Elsevier Editorial System(tm) for Quaternary Geochronology Manuscript Draft

Manuscript Number: QUAGEO-D-10-00044R1

Title: 40Ar/39Ar geochronology of Holocene basalts; examples from Stromboli, Italy.

Article Type: Research Paper

Keywords: Stromboli, 40Ar/39Ar geochronology, volcanology, Holocene volcanism

Corresponding Author: Prof. Dr. Jan R. Wijbrans, PhD

Corresponding Author's Institution: Faculty of Earth and Life Sciences - VU University

First Author: Jan R. Wijbrans, PhD

Order of Authors: Jan R. Wijbrans, PhD; Björn Schneider; Klaudia F Kuiper, dr.; Sonia Calvari; Stefano Branca; Emanuela de Beni; Gianluca Norini; Rosa Anna Corsaro; Lucia Miraglia

Abstract: Absolute chronologies of active volcanoes and consequently timescales for eruptive behaviour and magma production form a quantitative basis for understanding the risk of volcanoes. Surprisingly, the youngest records in the geological timescale often prove to be the most elusive when it comes to isotopic dating. Absolute Holocene volcanic records almost exclusively rely on 14C ages measured on fossil wood or other forms of biogenic carbon. However, on volcanic flanks, fossil carbon is often not preserved, and of uncertain origin when present in paleosols. Also, low 14C-volcanic CO2 may have mixed with atmospheric and soil 14C-CO2, potentially causing biased ages. Even when reliable data are available, it is important to have independent corroboration of inferred chronologies as can be obtained in principle using the 40K/40Ar decay system. Here we present results of a 40Ar/39Ar dating study of basaltic groundmass in the products from the Pleistocene - Holocene boundary until the beginning of the historic era for the north-northeastern flank of Stromboli, Aeolian Islands, Italy, identifying a short phase of intensified flank effusive activity 7500±500 yrs ago, and a maximum age of 4000±900 yr for the last flank collapse event that might have caused the formation of the Sciara del Fuoco depression. We expect that under optimum conditions 40Ar/39Ar dating of basaltic groundmass samples can be used more widely for dating Holocene volcanic events.

1	⁴⁰ Ar/ ³⁹ Ar geochronology of Holocene basalts; examples from
2	Stromboli, Italy.
3	Jan Wijbrans ¹ , Björn Schneider ¹ , Klaudia Kuiper ¹ , Sonia Calvari ² , Stefano Branca ² , Emanuela De
4	Beni ² , Gianluca Norini ³ , Rosa Anna Corsaro ² & Lucia Miraglia ² .
5	¹ Department of Earth Sciences, Faculty of Earth and Life Sciences, VU University, Amsterdam,
6	The Netherlands
7	² Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, Catania, Italy
8	³ Computational Geodynamics Laboratory, Centro de Geociencias, Universidad Nacional
9	Autónoma de México, Querétaro, Mexico
10	
11	Abstract
12	Absolute chronologies of active volcanoes and consequently timescales for eruptive behaviour
13	and magma production form a quantitative basis for understanding the risk of volcanoes.
14	Surprisingly, the youngest records in the geological timescale often prove to be the most elusive
15	when it comes to isotopic dating. Absolute Holocene volcanic records almost exclusively rely on

¹⁶ ¹⁴C ages measured on fossil wood or other forms of biogenic carbon. However, on volcanic

17 flanks, fossil carbon is often not preserved, and of uncertain origin when present in paleosols.

18 Also, low ¹⁴C-volcanic CO₂ may have mixed with atmospheric and soil ¹⁴C-CO₂, potentially

19 causing biased ages. Even when reliable data are available, it is important to have independent

20 corroboration of inferred chronologies as can be obtained in principle using the 40 K/ 40 Ar decay

system. Here we present results of a ⁴⁰Ar/³⁹Ar dating study of basaltic groundmass in the products from the Pleistocene – Holocene boundary until the beginning of the historic era for the north-northeastern flank of Stromboli, Aeolian Islands, Italy, identifying a short phase of intensified flank effusive activity 7500±500 yrs ago, and a maximum age of 4000±900 yr for the last flank collapse event that might have caused the formation of the Sciara del Fuoco depression. We expect that under optimum conditions ⁴⁰Ar/³⁹Ar dating of basaltic groundmass samples can be used more widely for dating Holocene volcanic events.

28

29 Introduction

30 Definitive isotopic dating of Holocene volcanic strata often proves elusive, as such chronologies must be measured by 14 C on sparsely preserved fossil carbon or by the 40 Ar/ 39 Ar 31 technique on sanidine which may contain up to 16% K₂O (*e.g.* Renne et al, 1997). 40 Ar/ 39 Ar 32 33 dating of Holocene basalts that commonly contain much less K₂O when compared with sanidine is difficult because of the extremely low enrichments in radiogenic ⁴⁰Ar, fundamentally limiting 34 35 the range of the method (Bacon and Lanphere, 2006, Renne et al., 1997, Hora et al. 2007, Singer 36 et al., 2008, Carracedo et al., 2007, Gillot and Keller, 1993, Hora et al., 2007, Singer et al., 2008). We have applied a ⁴⁰Ar/³⁹Ar laser incremental heating technique to groundmass separates from 37 38 high K-calcalkaline basalts to shoshonitic basalts (K_2O contents in the range 1.8 – 5.0%) from the 39 lower northeast flank of Stromboli volcano and obtained plateau ages that consist in most cases 40 of at least 6 steps and more than 95% of the total gas release. To precisely measure the radiogenic ⁴⁰Ar content of young basalts we have optimized signal intensities by applying sample pans that 41 42 allow even heating of >100 mg basalt groundmass and we use a new laser beam delivery system 43 that allows more even heating of the sample. In addition, for discrimination, we use correction a

³⁸Ar spiked air argon pipette system where the ⁴⁰Ar/³⁸Ar ratio is *ca* 2, which allows us to monitor variations in discrimination more precisely than it is possible with conventional air pipette systems (a more detailed account of our discrimination determination protocol is given in the appendix/electronic supplement). With our laser step heating technique we can achieve extremely small blanks, with blank proportions on the most important ⁴⁰Ar and ³⁶Ar beams commonly in the 0.1 permille range.

50

51 Stromboli's volcanic history (Hornig-Kjarsgaard et al., 1993, Keller et al., 1993, Pasquaré et al., 52 1993, Tanner and Calvari, 2004) consists of several cycles of topography build-up and collapse 53 over the last *ca* 100 ka: short periods of rapid topography build-up were documented at 62 ± 1 ka 54 and 40±2 ka during the Paleostromboli phase (Quidelleur et al., 2005, Cortés et al. 2005), 55 resulting in collapse of the volcano at ca 35 ka (Gillot and Keller, 1993). The subsequent Vancori 56 phase was dated at 26.2 ± 3.2 ka for the lower, 21.0 ± 6.0 ka for the middle, and 13.0 ± 1.9 ka for 57 the upper Vancori phase (Gillot and Keller, 1993, Hornig-Kjarsgaard et al., 1993, Quidelleur et 58 al., 2005). The youngest activity was recorded during the ca 13 - 6 ka Neostromboli, and <6 ka 59 Recent Stromboli phases (Gillot and Keller, 1993). Previous dating studies on Stromboli were 60 carried out with the K/Ar technique. We have demonstrated in a previous study on the volcanic stratigraphy of Etna that no systematic bias can be observed between our ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ laser 61 62 incremental heating technique and K/Ar technique when applied to groundmass of basaltic rocks 63 (Gillot and Keller, 1993; Cortés et al., 2005; De Beni et al., 2005), and the same procedure has 64 been applied to the Stromboli case in this paper. 65

66 Geological setting of the Stromboli NE sector

67 Recent geological investigation performed by our group (Calvari et al., 2010) in the lower NE

flank of Stromboli allowed us to reconstruct in detail the stratigraphic setting of this sector of the volcano edifice (Fig. 1). On the whole, 11 lithostratigraphic units were recognised, belonging to the Vancori, Neostromboli and Recent Stromboli periods, and whose stratigraphic relationships are summarized here.

72 The Vancori period is formed by three units. The lowest is the Osservatorio unit, consisting of 73 massive lava flows cropping out along drainage gullies (MO_1 member), and by volcaniclastic 74 deposits (MO₂ member). This unit is partially covered by a thin pyroclastic deposits (Sentiero dei 75 Fiorentini unit) and by the Roisa unit, that consists of welded spatter ramparts and lava flow. The 76 San Vincenzo unit represents the earliest recognised volcanics of Neostromboli period, and is 77 mainly formed by a large scoria cone cropping out under the village of Stromboli. The lava flow 78 related to the San Vincenzo scoria cone is well preserved along the coast at Punta Lena (Fig. 1). 79 The Labronzo unit consists of a lava flow succession forming the main portion of the costal cliff 80 at Punta Frontone, fed by an E-W oriented dike (Fig. 1). At the exit of the Vallonazzo gully, the 81 base of the coast cliff is formed by the lava flows belonging to the Spiaggia Lunga unit that are 82 directly covered by the lava flows of the Vallonazzo unit. This clear stratigraphic relationship 83 between the two units is also recognizable along the Vallonazzo gully at about 250 m a.s.l. The 84 Nel Cannestrà unit consists of spatter ramparts and a lava flow that partially covers the 85 Osservatorio unit and the San Vincenzo scoria cone (Fig. 1). The Serro Adorno unit comprises 86 spatter ramparts and a lava flow that covers with an angular unconformity the lava succession of 87 the Labronzo unit. The Piscità unit is made up of a scoria cone and by a massive lava flow that is 88 mostly buried by lava flows of the San Bartolo unit belonging to the Recent Stromboli period. 89 The San Bartolo unit represents the most recent volcanic products of the study area, dated at ~4-2 90 ka by Arrighi et al. (2004), or between BCE 360 to CE 7 by Speranza et al. (2008). This lava 91 flow field overlays the Roisa, Vallonazzo, Piscità and Nel Cannestrà units, filling a paleo92 drainage gully carved between the Roisa and the Nel Cannestrà lava flows.

93

94 Analytical methods

95 All experiments were carried out on groundmass separates using our CW-laser heating system 96 based on a Synrad 48-5 CO₂ laser, custom beam delivery system (including a Raylease scanhead 97 under analogue control and Umicore beam expander, shutter and pointer laser) for laser single 98 fusion and incremental heating. Samples with purified in an in-house designed sample clean up 99 line and an MAP215-50 noble gas mass spectrometer fitted with a Balzers SEV217 SEM detector operated in current mode (gains switchable under software control between 10^7 , 10^8 and 10^9 Ohm 100 101 amplifier resistors, and all 5 Ar -isotopes, m/e: 36, 37, 38, 39, and 40, and their baselines at m/e: 102 (n - 0.5) measured on the SEM detector). We optimized the conditions for mass spectrometric 103 measurement by using sample pans that allow ca 100 - 200 mg of basaltic groundmass to be 104 spread out evenly forming a layer of less than 5 grains $(250 - 500 \,\mu\text{m size range})$ thickness, thus 105 allowing uniform and even heating of the entire sample (e.g. O'Connor et al., 2007). By 106 increasing sample size we were able to achieve higher beam intensities in our mass spectrometer, 107 and thus we can measure beam intensity ratios more precisely. Defocusing of a TEM_{00} laser 108 beam profile will still result in Gaussian beam energy distributions and uneven heating of the 109 sample. We have overcome this by fitting our 50W CW CO₂ laser with a beam delivery system 110 based on an industrial scanhead that allows the application of a 200 Hz (maximum) frequency 111 triangular current with a variable amplitude (in these experiments effectively +1.5 mm - -1.5112 mm), which results in a rectangular beam pattern of 3 mm in the y-direction by 0.3 mm wide. 113 This diffused laser beam pattern, in combination with a rastering routine of 15 1-mm spaced 114 parallel lines applied by moving the sample pan on a motorized x-y optical stage, ensures an 115 improved homogeneity in laser power delivered to the sample.

It is commonly observed when dating basaltic groundmass by the ⁴⁰Ar/³⁹Ar incremental heating 116 117 technique that phenocryst and xenocryst phases of plagioclase, olivine or clino-pyroxene contain 118 inherited argon in amounts that may interfere with the calculation of a precise eruption age (e.g. 119 De Beni et al., 2005). In contrast, the groundmass microcrystalline phases of plagioclase and pyroxene host the potassium and hence radiogenic ⁴⁰Ar (De Beni et al., 2005, Koppers et al., 120 121 2000). Therefore the sample preparation procedure focused on the selection of homogeneous 122 fragments of basalt groundmass, and to exclude any phenocryst phases. All incremental heating 123 experiments were carried out on 100 - 200 mg splits of $250 - 500 \mu m$ groundmass separates. 124 Experiments were loaded in 65 mm diameter Cu-heating trays each with 5 large positions: 17 mm 125 diameter, 3 mm deep depressions with vertical walls, made out of oxygen free Cu-rod). There 126 were two exceptions where we applied different approaches, both involved sample STR83: the 127 first experiment on STR83 was carried out as multiple three step fusion experiments: the first step 128 was discarded as it contained a large amount of atmospheric argon, and the second and third steps 129 were analyzed and regressed as multiple single fusion experiments. The second experiment on 130 STR83 was analyzed using a resistance furnace heating technique, and a newly designed semi-131 automated gas clean-up line and a quadrupole mass spectrometer fitted with a dual Faraday-132 collector - miniature Channeltron pulse counting SEM detector, described in more detail 133 elsewhere (Schneider et al., 2009).

134

The laboratory technique is described in Wijbrans et al. (1995), and the age of our laboratory standard sanidine DRA of 25.26 ± 0.2 Ma was modified in accordance to recommendations of Renne et al. (1998). In this paper we have applied the decay constants and the isotopic abundance of ⁴⁰K as recommended by Steiger and Jäger (1977). Data is presented with 1- σ uncertainty 139 levels. Recently, a number of laboratories reached consensus to about a new ca 0.7% higher 140 value for the common K-Ar standards used in ⁴⁰Ar/³⁹Ar geochronology for monitoring the 141 neutron flux to which the samples were exposed (Renne et al., 2009; Kuiper et al., 2008). The extremely low enrichments in radiogenic ⁴⁰Ar require accurate monitoring of the mass 142 143 discrimination of the mass spectrometer (our technique is discussed in detail by Kuiper, 2003, 144 and Kuiper et al., 2004). We have chosen in this paper to follow the Steiger and Jäger (1977) 145 convention for the isotopic composition of atmospheric argon as well. Based on the 146 measurements of Nier and co-workers in the late 1940's (Nier, 1950) it has been accepted that the 40 Ar/ 36 Ar ratio of air is 295.5 ± 0.5. Recently, the determination of the air 40 Ar/ 36 Ar was repeated 147 148 with a reported result of 298.56 ± 0.31 (Lee et al., 2006). The effect of this revised value on the 149 actual ages reported here is likely to be minor, as in principle with our technique we measure the 150 enrichment of samples against a determination of the composition of air on one single instrument. 151 Laser incremental heating of basalt groundmass shows characteristic features common to all 152 experiments (9 samples and 2 duplicate runs by groundmass incremental heating on ca 100 - 200153 mg sample; one experiment, STR83, was analyzed with a 3 step fusion on 15 ca 20 mg replicate splits of the sample): all have obviously very low (<5.0%) enrichments in radiogenic ⁴⁰Ar. 154 155 ranging from 1.1 - 4.4% in the youngest sample that was considered to yield a reliable age 156 (STR108) and between 1.8 - 13.1% in the oldest sample (STR101). The sample having the 157 highest K/Ca ratio (STR114) showed enrichments of 1.3 – 4.6%. Sample STR117, considered to 158 be the youngest on both stratigraphic basis and recent archeomagnetic dating (ca 2 - 4 ka; Arrighi et al., 2004; Speranza et al., 2008), gave the lowest enrichment in radiogenic ⁴⁰Ar ranging 159 160 0.1 - 1.2 percent, consistent with its very young age. Its calculated age of 13.1 ± 4.6 ka is 161 inconsistent with stratigraphy, and it may be affected by its very low enrichment in radiogenic ⁴⁰Ar. All experiments show variable K/Ca ratios, commonly high in the first half of the 162

163 experiment and low in the final steps. Average K/Ca values reflect the range in chemical
164 compositions from 0.25 (STR117) to 1.24 (STR114), reflecting the potassium enriched nature of
165 these basalts.

166

167 **Results**

We have selected nine samples for ⁴⁰Ar/³⁹Ar dating from the lithostratigraphic units of the 168 169 northeast flank of Stromboli volcano as defined by Calvari et al. (2010), that are also 170 characterised from a compositional point of view (Fig. 1 and Table 1 for a summary; full 171 analytical data tables are found in electronic supplements to this paper). The results are 172 represented as plateau ages with uncertainties quoted at $1-\sigma$. The lowest stratigraphic unit for 173 which we have a dated sample is the Roisa unit. The sample is made of spatter (STR101), and 174 gave an age of 15.2 ± 2.8 ka (Fig. 2, Table 1, and electronic supplement). The second sample 175 comes from the San Vincenzo unit, and is a lava flow collected at Punta Lena along the shore. 176 The sample (STR65, Fig. 2) has an age of 12.5 ± 2.6 ka. We have dated the dyke and the lava 177 flow of the Labronzo unit obtaining ages of 8.2 ± 1.8 ka and 8.3 ± 1.6 ka respectively (STR112) 178 and STR115b, Table 1 and Fig. 1). A lava flow from the top of the succession of the Spiaggia 179 Lunga unit, cropping out at the exit of the Vallonazzo gully, gave an age of 7.7 \pm 1.4 ka 180 (STR110). A lava flow from the base of the Vallonazzo unit (STR72b, Table 1 and Fig. 1, Fig. 181 2), resting directly on the Spiaggia Lunga unit, gave an age of 8.7 ± 2.0 ka. A spatter belonging to 182 the Nel Cannestrà unit (STR83, 450 m a.s.l.), whose lava flow partially covers the San Vincenzo 183 scoria cone, resulted in an age of 7.9 ± 1.2 ka (Fig. 2). From the Serro Adorno unit we have 184 sampled a lava flow (STR114, 2 m a.s.l.) for which we obtained an age of 6.9 ± 1.1 ka (Fig. 2). A 185 lava flow sample from the Piscità unit (STR106), overlying the products of the Roisa unit and 186 covered by the San Bartolo lava flows, resulted in an age of 6.8 ± 1.4 ka (Fig. 2). From the San 187 Bartolo lava flow field, which is at the top of the sequence in the study area (~4-2 ka, Arrighi et 188 al. 2004; Speranza et al., 2008), we have sampled the highest lava flow exposed along the coast. 189 This sample (STR117, Table 1, Fig. 2) gave us an age of 13.1 ± 4.6 ka. Finally, sample STR108 190 (age: 4.0 ± 0.9 ka, Fig. 2) comes from the top of the lava flow succession at Semaforo Labronzo 191 locality that is directly covered by the Secche di Lazzaro pyroclastic deposit (Bertagnini and 192 Landi, 1996). Although located outside the study area of Calvari et al. (2010) (Fig. 1), this lava 193 flow provides the first firm age constraint for the end of the Neostromboli period and the Sciara 194 del Fuoco first collapse. The only previous age constraint is an archeomagnetic maximum age of 195 CE 1350±60, obtained by high-resolution paleo-declination determination (Arright et al., 2004), 196 which apparently records a more recent and localized event.

197

198 **Discussion**

199 All ages derived for this study are based on a high resolution laser incremental heating method that allows us to resolve the admixture of phenocryst-hosted inherited ⁴⁰Ar in the final 200 201 temperature steps of the incremental heating experiments that would not be possible in more 202 common single fusion or low-resolution furnace experiments (e.g. Hora et al., 2007; or Singer et al., 2008). As mentioned before, we are unable to detect any biases between our ⁴⁰Ar/³⁹Ar 203 204 technique and K/Ar ages where we carried out experiments on rocks from the same outcrops. Our result is consistent with that of Foeken et al. (2009) who published a cosmogenic ³He age of $6.8 \pm$ 205 206 0.2 ka for samples belonging to the Neostromboli phase from the western flank of the volcano.

207 Our results are in general agreement with the stratigraphical order defined by Calvari et al.

208 (2010), as illustrated by the ages for San Vincenzo (12.5 ± 2.6 ka) and Nel Cannestrà (7.9 ± 1.2 ka)

209 units that show clear stratigraphic relationships. An epiclastic deposit between these two units

indicates a hiatus during which significant erosion occurred. Conversely, most flows yielded ages in a narrow range of *ca* 2000 years between $\sim 9 - 7$ ka, without field evidence for significant pauses in the eruptive activity. Although in general stratigraphic order, measured ages falling in this short time interval yielded statistically overlapping results, as is illustrated for the Vallonazzo and Spiaggia Lunga units, where calculated ages appear reversed but with overlapping uncertainties with respect to their stratigraphic relationship.

216 When data from individual experiments are regressed in isochrons, the dispersion of points is 217 often too little to calculate reliable regression lines. However, when all data of the Neostromboli flank eruptions are regressed, the ${}^{40}\text{Ar}/{}^{36}\text{Ar}$ intercept is 296.5 ± 0.5 (n=71), which at 95% 218 confidence level is indistinguishable from ${}^{40}\text{Ar}/{}^{36}\text{Ar}_{air}$. We interpret this to indicate that the 219 220 groundmass of the rocks erupted during the Neostromboli period was essentially free of 221 extraneous ⁴⁰Ar. Therefore, we quote the weighted mean plateau ages (as defined by commonly 222 used criteria, c.f. O'Connor et al., (2007) for a discussion) as the best representation of the 223 eruption age of individual flows. The weighted mean age of 7500 ± 500 a derived from all the 224 results obtained for the Neostromboli period can be interpreted conservatively as the mean age 225 for this period of increased magmatic activity. Our data set reveals consistent results that we 226 interpret to be the culmination of the Neostromboli phase ~7500 years ago. As enrichments in ⁴⁰Ar* are very low, the results are sensitive to bias when minute amounts of argon from other 227 228 sources are present. This is illustrated by the fact that one of the highest units in the sequence, the 229 San Bartolo lava, yielded an apparent age of 13.1 ± 4.6 ka instead of an age of ca 6 ka as 230 expected from stratigraphic relationships with other dated units. This result stands out in that it is 231 much older than expected, albeit that its uncertainty at the 95% confidence level is still consistent 232 with the total data set.

233

234

235 Conclusion

With this study we demonstrate that ⁴⁰Ar/³⁹Ar groundmass dating Holocene high K-calcalcaline 236 237 to shoshonitic basalts of Stromboli is possible under favourable conditions, obtaining results with 238 an uncertainty margin ranging from 15% to 23%. Our results were used by Calvari et al. (2010) 239 to date seven newly discovered eruptive fissures in the northeast flank of Stromboli and ranging 240 from 15 to 4 ka in age, culminating with a short period of increased flank activity as recent as 241 7500 ± 500 years ago. With these results we confirm that during the life time of Stromboli 242 volcano magma production was episodic, with the locus of eruptive activity changing, especially 243 during the Neostromboli period, from the volcano flanks to the summit crater. Periods of rapid 244 building-up of relief lead to unstable topography that may involve future hazards, including 245 renewed flank collapse and associated tsunami hazards. The new 4.0±0.9 ka age for the Sciara 246 del Fuoco collapse presents a more precise, younger age bracket for this most recent major catastrophic collapse event, placing it at the beginning of the 2^{nd} millennium BC. 247

248 Acknowledgements

The mapping of Stromboli was supported by a grant to S. Calvari (Project V2/01, 2005-2007, funded by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and by the Italian Civil Protection). The sample preparation was carried out by Roel van Elsas of the Institute of Earth Sciences, VU. The new instrumentation in the argon laboratory Institute of Earth Sciences, VU (instrument grant for the CO_2 laser, AGES extraction line) was supported by grants from the ISES, VU-Energy conservation fund and the Institute of Earth Sciences). This work was partly supported by INGV through a research grant financed by MIUR-FIRB to G.N.

256

References Cited

258	Arrighi S., Rosi M., Tanguy J.C., and Courtillot V., 2004, Recent eruptive history of Stromboli
259	(Aeolian Islands, Italy) determined from high-accuracy archeomagnetic dating, Geophysical
260	Research Letters v. 31. L19603, doi:10.1029/2004GL020627.
261	Bacon C.R., and Lanphere M.A., 2006, Eruptive history and geochronology of Mount Mazama
262	and the Crater Lake region, Oregon. GSA Bulletin v. 118, p. 1331-1359.
263	Bertagnini A., and Landi P., 1996, The Secche di San Lazzaro pyroclastics of Stromboli volcano:
264	a pheatomagmatic eruption related to the Sciara del Fuoco sector collapse. Bulletin of
265	Volcanology v. 58, p. 239-245.
266	Calvari S., Branca S., Corsaro R. A., De Beni E., Miraglia L., Norini G., Wijbrans J. R. and
267	Boschi E., 2010, Reconstruction of the eruptive activity on the NE sector of Stromboli
268	volcano: timing of flank eruptions during the past 15 ka. In print in Bulletin of
269	Volcanology.
270	Carracedo J.C., Rodríguez Badiola E., Guillou H., Paterne M., Scaillet S., Pérez Torrado F.J.,
271	Paris R., Fra-Paleo U., and Hansen A., 2007, Eruptive and structural history of Teide
272	Volcano and rift zones of Tenerife, Canary Islands. GSA Bulletin v. 119, p. 1027-1051.
273	Cortés J.A., Wilson M., Condliffe E., Francalanci L., and Chertkoff D.G., 2005, The evolution of
274	the magmatic system of Stromboli volcano during the Vancori period (26–13.8 ky). Journal
275	of Volcanology and Geothermal Research v. 147, p. 1-38.

276	De Beni E., Wijbrans J. R., Branca S., Coltelli M., and Groppelli G., 2005, New results of
277	40 Ar/ 39 Ar dating constrain the timing of transition from fissure-type to central volcanism at
278	Mount Etna (Italy). Terra Nova v. 17, p. 292-298.
279	Foeken J.P.T., Stuart F.M., and Francalanci L.,2009, Dating Holocene lavas on Stromboli, Italy
280	using cosmogenic He. Quaternary Geochronology v. 4, p. 517–524.
281	Gillot P.Y., and Keller J., 1993, Radiochronological dating of Stromboli. Acta Vulcanologica v.
282	3, p. 69-77.
283	Hora J.M., Singer, B.S., and Wörner, G., 2007, Volcano evolution and eruptive flux on the thick
284	crust of the Andean Central Volcanic Zone: ⁴⁰ Ar/ ³⁹ Ar constraints from Volcan Parinacota,
285	Chile. GSA Bulletin v. 119, p. 343-362.
286	Hornig-Kjarsgaard I., Keller J., Koberski U., Stadlbauer E., Francalanci L., and Lenhart R., 1993,
287	Geology, stratigraphy and volcanological evolution of the island of Stromboli Aeolian arc,
288	Italy. Acta Vulcanologica v. 3, p. 21- 68.
289	Keller J., Horning-Kjarsgaard I., Koberski U., Stadlbauer E., and Lenhart R., 1993, Geology,
290	stratigraphy and volcanological evolution of the island of Stromboli Aeolian arc, Italy. Acta
291	Vulcanologica 3, appended map of Stromboli, 1:10,000.
292	Kuiper K. F., Hilgen F. J., Steenbrink J., Wijbrans J. R., 2004, ⁴⁰ Ar/ ³⁹ Ar ages of tephras
293	intercalated in astronomical tuned Neogene sedimentary sequences in the Eastern
294	Mediterranean, Earth and Planetary Science Letters v. 222, 583 - 597.

295	Kuiper K.F., Deino A., Hilgen F.J., Krijgsman W., Renne P.R., Wijbrans J.R., (2008),
296	Synchronizing Rock Clocks of Earth History. Science 320, 500 – 504 (87) doi:
297	10.1126/science.1154339
298	Koppers A. A. P., Staudigel H., Wijbrans J. R., 2000, Dating crystalline groundmass separates of
299	altered Cretaceous seamount basalts by the 40 Ar/ 39 Ar incremental heating technique.
300	Chemical Geology 166 , 139 (2000).
301	Lee, J-Y., Marti, K., Severinghaus, J.P., Kawamura, K., Yoo, H-S., Lee, J.B., Kim, J.S., 2006. A
302	redetermination of the isotopic abundances of atmospheric Ar. Geochim. Cosmochim. Acta
303	70, 4507-4512.
304	Nier, A.O., 1950. A redetermination of the relative abundances of the isotopes of carbon,
305	nitrogen, oxygen, argon, and potassium. Phys. Rev. v. 77, 789-793.
306	O'Connor J. M., Stoffers P., Wijbrans J. R., and Worthington T. J., 2007, Migration of
307	widespread long-lived volcanism across the Galápagos Volcanic Province: Evidence for a
308	broad hotspot melting anomaly? Earth and Planetary Science Letters v. 263, p. 339-354.
309	Pasquaré G., Francalanci L., Garduño V. H., and Tibaldi A., 1993, Structure and geologic evo-
310	lution of the Stromboli volcano, Aeolian Islands, Italy. Acta Vulcanologica v. 3, p. 79-89.
311	Quidelleur X., Gillot P.Y., Filoche G., and Lefèvre J.C., 2005, Fast geochemical changes and
312	rapid lava accumulation Stromboli Island (Italy) inferred from K-Ar dating and
313	paleomagnetic variations recorded at 60 and 40 ka. Journal of Volcanology and
314	Geothermal Research v. 141, p. 177-193.

315	Renne P.R., Sharp W.D., Deino A.L., Orsi G., and Civetta L., 1997, ⁴⁰ Ar/ ³⁹ Ar Dating into the					
316	Historical Realm: Calibration Against Pliny the Younger. Science v. 277, p. 1279-1280.					
317	Renne P. R, Swisher C. C., Deino A. L., Karner D. B., Owens T. L., DePaolo D. J., 1998,					
318	Intercalibration of standards, absolute ages and uncertainties in ⁴⁰ Ar/ ³⁹ Ar dating. Chemical					
319	Geology v. 145, 117 - 152.					
320 321	Renne P.R., Deino A.L., Hames W.E., Heizler M.T., Hemming S.R., Hodges K.V., Koppers					
322	A.A.P., Mark D.F., D Morgan L.E., Phillips D., Singer B.S., Turrin B.D., Villa I.M.,					
323	Villeneuve M. Wijbrans J.R., (2009) Data reporting norms for ⁴⁰ Ar/ ³⁹ Ar geochronology.					
324	Quaternary Geochronology 4 (2009) 346–352. doi:10.1016/j.quageo.2009.06.005					
325	Schneider B., Kuiper K.F., Postma O., Wijbrans J. (2009) ⁴⁰ Ar/ ³⁹ Ar geochronology using a					
326	quadrupole mass spectrometer. Quaternary Geochronology.					
327	doi:10.1016/j.quageo.2009.08.003					
328	Singer B.S., Jicha B.R., Harper M.A., Naranjo J.A., Lara L.E., Moreno-Roa H., 2008, Eruptive					
329	history, geochronology, and magmatic evolution of the Puyehue-Cordon Caulle volcanic					
330	complex, Chile. GSA Bulletin v. 120 p. 599-618.					
331	Speranza F., Pompilio M., and Sagnotti L., 2004, Paleomagnetism of spatter lavas from					
332	Stromboli volcano (Aeolian Islands, Italy): Implications for the age of paroxysmal					
333	eruptions. Geophysical Research Letters v. 31, L02607, doi:10.1029/2003GL018944.					
334	Speranza F., Pompilio M., D'Aiello Caracciolo F., and Sagnotti L., 2008, Holocene eruptive					
335	history of the Stromboli volcano: constraints from paleomagnetic dating. Journal of					
336	Geophysical Research v. 113, B09101. doi:10.1029/2007JB005139.					

337	Steiger R. H., Jäger E., 1977, Subcommission on geochronology: Convention on the use ofdecay
338	constants in geo- and cosmochronology. Earth and Planetary Science Letters v. 36, 359 -
339	362.
340	Tanner L.H., and Calvari S., 2004, Unusual sedimentary deposits on the SE side of Stromboli
341	volcano, Italy: products of a tsunami caused by the ca. 5000 years BP Sciara del Fuoco
342	collapse? Journal of Volcanology and Geothermal Research v. 137, 329-340.
343	Wijbrans J.R., Pringle M.S., Koppers A.A.P., Scheveers R., 1995, Argon geochronology of small
344	samples using the Vulkaan argon laserprobe. Proceedings Kon. Ned. Akad. v. Wetensch.
345	V. 98, 185-218.
346	Figures
347	
348	Figure 1.
349	Schematic geological map with a DEM of NE flank of Stromboli as the basis, after Calvari et
350	al. (2010) showing sample locations. Inset top right: Location of Stromboli in the Tyrrhenian
351	Sea showing its position with respect to the coastline of southern Italy and Sicily.
352	Inset bottom left: Proposed stratigraphy for the map area (Calvari et al., 2010).
353	
354	Figure 2.
355	a. combined result replicate runs on STR108a and b. from Semaforo Labronzo. b. Age
356	spectrum STR108 first replicate. c. Age spectrum STR108 second replicate.
357	d. Sample STR106 from the Piscità unit; e. Sample STR114 from the Serro Adorno unit; f.
358	sample ZSTR110 from the Spiaggia Lunga unit; g. sample STR83 from the Nel Cannestrà

359	unit. Experiment STR83a represents the second and third steps of three step fusion
360	experiments that consist of a first step to remove a proportion of the atmospheric argon
361	component (these steps have not been analysed), and a second step at intermediate laser
362	power and a third step that fused the sample (9 replicate experiments). h. Experiment STR83b
363	was carried out on the AGES furnace system and measured on a Hiden quadrupole mass
364	spectrometer (Schneider et al. 2009); i. combined result of STR83a+b.
365	j. STR115b from the Labronzo unit; k. STR112 dyke unit from Labronzo; l. sample STR72b
366	from the Vallonazzo unit; m. sample STR65 from the San Vincenzo unit; n. sample STR117
367	from the San Bartolo unit; o. sample STR101 from the Roisa unit.
368	
369	Tables
370	Table 1: Summary of ⁴⁰ Ar/ ³⁹ Ar dating and sample locations.Supplementary Information:
371	Electronic supplement
372	Summary Table 1. Data summaries consisting of table, age spectrum plot, K/Ca plot, and
373	inverse isochron (Wijbrans-summary data.pdf).
374	Summary Table 2. Full data tables in Excel format
375	(Not provided but a ZIP archive containing Excel format workbooks is available at:
376	http://www.geo.vu.nl/~wijj/Stromboli_data).
377	Appendix 1. Monitoring of mass discrimination with a ³⁸ Ar-spiked reference gas.
378	Appendix 2. Isochron for pooled result of STR72b, 83, 106, 110, 112, 115b, 114, 117,
379	representing the units belonging to the Holocene Neostromboli period.
380	

Age (ka)

Figure

sample	litostratigraphic unit	Coordinate UTM WGS 84	Elevation m a.s.l.	age (ka)	1-σ error	MSWD	% plateau n(steps)	K/Ca	1-σ error				
STR108- 1				3.9	± 1.6 ± 39.7%	1.2	50.5 5	0.55	± 0.11				
STR108- 2		33S0518572 4295656	120	4.0	± 1.2 ± 30.2%	0.5	59.6 5	0.75	± 0.08				
STR108- 1+2				4.0	± 0.9 ± 23.4%	0.7	55.5 10	0.63	± 0.08				
STR106	Piscità	6 Piscità	33\$0519673	30	6.8	± 1.4	0.6	97.1	1.14	± 0.04			
		4295564			± 20.6%		7						
STR114	Serro Adorno	33S0519307 4295876	2	6.9	± 1.1	0.4	95.8	1.24	± 0.09				
		1233070			± 16.6%		8						
STR110	Spiaggia Lunga	33S0519543 4295772	1:05	7.7	± 1.4	2.2	99.1	0.73	± 0.10				
CTD00					± 18.8%	~ -	10						
51R83 1				7.0	± 1.2 + 15 5%	0.5	88.4 16	0.85	± 0.03				
STR83	Nel Cannestrà	33S0519425 4294379	450	9.6	± 2.3 ± 24.4%	0.1	92.3 6	1.08	± 0.20				
STR83 1+2				7.6	±1.1 ±14.5%	0.4	89.2 22	0.88	± 0.04				
STR115b	Labronzo	33\$519208	1	8.3	± 1.6	1.5	60.6	0.90	± 0.03				
		4295910							± 19.4%		4		
STR112	Dike of Labronzo	33\$0519307	307 2 8.2	± 1.8	1.5	98.0	0.89	± 0.04					
		4293870			± 21.5%			11					
STR72b	Vallonazzo	33S0519531 4295782	2	8.7	± 2.0	0.7	98.4	1.07	± 0.08				
					± 22.5%		10						
STR65	San Vincenzo	33\$0520980	1	12.5	± 2.6	0.7	86.4	1.10	± 0.12				
		4295190			± 20.6%		8						
STR117	San Bartolo	33S0519739 4295753	1	13.1	± 4.6	0.3	96.4	0.25	± 0.02				
					± 40.1%		8						
STR101	Roisa	33\$0519359	275	15.2	±2.8	2.2	56.7	0.46	± 0.05				
		4294924			± 18.6%		5						
Pooled result	STR72b, 83, 106, 110 112 115b, 114, 117			7.5	±0.5	0.6	92.0 71	0.44	± 0.04				