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Abstract 
Temporary arrays installed in urban areas for investigating the upper-most geological 
structure typically comprised of a limited number of stations and are arranged in geometries 
constrained by environmental boundaries. Therefore, it is expected that the frequency-
wavenumber images are significantly blurred by the array transfer function and are corrupted 
by noise. 
In this paper, the effect of the Richardson-Lucy regularization method applied to the problem 
of de-blurring frequency-wavenumber images is investigated. The images are computed by 
analyzing data from two small-aperture 2D-arrays, installed with different configurations in a 
test-site within the town of Potenza (Southern Italy) for near-surface investigations. We show 
that removing the effects of the array response from the frequency-wavenumber images 
improves the phase-velocity estimation, reducing the relevant level of uncertainty. 
Furthermore, the Richardson-Lucy regularization method is effective in reducing the level of 
noise related to spatial aliasing by eliminating spurious peaks, allowing the maxima related to 
different seismic sources to be better discriminated. 
 
 
 
 
 
Acronyms 
 
ARF – Array Response Function 
BFM – Beam Forming Method 
MLM – Maximum Likelihood Method 
TR – Tihkonov Regularization 
RLM – Richardson-Lucy Method 
PSF - Point-Spread Function 
f-k PSDF – frequency-wavenumber Power Spectrum Density Function 
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1. Introduction 
 
Seismic arrays were originally proposed at the beginning of the 1960s as a new type of 
seismological tool for the detection and identification of nuclear explosions (e.g. Frosch and 
Green, 1966). Since then, seismic arrays have been applied at various spatial scales for many 
geophysical purposes. At the regional scale, they have been used to obtain refined velocity 
models of the Earth’s interior (e.g., Birtill and Whiteway, 1965; Whiteway, 1966; Kárason 
and van der Hilst, 2001; Ritter et al., 2001; Krűger et al., 2001). Recent reviews on array 
applications in seismology can be found in Douglas (2002) and Rost and Thomas (2002 and 
2009).  
At smaller scales (i.e. maximum aperture of the array is of the order of about one hundred 
meters), following the pioneering work of Aki (1957), seismic arrays have been used for the 
characterization of surface-wave propagation, and the extraction of information about the 
shallow subsoil structure (i.e. the estimation of the local S-wave velocity profile). Especially 
in the last decades, due to the focus of seismologists and engineers on estimating the 
amplification of earthquake ground motion as a function of local geology, and the 
improvements in the quality and computing power of instrumentation, interest in analyzing 
seismic noise recorded by arrays (e.g. Horike, 1985; Hough et al., 1992; Ohori et al., 2002; 
Okada, 2003; Scherbaum et al. 2003, Parolai et al., 2005) has grown. 
Frequency-wavenumber analysis (f-k) (Capon et al., 1967; Capon, 1969; Lacoss et al., 1969) 
is one of the most important and commonly used techniques for the analysis of seismic signals 
recorded by arrays at both small and large scales. The basic operation for f-k analysis is the 
estimation of the frequency-wavenumber power spectral density function (f-k PSDF), since it 
provides information about the frequency composition, mode structure and properties of the 
seismic waves traveling across the array. 
However, the accuracy and resolution in the estimation of the f-k PSDF strongly depends on 
the spatial sampling of the ground movement made by the array. In fact, similarly to the effect 
occurring when sampling a signal in the time domain, a non-adequate wavefield spatial 
sampling may be the cause of aliasing effects in the wavenumber domain.  
Despite extensive seismological literature dealing with the theory of array characteristics and 
configurations (e.g. Carpenter, 1965; Somers and Manchee, 1966; Haubrich, 1968; Harjes and 
Henger, 1973; Mykkeltveit et al., 1983; Kind et al., 2005; Wathelet et al., 2005), only a few 
qualitative suggestions have been made regarding the improvement of f-k PSDF estimation. In 
fact, since Haubrich (1968), it has been simply recommended to choose, for a fixed number of 
sensors, those array configurations that guarantee the irregular sampling of both small and 
large wavelengths. On the other hand, there is no ideal outline for an array’s configuration, 
since every configuration has both advantages and disadvantages over other types. Hence, for 
the seismological community, the solution of all the f-k PSDF accuracy and resolution 
problems has been based essentially on the selection of a particular array configuration by a 
visual, check of the array transfer function characteristics (see, among many others, 
Halldorsson et al. 2009). For instance, Wathelet et al. (2005) suggested to identify the 
maximum usable wavenumber by directly picking the major aliasing peaks within the array 
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transfer function, while the minimum wavenumber can be approximately deduced by 
considering the width of the central peak. 
 
In analogy with the correction for the sensor impulse response applied before analyzing any 
seismic recording, in this work we propose to correct the f-k PSDF estimate for the effects 
introduced by the array transfer function. To our knowledge, in seismology, only Nishida et 
al. (2008), who studied the Earth’s background free oscillations using the Hi-net tiltmeter 
network (some hundreds of sensors) while focusing on the very low frequency range (i.e. 0.01 
to 0.1 Hz), deconvolved the f-k images before analyzing them.  
 
The array transfer function is determined by the array geometry. Differently from the case of 
dense permanent networks (Nishida et al., 2008), the transfer functions of arrays with a 
limited number of stations (of the order of 10 to 20 for near-surface investigations) generate 
significant blurring in the f-k PSDF. Moreover, over our frequency range of interest (generally 
>1Hz), the background noise is generated locally by anthropic sources that can change rapidly 
over time. It follows, therefore, that the nature of a seismic noise wavefield over this 
frequency range leads to f-k images more corrupted by incoherent patterns than in the case of 
low-frequency seismic noise. These patterns, which can be thought of as noise corrupting the 
blurred image, could be strongly amplified by the deconvolution for the array response. 
Therefore, it follows that choosing the regularization approach adopted for near-surface 
applications might not be as straightforward as in the case of dense arrays, and may play a 
very critical role. In this work, we investigate the effects of removing the array response 
function from the f-k PSDF estimated by applying either the Beam-Forming Method (BFM) 
(Lacoss et al. 1969)  or the Maximum Likelihood Method (MLM) (Capon, 1969). Two 
different algorithms are considered to regularize the deconvolution, namely the Richardson-
Lucy and the Tikhonov methods (Bertero and Boccacci, 1998).  
This paper is organized as follows. We first provide an overview of the basic concepts of both 
the f-k analysis and of the tested deconvolution approaches. Then, the suitability and potential 
of the deconvolution procedure for retrieving the f-k PSDFs, with a special emphasis on the 
estimation of the Rayleigh phase velocities, are discussed by analysing two data sets collected 
using small arrays with different configurations in a test-site in the town of Potenza (Southern 
Italy). 
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2. Frequency-wavenumber methods 
 
2.1 Beam-Forming and Maximum Likelihood Methods 
 
In this section a short overview of the Beam-Forming Method (BFM) (Lacoss et al. 1969) and 
the Maximum Likelihood Method (MLM) (Capon, 1969) is provided. Both methods were 
originally proposed with the aim of detecting nuclear explosions using the seismic network 
LASA, which had a diameter of 200 km (Okada, 2003). For that reason, they were designed 
to single out the predominant seismic wave from a complex assemblage of other waves, 
irrespective of their nature (i.e., they work for both body and surface waves). 
The estimate of the f-k spectra EP

b
(f,k) by the BFM is given by: 
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where f is the frequency, k the two-dimensional horizontal wavenumber vector, n the number 
of sensors. φ
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With respect to the BFM, the inversion of the cross-power spectra complex matrix (φ

lm
) is the 

only additional processing step. The inverse of φ
lm

 can be computed following standard 

numerical approaches, like performing the Singular Value Decomposition (SVD) (e.g., Press 
et al., 1992). Even if this step involves larger computational efforts, this method exhibits 
higher resolution than BFM in many cases.  
Capon (1969) showed, in fact, that the resolving power of the MLM is higher than that of the 
BFM, mainly due to the adaptive nature of its wavenumber filter. However, the peak 
amplitude in the EPm wave-number domain is tightly related to the signal-to-noise ratio, to the 
characteristics of the signal, and to the array geometry (Asten and Henstridge, 1984). In fact, 
MLM is more sensitive to measurement errors, for instance when the analyzed signal contains 
transients, and its higher resolving power with respect to BFM cannot be considered a general 
property (Okada, 2003).  
 
The location of a peak occurring at coordinates kxo 

and kyo for a certain frequency fo,
in the EPb 

and EPm wave-number domain provides information about both the apparent propagation 
velocity, co, given by 
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and the azimuth of the signal from the array (i.e., the back-azimuth), given by 
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An extensive description of these methods can be found in Horike (1985) and Okada (2003). 
 
2.2 Array response function 
 
The estimate EPb and EPm of the true Pb and Pm f-k spectra may be considered the 
convolution of the true functions with a frequency window function Wf and the wavenumber 
window functions WB and WM for the BFM and MLM, respectively (Lacoss et al., 1969). The 
first window function Wf is the transfer function of the tapering function applied to the signal 
time windows (Kind et al., 2005). The function WB, is referred differently by various authors 
(e.g. “spatial window function” by Lacoss et al., 1969, and “beam-forming array response 
function” by Capon, 1969), and hereafter is termed simply as the Array Response Function 
(ARF). The ARF depends only on the distribution of stations in the array, and for the 
wavenumber vector ko has the form (Horike, 1985) 
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Simply speaking, it represents a kind of spatial filter for the wavefield. 
The main advantage of the MLM with respect to the BFM involves the use of an improved 
wavenumber window WM. That is, for a wavenumber k0, this window function may be 
expressed in the form 
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and where qjl represents the elements of the cross-power spectral matrix. It is evident that WM 
depends not only on the array configuration through the function WB, but also on the quality 
(i.e., signal-to-noise ratio) of the data (Horike, 1985). In fact, the wavenumber response is 
modified by using the weights Aj (f, k0), which depend directly on the elements qlj(f). In 
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practice, WM allows the monochromatic plane wave traveling at a velocity corresponding to 
the wavenumber k0 to pass undistorted, while it suppresses, in an optimum least-squares 
sense, the power of those waves traveling with velocities corresponding to wavenumbers 
other than k0 (Capon, 1969). Or, in other words, coherent signals are associated with large 
weights of Aj and their energy is emphasized in the f-k spectrum. On the contrary, if the 
coherency is low, the weights Aj are small and the energy in the f-k spectrum is damped (Kind 
et al., 2005). This automatic change of the main-lobe and side-lobe structure for minimizing 
the leakage of power from the remote portion of the spectrum has a direct positive effect on 
the Pm function, and consequently on the following velocity analysis.  
However, considering the dependence of WM on WB, it is clear that the array geometry is a 
factor having a strong influence on both EPb and EPm. In fact, similarly to every kind of filter, 
several large side lobes located around the major central peak can remain in the f-k spectra 
(Okada, 2003) and determine serious biases in the velocity and back-azimuth estimates. In 
particular, the side-lobe height and main-lobe width within WB control the leakage of energy 
and resolution, respectively (Zywicki, 1999). 
As a general criterion, the error in the velocity analysis due to the presence of spurious peaks 
in the f-k spectra may be reduced using distributions of sensors for which the array response 
approaches a two-dimensional δ-function. For that reason, it is considered good practice to 
undertake a preliminary evaluation of the array response when the survey is planned. Irregular 
configurations of even only a few sensors should be preferred, because they allow one to 
obtain a good compromise between a large aperture, which is necessary for sharp main peaks 
in the EPb and EPm, and small inter-sensor distances, which are needed for large aliasing 
periods (Kind et al., 2005).  
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3. Approaches to image deconvolution 
 
Image deconvolution is commonly applied for mitigating the blurring effects introduced by 
the beam pattern of an antenna (termed ‘image restoration problem’). Following the general 
smearing (i.e. blurring) model with independent additive noise, a detected 2-D image g is 
given by  

g p uδ= ∗ + ,     (8) 

where the symbol * denotes the 2-D convolution, p is the point-spread function (PSF), δ is the 
original image, and u is noise. On the basis of what was discussed before, this problem is 
similar to the removal of smearing effects from the f-k PSDF matrix due to the array response 
functions, where the matrices g, δ, and p correspond to the estimated f-k PSDF, the 
deconvolved f-k PSDF, and the ARF, respectively. 
The image restoration problem consists of evaluating an estimate Eδ of the original image δ, 
being given the detected image g and the beam pattern p of the antenna. It is well known that 
this kind of problem is typically ill-posed, since the information provided by g and the PSF 
are insufficient to retrieve δ univocally. Therefore, in this work we selected and applied two 
regularization methods widely used for image restoration problems: the Tikhonov 
Regularization method and the Richardson-Lucy method. In the following we provide only a 
brief discussion of these techniques. Interested readers are referred to Bertero and Boccacci 
(1998) for a more in-depth discussion of these and other techniques suitable for image 
restoration problems.  
 
The Tikhonov Regularization (TR) is one of the simplest deconvolution methods. It consists 
of taking into account a penalty term proportional to the energy of the object (Engl et al, 
1996). The basic equation of the TR can be written in the frequency domain as 
 

*
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2

ˆ ˆˆ
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P μ
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+

G ,     (9) 

where μ is a positive number, termed the regularization parameter, the star denotes the 
complex conjugate, and the capital symbols with the hat, ˆEΔ , , and , denote the Discrete 
Fourier Transform (DFT) of the estimated image Eδ, the detected image g, and the PSF p, 
respectively. The value of the regularization parameter μ determines the degree of filtering 
applied to the solution: the smoothness of the solution increases with increasing μ , reducing 
the effect of numerical instabilities but also the spatial resolution of the solution.  

Ĝ P̂

 
The Richardson-Lucy Method (RLM), proposed by Richardson (1972) and Lucy (1974) is the 
most frequently used, and also considered the most robust, deconvolution approach in 
astronomy for correcting radio-astronomical observations for the smoothing due to the beam 
pattern of the antenna. Essentially, the algorithm is based on maximizing the likelihood of the 
resulting deblurred image being an instance of the observed image under Poisson statistics. In 
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practice, the RLM algorithm consists of an iterative procedure that, for a given detected image 
and a certain PSF, allows the computation of the deblurred image (Bertero, and Boccacci, 
2005). The RLM iterative procedure is given by: 
 

( 1) 1m m T
m

gE E A
AE

δ δ
α δ

+ ⎛= ⎜
⎝ ⎠

⎞
⎟ ,    (12) 

where m is the number of iterations, g is the detected image and Eδ m is the regularized 
solution at the m-th iteration. The inverse of the number of iterations acts as a regularization 
parameter, that is to say increasing the number of iterations diminishes the smoothness of the 
solution of the deconvolution problem, but produces noise amplification (Bertero and 
Boccacci, 2000). The image A is derived from the PSF, after having it zero padded at the 
boundaries. The matrix α is obtained from the sum of the elements of the ‘columns’ of the 
imaging matrix A (e.g. Bertero, and Boccacci, 2005). If the PSF is normalized, then α has a 
value approximately equal to 1 in the central region of the image, becoming smaller for pixels 
close to the boundaries, and with a decrease which depends on the behavior of the ARF 
(Bertero, and Boccacci, 2005). The iterations are generally stopped according to a pre-
assigned criterion of convergence towards the maximum likelihood solution which varies 
depending on the application at hand.  
In the following, during the application of the RLM algorithm, the matrix A will correspond 
to the ARF matrixes. 
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4. Test-site and data-set 
 
Within the framework of the Italian DPC-INGV 2004-2006 projects, the town of Potenza 
(Southern Italy) was one of the test sites selected for preparing ground-motion scenarios and 
for comparing techniques for estimating site effects in urban environments. For this purpose, 
an area in the neighbouring village of Tito was selected by Parolai et al. (2007), and seismic 
noise recordings by 2D-arrays were carried out close to a 40 m deep borehole instrumented 
with two-sensors for the recording of teleseismic, regional, and local seismicity. 
The Tito test site is located in the S. Loja Plain in southern Italy, along the axial zone of 
Southern Apennines (Figure 1). Previous geological studies (Pescatore et al., 1999) and 
geophysical investigations indicate that at the site a shallow layer of clay is inter-bedded with 
detritus and lenses of sand, and overlies a Flysch formation, which can be considered the 
engineering bedrock.  
Parolai et al. (2007) deployed three seismometer micro-arrays close to the borehole, utilizing 
short-period sensors and digitizers with high dynamic range. Comparison of both S-wave 
velocity profiles obtained from passive investigations with those derived from down-hole 
measurements, and of empirical site responses with those calculated numerically from the S-
wave velocity profiles obtained from the micro-array data, showed that seismic noise 
investigations with these arrays provide reliable results for the shallow subsoil structure and 
site effects characterization of a site. 
For this work, we selected two arrays of the data-set of Parolai et al. (2007). The array 
geometries varied from a simple T-shape to a more complicated one (Figure 2). 
Despite the constraints of the distribution of buildings in the area, both geometries were 
planned to provide a sufficient azimuth and inter-station distance coverage, allowing the 
retrieval of information about Rayleigh wave phase velocity in the frequency band between 2 
and about 13 Hz.  
For both arrays, the stations worked contemporaneously for more than 1 hour, recording noise 
at 500 s.p.s., which is adequate for the short inter-station distance considered. Every station 
was equipped with a 24 bit digitizer connected to a Mark L-4C-3D 1Hz sensor and GPS 
timing. For the analysis, the data recorded by each station of each array are divided into 60 s 
windows. A total of 44 non-overlapping windows are considered. Only the vertical 
component is analyzed. Recordings are corrected for the instrumental response considering 
the calibration parameters of each sensor. 
Figure 2 shows the array geometries (top) and the respective ARFs (bottom) computed using 
eq. 5 for ko equal to 0 and the ARF equal to WB. 
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5. Results 
 
5.1 Selection of the regularization method 
 
Figure 3 and 4 present some of the results obtained by applying the two previously described 
regularization algorithms to the experimental f-k PSDF matrix evaluated at 3.5 and 13 Hz, 
respectively. These matrixes were estimated using the data-set of Array 1 and the BFM. The 
ARF of Array 1 was previously shown in Figure 2c. The loci of points having k equal to the 
value of the most coherent energy pattern in the f-k images are depicted by a yellow circle. 
Thus, f-k maxima propagating with the same velocity of the maximum peak can be easily 
recognized. Moreover, in order to make the visualization of the deconvolution effects easier, a 
velocity section is drawn across the maximum of both the original and deconvolved matrixes, 
starting from the minimum velocity of 100 ms-1 until 3 times the velocity corresponding to the 
maximum. One of the aims of the velocity sections is to provide, through the maximum 
width, information about the uncertainty in the phase velocity estimation. The present scheme 
has been used for all the results presented in this work. Hereafter, we consider always the 
velocities corresponding to 0.8 of the peak maximum on both sides as representative of the 
uncertainties.  
 
Both methods were applied to test a wide range of regularization parameter values. In 
particular, for the TR approach we tested μ values between 10 and 0.025. For the RLM we 
increased the number of iterations m from 5 to 20.  
 
Figure 3 shows a summary of the test results for the frequency 3.5 Hz. The original f-k PSDF 
matrix (panel a) is characterized by a dominant coherent energy pattern smeared around the 
apparent phase velocity of 260 ms-1 and an azimuth of 176°. The velocity sections crossing 
the maximum peaks of the original f-k matrix are shown in panel 3b.  
In order keep the number of lines reasonably small within panel 3b, we show the TR results 
only for μ equal to 1, 0.1, and 0.025 (i.e. from yellow to red). Similarly, the RLM results are 
shown for m equal to 5, 10, and 20 (i.e. from cyan to blue) 
The f-k image regularized by RLM for m equal to 10 is shown in panel 3c, while panels (d, e, 
and f) show the f-k images regularized by TR for μ equal to 1, 0.1, and 0.025.  
 
The velocity sections across the f-k peaks (panel 3b) show that the de-blurring improves 
significantly its resolution but the shape of the peak depends on the value of the regularization 
parameter. In particular, while the amplitude of the peak restored by regularizing the solution 
with LR is almost stable with respect to the number of iterations (panel 3b), the amplitude of 
the solution obtained with TR strongly depends on the selected value for μ. Figure 3 shows 
that the resolution and the amplitude of the main peak increase by decreasing the value of μ 
but at the price of amplifying the back-ground noise (panels 3b, d, e, and f). The results shown 
in Figure 3 suggest a stronger sensitivity of the TR approach to the signal-to-noise ratio.  
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The same analysis are performed for a frequency of 13 Hz, where the original matrix (panel 
4a) is characterized by multiple peaks and a rather high background noise level. Even if the 
most energetic peak in the original f-k image is the one with an apparent phase velocity of 120 
ms-1, the comparison with the f-k images at lower and higher frequencies (not shown here, but 
through the dispersion curve shown in Figure 8) indicates that, unless unreliably large jumps 
in velocities are considered, the correct peak is that corresponding to plane waves propagating 
with an apparent phase velocity of about 200 ms-1 (panel a, and b). We believe that the 
presence of the large peak centered at 120 ms-1 is related to array response function bias 
effects. 
 
The velocity sections in panel 4b and the f-k image in panel 4c indicate that the RLM allows, 
successfully, the removal of the array response function effects. In fact, in the RLM 
reconstruction the peaks corresponding to an apparent velocity of 180 ms-1 are less affected 
by numerical noise.  
On the other hand, results shown in panels 4b, d, e, and f confirm that, when the 
deconvolution is regularized with TR, the f-k images are still affected by a higher level of 
noise. In particular, the reconstructed images are corrupted by the presence of several peaks, 
including those related to spatial aliasing effects. Furthermore, the peak related to the correct 
phase velocity is systematically smaller than those corresponding to an apparent velocity of 
120 ms-1. Moreover, we observe that with increasing the regularization, the background noise 
is amplified and the image is affected by a progressive, significant loss of resolution. 
 
We are aware that both the case at hand and the performed tests do not cover all possible 
experimental situations. Nonetheless, our tests clearly indicate that, for the analyzed cases, the 
RLM provides results that show a better compromise between spatial resolution and stability 
of the solution with respect to noise amplification. Moreover, as expected from theory, the 
RLM preserves the positivity of the original image. Therefore, in the following sections we 
compare the normalized f-k PSDF matrixes, estimated using both the BFM and MLM, before 
and after the deconvolution for the ARF (hereafter ‘Original Matrix’ and ‘Deconvolved 
Matrix’, respectively) considering only the RLM algorithm. 
In order to define a suitable number of iteration for applying the RLM algorithm to the case at 
hand, we repeated the procedure varying this parameter from 5 until a maximum number of 
iterations equal to 1000. Figure (5) shows the normalized f-k PSDF matrixes for the frequency 
of 13 Hz for some of the experiments. In agreement with theory (e.g. among the others, 
Bertero and Boccacci, 2000), we observe that with the increase of the number of iterations the 
noise in the figure is strongly amplified (Figure 5, panels for a number of iterations equal to 
100 and 1000), and the main peaks are not related anymore with a reliable Rayleigh wave 
phase velocity. These observations reflect the fact that, despite the RLM algorithm provides a 
sequence converging towards the maximum likelihood solution, numerical simulations 
indicate that it has a semi-convergence property only (Bertero and Boccacci, 2000), and thus, 
when the number of iteration is too high the algorithm is blinded from noise. 
So as other iterative deconvolution procedures, being in our case the ‘true’ solution unknown, 
we cannot use any objective criteria for defying the optimal criteria for stopping the iterations. 
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Therefore, we selected a number of iterations that represent a good compromise between the 
spatial resolution and the stability of the solution. In particular, we observed that a number of 
iterations equal to 10 guarantee, for the whole range of frequencies of interest, a good quality 
of the reconstructed images, allowing a clear identification of both the main maxima related to 
the Rayleigh wave traveling across the array, and also of those maxima, with equivalent 
velocity, that related to other seismic noise sources.   
For each f-k image, which is computed starting from the stack of 44 non-overlapping signal 
windows, the maximum is selected and assumed to correspond to the Rayleigh wave phase 
velocity.  
 
 
5.2 Array 1 
 
Figure 6 shows the results of the f-k BFM analysis for the frequency 3 Hz (panels 6a), 5 Hz 
(panels 6b), and 13 Hz (panels 6c). Due to the rather limited soft sedimentary cover thickness, 
the frequency 3 Hz is already related to a wavelength comparable with the maximum 
dimension of the array, that is, the maximum is located in the proximity of the center plot 
(panel 6a - Original Matrix). However, it is worth noting that the maximum in the 
Deconvolved Matrix (panel 6a - Richardson-Lucy Method) has definitely a sharper shape. 
The variation of both the location and shape of the maximum after the deconvolution are 
clearly observable in the velocity sections (panel 6a - Velocity Section). These results show 
that the deconvolution operation allows a well defined maximum shape, and therefore a more 
accurate phase velocity estimation to be obtained. Moreover, it is worth noting that a 
remarkable decrease in the uncertainty occurs, especially towards the higher velocities, where, 
as observed by Okada (2003), there are significant degeneration effects hampering the f-k 
phase velocity estimations. 
Similar results are shown for the frequency 5 Hz (panels 6b). Moreover, in this case, by the 
reduction of blurring, obtained thanks to the deconvolution, the capability to distinguish the 
contribution of different sources to the wavefield is improved (panel 6b - Richardson-Lucy 
Method).  
In the higher-frequency range, i.e. 13 Hz (panels c), correcting the f-k PSDF by the ARF 
allows a reduction in the bias effects due to the spatial aliasing. In fact, panel 6c (Richardson-
Lucy Method) shows that for this frequency, where the wavelength is comparable to the 
average inter-station distance and bias effects related to the spatial aliasing start to be 
significant, the f-k plot for the Original Matrix is affected by a higher level of noise. The 
velocity section extracted for the original f-k image presents two distinct peak, with the higher 
at a velocity of 120 ms-1 (panel 6c - Velocity Section). When the ARF contribution is 
removed, the level of noise in the f-k plot is considerably decreased (panel 5c - Richardson-
Lucy Method), while panel 6c (Velocity Section) shows that after the deconvolution, the peak 
with a velocity of 120 ms-1 has an amplitude halved with respect to its original value. On the 
other hand, the peak related to the higher phase velocity (180 ms-1) becomes sharper, has a 
smaller level of uncertainty due to its reduced width, and does not vary in amplitude. 
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Despite the well known higher resolution of the MLM over the BFM, the deconvolution for 
the ARF also improves the MLM analysis. Figure 7 shows the results obtained from applying 
the RLM regularization to the MLM f-k images for the same frequencies as the BFM analysis.  
Similarly to the previous analysis, we observe for the corrected f-k images a general reduction 
in the smearing that leads to a decrease in the uncertainty in the phase velocity estimation and 
to the increase of sharpness in the peak. Moreover, a considerable decrease in amplitude of 
the noisy peak is particularly important for the higher frequencies. In fact, the deconvolution 
for the ARF allows us to decrease the amplitude of the alias peak at a lower velocity (i.e. 
about 120 ms-1) (panel 7c - Velocity Section). Being comparable to the phase velocity values 
of the neighboring frequencies (showed in the following Figure 8), the peak at the higher 
velocity is considered the most reliable one.  
As shown in Figures 6 and 7, the capability to discriminate different sources of seismic noise 
is improved by removing the array response, which makes it also easier to discriminate and 
study the different phases in the wavefield.  
Finally, Figure 8 shows a comparison of the Rayleigh wave dispersion curves obtained for the 
BFM and MLM, with and without the deconvolution for the ARF, together with the relevant 
uncertainties. The main effects of the deconvolution are a general decrease in the level of 
uncertainty related to the peak width in the f-k plots. This is particularly evident in the low 
frequency range, i.e. from about 2 Hz to about 6 Hz. Moreover, in the case of the BFM, we 
also observe a slight decrease in the phase velocity estimates. Although for most of the 
frequency range analyzed the phase velocities are correctly estimated without correcting the f-
k PSDF for the ARF, we note that at high frequencies, the negative effects of the spatial 
aliasing, which hampers both the BFM and MLM curves over 10 Hz, are reduced and 
estimated phase velocity values are coherent with those of other frequencies. 
 
5.3 Array 2 
 
In the following we show the result for the frequencies 3 Hz and 10 Hz after having corrected 
for the array response using the RLM  
As shown in Figure 2, the sensor configuration of the second array is quite simple and regular 
compared with that of the first one. For this reason, the ARF for the second array is 
characterized by high secondary peaks along the two f-k plot axes. The general effect of such 
an array configuration is a higher level of blurring noise in the f-k plots for both the BFM and 
MLM (Figure 9) with respect to that of the first array.  
The deconvolution for the ARF shows once again the capability to considerably increase the 
signal-to-noise ratio of the f-k images (e.g. defined qualitatively as the ratio between the peak 
amplitude and the average background values), allowing a better selection of the high energy 
maxima, together with a lower level of uncertainty.  
Figure 9 presents the f-k images before and after the deconvolution for the ARF for both the 
BFM and MLM. Despite the important role of the deconvolution for the ARF, the 
improvements in the dispersion curve trends are in this case quite modest (Figure 10). In fact, 
even if the level of uncertainty decreases considerably, the phase velocity trend with the 
increase in frequency is still irregular both for the BFM and MLM. This means that the effect 
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of poor geometry is dominant with respect to the improvement that can be obtained by 
correcting the f-k PSDF for the ARF. 
 
 
6. Conclusions 
 
The frequency-wavenumber images computed for small-size arrays (radius of the order of a 
few tens of meters) are blurred by the array transfer function and corrupted by noise. In 
particular, the limited number of deployed stations typically available during seismic surveys 
produces significant spread in the transfer function, while both spatial aliasing effects and 
incoherent energy arrivals decrease the signal-to-noise ratio of the data, especially at higher 
frequencies. Analyzing experimental seismic noise data-sets recorded with 2D-arrays of 
sensors, we showed that the deconvolution of the array transfer function in the f-k analysis 
allows us to obtain several improvements when either the beam-forming or the maximum-
likelihood methods are used, although the de-blurring approach can also be applied to other f-
k analysis methods.  
The correction of f-k images by deconvolution with the ARF is an ill-posed problem that 
requires regularization. The performance of two well known regularization approaches (i.e. 
the Tikhonov and Richardson-Lucy methods) has been investigated considering two different 
array geometries. The results showed that the Richardson-Lucy method provides a better 
compromise between the resolution of the main features in the restored image and stability 
against amplification of error. In particular, the amplitude of the peak relevant to the plane 
wave propagating with the correct velocity through the array is weakly dependent on the 
regularization parameters and the solution preserves the positivity of the original f-k image, as 
expected from theory.  
 
The results obtained with an irregular configuration of stations (Array 1) indicate that 
removing the array response function improves the resolution of the f-k images. Moreover, it 
has been shown that the main advantage related to the peak shape improvement is a general 
reduction in the level of uncertainty associated with the phase velocity. Another aspect related 
to the improved shape of the maxima in the f-k plots is that after the deconvolution, they 
appear to be much better separated and more easily identifiable from the others. This will 
contribute to obtaining greater precision in wavefield and source distribution studies. 
Furthermore, in the case of the high frequency range, due to the wavelength and the array size 
characteristics, spatial aliasing effects cause a high level of noise in the f-k plots, hampering 
the analysis and leading user to select the incorrect f-k maxima, and therefore, wrong phase 
velocity values. However, we have showed that the deconvolution for the array response 
function can also be effective in these cases, allowing both the reduction of the noise and the 
selection of the correct f-k maxima and phase velocities.  
Finally, it must be noted that, as indicated from the analysis (Array 2), the deconvolution for 
the array response function is less effective in retrieving an accurate phase velocity dispersion 
curve for cases of unfavorable array geometries (i.e. f-k images computed for a more regular 

  14 



configuration of stations, as for example, the cases where the geometry is strongly constrained 
by the distribution of buildings). 
In conclusion, in analogy to the correction for the instrumental response of seismological data, 
we think that the correction of the array transfer function should become a standard procedure 
during the frequency-wavenumber analysis of seismic noise array data. For this purpose, we 
showed that the Richardson-Lucy method is an effective and robust tool for the de-blurring of 
f-k images from the array response function.  
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Figure Caption 
 
Figure 1: Location of the Tito test site.  
 
Figure 2: Top. 2D-array configurations (a) Array 1, b) Array 2). Bottom: 2D-array response 

functions (c) for Array 1, d) for Array 2).  
 
Figure 3: Comparison of different image deconvolution approaches. a) Input Matrix 

normalized to its maximum for the frequency 3.5 Hz. b) Velocity sections for the original 
matrix (black line), for different μ values (i.e. yellow line when equal to 1, orange line e 
when equal to 0.1, and red line when equal to 0.025) using the Tikhonov Regularization, 
TR, and for different m values (i.e. cyan line when equal to 5, light blue line when equal to 
10, and dark blue line when equal to 20) for the Richardson-Lucy Method, RLM. c) 
deconvolved matrix by Richardson-Lucy Method, RLM, for m equal to 10. d) Deconvolved 
matrix by Tikhonov Regularization, TR, for μ  equal to 1. e) Same as d), but for μ  equal to 
0.1. f) Same as d), but for μ  equal to 0.025. 

 
Figure 4: Same as Figure 3, but for 13 Hz. 
 
Figure 5: Comparison of different normalized f-k PSDF matrixes for the frequency of 13 Hz, 

and number of iterations when applying the RLM algorithm. The black arrows indicate the 
location of the main peak.  

 
Figure 6: Results of the f-k analysis for Array 1 data-set using the BFM. a) Panels for the 

frequency 3Hz. Original Matrix (panel a - left), Richardson-Lucy Method Matrix (panel a - 
middle), Velocity sections for the Input Matrix (red) and for the Deconvolved Matrix 
(green) (panel a – right). b) Same as a), but for frequency 5 Hz. c) Same as a), but for 
frequency 13 Hz. Yellow dots indicate the position of the maximum used to estimate the 
phase velocity. The yellow circle joins points with the same k value. 

 
Figure 7: Same as Figure 5, but using the MLM. 
 
Figure 8: a) BFM dispersion curves for Array 1 obtained by the selection of apparent phase 

velocity values from the Original Matrix (red line) and Deconvolved Matrix (black line), 
together with the estimated level of uncertainty (dotted lines). b) Same as a) but for the 
MLM. 

 
Figure 9: Same as Figure 5, but for Array 2. a) Frequency 3 Hz using BFM. b) Frequency 10 

Hz using BFM. c) Same as a), but using MLM. d) Same as b), but using MLM. 
 
Figure 10: Same as Figure 7, but for Array 2. 
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