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Abstract 

Mt. Etna is one of the most studied and extensively monitored volcanoes on earth 

(Bonaccorso et al., 2004).  One of the most frequent hazards are due to the eruption of 

lava flows, more specifically those flows produced during flank eruptions.  These 

eruptions potentially can produce extensive flows that can inundate densely populated 

communities of the lower slopes (Guest and Murray, 1979; Behncke et al., 2005).  

Satellite remote sensing can be used during effusive eruptions to help monitoring the 

volcano, by determining effusion rates of the flows, aiding in hazard management.  The 

degassing that takes place when magma is rising to the surface can be regularly 

monitored using ultraviolet spectroscopic methods (e.g. Andres et al., 2001, Sutton et al., 

2001).  Sulfur Dioxide (SO2) fluxes have been derived from correlation spectrometer 

(COSPEC) measurements at Mt. Etna (Italy) on a regular basis since 1987 (e.g. 

Caltabiano et al., 1994; Allard, 1997; Andronico et al., 2005; Burton et al., 2005; Burton 

et al., in press).  Previous studies have compared field-based effusion rates with the 

measured SO2 fluxes to determine how much of the degassed magma is erupted onto 

Etna’s flanks in the form of lava flows (Allard, 1997; Harris et al., 2000).  However, most 

of these studies examine bulk volumes erupted over an eruption rather than examining 

the short-term variations during eruptions.  Determining the amount of lava erupted 

and/or the balance between the amount supplied and the amount erupted remains an 

unresolved issue.  The main objectives of this paper are to examine such short-term 

variations using satellite-based effusion rates along with regularly measured SO2 fluxes.  

Using these measurements we determine how and when the volume of supplied magma is 

balanced by the volume of erupted lava during individual effusive eruptions. 
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1. Introduction 

Etna is one of the most studied and monitored volcanoes on earth (Bonaccorso, 

2004), where the most frequent hazard is due to the eruption of lava flows; specifically 

those produced during flank eruptions.  These can produce extensive flows that can 

inundate densely populated communities of the lower slopes (Guest and Murray, 1979; 

Behncke et al., 2005).  Satellite remote sensing can be used during effusive eruptions to 

determine effusion rates, aiding in hazard monitoring.  The degassing that takes place 

when magma rises to the surface can be monitored using ultraviolet spectrospic methods.  

Sulfur Dioxide (SO2) fluxes have been derived from correlation spectrometer (COSPEC) 

measurements at Etna on a regular basis since 1987 (e.g. Caltabiano et al., 1994; Allard, 

1997; Andronico et al., 2005; Burton et al., 2005).  Previous studies have compared field-

based effusion rates with the measured SO2 fluxes to determine how much of the 

degassed magma is erupted onto Etna’s flanks (Allard, 1997).  However, such studies 

examine bulk volumes erupted annually rather than examining the short-term variations 

during eruptions.  Determining the amount of lava erupted and/or the balance between the 

amount supplied and the amount erupted remains an unresolved issue.  The main 

objectives of this paper are to examine such short-term variations using satellite-based 

effusion rates along with regularly measured SO2 fluxes.  We use these to assess how and 

when the volume of supplied magma is balanced by the volume of erupted lava during 

individual effusive eruptions. 

1.2  Magma volumetric balance dynamics 

Once magma enters the shallow system three scenarios are possible.  In scenario 

1, degassed magma can remain unerupted, resulting in endogenous growth (Dzurisin et 
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al., 1984; Dvorak and Dzurisin, 1993).  In scenario 2, it can sink back to deeper levels to 

mix with a deep reservoir (resulting in cryptic growth) (Allard et al., 1994; Allard, 1997).  

Alternatively, in scenario 3, it can be erupted onto the surface resulting in exogenous 

growth (Francis et al., 1993; Sutton et al., 2001).  As a result, three different mass balance 

scenarios can occur:  (1) The volume of erupted lava (Verupt) is less than the volume of 

supplied magma (Vsupplied), meaning that a portion of the degassed magma has not been 

erupted; (2) Verupt can be greater than Vsupplied, meaning that previously degassed magma 

in temporary storage within the shallow system has contributed to the erupted flux, or the 

magma has risen at a rate faster then it can degas; or (3) Verupt can equal Vsupplied if all of 

the degassed magma  then erupted. 

These scenarios have been documented at several volcanoes.  At Kilauea (Hawaii) 

between 1956-1983, Vsupplied was greater than Verupted with 45–65 % of the supplied 

magma remaining within the volcano’s rift zones (Dzurisin et al., 1984; Dvorak and 

Dzurisin et al., 1993).  In contrast, during 1983-2002 Vsupplied equaled Verupted (Dvorak and 

Dzurisin et al., 1993; Sutton et al., 2001).  At Krafla (Iceland) deformation data revealed 

an excess in supply during 1975–1978, resulting in endogenous growth by rift zone 

intrusion (Bjornsson et al., 1979).  At Etna Vsupplied has been determined from the volume 

of degassed magma (Vdegas) derived from gas flux data, where, during 1975-1995, Vdegas 

greatly surpassed Verupt (Allard, 1997). This excess volume of degassed magma likely 

resulted in the creation of a cryptic plutonic complex within Etna’s sedimentary basement 

(Allard, 1997) as well as contributing to some endogenous growth by intrusion (Harris et 

al., 2000).  However, most studies have examined volume fluxes over periods of decades 

and have not examined the potential variation in volume partitioning during individual 
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eruptions.  Here we compare the volumes of degassed magma with the amount of erupted 

lava during three effusive eruptions of contrasting style and locations at Etna between 

2002 and 2006.  To do this we use COSPEC-derived SO2 measurements and effusion 

rates obtained from Advanced Very High Resolution Radiometer (AVHRR) thermal data.  

We show that the balance between the volumes of degassed magma and erupted lava not 

only vary from eruption to eruption, but also vary during single eruptions.   

 

2. Etna eruptions: 2002-2006 

Three eruptions occurred at Etna during 2002-2006: the 2002-2003 flank 

eruption, the 2004-2005 summit eruption and the 2006 summit eruption.  The 2002-2003 

flank eruption began on 28 October 2002 when two eruptive fissures opened on the South 

and NE flanks (Andronico et al., 2005).  The eruption lasted 3 months ending on 28 

January 2003 when effusive activity ceased at the south vent.  The eruption was 

characterized by moderate lava effusion ranging from 2–15 m3/s, as well as long periods 

of intense explosive activity, with particularly explosive phases occurring during 27 

October–12 November and 26 November–10 December.  The eruption was preceded by a 

slight increase in SO2 emission, which increased from a background flux of 1,000 t/d to 

2000 t/d (Andronico et al., 2005). 

The 2004-2005 summit eruption began on 7 September 2004 with the opening of 

a fracture on the lower eastern flank of the South East Cone (SEC).  The eruption was 

characterized by low but steady effusion at 2.3–4.1 m3/s to feed lava flows that extended 

2.5 km (Burton et al., 2005).  The eruption lasted 6 months ending in March 2005 
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(BVGN, 2005).  Unlike most Etnean eruptions no precursory activity, such as an increase 

in SO2 flux, preceded the eruption (Burton et al., 2005). 

The 2006 eruption began on 14 July 2006 when a fissure opened on the east flank 

of the SEC (BGVN, 2006).  The eruption lasted 11 days ending on 24 July The eruption 

was characterized by lava flows emplaced at highly variable effusion rates that ranged 

between 2-10 m3/sec and was accompanied by Strombolian activity at SEC.  Lava flows 

had not reach lengths longer than 3 km when the eruption ended (BGVN, 2006). 

 

3. Methodology 

We calculated magma degassing rates and volumes of magma degassed using 

COSPEC-derived SO2 measurements.  Previous studies have shown how SO2 flux can be 

measured using COSPEC and that, given SO2 flux, the volume of degassed magma can 

be calculated (Caltabiano et al., 2000).  The SO2 source is degassing magma, ascending 

toward the surface.  Melt inclusion studies (Metrich et al., 2002; Spilliarert et al., 2006) 

have constrained the original sulfur content of Etnean magma to be ~ 0.32 wt%.  

Therefore assuming a primitive magma density of 2700 kg/m3 (Pompilio and Corsaro, 

2002) we can calculate what a specific volume of unvesiculated primitive magma can 

produce.  In order to compare SO2 fluxes with lava effusion rates, we must determine the 

volume of lava that each primitive volume of magma can produce; the main volume 

change being controlled by the presence of vesicles.  Typically Etnean lava flows are 

~25% vesiculated.  For each of the eruptions considered here SO2 measurements were 

made daily (Andronico et al., 2005; Burton et al., 2005; Burton et al., in press).  We then 

used these measurements to calculate the degassed magma flux (in m3/s).  We use this to 
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define the amount of magma that is degassed over a given time period, in this case a day, 

and term this time-averaged (daily) magma supply rate (Sr).  Given Sr we can integrate 

through time to calculate the volume of degassed magma over each measurement period. 

We term this the volume of supplied magma (Vsupplied) (Table 1).  

Effusion rates were calculated using cloud–free AVHRR data.  The pixel mixture 

model initially proposed by Dozier (1981) and adapted for use with one AVHRR band 

(Harris et al. 1997) was used; allowing us to determine the area of lava that occupied 

each thermally anomalous pixel.  These were then summed to obtain total lava area and 

used to calculate the radiative and convective heat losses from the active lava following 

Oppenheimer (1991).  Heat loss was then converted to effusion rate using the 

methodology derived for Etna by Harris et al. (1997; 2000).  This approach is based on a 

relationship whereby the amount of heat lost from a flow is equal to the heat generated 

from crystallization and advection (Pieri and Baloga, 1986).  These values are then 

averaged over time and we term this the time-averaged discharge rate (Dr).  These rates 

were used to calculate the volume of lava erupted over a given period (Verupted) (Table 1). 

 

4. Results 

The balance between Sr and Dr, supplied magma volumes and erupted lava 

volumes for each eruption is given in Table 2.  The temporal variations during each 

eruption are also plotted in terms of Sr and Dr (Figure 1a), supply versus erupted volume 

difference (Vsupply-Verupted) (Figure 2), and cumulative volumes (Figure 1b).  Each 

eruption was split into phases based on characteristic levels in Sr and Dr, and thus 

differences between supplied magma and erupted lava volumes (Figure 1). 
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The 2002–2003 eruption began with a five-day phase (Phase I) during which Dr 

exceeded Sr (Figure 1a), meaning that more lava was erupted than was degassed (Figure 

2; Table 2).  As a result, the output exceeded supply (Figure 1a).  However, during the 

following phase (Phase II) Sr exceeded Dr (Figure 1a; Table 2), causing an excess in 

magma supplied (Figure 2).  Consequently, the volume of supplied magma greatly 

surpassed the volume of erupted lava (Figure 1b).  During the third phase (Phase III) Sr 

equaled Dr (Figure 1a); so Vsupplied=Verupted (Figure 2; Table 2).  During the final phase 

(Phase IV) there was an excess of supplied magma (Figure 2; Table 2).  Overall Vsupplied 

exceeded Verupt by 3.4x107 m3 (Figure 1b; Table 2).  Field-based measurements of 

erupted lava during this eruption were measured to be 3.5 – 4.0x107 m3 (Allard et al., 

2006) (assuming a vesicularity of 25%), these values fall within the given range of 

erupted volumes calculated in this study (Figure 1b). 

During the 2004–2005 eruption Dr and Sr were approximately constant throughout 

the eruption, with periods of small differences (<3 m3/sec) (Figure 1a).  We classified the 

eruption into four phases (Phases A–D).  During two of the phases (Phases A & C) Verupt 

exceeded Vsupplied, but only by small amounts (Figure 2; Table 2).  In the other two phases 

(Phase B & D), the two volumes were coupled and so that Vsupplied was equal to the 

Verupted (Figure 2; Table 2).  The total difference between Verupt and Vsupplied was 6.6x106 

m3.  Field-based measurements of Verupt were 5.0x107 m3 (Allard et al., 2006), also falling 

within the range of volumes calculated in this study (Figure 1b). 

The 2006 eruption was characterized by almost constant Sr.  However, Dr was 

highly variable (Figure 1a).  During the first four days (Phase X) Dr was lower than Sr. 

However after July 25th (Phase Y) Dr increased to surpass Sr (Figure 1a; Table 2).  
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Therefore, the Vsupplied was greater than Verupt during Phase X, but greater than Vsupplied 

during Phase Y (Figure 1b; Table 2). 

 

5. Discussion 

The three eruptions encompass the three different volume balance scenarios:  i.e. 

(1) Vsupplied=Verupt, (2) Vsupplied>Verupt, (3) Vsupplied<Verupt.  When Vsupplied is greater than 

Verupt a portion of the ascending magma reaches a depth at which the magma can degas 

(<4 km) but does not erupt.  This occurred during Phase IV of the 2002–2003 eruption 

when Vsupplied exceeded Verupt by 8.7x106 m3 (Figure 1b).  In such a scenario the excess of 

degassed magma must either be stored in the edifice or be removed from the shallow 

system to be emplaced at depth.  However, if the magma were erupted explosively the 

satellite sensor would not be able to detect the emission.  Therefore there would be an 

underestimate in the volume of erupted material.  This was the case for Phase II of the 

2002–2003 eruption.  During that time Etna experienced a highly explosive phase 

simultaneous with the effusive activity with tephra volumes of up to 2.2±0.4x107 m3 

being erupted (Andronico et al. 2005; Spilliaert et al., 2006).  Therefore the difference 

between the effused and degassed magma (2.9x107 m3) during this phase could be 

explained by volume lost to tephra.  Magma may also rise at a rate slower than the gases 

are able to escape; therefore degassed magma fluxes can outrun Dr.  In such cases the 

volume of degassed magma will eventually erupt, but will be observed later in the 

eruption.  We use this scenario to account for the volume differences during the 2006 

eruption.  Early in the eruption SO2 fluxes were elevated, but discharge rates were low 

(0.4–1.1 m3/sec). Later in the eruption the Dr reached higher levels (8–4 m3/sec) while the 
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SO2 fluxes remained constant (Figure 1).  This change indicates that magma that had 

been degassed during the initial phase of the eruption (Phase X) had finally reached the 

surface during the latter phase (Phase Y) so that overall Vsupplied and Verupted were 

balanced (Table 2). 

When Verupt exceeds Vsupplied two different scenarios can occur.  Either the excess 

erupted volume is accounted for by eruption of previously degassed magma, or magma 

rises from depth at a faster rate than it is able to degas.  The first scenario can occur at the 

beginning of an eruption when magma that has been stagnant within the shallow reservoir 

becomes incorporated with the eruption of new magma.  Etna experiences almost 

constant degassing at the summit craters, at a time-averaged rate of ~1000 t/day 

(Caltabiano et al., 1994).  Therefore there is potentially a substantial volume of degassed 

magma that can reside within the volcano’s edifice at most times.  This is available for 

incorporation with the next eruption.  We observe this discrepancy at the onset of the 

2004-2005 eruption (Figure 2).  This eruption was preceded by a 20 month period of 

quiescence and was not preceded by an increase in SO2 emissions (Burton et al., 2005).  

Thus, time was available to generate a degassed volume that could contribute to the onset 

of the eruption, in the case of the 2004–2005 eruption this contributed to an excess of 

2.6x106 m3 of lava.  The second scenario can occur during eccentric eruptions in which 

magma that feeds the eruption bypasses the central conduit (Andronico et al., 2005; 

Spilliaert et al., 2006).  This scenario is observed during Phase I of the 2002–2003 

eruption when an excess of 4.3 x 106 m3 was erupted in the first five days.  Therefore at 

the onset of the eruption a large volume of magma was able to erupt without having 

adequate time to degas.    
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6. Conclusions 

Typically SO2-derived volumes of degassed magma have been used to calculate 

volumetric budgets of volcanoes on time scales of years to decades.  On such a time scale 

we find that during Etna’s three eruptions of 2002-2006 there was a volumetric 

imbalance, with an excess of 2.3x107 m3 (i.e. 24% of the magma supplied to the shallow 

system remained unerupted).  However, over the time-scale of days-to-weeks we find that 

partitioning can vary within single eruptions.  Once magma reaches a depth where sulfur 

exsolves several scenarios can occur: (1) the magma can erupt (sometimes incorporating 

excess volumes of previously degassed magmas), (2) it can remain within the edifice 

resulting in endogenous growth, or (3) it can be recycled (and perhaps intruded beneath 

the edifice).  During an eruption lasting just a few weeks, all three scenarios can be 

encountered.  During 2002–2006, over a total of 280 days of eruptive activity, only on 

141 days did Sr couple with Dr.  Therefore, only over 50% of the time were the gas-based 

measurements and satellite-based measurements coupled.  This does not mean that either 

measurement is in error, but instead points to different processes that control the volume 

partitioning.  Several processes can cause these volumetric imbalances:  (1) magma can 

be rising at a faster rate than it is able to degas (Vsupply<Verupt), (2) magma is erupted in an 

explosive manner (Vsupply>Verupt), (3) degassed magma is not erupted (Vsupply>Verupt), or 

(4) the eruption of previously degassed magma occurs (Vsupply<Verupt). 

SO2 fluxes and measurements of discharge rates when used together can be used 

to assess volume partitioning during effusive eruptions.  Because effusion rate can 

influence flow length and area (Walker, 1973; Pieri and Baloga, 1986) this allows 

potential hazards posed by emitted lava flows to be assessed, especially if we can resolve 
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whether all or only a portion of the degassed magma is being erupted.  Given our 

findings, to assess the actual eruption flux, discharge rates have to be measured.  SO2 

fluxes can be used to determine discharge rates for eruptions where all magma supplied is 

subsequently effusively erupted, as is the current case at Kilauea (Sutton et al., 2001).  

However, SO2 data should be coupled with other monitoring, such as measurements of 

discharge rates, during more complex cases to allow a correct assessment of volume 

partitioning. 
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Figure 1. Etna 2002-2006 (a) Discharge, supply rates and partitioning, (b) Cumulative 

volumes of erupted lava and degassed magma.  Note that when the two curves overlap 

Vsupplied and Verupt are coupled.  The square shows the field-based volumes of erupted 

lavas (Allard et al., 2006).  The two lines given in (a) and (b) for each of the rates and 

volumes show the derived upper and lower bounds calculated for each technique. 
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Figure 2. Volume partitioning for Etna, 2002-2006 eruptions..  Any value greater than 

zero indicates an excess of erupted lava, while any value less than zero indicates an 

excess of supplied magma 
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Table 1: Parameters, values and supporting references for constants used in calculating discharge and supply rate. 
 

Parameter Value Reference 
Tsurf (°C) 100-500 Harris et al., 2000 
Tamb (°C) 0 Harris et al., 2000 
σ (W m-2K-4) 5.67×10-8 Harris et al., 2000 
hc (W m-2K-1) ~10 Harris et al., 2000 
DRE ρ (kg m-3) 2600 Harris et al., 2000 
DRE cp (J kg-1 K-1) 1150 Harris et al., 2000 
Vesicularity  10-34 Harris et al., 2000 
Bulk ρ (kg m-3) 1720-2340 Harris et al., 2000 
Bulk cp (J kg-1 K-1) 810-1035 Harris et al., 2000 
Cooling Range (K) 200-350 Harris et al., 2000 
ϕ (%) 45 Harris et al., 2000 
CL (J kg-1) 3.5×105 Caltabiano et al., 2004 

xc 30 Caltabiano et al., 2004 
ρm (kg m-3) 2600 Caltabiano et al., 2004 
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Table 2: Definitions, descriptions and significance of parameters used in determining volumetric balance. 
Parameter Description and Significance Derivation 

Sr 

Time-averaged (daily) supply rate of 
magma.  Rate of magma entering the 
shallow portion of the system 

Calculated by supplied magma volume 
flux required to give the measured SO2 
flux.  

Dr 

Time-averaged (daily) discharge rate of 
lava.  Rate of lava being erupted from the 
volcano 

Calculated by erupted volume flux 
required to balance heat loss.  

Vsupply 

Volume of magma degassed over a given 
period of time.  Volume supplied to the 
shallow portion of the system Calculated by integrating Sr through time 

Verupt 
Volume of lava erupted over a given period 
of time.  Volume of erupted lava Obtained by integrating Dr through time 
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Table 3: Eruption information, supply rates (m3/s), discharge rates (m3/s), volumes of supplied magma (m3), volumes of erupted lava 
(m3) and volumetric differences (∆V=Verupt-Vsupplied (m

3)) for Etna eruptions 2002-2006. 

Eruption: 2002-2003          2004-2005          2006     

 Phase: I II III IV Total A B C D Total X Y Total 
Start Date 26-Oct-02 31-Oct-02 13-Dec-02 28-Dec-02  16-Sep-04 7-Oct-04 4-Nov-04 2-Dec-04  15-Jul-06 19-Jul-06  

Stop Date 30-Oct-02 12-Dec-02 27-Dec-02 29-Jan-03  6-Oct-04 3-Nov-04 1-Dec-04 10-Mar-04  18-Jul-06 25 July-06 

Duration (d) 5 42 15 33 95 21 28 27 98 174 4 7 11 

Max Dr   33 9 8 5  5 5 6 12  5 10  

Max Sr  15 22 7 10  2 2 4 11  4 6  

Vsupply  1.6 x 106 3.9 x 107 5.6 x 106 1.4 x 107 6.0 x 107 1.4 x 106 2.4 x 106 2.9 x 106 2.8 x 107 3.5 x 107 8.1 x 105 1.8 x 106 2.6 x 106 

Verupt   5.9 x 106 1.0 x 107 5.1 x 106 5.3 x 106 2.6 x 107 4.0 x 106 5.9 x 106 6.9 x 106 2.4 x 107 4.1 x 107 5.2 x 105 2.2 x 106 2.7 x 106 

∆V 4.3 x 106 -2.9 x 107 -5.0 x 105 -8.7 x 106 -3.4 x 107 2.6 x 106 3.5 x 106 4.0 x 106 -4.0 x 106 6.1 x 106 -2.9 x 105 4.0 x 105 1.1 x 105 

 
 
 




