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Abstract 

A crucial point in the analysis of tectonic earthquakes occurring in a 

volcanic area is the inference of the orientation of the structures along which 

the ruptures occur. These structures represent zones of weakness which 

could favor the migration of melt toward the surface and the assessment of 

their geometry is a fundamental step toward efficient evaluation of volcanic 

risk. We analyzed a high-quality dataset of 171 low-magnitude, tectonic 

earthquakes occurred at Mt. Etna during the 2002-2003 eruption. We 

applied a recently developed technique aimed at inferring the source 

parameters (source size, dip and strike fault) and the intrinsic quality factor 

Qp of P waves from the inversion of rise times. The technique is based on 

numerically calibrated relationships among the rise time of first P waves and 

the source parameters for a circular crack rupturing at a constant velocity. 

For the most of the events the directivity source effect did not allow us to 

constrain the fault plane orientation. For a subset of 45 events with well 

constrained focal mechanisms we were able to constrain the “true” fault 

plane orientation. The level of resolution of the fault planes was assessed 

through a non linear analysis based on the random deviates technique. The 

significance of the retrieved fault plane solutions and the fit of the assumed 

source model to data was assessed through a χ-square test. Most of the 

retrieved fault plane solutions agree with the geometrical trend of known 

surface faults. The inferred source parameters and Qp are in agreement with 

the results of previous studies.  

key words: rise time; circular crack model; nonlinear inversion; directivity 
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Introduction 

The knowledge of the focal mechanism of an earthquake is a fundamental step for 

understanding  geometry and dynamics of the seismogenic fault. Its determination is 

usually performed from the inversion of P-wave polarity (Reasenberg and Oppenheimer, 

1985). Once the fault mechanism is computed, the next problem is deciding which of the 

two nodal planes corresponds to the true fault plane, except when the fault has clear 

surface morphological evidence which are confirmed by the hypocenter distribution at 

depth. 

Several studies (Mori, 1996;  de Lorenzo and Zollo, 2003; Filippucci et al., 2006; Warren 

and Shearer, 2006 among the others) have shown that the fault plane orientation of an 

earthquake can be inferred by modelling the directivity effect of the seismic source, i.e. the 

variation of the pulse widths of first P and/or S waves as a function of the angle between 

the normal to the fault plane and the seismic ray. However, the possibility to assess the 

“true” fault plane is strongly dependent on several factors such as the number of available 

data, the exploration of the range of takeoff angles, the error on the data and the ability of 

the theoretical source model to predict the data. Moreover, the equations governing the rise 

time variations with varying the model parameters are non linear. Therefore a statistical 

approach aimed at determining how data errors map onto the model parameter space is 

needed in order to assess the reliability of the results. 

In this article, we present the results of a study aimed at inferring the fault plane orientation 

of events with well constrained focal mechanisms (Barberi et al., 2006) occurred at Mt. 

Etna during the 2002-2003 eruption. We used a recently developed pulse width technique 

(Filippucci et al., 2006) The source parameters of the events and the average intrinsic Qp 

are also provided and compared with results of previous studies.  
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Tectonic setting 

At Mt. Etna, signs of active tectonic processes are mainly recognised on the eastern flank 

of the volcano, as it is well demonstrated by the Timpe fault zone (Fig.1), which is 

characterized by both  frequent shallow seismic activity and localized aseismic creep. The 

Timpe fault zone represents the northernmost prolongation of the NNW-SSE trending 

Malta Escarpment and is characterized by several individual faults with the same general 

strike of the escarpment. These fault segments are roughly parallel and of considerable 

length (8-10 km) with vertical offset (up to 200 m) that down-throw toward the sea.  

It is worth noting that, while the Timpe faults mainly dominate the southern part of the 

eastern flank of Mt. Etna, other seismogenic structures, with predominantly ca. NE-SW 

Messina fault zone affinity, are recognisable in the northern part of the volcanic edifice 

(e.g., Lanzafame et al., 1996; and Azzaro, 1999). In fact, to the north the NNW-SSE fault 

system is interrupted by the E-W Pernicana fault, which cuts a large part of the volcanic 

edifice, and by the NE-SW Ripe della Naca system (Fig.1). 

It is noteworthy that both the NNW-SSE and NE-SW structural trends are largely 

comparable to the main directions of the volcanic activity and the eruptive fractures on the 

upper flank of the volcano.  

By a new detailed re-examination of historical sources and recent surface ruptures at Mt. 

Etna, Azzaro (1999) indicated that the kinematics of the two main seismogenic structures 

reported above  is essentially associated with ruptures at shallow and very-shallow depth  

(h < 1 km). Moreover, the author suggested that the movements are consistent with a 

general ca. E-W extension expected in the sea-facing sector of the volcano, as also 

confirmed by fault plane solutions. Conversely, deeper earthquakes (hypocenter depths 

between 10 and 30 km) prevail in the western side under N-S oriented compressive 
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stresses, as suggested by several authors (e.g., Bonaccorso et al., 1996; Cocina et al., 1997; 

Patanè and Privitera, 2001). 

The NNW-SSE trending structures are mainly characterised by quasi-pure normal dip-slip 

movements, with, therefore, a relevant extensional component. The NW-SE-trending 

structures, widely present in the eastern flank, show normal dip-slip displacements with 

minor dextral strike-slip movements. In addition, Azzaro (1999) indicated that in the 

southern medium-to-low slope flank, a semi-hidden 7 km long fault zone, consisting of 

three distinct recognisable segments, constitutes a blind seismogenic structure connecting 

the up-slope with the southern volcanic-rift zone. This should represent  evidence of a 

continuous ca. N-S oriented tectonic system similar to that formed by the NE Rift.  

Both NNW-SSE and NE-SW alignments are hypothesized as the main volcano-genetic 

structures (e.g., Bonaccorso et al., 1996; Gresta et al., 1998) which control the evolution of 

Mt. Etna, as their interference establishes a weakness volume along which magma can rise 

from depth (Rasà et al., 1995). 

Small magnitude earthquakes generally precede, accompany and follow volcanic 

eruptions, contributing to the redistribution of the stress accumulated at the borders of the 

plumbing system.  

Over the last 30 years Mt. Etna exhibited a high rate of eruptive events. In particular, the 

under study 2002-2003 flank eruption was accompanied by intense seismic activity. 

During the eruption, fracturing affected the south flank of the volcanic edifice along a N-S 

direction, the north flank along a direction nearly parallel to the NE Rift and some 

structural alignments on the southeast flank (Fig. 1). 
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Data selection 

The data set is composed of 171 well located earthquakes (depth <5 km; 1.4<ML<4.1) 

(D’Amico and Maiolino, 2005), occurred at Mt. Etna between October 26, 2002 and 

December, 5, 2002 and recorded by the INGV network which, at that time, was composed 

by 24 velocity sensors having an instrumental response flat above 1 Hz (Fig.2). Although 

other stations were operating in the same period in the area, data at these stations exhibit 

either poor signal-to-noise ratio or saturated P waves, making them poor candidates for 

accurate P pulse analysis. The event localization (Fig.2) and ray tracing was performed in  

the 3D velocity model of the area (Patanè et al., 2006) using SIMULPS12 (Evans et al., 

1994).  

In a previous study it has been shown that the considered events have tectonic-earthquake-

type waveforms, consistent with double-couple source mechanisms, with high-frequency 

content, sharp first arrivals, and clear P and S phases (Patane` and Giampiccolo, 2004).  

The P polarity reading and the inference of the focal mechanisms of these events have been 

previously  performed (Barberi et al., 2006) using FPFIT (Reasenberg and Oppheneimer, 

1985).  

For each event, we measured the rise time τ of the first P wave at all the stations where the 

signal to noise ratio was sufficiently high to allow for the accurate individuation of the 

onset of first arrival P phase. We only used recordings for which the P phase picking has a 

time sample (0.01 s) accuracy. The rise time τ  has been measured as the time interval 

between the onset of P wave and its first zero crossing time by accounting for the effect of 

noise N (Fig.3). Three measurements of the rise time compatible with the noise on data 

have been carried out. The first is based on the assumption that the onset of P wave has 

been rightly picked at the time T0, which corresponds to a first zero crossing at the time T1 
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and consequently to a rise time T1-T0. The other two measurements take into account the 

effect of noise. This is estimated, using the L1 norm, in a time window TW= 0.5 s preceding 

the P wave onset, through the relation: 

   ( )∫>=<
WT

W

dttN
T

N
0

1
 

The intersections of the lines v=±N  with the ascending and descending ramps of the 

selected pulse allow to determine upper (T1B-T0 B) and lower (T1A-T0A) bounds on the 

estimate of rise time (Fig.3). These three measurements of rise time allow the estimation of 

the average rise time and its error. 

Since the measurement of τ requires only the first half cycle of the first P pulse it is the 

observable less sensitive to the complexities related to propagation effects. The waveforms 

showing clear multipathing effects during the first half cycle of first P wave (e.g. 

Deichmann, 1997; Filippucci et al., 2006) have been discarded. Clear multipathing effects 

are visible on the first half-cycle of the P wave as sharp discontinuities of the waveform 

(see for instance Fig. 10 in de Lorenzo and Zollo, 2003). However the effect of 

multipathing could be subtle, and this occurs when the secondary arrival adds in phase to 

the first P-wave arrival. To discard signals which could be affected by subtle multipathing 

effects, an accurate analysis based on the comparison between measurements of τ on 

velocity and squared velocity seismograms (Boatwright, 1984; de Lorenzo and Zollo, 

2003)  has been performed. In this way the signals for which the measurement of rise time 

on the squared velocity seismogram does not coincide, inside the error bound,  with the 

measurement of rise time on velocity seismogram, have been discarded. 

Based on previous resolution studies (de Lorenzo and Zollo, 2003; Filippucci et al., 2006) 

we discarded all the events for which a number of rise times less than six was available. 

After the data analysis only 143 of 171 events were available for the study. 
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Technique and data analysis 

It is well known that the rise time  of first P and/or S waves depends on both source and 

attenuation parameters (e.g. Boatwright, 1984). We used numerically calibrated 

relationships between the rise time and the source parameters and Q. These relationships  

are based on a kinematical model of seismic rupture (Zollo and de Lorenzo, 2001) and 

have been successively generalized to any crustal velocity model (de Lorenzo et al., 2004). 

If we assume that the seismic radiation is released by a circular crack rupturing at a 

constant velocity (Sato and Hirasawa, 1973), τ is related to the source dimension L, the 

rupture velocity c, the dip δ and strike φ of the fault, the takeoff angle θ and the quality 

factor Qp through the relationship (de Lorenzo et al., 2004): 

      ),,,(),,,(0 ϕδλφδηττ cL
Q

T
cL

P

++=   (1) 

where:  

  ( ) 21 ,sin ηφδθηη +=
c

L
    (2) 

  ( ) 21 ,sin λφδθλλ +=
c

L
    (3) 

In equations (1)-(3) T is the source to receiver travel time and η1, η2, λ1 and λ2 are constants 

depending on the body wave velocity at the source.  The values of these constants are 

tabulated in de Lorenzo et al. (2004) as a function of the body wave velocity.  

The take off angle θ, the travel time T and their maximum errors have been computed in 

the 3D velocity model, using the relationships given in Zollo and de Lorenzo (2001) and 

accounting for the error on source localization and δ, φ computed by FPFIT in Barberi et 

al. (2006). 
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Using equation (1), for each fault plane retrieved from the inversion of P polarities 

(Barberi et al., 2006), the inversion of rise times is performed to estimate L and Qp. The 

search of the best fit model parameter L and Qp is performed through multiple runs of the 

Simplex Donwhill method (Press et al., 1989) in several subspaces of the whole admissible 

space of model parameters using random initializations of the initial simplex in each 

subspace. The details of the inversion technique are described in Zollo and de Lorenzo 

(2001).  This allows us to predict, for each inverted model, the theoretical rise times teo
iτ  at 

each station. In this way the “true” fault plane is selected as that minimizing a L2 norm 

misfit function σ between the observed obs
iτ  (1<i≤N) and the theoretical rise timesteo

iτ  

(1<i≤N) (Filippucci et al. 2006): 

  
( )( )

1

,
1

2

−

−
=
∑

=

N

N

i

teo
i

obs
i φδττ

σ      (4) 

where N is the number of rise times available for the event. 

However, owing to the noise on data, we cannot be sure that the fault plane which 

minimizes (4) is the “true” fault plane. In fact, several sources of error can alter both the 

observed and the theoretical rise times. Whereas the noise in the seismic recordings is the 

cause of the error on the observed rise times, as discussed in the previous section, the error 

in source localization and the error on dip and strike as inferred from FPFIT map into an 

error in the takeoff angle which gives rise to an error in the theoretical rise time. 

Therefore, to account for both the error on observed and theoretical rise times a statistical 

analysis based on the random deviates technique (Vasco and Johnson, 1998) has been 

performed. To this end, for each event, one-hundred inversions are carried out on one-

hundred random datasets. Each dataset is built by adding to each datum a random quantity 

selected in its error range. If the misfit ( )11,φδσ  for a given fault plane orientation ( )11,φδ  
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is systematically (i.e. in all the one-hundred inversions) smaller than the misfit ( )22,φδσ  

for the other possible fault plane orientation ( )22,φδ , i.e. if the quantity: 

  ( )
( ) ( )

( )11

1122

11 ,

,,

, φδσ
φδσφδσ

φδσ
σ −=∆

      (5) 

is systematically greater than zero, then the selected fault plane is considered the possible 

“true” fault plane. Finally, for each event, the one-hundred estimates of L and Qp are 

averaged to estimate the inverted parameters and their errors. If FPFIT does not provide 

multiple solutions, then, in equation (5), ( )11,φδ  is the plane which minimizes the standard 

deviation (the “true fault plane”) and ( )22,φδ  is the auxiliary fault plane. If FPFIT provides 

multiple solutions then ( )11,φδ  and ( )22,φδ  are the two planes which give rise to the two 

smallest values of the misfit (equation (4)). Since these two planes do not necessarily 

belong to the same focal mechanism, the method allows to select both the most probable 

mechanism and the most probable fault plane orientation. 

In Fig. 4, the quantity ( )11,φδσ
σ∆

 is plotted as a function of the identification number of the 

one-hundred inversions, for one of the analyzed events. Since, for this event, ( )11,φδσ
σ∆

 is 

systematically higher than zero (Fig.4), ( )11,φδ  is considered a possible “true fault plane”. 

Fig. 5 shows the comparison among predicted and observed rise time vs. the takeoff angle 

for the same event. 

After this analysis, a systematic standard deviation reduction was achieved only for 54 

events (out of  the initial 143), and therefore only these events were considered as potential 

“true” fault planes (Table I).  

The next aspect we accounted for is the resolution of the fault plane estimates. It has been 

shown (de Lorenzo and Zollo, 2003; Filippucci et al., 2006) that the resolution depends in 
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a complex manner on several factors, such as the number and the error of data available in 

the inversion, the range of variation of the take off angles, the ability of the inverted model 

to fit the observed data and the misfit reduction from the auxiliary to the true fault plane. 

Moreover these factors are strictly correlated; as an example, a smaller sampling of the 

focal sphere could be compensated by a higher number of data used in the inversion and 

conversely.  We quantified (Table I) the absolute level of resolution by using the parameter 

R (Filippucci et al., 2006): 

   ( ) ( )


















∆
∆∆=

obs

obs

NR

τ
τφδσ

σ
π

θ 1

,
log

2/ 11
10    (6) 

In equation (6) ( )2/ πθ∆  is the range of the takeoff angles covered by data normalized to 

the whole 2π  range  and  
obs

obs

τ
τ∆

 is the relative error on data. In Table I also the relative 

resolution R/Rmax with respect to the best resolved fault plane is reported. 

The above statistical analysis allowed us to select those earthquakes for which a 

preferential fault plane can be inferred from the two step inversion of P polarities and P 

rise times and also to quantify their relative resolution. Two open questions remain after 

this analysis. The first one is represented by the compatibility of the assumed circular crack 

source model with data and the second one is represented by the level of significance of the 

inferred solutions. These two aspects can be jointly assessed by carrying out a statistical 

test of hypothesis. In fact, if we assume that the errors on rise times are Gaussian 

distributed, the quantity: 

  
( )

( )∑
= ∆

−
=

N

i obsi

teoiobsi

1
2

,

2
,,2

τ
ττ

χ     (7) 
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will represent a χ2 variable with a number of degrees of freedom equal to N-k-1 where k = 

2 is the number of parameters (L and QP) inferred from the inversion of rise times. Under 

this assumption, we can perform, in the dip-strike plane, a χ–square test for a given level of 

significance α (Cramèr, 1946) to accept or reject the null hypothesis H0: (δ,φ) is the true 

fault plane orientation. If the solution retrieved from the inversion of rise times with the 

random deviates technique is confirmed from the χ
2 test, then the inferred fault plane is 

definitively accepted (Fig.6). This allows us to state that the considered source model is 

compatible with data and to quantify the level of significance of the solution. In Fig. 6 

three examples are shown. In Fig. 6a the χ–square test allows us to constrain, with a level 

of significance α=25% the “true” fault plane of the event #1. In Fig. 6b the χ–square test 

indicates that the fault plane solution (δ=30°, φ=35°) inferred from the random deviates 

procedure has to be discarded at a level of significance α=25%  in that other two fault 

planes (δ=90°, φ=30°), (δ=38°, φ=311°)  lie in the region of acceptability of the test. In 

Fig. 6c the χ–square test indicates that the fault plane solution (δ=85°, φ=226°)  inferred 

from the random deviates procedure can be accepted at a level of significance α=25% in 

that the other fault plane solutions do not lie in the region of acceptability of the test. 

For each of the 54 above events, four chi-square tests were performed considering four 

levels of significance α (α=25,10,5,1 %). After this analysis, only for 45 events the χ-

square tests confirmed the results of the inversion of rise times and only these events were 

considered as the true fault planes. These events and their level of significance are listed in 

Table II and the projection of the resolved planes on the Earth surface are plotted in Fig. 7 

together with the focal mechanism solutions inferred from FPFIT (Barberi et al., 2006). 

The average QP for the dataset was estimated using the relationship: 
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∑

∑

=

==
Nev

i
i

Nev

i
ii

P

w

Qw
Q

1

1       (8) 

where: 

    
2

i
Q

N
w

i
ray

i ∆
=      (9) 

In equation (9) i
rayN  is the number of rays available for the event i (1≤i≤Nev) and 

i
Q∆ the 

error on Qi for the i-th event. We obtained < QP >=42±10 which agrees with a previous 

estimate of QP in the area (de Lorenzo et al., 2006). 

The seismic moment M0 was calculated from the local magnitude ML (Table II) by using 

the relationship found by Giampiccolo et al. (2007): 

   ( ) ( ) ( ) LMMLog 10.012.137.060.170 ±+±=  (10) 

Stress drop (∆σ) estimates were computed by using the Keilis-Borok (1959) scaling 

relationship:  

  
3
0

16

7

L

M
=∆σ      (11) 

The estimated M0 values were plotted vs. L in Fig. 8.  

 

Discussion and conclusions 

The present study marks an improvement in the knowledge of the faulting mechanism at 

Mt. Etna. The obtained results show that the directivity source effect on rise time can be 

very helpful to solve, at least for a subset of 45 events, the ambiguity between the true and 

the auxiliary fault plane of a focal mechanism (Table II; Fig.7). The majority of the 

inferred true fault planes (about 70%) strikes along a direction which is consistent with the 

trace of the main surface structures and eruptive fractures (pink thick lines in Fig.7). The 

remaining earthquakes (blue thick lines in Fig.7) do not match well with the strike of the 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

14 

 

above mentioned fault systems. This result may be explained in terms of the complex 

evolution of Mt. Etna eruptive centers in a very long time interval (from 500 ky before 

present until today) (Tanguy et al., 1997) which results in the presence of strong 

heterogeneities of the subsurface rocks. Here, the high concentration of weakness zones 

with many orientations can act as preferential dislocation zones. In fact, the image of fault 

plane orientations revealed in this study is well different from the axial-symmetric  

ruptures which should occur in a homogeneous medium as the response to the stress acting 

during an eruption from a single eruptive center. Moreover, also the focal mechanisms of 

the whole data set of events selected in this study do not show preferential rupture 

alignments (Fig.9). Interestingly, a clear heterogeneity of the seismogenic stress and strain 

tensor in the area during the 2002-2003 eruption was previously inferred by several authors 

(Musumeci et al. 2004; Barberi et al.,2004; Barberi et al., 2006). Finally, a recent 

magnetotelluric study indicates a clear counter-clock  rotation of about 45° of the strike of 

the Pernicana fault system from the surface to the bottom of the surface sedimentary cover 

(INGV 2004-2006 project report, A. Siniscalchi, personal communications).  

The source dimensions of the resolved 45 events range between 100 and 500 m and stress 

drop of most of the events concentrated between 1 and 100 bars. Only few events have 

higher stress drop, up to 400 bars (Fig.8 and Table II). It is worth stressing that the present 

estimates of L (and therefore of ∆σ) have to be considered dependent on the assumption of 

a fixed average rupture velocity Vr (Vr=0.9VS) on which the theoretical eq. (1) has been 

built. This assumption could affect the retrieved source dimensions (de Lorenzo and Zollo, 

2003). However, despite this limitation, the obtained source parameters and scaling laws 

are consistent with those obtained by Giampiccolo et al. (2007) from the analysis of the 

same data set in the frequency domain and outline a characteristic of the region. In fact we 
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deduce a general agreement of the present source parameter and Qp estimates at Mt. Etna 

with those inferred from the use of different techniques and different source models (de 

Lorenzo et al., 2006; Giampiccolo et al., 2007).  

In conclusion, the variety of the fault plane solutions and the small values of L and ∆σ 

indicate the presence of planes of weakness with different orientations to accommodate the 

slip, which could represent low-strength structures where great stress accumulation is 

hindered. 

 

Figure captions 
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Fig.1. Structural map of Mt. Etna (after Azzaro et al., 1999). 1. eruptive fractures; 2. main 

faults; 3. coseismic surface faulting zones; 4. zones where seismicity is mainly clusterized. 
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Fig.2. Epicenters (circles) of the earthquakes occurred during the 2002-2003 Mt. Etna 

eruption considered in this study and seismic stations distribution (triangles).  

 

Fig.3. Measurement of rise time on a velocity seismogram (a) recorded at Mt. Etna. On the 

top, the time window (b) preceding the P wave onset used to quantify the error in L1 norm 

(c) and its effect (d) on the estimates of the first P wave arrival (T0a,T0b)  and on the first 

zero crossing time (T1a,T1b). 
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Fig.4. Plot of the standard deviation vs. the inversion number in the random deviates 

approach for an event considered in this study. Since the standard deviation (a) for the fault 

plane (δ1,φ1) is systematically smaller than the standard deviation (b) for the fault plane 

(δ2,φ2) a systematic standard deviation occurs (c) indicating that fault plane 1 is a possible 

true fault plane.  
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Fig.5. Comparison among observed (blue squares)  and predicted (red circles) source rise 

times and their errors vs. the takeoff angle for the event #1.  
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Fig.6. Chi-square tests for three considered events. The grey areas represent regions of 

acceptability of the solutions and the red squares the solutions inferred from FPFIT. In (a) 

it is shown the case of a test which confirms the null hypothesis (see the text). In (b) it is 

shown the case of a test which does not confirm the null hypothesis for a multiple FPFIT 

solution. In (c) it is shown the case of a test which confirm the null hypothesis for a 

multiple FPFIT solution.  
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Fig.7. Map showing the surface projections (pink and blue lines) and the focal mechanisms 

of the 45 retrieved faults planes. The main structures (yellow lines) are also reported (after 

Azzaro, 1999). Pink segments indicate solutions in agreement with known structures; blue 

segments indicate solutions not directly correlated with surface geology. 
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Fig.8. Relationship between seismic moment and source radius for the earthquake listed in 

Table II. The lines of constant stress drop are also reported.  
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Fig.9. Rose diagrams showing the distribution of strike dip and rake inferred from FPFIT 

for the whole data set of 143 events.  
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Table captions 

Table I. Results of the inversion of P rise times for 54 events and relative errors. In bold the retrieved “true” fault planes. 
 
 

  
 

         FPFIT   FPFIT  
 

 
 

     

# Date hh:mm Lat.N Long.E Depth Gap ML φ1 δ1 λ1 φ2 δ2 λ2 ( )11,
100

φδσ
σΔ

n_data
obs

obs

τ
τΔ

100 Δθ/(π/2) R R/Rmax L(m) ΔL(m) 
1 20021026 21.35 37.755 15.003 -0.72 54 1.8 145 40 -150 31 71 -54 24.8 11 12.5 0.36 1.17 0.15 212 12 
2 20021026 21.55 37.742 15.000 0.05 50 1.6 85 50 40 327 61 132 30.4 7 6.7 0.96 4.41 0.58 118 12 
3 20021026 22.28 37.746 15.002 0.07 52 1.9 60 50 100 225 41 78 43.9 11 7.8 0.93 7.67 1.00 220 15 
4 20021027 0.21 37.754 15.003 -0.12 87 2.1 335 15 -160 226 85 -76 10 6 9.1 0.84 0.21 0.03 83 18 
5 20021027 0.3 37.746 14.993 -1.10 54 2.8 50 90 10 320 80 180 12.7 6 5.0 0.76 1.86 0.24 86 35 
6 20021027 0.35 37.717 14.962 2.15 73 3.3 220 80 130 322 41 15 38.2 6 14.7 0.70 1.74 0.23 226 20 
7 20021027 0.36 37.754 15.010 -0.41 56 2.4 180 10 80 10 80 92 44.4 9 12.1 0.17 0.84 0.11 229 15 
8 20021027 0.41 37.735 15.003 -1.70 41 3.9 85 55 -150 337 66 -39 26.9 6 17.8 0.73 0.79 0.10 250 35 
9 20021027 1.11 37.763 15.009 -0.91 47 3.5 115 70 -140 9 53 -25 22.7 7 5.0 0.60 2.75 0.36 374 147 

10 20021027 1.28 37.823 15.043 -0.71 88 4.1 155 85 120 254 30 10 15.6 6 5.0 0.29 0.86 0.11 276 24 
11 20021027 1.42 37.769 15.003 -1.39 67 3.3 55 65 70 276 32 126 8.7 6 5.0 0.41 0.59 0.08 187 33 
12 20021027 2.18 37.779 15.016 -1.71 118 3.9 340 65 -180 250 90 -25 40.7 8 14.1 0.96 3.52 0.46 360 47 
13 20021027 2.29 37.777 15.010 0.05 121 4.0 55 85 40 321 50 173 17.2 6 8.3 0.92 1.76 0.23 367 51 
14 20021027 2.42 37.825 15.086 -1.69 115 4.2 45 65 0 315 90 155 29.4 6 17.2 0.38 0.53 0.07 447 39 
15 20021027 3.28 37.783 15.016 -1.65 138 3.5 100 70 80 307 22 116 14.4 6 13.0 0.36 0.10 0.01 289 28 
16 20021027 5.2 37.791 15.031 -1.95 131 3.2 105 30 30 348 76 117 22 7 11.4 0.68 1.36 0.18 247 10 
17 20021027 6.26 37.779 15.010 0.23 162 3.3 100 35 40 335 68 118 27.8 6 8.9 0.98 2.91 0.38 428 13 
18 20021027 6.49 37.787 15.023 1.01 143 3.8 25 75 -40 127 52 -161 9 6 7.6 0.64 0.28 0.04 450 31 
19 20021027 12.09 37.795 15.035 -0.77 82 2.9 310 90 40 220 50 180 10 6 9.4 0.55 0.09 0.01 281 20 
20 20021027 14.42 37.800 15.039 -0.30 89 3.1 310 85 70 207 21 166 9 6 8.4 0.12 0.02 0.00 413 30 
21 20021027 16.02 37.799 15.037 -0.65 92 3.2 115 85 30 22 60 174 50.3 6 9.1 0.48 2.16 0.28 411 15 
22 20021028 3.01 37.812 15.040 -2.03 76 4.0 160 50 130 287 54 53 .15 6 5.0 0.14 0.40 0.05 227 15 
23 20021028 16.27 37.778 15.008 -0.39 43 3.2 315 90 180 45 90 0 18.6 13 9.3 0.50 1.96 0.26 329 18 
24 20021029 1.31 37.686 15.109 0.26 124 2.7 20 60 40 267 56 143 9 9 8.4 0.90 0.25 0.03 246 11 
25 20021029 9.13 37.681 15.123 1.84 116 2.8 70 65 20 331 72 154 28.2 8 11.0 0.71 2.31 0.30 295 11 
26 20021029 10.02 37.754 15.119 6.17 47 2.8 105 70 -10 198 81 -160 8.3 9 7.4 0.82 0.37 0.05 300 62 
27 20021029 10.04 37.677 15.132 1.32 116 3.1 340 90 -170 250 80 0 15.5 12 7.5 0.95 3.56 0.46 391 22 
28 20021029 10.13 37.695 15.101 -0.24 88 2.8 40 70 0 310 90 160 8.2 6 7.8 0.88 0.11 0.01 116 26 
29 20021030 10.47 37.602 15.167 2.54 156 2.4 135 80 10 43 80 170 23.7 6 15.2 0.28 0.32 0.04 181 10 
30 20021030 15.25 37.810 15.113 0.96 76 3.3 120 30 -180 30 90 -60 27.8 6 12.6 0.98 2.03 0.27 220 17 
31 20021031 6.4 37.749 15.141 4.17 165 2.1 315 90 0 225 90 180 17.4 6 5.0 0.58 1.88 0.25 238 10 
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32 20021031 7.34 37.773 15.093 4.33 151 1.9 45 25 -20 153 82 -114 59.7 6 11.0 0.95 4.18 0.54 171 10 
33 20021031 10.41 37.747 15.147 5.39 136 2.8 45 15 -30 164 83 -103 22.2 11 9.1 0.84 3.55 0.46 276 20 
34 20021031 20.02 37.760 15.120 5.10 145 1.9 115 70 -100 322 22 -64 27.3 6 9.3 0.90 2.53 0.33 153 22 
35 20021101 6.38 37.724 15.133 4.9 152 2.1 40 40 -90 220 50 -90 16.3 6 6.3 0.89 2.19 0.29 157 10 
36 20021101 15.32 37.782 15.012 -0.68 43 2.9 45 35 0 315 90 125 51.7 6 16.1 0.76 2.31 0.30 284 16 
37 20021102 10.33 37.753 15.093 3.68 123 1.4 95 75 -30 193 61 -163 27.7 6 8.1 0.17 0.54 0.07 173 7 
38 20021102 17.09 37.695 15.114 2.54 147 2.3 340 70 -160 243 71 -21 12.3 12 9.5 0.71 0.94 0.12 199 19 
39 20021102 23.08 37.738 15.056 2.82 68 2.4 30 65 20 291 72 154 12.4 15 9.2 0.74 1.44 0.19 136 8 
40 20021103 0.22 37.722 15.137 4.93 169 2.1 0 30 -100 192 61 -84 22.5 6 5.8 0.79 2.80 0.36 179 8 
41 20021103 5.36 37.740 15.054 1.90 69 2.1 260 85 160 352 70 5 18.1 7 13.9 0.31 0.25 0.03 202 31 
42 20021104 10.52 37.760 15.069 1.57 82 2.7 105 60 -130 344 48 -42 26.5 12 7.1 0.52 3.57 0.47 312 14 
43 20021104 12.21 37.755 15.070 1.54 103 1.5 110 55 -90 290 35 -90 51.5 6 8.2 0.35 1.69 0.22 179 14 
44 20021107 6.16 37.753 15.040 1.59 52 2.7 195 80 -20 289 70 -169 8.4 10 7.3 0.90 0.55 0.07 192 11 
45 20021107 9.03 37.692 15.124 -0.04 182 1.9 235 85 -20 327 70 -175 46.5 6 6.2 0.29 1.52 0.20 224 21 
46 20021107 15.07 37.735 15.104 5.06 140 2.1 70 25 -160 322 82 -66 57.3 6 8.4 0.76 3.82 0.50 162 11 
47 20021117 9.26 37.741 15.057 1.81 71 2.8 155 50 -20 258 75 -138 25.3 12 6.0 0.39 2.96 0.39 296 13 
48 20021124 6.59 37.692 15.100 4.09 99 3.7 335 90 20 245 70 180 6.5 8 5.0 0.43 0.39 0.05 507 18 
49 20021124 10.27 37.696 15.088 4.45 110 2.5 80 50 -160 337 75 -42 34.8 9 5.0 0.99 7.49 0.98 186 10 
50 20021124 11.03 37.694 15.092 4.59 73 2.9 90 60 20 350 73 148 9.7 12 6.0 0.99 2.47 0.32 125 7 
51 20021124 13.56 37.694 15.093 4.33 117 2.6 5 75 120 119 33 28 14.1 10 7.0 0.53 1.62 0.21 176 15 
52 20021202 12.28 37.711 15.148 -1.83 169 3.6 160 60 -50 281 48 -138 29.8 6 5.0 0.54 2.49 0.32 345 10 
53 20021205 0.4 37.759 15.054 -1.01 84 2.2 345 90 40 255 50 180 31.4 7 5.0 0.22 1.24 0.16 201 7 
54 20021205 22.59 37.806 15.046 -1.27 103 2.7 285 80 -20 19 70 -169 24.7 6 5.0 0.43 1.78 0.23 305 33 
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Table II. Focal parameters and relative errors as inferred from FPFIT for the 45 events accepted after the χ-square test. The misfit 

function F of the focal mechanism solutions, as inferred from FPFIT, is also reported.  

# Str1 Dip1 Rake1 Str2 Dip2 Rake2 F ∆∆∆∆Str    ∆∆∆∆Dip    ∆∆∆∆Rake    ∆∆∆∆Str    ML L(m) ∆∆∆∆L M0(N m) ∆∆∆∆σσσσ (bar) αααα(%)(%)(%)(%)        

1 145 40 -150 31 71 -54 0.11 10 5 10 10 1.8 212 12 4.13E+13 1.90 25  
3 60 50 100 225 41 78 0.07 3 10 5 3 1.9 220 15 5.35E+13 2.20 10  
4 335 15 -160 226 85 -76 0.04 20 5 20 20 2.1 83 18 8.95E+13 68.51 25  
5 50 90 10 320 80 180 0.03 5 15 10 5 2.8 86 35 5.45E+14 374.53 5  
6 220 80 130 322 41 15 0.10 5 5 20 5 3.3 226 20 1.98E+15 74.93 25  
7 180 10 80 10 80 92 0.05 10 0 10 10 2.4 229 15 1.94E+14 7.07 25  
8 85 55 -150 337 66 -39 0.12 3 8 5 3 3.9 250 35 9.29E+15 260.11 25  
9 115 70 -140 9 53 -25 0.18 3 3 0 3 3.5 374 147 3.31E+15 27.69 1  

10 155 85 120 254 30 10 0.02 10 13 20 10 4.1 276 24 1.56E+16 323.78 25  
11 55 65 70 276 32 126 0.07 3 10 5 3 3.3 187 33 1.98E+15 132.27 5  
12 340 65 -180 250 90 -25 0.01 10 13 20 10 3.9 360 47 9.29E+15 87.11 25  
13 55 85 40 321 50 173 0.04 3 10 10 3 4.0 367 51 1.20E+16 106.41 1  
15 100 70 80 307 22 116 0.05 8 5 0 8 3.5 289 28 3.31E+15 60.02 10  
16 105 30 30 348 76 117 0.20 10 0 40 10 3.2 247 10 1.53E+15 44.35 10  
17 100 35 40 335 68 118 0.12 20 3 10 20 3.3 428 13 1.98E+15 11.03 25  
19 310 85 70 207 21 166 0.00 8 8 10 8 3.1 281 20 1.18E+15 23.27 25  
21 115 85 30 22 60 174 0.10 8 13 5 8 3.2 411 15 1.53E+15 9.63 5  
23 315 90 180 45 90 0 0.03 3 13 5 3 3.2 329 18 1.53E+15 18.77 25  
24 20 60 40 267 56 143 0.11 5 8 10 5 2.7 246 11 4.21E+14 12.36 25  
26 105 70 -10 198 81 -160 0.06 10 18 5 10 2.8 300 62 5.45E+14 8.82 5  
27 340 90 -170 250 80 0 0.01 0 0 15 0 3.1 391 22 1.18E+15 8.64 5  
28 40 70 0 310 90 160 0.07 18 45 30 18 2.8 116 26 5.45E+14 152.62 25  
29 135 80 10 43 80 170 0.00 3 10 70 3 2.4 181 10 1.94E+14 14.32 5  
31 315 90 0 225 90 180 0.10 3 10 10 3 2.1 238 10 8.95E+13 2.91 1  
32 45 25 -20 153 82 -114 0.00 30 8 20 30 1.9 171 10 5.35E+13 4.68 25  
33 45 15 -30 164 83 -103 0.05 5 3 5 5 2.8 276 20 5.45E+14 11.33 10  
34 115 70 -100 322 22 -64 0.00 10 0 20 10 1.9 153 22 5.35E+13 6.53 5  
36 45 35 0 315 90 125 0.12 8 8 10 8 2.9 284 16 7.05E+14 13.46 25  
37 95 75 -30 193 61 -163 0.06 10 5 25 10 1.4 173 7 1.47E+13 1.24 25  
38 340 70 -160 243 71 -21 0.07 10 20 10 10 2.3 199 19 1.50E+14 8.33 5  
39 30 65 20 291 72 154 0.10 5 10 15 5 2.4 136 8 1.94E+14 33.76 5  
40 0 30 -100 192 61 -84 0.11 8 0 5 8 2.1 179 8 8.95E+13 6.83 5  
41 260 85 160 352 70 5 0.12 0 8 25 0 2.1 202 31 8.95E+13 4.75 25  
42 105 60 -130 344 48 -42 0.08 10 10 5 10 2.7 312 14 4.21E+14 6.06 10  
43 110 55 -90 290 35 -90 0.00 50 15 25 50 1.5 179 14 1.91E+13 1.45 10  
44 195 80 -20 289 70 -169 0.09 3 18 30 3 2.7 192 11 4.21E+14 26.01 1  
45 235 85 -20 327 70 -175 0.00 10 13 10 10 1.9 224 21 5.35E+13 2.08 5  
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46 70 25 -160 322 82 -66 0.00 15 5 10 15 2.1 162 11 8.95E+13 9.21 10  
47 155 50 -20 258 75 -138 0.06 5 3 20 5 2.8 296 13 5.45E+14 9.19 10  
48 335 90 20 245 70 180 0.12 13 10 10 13 3.7 507 18 5.55E+15 18.62 1  
49 80 50 -160 337 75 -42 0.13 3 3 0 3 2.5 186 10 2.51E+14 17.08 5  
51 5 75 120 119 33 28 0.00 3 8 5 3 2.6 176 15 3.25E+14 26.09 5  
52 160 60 -50 281 48 -138 0.11 8 13 20 8 3.6 345 10 4.29E+15 45.66 25  
53 345 90 40 255 50 180 0.07 5 5 5 5 2.2 201 7 1.16E+14 6.24 10  
54 285 80 -20 19 70 -169 0.14 8 20 5 8 2.7 305 33 4.21E+14 6.49 5  
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