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S U M M A R Y
In Italy, the Mercalli–Cancani–Sieberg (MCS) is the intensity scale in use to describe the level
of earthquake ground shaking, and its subsequent effects on communities and on the built
environment. This scale differs to some extent from the Mercalli Modified scale in use in other
countries and adopted as standard within the USGS-ShakeMap procedure to predict intensities
from observed instrumental data. We have assembled a new PGM/MCS-intensity data set from
the Italian database of macroseismic information, DBMI04, and the Italian accelerometric
database, ITACA. We have determined new regression relations between intensities and PGM
parameters (acceleration and velocity). Since both PGM parameters and intensities suffer of
consistent uncertainties we have used the orthogonal distance regression technique. The new
relations are

IMCS = 1.68 ± 0.22 + 2.58 ± 0.14 log PG A, σ = 0.35

and

IMCS = 5.11 ± 0.07 + 2.35 ± 0.09 log PGV, σ = 0.26.

Tests designed to assess the robustness of the estimated coefficients have shown that single-
line parametrizations for the regression are sufficient to model the data within the model
uncertainties. The relations have been inserted in the Italian implementation of the USGS-
ShakeMap to determine intensity maps from instrumental data and to determine PGM maps
from the sole intensity values. Comparisons carried out for earthquakes where both kinds of
data are available have shown the general effectiveness of the relations.

Key words: Earthquake ground motions; Seismicity and tectonics.

1 I N T RO D U C T I O N

The use of intensity scales is historically important because no in-
strumentation is necessary, and useful measurements on the level
of shaking can be made by an unequipped observer (e.g. Musson
2002). To some extent, the mid-years of the 20th century saw a
decline in interest of macroseismic investigations, since large im-
provements were made in instrumental monitoring. However, since
the mid-1970s there has been a resurgence in the subject since
macroseismic data are essential for revision of historical seismicity
and are of great importance in seismic hazard assessments. It follows
that macroseismic studies of modern earthquakes are still crucial
for (i) assessing the size of historical earthquakes; (ii) studying local
ground-motion attenuation and (iii) investigations of vulnerability,
seismic hazard and seismic risk.

Since the late 1990s, the software package ShakeMap (Wald et al.
1999b) which seeks to estimate rapidly (few minutes) the level of
ground shaking resulting from an earthquake has been proposed
and implemented in several parts of the world (e.g. USA, Canada,
Iceland, Italy and at local scales, for the city of Seattle). ShakeMap

is a seismologically based interpolation algorithm that combines ob-
served data and seismological knowledge to produce maps of peak
ground motion (PGM). The shaking is represented through maps
of peak ground acceleration (PGA), peak-ground velocity (PGV),
response spectral acceleration (SA), and ground-motion shaking in-
tensity. The ‘instrumental intensity’ values are derived from the con-
version of PGM into intensity values (e.g. Wald et al. 1999a). These
maps have become adopted worldwide to provide quantitative, first
order assessments of the level of shaking and of the extent of poten-
tial earthquake damage. In particular, intensities have been found
informative by non-expert audiences unfamiliar with instrumental
ground motion parameters. The intensity values are derived from
the ground-motion recorded values, using a correlation relationship.
For the USGS-ShakeMap standard distribution this calibration has
been performed using California earthquakes ground-motion data
and the Mercalli Modified (MM) intensity scale (e.g. Wald et al.
1999a).

In Italy, the software ShakeMap has been operational at the
‘Istituto Nazionale di Geofisica e Vulcanologia’ since 2006
(Michelini et al. 2008) and the intensity maps of peak ground
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motion shaking adopt the California relationship of Wald et al.
(1999a). In Italy, however, the analysis of historical seismicity
through the use of the macroseismic studies has a long tradition. The
Mercalli–Cancani–Sieberg (MCS) Scale (Sieberg 1930), is the scale
adopted in Italy. MCS combines an earlier ten-degree scale pro-
posed by Mercalli (1902), the evolution of this scale with additional
two-degree introduced for dealing with very strong earthquakes by
Cancani (1904) and the successive remodulation by Sieberg (1912).
To this regard, Musson et al. (2009) provide a thorough assessment
of the various scales and of their evolution through time.

There are two main reasons that have lead us to re-calibrate
the conversion scale between peak ground motion and the re-
ported MCS intensity data. The first follows from the fact that
the MM instrumental intensity adopted within the implementation
of ShakeMap (Michelini et al. 2008) can be misleading as the MCS
representation is customary in Italy. Consequently, differences be-
tween the two scales can cause confusion. The second follows from
the large number of macroseismic data available for past events in
Italy (i.e. Stucchi et al. 2007). These data have been also used to
generate scenarios for seismic hazard analysis.

The aim of this work is to develop a new correlation relation-
ship between recorded peak ground motions and reported MCS
intensities for Italy. The derived MCS instrumental intensity rela-
tion is intended to be introduced for the calculation of shakemaps
in Italy. To this regard, the intensity maps are the most viewed
output from non-specialist audience when consulting, for example,
the INGV ShakeMap portal (Michelini et al. 2008). For this rea-
son, it is important to maintain the same intensity scale between the
shakemaps and the other products that represent intensities through-
out the Italian territory (i.e. the Italian database of macroseismic
information, DBMI (Stucchi et al. 2007), and the ‘Did You Feel It’
maps (http://terremoto.rm.ingv.it/). In addition, access to a relation
that allows conversion between MCS intensities and PGM’s allows
for the calculation of PGM’s ground estimates for historical events
which can be of high relevance when attempting to reconstruct past
ground motion scenarios.

2 C O R R E L AT I O N B E T W E E N
I N T E N S I T I E S A N D P G M s

The problem of the correlation between the reported intensity and
the ground motion parameters has been debated at length in the
literature. Although it is largely accepted that there is a ‘relation’
between intensity and the logarithm of the peak ground motions,
either in PGA, or in PGV (e.g. Cancani 1904; Gutenberg & Richter
1942; Kawasumi 1951; Hershberger 1956; Ambraseys 1975;
Margottini et al. 1992; Wald et al. 1999a; Faccioli & Cauzzi 2006;
Gómez Capera et al. 2007, and see references therein), it has not
yet been proposed a physical relation capable to represent it, and
the empirical regressions proposed are mainly statistical. We also
note that, being the intensity scale based on observations and not
on instrumental values, there is no guarantee that a logarithmic re-
lation is effectively applicable. This has been long recognized by
several authors (e.g. Hershberger 1956; Ambraseys 1975) who rec-
ommended much caution in using these relations. Among all the
works available in literature, it seems that the principal differences
consist in the selection of the data base. Recently, a good overview
of this topic at the global scale, and for Italy in particular, has been
prepared by Gómez Capera et al. (2007).

In general, the relations are obtained at regional scales, with
the exception of the studies by Ambraseys (1975) who proposes

a single regression for Europe and the Middle East, and Decanini
et al. (1995) who adopt a unique regression for Italy, West USA
and South America. This implies that each work relies on its own
regional data base.

Apart from some exceptions [Theodulidis & Papazachos (1992),
that include soil classification for the Greek territory; Atkinson
& Kaka (2007) and Tselentis & Danciu (2008) that include mag-
nitude, epicentral distance and soil classification for Greece, and
Souriau (2006) that includes only the epicentral distance], all the
regressions adopt the same functional form—a linear regression
between intensity and the logarithm of the peak ground motion.
The foremost difference stays instead in the processing of the data.
In general, some works (mainly those of the U.S. researchers) use
the geometric mean value of the recorded ground motion for each
intensity class (e.g. Hershberger 1956; Trifunac & Brady 1975;
Murphy & O’Brien 1977; Wald et al. 1999a) while others, mainly
Italians (e.g. Chiaruttini & Siro 1981; Margottini et al. 1992; Fac-
cioli & Cauzzi 2006; Gómez Capera et al. 2007) have chosen not
to group the peak values for each intensity value. We note that by
using data grouped into intensity classes obviates the problems of
the large scatter of the peak ground motion data for each intensity
unit—for each intensity unit a single value of peak ground mo-
tion is determined (usually through the geometric mean and in the
Appendix, we address the role that different data pre-processing
have on the results). Furthermore, and with the notable exception
of Gómez Capera et al. (2007), all adopted regressions neglect
the errors of the independent variable, and this may be at the ori-
gin of some bias in the resulting regressions. Lastly, a factor that
makes difficult the comparison between the different regression,
and the determination of a general regression formula, follows
from the use of different macroseismic scales throughout the world
(i.e. the MM for USA, the MKS and MCS for Europe, and the JMA
for Japan).

Our analysis starts by considering the studies performed on
Italian data by Margottini et al. (1992), Faccioli & Cauzzi (2006)
and Gómez Capera et al. (2007). Margottini et al. (1992) obtained
first an empirical correlation between PGA and intensity for I >

5. The remaining two works used and modified the data base com-
piled earlier by Margottini et al. (1992). Faccioli & Cauzzi (2006)
developed a relation for intensity versus PGA and PGV using least-
squares fitting. Gómez Capera et al. (2007) used only PGA data and
adopted the orthogonal distance regression technique, ODR, (Fuller
1986; Boggs et al. 1988).

3 DATA

Intensity can be defined as a classification of the strength of shak-
ing at any place during an earthquake, in terms of its observed
effects on buildings and human beings. The fact that it is essen-
tially a classification, rather than a physical parameter, leads to
some special conditions on its use. Principal among these is its
being a discrete scale, and therefore caution is needed to corre-
late continuous (i.e. ground motion) and a discrete (i.e. intensity)
scales.

Margottini et al. (1992) are the first to provide a data base that
relates peak ground motions and MCS intensities for the entire Ital-
ian territory. [In fact, the earlier study by Chiaruttini & Siro (1981)
focussed only to earthquakes primarily in NE Italy and it is not
representative of the whole Italian territory]. In Margottini et al.
(1992), the intensities were directly assigned by the authors after
gathering the data of the strongest instrumental Italian earthquakes
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since 1980. The intensities were divided into ‘local’ and ‘general’.
While the former (i.e. local) refers to the damage of the buildings
located few hundreds of metres from the accelerograph station, the
latter classifications (i.e. general) are associated to the damage of the
town or village closest to the station. A total of 56 data points from
nine earthquakes constituted the final Margottini et al. (1992) data
base. A revision and integration of this data base was performed by
Faccioli & Cauzzi (2006) who considered only the points with ‘gen-
eral’ intensity, and integrated it with other non-Italian earthquakes,
for a total of 26 earthquakes and 75 data points. Although the cri-
terion adopted to associate instrumental and intensity data was not
specified by Faccioli & Cauzzi (2006) (i.e. distance between the
stations and the intensity points), this data base is the most recent
and complete currently available for intensities larger than I = IV –
V in Italy.

Recently, the results of the project ITACA—the Italian ac-
celerometric database—have been made available (Luzi et al.
2008). ITACA contains 2182 three component waveforms gener-
ated by 1004 earthquakes with a maximum magnitude of 6.9 (1980
Irpinia earthquake) covering the period range from 1972 to 2004.
The project aims to collect, homogenize and distribute the data
acquired over the time period 1972–2004 in Italy by different
Italian institutions, namely ‘Ente Nazionale per l’Energia Elettrica’
(ENEL, Italian electricity company), ‘Ente per le Nuove tecnologie,
l’Energia e l’Ambiente’ (ENEA, Italian energy and environment or-
ganization) and the ‘Dipartimento della Protezione Civile’ (DPC,
Italian Civil Protection) (see http://itaca.mi.ingv.it for additional
detail).

As previously noted, in Italy, there is a large and homogeneous
macroseismic intensity data base—the DBMI data base (Stucchi
et al. 2007)—available at http://emidius.mi.ingv.it/DBMI04/, with
a revised release 1900–2008 (i.e. DBMI08). This database is a
revised collection of all the macroseismic analysis done for the
Italian peninsula. It includes a total of almost 60 000 observations
from 12 000 earthquakes at more than 14 000 localities. Although
it is well known that local conditions can affect the amplitude (and
duration) of the wave field, we have made no attempt to subdivide
further the pair association according to the different recording sites
since the intensity values reported in DBMI04 represent already
average values. The reported intensities follow the MCS scale in
classes spaced by 0.5 intensity units (e.g. 4, 4.5, 5, . . .).

The possibility to access and cross-match these two sources of
data gave us the opportunity to assemble a new, homogeneous
database consisting of intensity and peak ground motion values
(see Table S1). To this purpose, we have extracted all the localities
reporting intensity data which are located within 3 km from the
accelerograph stations that recorded the data. This was performed
for all the events within ITACA.

Fig. 1 shows the spatial distribution of the selected events and the
location of the stations. 66 earthquakes in the time span 1972–2004
(3.9 ≤ Mw ≤ 6.9) and intensity MCS ≤ 8 have been analysed,
for a total of 266 pairs Intensity-PGM (see Table S1). Fig. 2
plots the distribution of the data versus the distance from the
epicentre to the station. Overall, the database is well distributed
although we note that there are few intensity data at closer dis-
tances for small intensity values (i.e. in the range 2 ≤ MCS ≤
3.5). This follows from the DBMI08 data being compiled for dam-
aging events (i.e. medium-large magnitude earthquakes produc-
ing macroseismic damage). Perhaps more importantly, the assem-
bled data set does not provide intensity-PGM pairs at intensity
levels larger than 8. Unfortunately, this is an inherent limitation
of the assembled data set and to some extent it prevents to con-

Figure 1. Map showing the location of the analysed events (red stars) and
of the stations (blue solid squares) used to assemble the intensity–PGM pair
data set.

strain tightly the largest intensity values in terms of observed PGM
values.

As mentioned in Section 2, there are two distinct procedures to
use the data in the regression. The first consists of binning the data
(BID hereafter) into classes at 0.5 intensity intervals and calculating
for each class the PGM mean and its standard deviation. The second
procedure does not involve any averaging and adopts the whole
data set although some robust statistics can be applied (e.g. remove
the tails of the data distribution) to remove the influence of the
outliers. In the following we adopt the geometric mean approach
(see also the Appendix). The geometric mean, μg, is calculated
as

μg = 1

n

n∑
1

log PG Mi , (1)

where n is the number of data points for each intensity class.
The use of the geometric mean is motivated by the PGM data

distribution about the arithmetic and logarithmic means as shown
in Fig. 3. The expected normal distribution curves are also shown
for reference purposes and it is evident that the deviations from the
arithmetic mean are not approximated by a normal distribution. For
both PGA and PGV the distributions about the arithmetic means
are skewed to the lower side of the mean value where the great
majority of the residuals fall. In contrast, the distributions computed
using the logarithmic mean agree well with the theoretical normal
distribution curve. To test the likelihood of the normal distribution
we have performed the 1-sample Kolmogorov–Smirnov test. We can
reject the null-hypothesis of a normal distribution for the PGA and
PGV with an α-value less than 1 per cent. Conversely, we cannot
reject the null-hypothesis for log PG A and log PGV with an α-
value equal to 95 per cent and 45 per cent, respectively. This all
indicates that the data appear to be nearly log-normally distributed
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MCS instrumental intensity 1141

Figure 2. Distance coverage of the assembled PGM–MCS intensity pairs data set.Top panel: MCS Intensity; middle panel: log PGA and bottom panel: log PGV.
The distance is calculated using the epicentral location of the events. Adoption of this distance for large events, rather than the fault distance, will introduce
some differences in the diagrams but it is inconsequential to the analysis carried out here.

Figure 3. PGM data distribution. Original data (bottom panel) and after application of the logarithm in base-10 (top panel). (PGA: left-hand panel and PGV:
right-hand panel). For each intensity bin, the data set is normalized to obtain standardized values, having zero mean and unit standard deviation. To the purpose
of reference, the expected normal distribution curves are also shown as thick solid lines.

and will be treated as such in the following analyses. Our results are
very similar to those presented by Murphy & O’Brien (1977).

For what concerns the standard deviation associated to the mea-
surements, a value of 0.5 for the intensity seems a conservative but
reasonable value. For the ground motion data, we use, for each class,

the sample geometrical standard deviation, σ g, defined as

σg = exp

⎡
⎣

√∑n
1(log PG Mi − μg)2

n

⎤
⎦ . (2)
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In summary, 12 pairs of intensity and PGM data are used to fit
using BID. The PGM values are calculated using the geometric mean
average. The intensity standard deviations have been set equal to the
conservative value of σ I = 0.5 while the corresponding PGM value
is determined from the geometric standard deviation (see eq. 2).

4 M E T H O D : O RT H O G O NA L D I S TA N C E
R E G R E S S I O N

The ordinary least-squares (OLS) fitting is the most commonly
applied criteria for fitting data to models and for estimating param-
eters of the models. The mathematical and statistical validity of this
method is based on the stringent, important constraint that the in-
dependent variable must be known to a much greater accuracy then
the dependent variable. It follows that this regression can never be
inverted, that is, the regression of y against x can not be inverted to
derive the regression of x against y.

The orthogonal distance regression (Fuller 1986; Boggs et al.
1988; Castellaro & Bormann 2007; Gómez Capera et al. 2007)
is a more appropriate technique in problems where dependent and
independent variables are both affected by uncertainty. ODR extends
least square data fitting to problems with independent variables that
are not know exactly (Boggs et al. 1988) and it can be used for
fitting linear and non-linear models. The data fitting problems arise
by considering a data set (xi, yi; i = 1, . . . , n) and a model that is
purported to explain the relationship of yi ∈ R1 versus xi ∈ Rm .
Assuming errors in both variables, with εi the error for the dependent
variable yi and δi that for the independent variable xi, the functional
to be satisfied is

yi = f (xi + δi ; β) − εi , (3)

where β ∈ Rp is the parameters vector, f () is a smooth function
that can be either linear or non-linear in xi and β.

While OLS resolves the parameters vector, βOLS, for which the
sum of the squares of the n vertical distances from the curve f (xi;
β) to the n data points is minimal, ODR minimizes the weighted
orthogonal distances from the curve. Thus, the parameter vector,
βODR, is found by minimizing the following problem

minβ,δ

n∑
i=1

[(
f (xi + δi ; β) − yi

)2

+δT
i D2

i δi

]
, (4)

where Di ∈ Rm×m(i = 1, . . . , n) is a set of positive diagonal
matrices that allow εi and δi to have different variance (Boggs
et al. 1987b, 1988). Problem (4) is non-linear even if f (xi;β) is
linear in both x and β, that is, the model is a straight line. When
eq. (3) is satisfied, and ε, δ1, . . . , δn are independent and normally
distributed, then eq. (4) results in the maximum likelihood estimator
of β (Britt & Luecke 1973; Boggs et al. 1988). In the simplest use
of ODR, it is assumed that each Di = d I where d is the ratio
of the standard deviation of the errors in the y and x data, that
is, d = σ ε/σ δ . In this work, we used the algorithm developed by
Boggs et al. (1987a)—a FORTRAN code wrapped within the SciPy
Python module (http://www.scipy.org).

5 A P P L I C AT I O N

We fit the data using a linear relation between the intensity (I) and
the logarithm in base 10 of the peak-ground motion, PGM (i.e. PGA
or PGV)

I = a + b log PG M. (5)

Use of the ODR technique allows also for the direct inversion be-
tween PGM and I so that the calculated coefficients can be used
to express PGM as function of I . This is a nice property of ODR
since it allows, using the same coefficients, for prompt conversion
between the sought variables.

5.1 PGA

We fit the data using ODR using both a single- and a double-line
parametrization. With the single-line regression, we have obtained
a = 1.68 ± 0.22 and b = 2.58 ± 0.14, with a standard deviation of
the regression line of σ singleline = 0.35.

The data, however, seem to show some different scaling between
low and high intensity values and, as in Wald et al. (1999a) (see also
Atkinson & Kaka 2007), the data set is subdivided into two parts—
intensities less than 5 and intensities greater or equal to 5. The
resulting coefficients from application of ODR using the double-
line regression are aI≥5.0 = −0.21 ± 1.12, bI≥5.0 = 3.54 ± 0.57 (7
data out of 12 belong to this group), and for the data with intensity
less than 5, the parameters are aI<5.0 = 2.02 ± 0.09, bI<5.0 = 2.02 ±
0.06. The standard deviation of the double-line fitting is σ doubleline =
0.28 (see Fig. 4a).

The decrease of the value of the standard deviation with the
double-line regression when compared to that of the single-line may
suggest it more appropriate a regression with two lines. However
the standard deviations associated to our estimates for the I ≥ 5.0
coefficients are quite large to indicate the indeterminacy that arises
when attempting to fit with a double-line the available data set.
This aspect will be analysed more thoroughly below using synthetic
tests.

5.2 PGV

The procedure described for PGA has been also applied to PGV.
The parameter for the single-line regression using our binned data
set are a = 5.11 ± 0.07 and b = 2.35 ± 0.09, with a standard
deviation of the model as σ singleline = 0.26.

The value of the coefficients of the double-line regression are
aI≥5.0 = 4.68 ± 0.22, bI≥5.0 = 2.93 ± 0.30, and for the data with
intensity <5.0, the parameters are aI<5.0 = 4.79 ± 0.01, bI<5.0 =
1.94 ± 0.10. The standard deviation of the model is σ doubleline =
0.26. The comparable values of the standard deviation between
single- and double-line ODR fitting and the relatively small values
of the uncertainties of the coefficients would suggest the former to
be adequate to fit the intensity-PGV data set (Fig. 4b).

5.3 Appraisal of the results

The results shown for PGA and PGV in the previous sections do
leave some ambiguities on which of the regression results should
be chosen.

First, we have verified whether our results depend on the values
of the standard deviation assigned to the PGM. To this regard, we
have repeated the analysis using the standard deviation of the mean
[i.e. σg/

√
n, in eq. 2] as uncertainty and found results in agreement

to those shown in Sections 5.1 and 5.2.
Secondly, studies similar to those presented here but carried out

on different data sets (e.g. Wald et al. 1999a; Atkinson & Kaka
2007) evidence an apparent change in slope at intensity 5 whereas
our data set does not seem to replicate clearly the same behavior
(see Fig. 4). The reason for this could be, however, attributed to the
differences of the MCS scale when compared to the MM (and other
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MCS instrumental intensity 1143

Figure 4. MCS Intensity versus PGM for BID (i.e. the PGM geometric mean binned data set). Data (black solid circles), data geometric mean (yellow
diamonds) and standard deviations (yellow error bars), single-line ODR (solid orange line) and double-line ODR (solid cyan line). The associated 1σ standard
deviations (dashed lines) are shown on each regression line. The diamonds and the error bars are slightly shifted for plotting purposes. Left-hand panel is for
PGA, right-hand panel for PGV.

scales) in the range of intensities between 5 and 7 (e.g. Margottini
et al. 1992) or, more simply, to lack of resolving power of the data
set employed. To test this latter hypothesis, we have used synthetic
data sets generated to replicate the statistical features (and range of
values) of the observed data set. We restrict the analysis to PGA
although analogous conclusions can be drawn from PGV.

In practice, we have generated two log-normal distributed, data
sets consisting of PGA-Intensity pairs for a single- and a double-
line data distribution. The data sets consist of 500 PGA-Intensity
pairs for each intensity level class. A conservative value of 0.5
has been assigned to the standard deviation of the intensity values.
The classes range between 1 and 10 at 0.5 interclass intervals. The
true values of the coefficients for the single-line in eq. (5) are a =
1.82 and b = 2.40. The double-line data set was generated using
the following values for the coefficients in eq. (5) aI≥5.0 = 0.214,
bI≥5.0 = 3.54 and aI<5.0 = 2.024, bI<5.0 = 2.023. These values are
all comparable to those of the observed data. We refer to these data
sets including all the values (i.e. 18 class values times 500 PGA
points each) as the ‘whole’ data set.

We first test the accuracy of the coefficient estimates using the
‘whole’ data set; we have generated 1000 synthetic data sets using
the coefficient values above and the purpose is to investigate the
robustness of the parameters estimates using the BID data process-
ing. The results show the coefficient estimates to be accurate and
tightly distributed (see Fig. 5 as example for the single-line esti-
mates of the intercept and slope coefficients). In practice the results
obtained with the ‘whole’ data set indicate that with a large data set
featuring the same statistical properties of our data set it would be
possible to estimate accurately the parameter vector in both single-
and double-line parametrization.

Our goal is, however, to verify the robustness of the estimates
obtained with the observed data. Therefore, we repeat the analysis
using different sampling of the single- and double-line synthetic
data sets. Each sampled subset matches, in terms of number of data
points drawn for each intensity level, that of the observed data set.
We refer to these (re)sampled data sets (i.e. 266 PGA-intensity data
points each) as the ‘sampled’ data set.

In Fig. 6, we present an example, for one of the data sets, of the
BID set regressions for both the single- and the double-line data

sets. The BID set has been determined for both the ‘whole’ data
set and for one of the ‘sampled’ data sets drawn from the selected
‘whole’ synthetic data set. As anticipated, we see that the determined
regression lines for the ‘whole’ data set match very closely those
used to construct the synthetic PGA-Intensity pairs. In contrast, this
is not the case when fitting the data for one of the ‘sampled’ cases
(see Fig. 6).

To test the accuracy of our estimates obtained with the observed
data, we need to construct enough replications of the ‘sampled’
synthetic data set to then compute some adequate statistics. To this
end the sampling was repeated for 1000 times on one of the ‘whole’
data sets above. To provide a better perception of the uncertainties
associated to the coefficient estimates, we present the results of the
investigation using cumulative distributions.

In Fig. 7, we show the distribution of the single- and double-
line slope regression coefficient of the ‘sampled’, BID processed,
data set. We note that the true values do match closely the median
value of the cumulative distribution. However, there is a remarkable
difference for the distribution of the b value of eq. (5) for the
single- and the double-line fits. The single-line distribution is very
tight around the median value (i.e. the 80 per cent of the sampled
outcomes lies in the range 2.38–2.42) whereas the slope coefficients
of the double-line regressions display a much larger scatter. This is
particularly apparent for the I > 5 line which relies on a very small
number of data points at the higher intensity values (Fig. 7b) and
the 80 per cent of the estimates falls in the broad range 2.2–5.0,
approximately.

Our final step has been to investigate the distribution of the single-
and double-line model standard deviations. We want to assess the
significance of the relatively small value of the standard devia-
tion found when fitting the intensity values using the double-line
parametrization to the observed data (i.e. σ doubleline = 0.28 ) when
compared to that of the single-line (i.e. σ singleline = 0.35). An uncrit-
ical examination of these data may in fact lead to the conclusion that
the observed smaller values of the double-line regression are sig-
nificant. To this purpose, we have determined the mean average of
the synthetic standard deviations from the ‘sampled’ data sets. The
results are summarized in Table 1. We see first that the mean stan-
dard deviation from the ‘sampled’ single-line synthetic data sets,
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Figure 5. Synthetic test addressing the robustness of the whole data set. Cumulative distribution of the ODR regression on 1000 whole data sets for the
single-line case. The true values of 1.82 and 2.40 for the a and b coefficients are shown as vertical, thick solid lines. The figure shows the results for PGA but
similar results are found also for PGV.

Figure 6. Regression results for the synthetic data. The ‘whole’ data set includes 500 PGA points at each intensity level. Double-line synthetic data set (a) and
single-line synthetic data set (b). The ‘sampled’ data (grey solid diamonds) indicate an instance of synthetic data sampling replicating that of the observed data
(i.e. 266 PGM-MCS pairs). The solid black circles indicate the true values determined from the adopted regression lines. See legend for detail on the symbols
and line coding used.

fitted through a single-line, does not differ from that obtained from
the ‘sample’ double-line synthetic data fitted also through a single-
line (see second column in Table 1). The values obtained from the
synthetic tests are very similar to those found from the observed
data. Similarly, the mean standard deviations obtained from fitting,
through a double-line, the single- and the double-line ‘sampled’
synthetic data sets also display very similar values (≈0.4; see third
column in Table 1). In this latter case, however, the values obtained
from the synthetic analysis differ to some extent from the observed
value although the latter still lies within the ±σ .

In conclusion, we do not feel of significance that the observed
standard deviation is lower when using the double-line parametriza-
tion (see Fig. 7b) and our data set does not allow to discriminate

between single- and double-line regression parametrization. Since
this all follows also from the limited resolving power of the data
set used, it seems that inclusion of additional degrees of freedom in
the regression (e.g. epicentral distance or magnitude) would most
likely increase the indeterminacy of the analysis.

5.4 Discussion

In Fig. 8(a) we summarize the results for PGA obtained in Sec-
tion 5.1 using the regression

IMCS = 1.68 + 2.58 log PG A (6)
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Figure 7. Synthetic tests. (a) cumulative distributions showing the distribution of the single-line regression slope coefficient. The thick dashed line marks the
true value. (b) same as the top panel but for the double-line regression. In grey, the cumulative distribution of the slope coefficients of the data set for I < 5.0;
the black thick dashed line marks the true value; in light blue the same kind of distribution but for the data set with I ≥ 5.0; the dark blue thick dashed line
marks the true value.

Table 1. ODR standard deviation values.

Data type observed Single-line proc. Double-line proc.
σ sl = 0.35 σ dl = 0.28

Synthetic: single line σ̄sl = 0.38 ± 0.13 σ̄dl = 0.39 ± 0.16
Synthetic: double line σ̄sl = 0.36 ± 0.16 σ̄dl = 0.41 ± 0.19

(σ a = 0.22 and σ b = 0.14) together with the regressions obtained
by Margottini et al. (1992), Faccioli & Cauzzi (2006) and Gómez
Capera et al. (2007) for Italy, and the regression of Wald et al.
(1999a) currently in use in the generation of maps of shaking in
Italy (Michelini et al. 2008). The uncertainties expressed as ±σ

bounds associated to each regression are also shown. Similarly, in
Fig. 8(b) we also present the results for PGV and we compare the
results of the determined single-line regression (with the ±σ bound)
with those of Faccioli & Cauzzi (2006) and Wald et al. (1999a).

In general and in the range of values I PGA ≥ 5, we find that our re-
gression line features a slope coefficient intermediate between that
found by Faccioli & Cauzzi (2006) (i.e. smaller value) and those
obtained by Margottini et al. (1992) and Gómez Capera et al. (2007)
(i.e. larger values). Specifically, at intensities between 5 and 6, the
regression line determined in this study matches closely the results
of Faccioli & Cauzzi (2006) and at intensities between 7 and 8, our
regression predicts PGA values (and viceversa) consistent to those

Figure 8. Comparison between the intensity versus PGM regressions obtained using the BID set and the ODR technique. PGA and PGV in (a) and (b) panels,
respectively. For comparison, the recently published regressions of Gómez Capera et al. (2007), Faccioli & Cauzzi (2006), Margottini et al. (1992) and Wald
et al. (1999a) are also shown (see legend).

C© 2010 The Authors, GJI, 180, 1138–1152

Journal compilation C© 2010 RAS



1146 L. Faenza and A. Michelini

of Gómez Capera et al. (2007). For I PGA ≥ 7.5, our regression pre-
dicts PGA values intermediate between those of Faccioli & Cauzzi
(2006), that seem to overestimate the values of PGA at larger inten-
sities, and those of Margottini et al. (1992) that, conversely, seem to
overestimate the level of intensity at relatively smaller PGAs. The
observed differences can be accounted by the different data sets
used, the range of intensity values, the criteria adopted to pair the
intensity values with the recorded ground motion and by the regres-
sion technique adopted. For example, Faccioli & Cauzzi (2006) do
not describe the criteria used and do not comment on the different
and inhomogeneous intensity scales grouped together—MCS and
MM—in their data set. Furthermore, in this study we adopt a dif-
ferent regression technique, which takes into account explicitly the
uncertainties in both dependent and independent variables, and that
we do bin the data whereas Faccioli & Cauzzi (2006) do not.

The considerations made for PGA are in part applicable to PGV.
As for the single-line PGA fit, we find that the regression

IMCS = 5.11 + 2.35 log PGV (7)

(σ a = 0.07 and σ b = 0.09) displays a slope coefficient larger than
that of Faccioli & Cauzzi (2006). Thus, while both our regres-
sion and that of Faccioli & Cauzzi (2006) feature a very similar
I PGV–PGV pair values at I PGV ≈ 5, they do differ progressively at
increasing intensities (or PGV). This results in almost one intensity
unity difference at PGV ≈ 101.5 cm s−1, that is, I PGV ≈ 8 and
I PGV ≈ 9, for Faccioli & Cauzzi (2006) and this study, respectively.
When our regression is compared to that proposed by Wald et al.
(1999a) for the MM scale, we find that the two regressions differ
between one and two intensity units up to PGV ≈ 101.5 cm s−1.
The maximum difference occurs at PGV = 100.75 cm s−1. These
differences can originate significant differences in the values of the
instrumentally derived intensities when compared to those obtained,
for example, from the ‘Did You Feel It’ questionnaire (e.g. ‘hai sen-
tito il terremoto’, http://www.haisentitoilterremoto.it/) or from more
thorough macroseismic post-earthquake investigations.

Finally, in the range of values I PGA<5 and I PGV<5 it is not possible
to compare the obtained regressions because both Faccioli & Cauzzi
(2006) and Gómez Capera et al. (2007) confined their analysis to
intensities larger than 5.

6 A P P L I C AT I O N T O S H A K E M A P

One of the main goals that motivated this study was the determi-
nation of a reliable, instrumentally derived, MCS intensity scale
which can be adopted in the USGS-ShakeMap procedure (Wald
et al. 1999b) for the Italian territory (Michelini et al. 2008) to pro-
vide rapid MCS intensity maps following M > 3 earthquakes. In
addition, correct calibration of the intensity conversion gives the
opportunity to generate maps of PGM parameters (PGA and PGV)
exploiting the very large intensity database for past earthquakes
available in Italy (Stucchi et al. 2007). This reverse approach is
important when attempts are made to provide first-order estimates
of the ground shaking of historical earthquakes without relying
on sophisticated and costly waveform modeling techniques, or the
creation of earthquake scenarios that use just peak ground motion
attenuation relations without any constraint provided by observed
data.

In defining the conversion we have followed Wald et al. (1999b);
we first compute the instrumental intensity adopting the PGA re-
gression and if the instrumental intensity is larger than six, we adopt
the instrumentally derived intensity from PGV. This choice follows
from the observation that near-source strong ground-motions are

often dominated by short-duration, pulse-like peaks and therefore
PGV appears to be a more robust measure of intensity for strong
shaking (Wald et al. 1999b, 2006).

To show the validity of the regressions determined in this study,
we have applied eqs (6) and (7) to the data of all the earthquakes
with at least 4 instrumental records used in this study. For each
earthquake, the shakemaps that adopt the observed PGM data are
compared to those obtained after conversion from I MCS to PGM.
In the S2 online supplement (see Supporting Information section),
we provide all the shakemaps expressed both in terms of MCS
intensity and of PGA and PGV for the 25 earthquakes selected.
In the following, we show two significant examples (M4.6 and
M6.4 in Molise and Friuli, respectively) drawn form the calculated
shakemaps that are explicative of the results of our study. These two
earthquakes have been chosen to show application to earthquakes
representative of the seismicity occurring in Italy. In fact, about ten
M4+ earthquakes occur annually and are widely felt although they
generally induce only much awareness without causing damage;
M6+ earthquakes take place only a few per century but result in
extensive damage and large number of fatalities.

In Fig. 9 top panels, we show the intensity shakemap for the M4.6,
2002 November 12, Molise event. We see a remarkable similarity
between the strong motion data and the intensity derived maps of
MCS intensity. The only notable difference between the two maps
lies in the level of local resolution that depends on the number
of observations. The standard shakemap that relies on PGM data
alone has been determined using many fewer data (yellow triangles
in the left panel of Fig. 9) and this results in a much smoothed
local shaking distribution when compared to that obtained using
the much larger number of intensity data (yellow triangles in the
right-hand panel of Fig. 9). In Fig. 9 (middle and lower panels),
we compare the PGM data shakemaps with those obtained after
converting the MCS intensities into PGM using the relations of this
study. Again, we note a remarkable similarity in the PGA and PGV
shakemaps obtained directly from the data and from the intensity
to PGM conversion. This result corroborates that the regressions
found in this study can be adopted to provide first order, maps of
peak ground motion although in these examples the level of local
resolution is hampered by the paucity of observations when using
the PGM data in the standard ShakeMap manner.

In Fig. 10, we show the results obtained for the May, 6, 1976
Friuli main shock. This earthquake caused very extensive damage
and nearly one thousand fatalities. The PGM and intensity derived
shakemaps (Fig. 10 – top panel) are similar although there seems to
be some slight overestimation of intensities with the PGM data de-
rived intensity; in terms of PGA the two maps are remarkably similar
whereas in terms of PGV the instrumental, data derived shakemap
has PGV values somewhat larger than that inferred using the rela-
tionships of this study. Nevertheless we feel that, to first order, the
PGV shakemap obtained from the MCS intensities does provide,
within the limitations imposed by a relationship calibrated using
earthquakes throughout all Italy, a rather faithful representation of
the level of shaking experienced in the area. These conclusions are
confirmed by the maps shown in S2, which shows an overall agree-
ment between the Intensity, PGA, and PGV maps based either on
instrumental records or on macroseismic data.

Finally and in order to summarize concisely the differences be-
tween the shakemaps determined using recorded data and those de-
rived from the macroseismic surveys using the relations found here,
we have calculated the per cent differences for all the shakemaps
shown in S2 and in Figs 9 and 10. The points used to determine the
differences include the phantom grid points of USGS-ShakeMap
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Figure 9. Shakemap of the ML = 4.6, 2002 November 12, earthquake in the Molise area in Southern Italy. We have applied the site conditions derived from the
geological VS30 and the regionalized Italian ground motions equation (see Michelini et al. 2008), with standard deviation σ PGA = 1.698 and σ PGV = 1.940.
Top panel: shakemaps expressed in terms of MCS Intensity; Middle panel: shakemaps expressed in terms of PGA (in per cent g); Bottom panel: shakemaps
expressed in terms of PGV (in cm s−1). PGM and MCS intensity derived shakemaps are shown in the left- and right-hand columns, respectively. The yellow
triangles are the stations (left-hand panels) and intensity site (right-hand panels) used as input in the analysis.
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Figure 10. Shakemap of the ML = 6.4, 1976 May 6, Friuli main shock in Northern Italy. We have applied the site conditions derived from the geological
VS30 and the Akkar and Bommer PGM relations, see Michelini et al. (2008), with standard deviation σ PGA = 1.779 and σ PGV = 1.862. (Same format as
Fig. 9).
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Figure 11. Comparison between MCS intensity, PGA and PGV values determined from instrumental (inst) data and from macroseismic (macro) surveys
(e.g. (PG Ainst − PG Amacro)/PG Amacro × 100) using cumulative distributions. More than 250 000 data points are used in each graph. Mean, standard deviation
and median values are (4.63, 16.54, 2.97) for intensity, (3.37, 40.21, −2.49) for PGA, and (12.59, 39.17, 8.39) for PGV.

(e.g. Wald et al. 1999b; Michelini et al. 2008) within a radius of
140 km from the epicentre for a total of more than 250 000 ge-
ographical points. Fig. 11 shows the residuals for intensity, PGA
and PGV. The three cumulative distributions show that the per cent
differences for all three parameters are centred around zero. In par-
ticular, we find that 90 per cent of the intensity values are comprised
within ±30 per cent. For PGA and PGV, we find that 80 and 70 per
cent of the values, respectively, lie within ±50 per cent differences.

Finally, we have verified whether a correlation of the residuals
with distance and magnitude occurs in our analysis. To this end, we
have determined 2-D histogram of the residual distribution as func-
tion of magnitude and epicentral distance for all the data available.
The results shown in Fig. 12 do not seem to support the existence
of such dependencies although we cannot exclude them given the
scatter of the data used in the analysis.

7 C O N C LU S I O N S

In this study, we have performed regression analysis between MCS
intensities and instrumentally recorded peak ground motion data
expressed in terms of PGA and PGV. The data set has been as-
sembled for earthquakes that have occurred in Italy in the time
period 1972–2004. The work has been driven by the need to rep-
resent intensities using the MCS scale within the implementation
of ShakeMap for the Italian territory. This should insure improved
interconsistency between the rapid shakemaps obtained from ap-
plication of the USGS-ShakeMap procedure (Wald et al. 1999b;
Michelini et al. 2008) using observed PGM data, and the character-

izations of ground motion shaking that rely on either ‘Did You Feel
It’ analysis (http://www.haisentitoilterremoto.it/) and/or macroseis-
mic data in general (Stucchi et al. 2007).

Because both the intensity and the PGM data are affected by
inherent uncertainties, we have adopted the ODR technique which
explicitly takes into account the uncertainties in dependent and
independent variables. In order to apply the technique, we have
chosen to bin the data using the geometric mean. This is motivated
by the PGM data conforming to a log-normal distribution.

The data set used in the analysis has been assembled from two
thoroughly verified data sources—the database of the Italian strong
motion recordings, ITACA (Luzi et al. 2008) and the Macroseismic
Database of Italy 2004 (Stucchi et al. 2007). Compilation of the
data set resulted in 266 PGM-I MCS data pairs, which are two to
three times larger than those analysed in previous similar studies
for Italy.

The results show that with the data available a single-line regres-
sion is sufficient to fit the data without introducing two regression
lines, that is, for low and high intensities (or PGM), respectively.
Adoption of the single- rather than the double-line parametrization
has been explored thoroughly using synthetic tests for data distri-
butions replicating the observed data.

Finally, we have tested the determined relations by inserting
them in the USGS-ShakeMap procedure currently in use at INGV
(Michelini et al. 2008) to find (i) the instrumentally derived MCS
intensity maps do match closely the reported macroseismic data and
maps and (ii) the regression relations can be used to predict PGM
maps which we have found to be generally consistent with those
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Figure 12. Analysis of the dependencies of the per cent residual intensities (cf Fig. 11) versus epicentral distance (top panel) and magnitude (bottom panel).
The panels show that no significant trend of the residuals against magnitude and distance occur for our data set.

Figure 13. Regression tests: small black dots are the synthetic whole data set; black diamonds are the mean values for each class of the discrete variables;
black solid line is the true regression—the bisector; orange dashed line is the least-squares regression without errors in the variables; green dash–dotted line
is the ODR regression with much smaller errors in the continuous variables than in the discrete one (ODRcase1); red solid line is the ODR line with much
smaller errors in the discrete variables then in the continuous one (ODRcase2). Left-hand panels (a,c) show the results of the analysis when no data binning is
applied (i.e. whole data set). Conversely, data binning is applied on the right-hand side panels (b and d). In the context of the work (a) replicates the case of
the regression of I = f (PG M) without binning; (b) replicates the case of the regression of I = f (PG M) using the binned data set; (c) replicates the case of
the regression of PG M = f (I ) without binning; (d) replicates the case of the regression of PG M = f (I ) using the binned data set. The green error bar (b
and d) is relative to ODRcase1 while the red one to ODRcase2. The small differences observed between the regression lines and the bisector used to generate the
synthetic data set are to be attributed to the manner the data of the discrete variable have been constrained to the hard upper- and lower-bounds.
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from observed instrumental data. The residuals analysis made on
the shakemaps shown in this work appear to prove the consistency
of our regression equations, both for intensity versus PGM, and
PGM versus intensity. In addition, we have verified that the found
regressions do not depend on either magnitude or distance.

Overall, we find that the results obtained from application of
the regressions determined in this study do provide an improved
representation of the level of ground shaking in terms of the adopted
MCS intensity scale in Italy or, alternatively, the regressions can be
used to predict realistic ground motions from intensity data alone.
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A P P E N D I X

In this Appendix, we present some issues that should be taken
into account when analysing data sets composed of data defined
at discrete intervals. In the following, we cannot deal exhaustively
the topic of regression strategies regarding continuous and discrete
variables but we rather focus on some features that we have found of
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great interest when performing the analysis object of this work. In
particular, we have found of importance (i) the need for a biunique
regression (i.e. correspondence between the two sets of data is
one-to-one along both directions); (ii) the specific definition of the
uncertainties for both variables and (iii) the data binning before
processing the data.

We start by discussing the least-squares technique. In general,
regression analyses are widely used in research since they are used
to explain a given variable (the dependent variable, y) in terms
of a combination (linear or not) of a given explanatorily variable
(the independent variable, x). If y and x are inter-related, a model
relationship can be used to predict the dependent variable given the
independent one. Application of the least-squares, LS, method for
a simple linear regression model, where ‘simple’ indicates here that
there is only one independent variable, and ‘linear’ indicates that
the model consists of a straight line, is based on four conditions
(Dowdy & Wearden 1991).

(i) The x values have negligible errors.
(ii) For each x value there is a normal distribution of y values—

this assumption is necessary for inference.
(iii) The distribution of y for each x has the same variance, that

means that the variance around the trend line is the same irrespective
to the value of x.

(iv) The expected values of y for each x lie on a straight line.

From the first point, it is obvious that this regression technique
is not biunique, unless we suppose that our variables have both
negligible errors, which is not the case. This constraint suggests the
use of a different regression method—the ODR—which allows for
the inclusion of errors in the variables along both axes making the
analysis more realistic, and biunique.

Some statistics books (e.g. Dowdy & Wearden 1991), define
the analysis where both variables are affected by uncertainties as
correlation rather than regression models. The characteristics of a
correlation model are:

(i) Both x and y contain sampling variability.
(ii) For each value of x there is a normal distribution of y, and

for each value of y there is a normal distribution of x.
(iii) The x distributions have the same variance; the y distribu-

tions have the same variance.
(iv) The joint distribution of x and y is the bivariate normal

distribution.

The ODR fits fully these requirements.
The last point we need to discuss regards the importance of data

binning before carrying out the regression analysis. We note that in
the literature it cannot be found a general agreement on a standard
methodology to apply to a given data set before regression. For
example, some authors discourage the binning since it causes loss
of information (e.g. Zar 1999) whereas others encourage its use
(e.g. Jorgensen 1997).

To test these different perspectives on the matter, we have per-
formed a numerical experiment adopting an ideal synthetic data
set featuring the same characteristics of our intensity-PGM data set
(i.e. with one discrete variable and one continuous) but consisting
of many more data points.

The data set belongs to a 2-D normal distribution, with mean
values centred at the bisector and σ = 1 uncertainties for both
variables (Fig. 13). For each value of the discrete variable 1000
pairs are generated, for a total of 18 000 pairs. For the discrete
variable, hard bounds were set at the upper- and lower-most values
of 2 and 10, respectively.

The test consists of applying three different regression models to
the whole and the binned data sets. The regressions applied are the
LS without uncertainties in both variables (orange dashed line in
Fig. 13), the ODR technique with much smaller uncertainties for the
continuous variable than in the discrete one (green dash–dotted line
in Fig. 13; hereinafter ODRcase1), and, lastly, the ODR with much
smaller uncertainties in the discrete variable than in the continuous
one (red solid line in Fig. 13; hereinafter ODRcase2). As anticipated,
the aim of this numerical experiment is to verity (i) the applicability
of LS in our analysis; (ii) the role of the uncertainties linked to both
variables in the ODR technique; (iii) the robustness and accuracy
of the results depending on binning (or not-binning) the data set.

When the three methods of analysis are applied to the binned data
set, we have found that all provide proper fits to the data regardless
of the choice of the independent variable (Figs 13b and d). Whereas
ODRcase1 and ODRcase2 regressions are biunique, indicating that the
line in Fig. 13(b) is the inverse of Fig. 13(d), LS is not.

The results change when the whole data set (i.e. without binning)
is used for the regressions. When the continuous variable is used
as independent, the LS regression method introduces some bias on
both slope and intercept (see the orange dashed line in Fig. 13a).
Conversely, the fit does not show any bias when the discrete vari-
able is used as the independent one (see the orange dashed line in
Fig. 13c). This result is not surprising since the LS regression min-
imizes the vertical distance. As remarked earlier, the LS regression
is not biunique.

Similarly, we have found that caution must be paid in the assign-
ment of the uncertainty to the variables when the ODR is applied to
the whole data set. Only the ODRcase2 provides correct fits regard-
less of the choice of the independent variable (red lines in Figs 13a
and c), whereas the ODRcase1 analysis introduces some bias (green
dash lines in Figs 13a and c).

In summary and recalling the constraints posed by our analysis
(i.e. a biunique regression), and by our data set (i.e. a mix of con-
tinuous and discrete variables) the results of this test would indicate
that the preferential procedure to be adopted consists of using the
binned data set and the ODR regression approach.

S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this article:

Table S1. Data set used for determining the regressions. The sup-
plement table is provided in both pdf and comma separated value
csv formats.
Table S2. Shakemaps for the 25 events analysed. Site conditions
have been derived from the geological VS30 and the regionalized
Italian ground motions equation (see Michelini et al. 2008). For
each event, the shakemaps are expressed in terms of MCS Intensity
(top), PGA (middle) and PGV (bottom). PGM and MCS intensity
data derived shakemaps are shown in the left and right columns, re-
spectively. The yellow triangles represent the strong motion stations
(left panels) and the intensity sites (right panels) used as input for
the analysis.

Please note: Wiley-Blackwell are not responsible for the content or
functionality of any supporting materials supplied by the authors.
Any queries (other than missing material) should be directed to the
corresponding author for the article.
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