracy 

of the results strictly depends on the reliability of the simulation model, on the quality of input data and on 

the hypotheses on assigning the different probabilities of occurrence. In particular, the activation and event 

probabilities (Eq. 5 and Eq. 6) constitute a critical step in the chain of this methodology. A key point is how 

to convert any dataset into a PDF because the opening of a new vent can depend on the characteristic of 

each dataset. Moreover, by assigning an equal probability of occurrence to all performed simulations, a 

more trivial criterion of hazard mapping is obtained, simply based on the number of simulated events that 

affect a given zone. 

One of the most interesting possible extensions would be to have near real-time access to different 

datasets, for example volcanic monitoring data, for the evaluation of short-time susceptibility maps and 

continuous update of the expected scenarios in the case of unrest.  
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