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Abstract In this paper, we explore the effects of the
intrinsic uncertainties upon long-term volcanic hazard
by analyzing tephra fall hazard at Campi Flegrei, Italy,
using the BET_VH model described in Marzocchi et al.
(Bull Volcanol, 2010). The results obtained show that
volcanic hazard based on the weighted average of all
possible eruptive settings (i.e. size classes and vent lo-
cations) is significantly different from an analysis based
on a single reference setting, as commonly used in
volcanic hazard practice. The long-term hazard map
for tephra fall at Campi Flegrei obtained here accounts
for a wide spectrum of uncertainties which are usu-
ally neglected, largely reducing the bias intrinsically
introduced by the choice of a specific reference setting.
We formally develop and apply a general method to
recursively integrate simulations from different models
which have different characteristics in terms of spatial

Editorial responsibility: R. Cioni

J. Selva · L. Sandri
Istituto Nazionale di Geofisica e Vulcanologia,
Bologna, Italy

A. Costa
Osservatorio Vesuviano, Istituto Nazionale di Geofisica
e Vulcanologia, Napoli, Italy

A. Costa
Department of Earth Sciences, University of Bristol,
Bristol, UK

W. Marzocchi (B)
Istituto Nazionale di Geofisica e Vulcanologia,
Rome 1, Italy
e-mail: warner.marzocchi@ingv.it

coverage, resolution and physical details. This outcome
of simulations will be eventually merged with field data
through the use of the BET_VH model.
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Introduction

A reliable probabilistic volcanic hazard assessment
(PVHA) is the basic scientific component for planning
long-term risk mitigation actions. Despite its impor-
tance, we argue that very few efforts have been made
to verify the influence of the many natural uncertainties
on the final assessment. Here, we explore this point,
with particular emphasis on the effects of the variability
in eruption size class (with this term, we mean any kind
of parametrization of the magnitude, intensity, or type
of eruption; see Marzocchi et al. 2010) and vent location
upon PVHA. This variability represents an objective
difficulty in achieving a reliable PVHA. Indeed, PVHA
is usually based on single eruptive scenarios analysis
(e.g. Barberi et al. 1995, 2008; DPC 1995), on com-
parison among single scenarios (e.g. Costa et al. 2009),
and/or analysis of phenomena which have occurred in
the past (e.g. Orsi et al. 2004). To date, most PVHA
applications are based on the analysis of single scenar-
ios selected as the most probable or the most represen-
tative. In this way, the aleatory variability associated
with the uncertainty in terms of the size class and vent
locations is completely ignored.

The single scenario approach is often assumed
because of the difficulty in merging together, in a con-
sistent way, the information from different “eruptive
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settings” (ESs), defined as the occurrence of an erup-
tion of a specific size class from a vent in a specific
location (see Marzocchi et al. 2010). This is a crucial is-
sue since both central volcanoes and calderas may erupt
with wide variability in terms of size of the eruption and
location of the vent (e.g. Simkin and Siebert 1994). In
short-term applications, some attempts to reduce such
variability have been adopted (e.g. Lindsay et al. 2010).
In long-term applications, as in the present study, it
is practically unavoidable, given that nowadays, it is
impossible to “predict” the size and vent location of the
next eruption.

In this paper, we consider the case of long-term
tephra fall hazard at Campi Flegrei. Campi Flegrei
caldera (CFc) is a highly urbanized area that has ex-
perienced significant variability both in vent location
and size of eruptions (e.g. Orsi et al. 2004). In practice,
we analyze the effects of the inclusion of different ESs
and other uncertainties on the hazard posed by tephra
fall at CFc using the Bayesian Event Tree for Volcanic
Hazard (BET_VH) code described in the companion
paper (Marzocchi et al. 2010). In this way, we can also
directly check the reliability of PVHA based on single
scenarios.

Furthermore, in this paper, we propose and apply
a scheme that formally merges information coming
from different models and field data relative to a
generic volcanic outcome (e.g. pyroclastic flow, lava
flow, tephra fall, lahars etc.) into the BET_VH model.
The BET_VH model (Marzocchi et al. 2010) is a for-
mal Bayesian inference procedure to assess volcanic
hazard, based on an event tree schema. While the use
of models, theoretical beliefs, past data etc., relative
to eruption forecasting, has been widely discussed in
previous papers (e.g. Marzocchi et al. 2008; Sandri et al.
2009), the inference of the long-term hazard posed by
a generic volcanic outcome has not yet been treated.
In this paper, we present a scheme that integrates the
output of models with different reliability and coverage
in order to provide a single prior probability distribu-
tion associated with each selected volcanic outcome. In
this scheme, the output of each model is included by
weighting it according to the reliability of the model
itself. For instance, simple models can be used to pro-
vide a full description of all possible ESs and rela-
tive initial-boundary conditions; this is usually possible
because simple models are computationally very fast,
and thus, many simulations can be performed. On the
other hand, more sophisticated models, characterized
by longer computational times, may be used to better
define a single ES of particular interest, such as the
most likely ES. In this way, the prior distribution may
be more precise for some specific ESs, reducing the

epistemic uncertainty as much as possible. At the same
time, it may provide an unbiased assessment of any
other realistic possibility. Eventually, such a prior dis-
tribution may be then merged with field data collected
from past eruptions in order to provide a full picture
of the hazard posed by the selected volcanic outcome
(posterior distribution).

To summarize, here we apply the BET_VH model
to long-term tephra hazard assessment at the CFc with
two goals: (1) to explore the effects of the uncertainty
in size class and vent locations on the final assessment
and (2) to provide a tutorial example of how the outputs
of tephra dispersion models can be embedded into
BET_VH. We emphasize that this tutorial example
can be generalized in a straightforward fashion to any
other kind of phenomena, such as pyroclastic flows,
lava flows, or lahars, and to any other volcano.

From simulation output to prior distribution
parameters at nodes 7 and 8 in BET_VH

The model BET_VH (Marzocchi et al. 2010) enables
us to achieve a full volcanic hazard assessment for each
generic volcanic outcome (e.g. pyroclastic flow, lava
flow, tephra fall, lahars etc.). The Bayesian inference
scheme applied to an event tree is schematized in
Fig. 1a (see Marzocchi et al. 2010).

In this section, we describe how to implement the
prior distribution relative to nodes 7 and 8. In practice,
at such nodes, BET_VH describes the diffusion process
of a selected volcanic outcome, given that an eruption
(nodes 1–2–3) in a specific vent (node 4) with a specific
size class (node 5) has produced the outcome (node 6).
More specifically, at node 7, the possibility that a given
area is reached by the selected volcanic outcome is es-
timated; we call this possibility “conditional probability
of reaching episodes”. At node 8, the possibility that,
in the same area considered at node 7, the volcanic
outcome overcomes a specific threshold is estimated;
we call this possibility “conditional probability of over-
coming episodes”.

In order to define the prior probabilities at nodes
7 and 8, we need mathematical models that describes
the spatial dispersion of the selected outcome in the
volcano surrounding areas. In a second step, these prior
probabilities may be eventually combined with field
data (see Marzocchi et al. 2010). In “Appendix”, we
develop a method to convert the output of one or
more theoretical models into the parameters of the
prior distribution. Here, we report the final equations
only; further details can be found in “Appendix”. To
help readers, in Tables 1 and 2, we report a complete
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Fig. 1 Event tree of the
model BET_VH (a) for a
generic volcano and (b) for
Campi Flegrei

list of indexes and symbols used in this paper and in
Marzocchi et al. (2010). Note that here and in Marzocchi
et al. (2010), each index reported in Table 1 refers
always to the same variable (e.g. i refers always to vent
positions etc.).

The prior distribution of the volcanic outcome (i.e.
tephra fall in this application) at a generic k-th area
produced by an eruption occurred at a generic i-th vent
location and the generic j-th size class is completely
defined by �

(k)

7;i, j and �
(k)

7;i, j, for node 7, and �
(k)

8;i, j and

�
(k)

8;i, j, for node 8. Such values represent the average
probability and the equivalent number of data (re-
lated to the variance), for nodes 7 and 8, respectively

Table 1 Indexes for the BET_VH parameters (see Marzocchi
et al. 2010)

Description

i i-th vent location (node 4)
j j-th size class (node 5)
k k-th area for the outcome (node 7)
r r-th run of the model
s Threshold for node 8

(Marzocchi et al. 2010). Such parameters can be esti-
mated as:
⎧
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The parameters contained into these equations (see
Table 2) are of two types: the model-dependent



Bull Volcanol

Table 2 Symbols for the
BET_VH parameters (see
Marzocchi et al. 2010)

Symbol Description

Probability distribution [�] Absolute probability
[θ1−2−3] Absolute probability of eruption in the next τ

[φES] Conditional probability of the selected ES(s),
given an eruption

[φc] Conditional probability at node 7, given eruption
and ES(s)

[φd] Conditional probability at node 8, given eruption
and ES(s)

Parameters I4 Total number of vent location (node 4)
J5 Total number of size classes (node 5)
K7 Total number of areas classes (node 7)
�6; j Conditional average probability of prior model (node 6)
�6; j Equivalent number of data of prior model (node 6)
�

(k)
7;i, j Conditional average probability of the prior model

(node 7)
�

(k)
7;i, j Equivalent number of data of prior model (node 7)

�
(k)
8;i, j Conditional average probability of the prior model

(node 8)
�

(k)
8;i, j Equivalent number of data of prior model (node 8)

Hyper-prior α
(k)
7;i, j, β

(k)

7;i, j Hyper-prior parameters at node 7

α
(s)
8;i, j,k, β

(s)
8;i, j,k Hyper-prior parameters at node 8

Theoretical model �m Equivalent number of data relative to the model adopted
Nr N. of runs of the model
πi, j,k,r Model output values
ν

(k)
7;i, j N. of reaching episodes (node 7) out of the Nr runs

ν
(s)
8;i, j,k N. of overcoming episodes (node 8) out of the Nr runs

w7 Normalized weight for runs at node 7 (Eq. 9)
w8 Normalized weight for runs at node 8 (Eq. 15)

parameters
(
Nr, ν

(k)

7;i, j, ν
(s)
8;i, j,k and �m

)
and the hyper-

prior parameters
(
α

(k)

7;i, j, β
(k)

7;i, j, α
(s)
8;i, j,k and β

(s)
8;i, j,k

)
.

Hyper-prior parameters

The hyper-prior parameters are relative to a sort of
hyper-prior Beta distribution for the nodes 7 and 8 (see
“Appendix”). The use of such a hyper-prior distribu-
tion has two main goals.

The first goal is to substitute the value of zero proba-
bility for the areas that have never hit by numerical sim-
ulations with a more realistic (low) probability. In this
case, these values have to represent a first-order guess
of the probability at nodes 7 and 8, and they can be
defined using empirical observations in other volcanoes
(see, for instance, Tables 2 and 3 in Newhall and Hoblitt
2002), whenever such generalization is assumed to hold.
This point is particularly important when the model(s)
does not cover all the possible ESs combinations. In
the simplest case, we can set α

(k)

7;i, j = β
(k)

7;i, j = α
(s)
8;i, j,k =

β
(s)
8;i, j,k = 1, reproducing the least informative starting

hypothesis (see discussion in Marzocchi et al. 2004,
2008, 2010).

The second and maybe most important goal of the
hyper-prior parameters is that they allow different
models, with different coverage, resolution and phys-
ical details, to be applied recursively. In practice, the
parameters of the Beta distribution obtained from one
model can be set as new hyper-prior parameters for the
second model and so on (see “Appendix” for further
details).

Model-dependent parameters

The model-dependent parameters are Nr, ν
(k)

7;i, j, ν
(s)
8;i, j,k

and �m. The parameter Nr is the number of runs of
a model. The runs are produced to account for the
statistical variability of the model input, given an erup-
tion occurred in a specific vent location (node 4) and
size class (node 5). For example, for tephra dispersion
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models, the runs account for the statistical variability of
the winds distribution and eruptive conditions.

The parameter ν
(k)

7;i, j counts the number of times, out
of the Nr runs of the model, for which the k-th area
is reached by the volcanic outcome, given an eruption
of size class j occurred at the vent location i; note
that ν

(k)

7;i, j is the results of a counting over the model’s
results, and it may be equal to 0; thus, Eq. 2 may
result undefined. In this case, the values of �

(s)
8;i, j,k and

�
(s)
8;i, j,k rely completely to the hyper-prior parameters

(see “Appendix” for further details). In analogy, ν
(s)
8;i, j,k

counts the number of times, out of the ν
(k)

7;i, j, for which
the threshold s of the volcanic outcome is exceeded
(e.g. in terms of loading, dynamic pressure etc.) in the
k-th area, given an eruption of size class occurred at the
vent location i.

The only model-dependent parameter that is not set
by the runs is �m, i.e. the equivalent number of data
to be assigned to the model. �m must be set depending
on the (subjective) reliability that the researcher gives
to the modeling procedure adopted, i.e. not only to
the model itself but also the underlying assumptions
and the capability of the Nr realizations to successfully
describe the whole physical system (e.g. for tephra fall,
wind variability, emission rates variability during the
eruption, DEM models etc.). The choice of �m is sub-
jective, but it is unavoidable. In practice, �m controls
the decrease of the variance of the Beta distribution,
i.e. the uncertainty on the estimation, due to the model
results (see “Appendix” and Marzocchi et al. (2010) for
further details).

Application to tephra fallout at the Campi
Flegrei caldera

In this application, we focus on the tephra fallout haz-
ard assessment for CFc. In particular, we analyze the
effects of combining the output of different ESs com-
pared to the same hazard calculated for just one single
ES, where the uncertainty in the vent location and in
the size class of the eruption are neglected. The event
tree used for this application is reported in Fig. 1b. In
the following, we describe the setting for each node and
the tephra fallout model used, providing a complete
tutorial for BET_VH applications (Marzocchi et al.
2010) and a description of the scheme to integrate
output of different models (previous paragraph and
“Appendix”). The results of the application to the CFc
will be discussed in the sections below.

BET_VH: nodes 1 to 6

All the hazard maps shown in the followings will be
conditioned to the occurrence of an eruption. For this
reason, we do not focus our attention on the probability
estimation at nodes 1–2–3 (probability of eruption in
a time window τ ). We remark that such an estimation
would translate all the conditioned probability maps
shown in this paper into absolute probability maps (see
Marzocchi et al. 2010).

For node 4, we consider the probability map of
vent opening proposed by Selva et al. (2007); this map
accounts for geostructural knowledge of the caldera
as well as past data observed for the last 5 kyr. The
CFc is divided into 700 possible square vent locations
(I4 = 700) with size of 500 m. The probability map of
best guess values is reported in Fig. 2a.

For node 5, according to the results of the recent
Italian project V3-2 Campi Flegrei (ended in July
2007, DPC/INGV PROJECT V3 2004–2006), we clas-
sify CFc eruptions in four representative size classes
(J4 = 4), regardless of the vent location: effusive erup-
tions, small, medium and large explosive eruptions.
Such grouping is based on the analysis of several pa-
rameters (in particular volume and magnitude that, for
CFc, show a good agreement); an exhaustive descrip-
tion of such size classes can be found in Orsi et al.
(2009) and references therein. Basically, the prior dis-
tribution of the size class probability is set through a
power-law distribution for explosive classes (classes 2
to 4), observed in the size distribution of worldwide
eruptions, plus a 0.05 probability for effusive eruptions
(size class 1); this prior distribution is then combined
with past data of the last 5 kyr. All of this information
contributes to form the posterior distribution for node
5, giving best guess probabilities as reported in Fig. 2b.

For node 6, we assume that all eruptions of size
classes 2 or larger certainly produce tephra; eruptions
of size class 1 do not produce tephra (Simkin and
Siebert 1994; Newhall and Hoblitt 2002). This choice is
certainly a simplification and it implies the assumption
that the effect of tephra dispersal from eruption of size
class 1 is negligible respect to the ones from the other
classes. This is justified by the fact that past effusive
eruptions generated only small-volume lava domes and
lava flows, while explosive eruptions generated parti-
cles fallout (e.g. Orsi et al. 2009 and references therein).
In terms of BET_VH symbols, we have �6;1 = 0, �6;2 =
�6;3 = �6;4 = 1. These values of � (0 or 1, states of cer-
tainty) imply that in the Beta distributions, either α or β

will be equal to 0. In this case, the equivalent number of
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Fig. 2 Average (best guess)
conditional probability of
(a) vent opening, i.e. node 4,
from Selva et al. (2007), and
(b) size class of eruption, i.e.
node 5, from Orsi et al. (2009)

data (�6; j) is not relevant, and the Beta distribution will
be a Dirac’s delta centered in 0 and 1, respectively, i.e.
prior probabilities are expressed in terms of certainties
and thus the probability distributions will have zero
variance (see, e.g. Marzocchi et al. 2004; Gelman et al.
1995).

Tephra fallout model

Dispersion and sedimentation of volcanic particles re-
leased from a sustained eruption column in the medium
and distal areas can be fairly well determined from
wind transport, turbulent diffusion and settling by grav-
ity. For relatively small computational domains (i.e.
<100 km) and short durations (i.e. < few days), wind

field can be assumed to be constant and horizontally
uniform. Moreover, vertical diffusion coefficient and
vertical wind component can be reasonably neglected.
Under these assumptions, the mass conservation equa-
tion for each class of particles with a given settling ve-
locity can be solved by using a semi-analytical solution
as described in Macedonio et al. (2005) and Pfeiffer
et al. (2005).

Here, the goal is to model all possible kinds of fallout
deposit produced by sustained columns at CFc, i.e. to
cover all the possible combinations of vent position
and size class (ESs). As a first approximation, we
choose to neglect orography effects. This is a reason-
able assumption since in the case of CFc, topographic
differences are much smaller than the eruption columns
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we consider in this study. Therefore, we model the
tephra dispersion for all the three size classes producing
tephra, but using only one single vent location; then, we
translate the virtual vent to each of all the possible 700
vent locations.

In order to set the emission rate and volume of the
simulated eruptions, we select single values to each one
of the size classes, simulating one reference eruption
size for each class. We select the Agnano Monte Spina,
the Astroni 6 and the Averno 2 eruptions as represen-
tative of the high-, medium- and low-magnitude erup-
tions, following Orsi et al. (2004), Costa et al. (2009)
and Orsi et al. (2009). The input parameters of these
three reference eruptions can be found in Table 3. In
order to account for possible wind distribution varia-
tions, for each size class, we compute the solution rela-
tive to 13,149 different wind profiles for the Campanian
region, i.e. 36 years of daily wind profiles, obtained
from National Oceanic and Atmospheric Administra-
tion (NOAA) reanalysis (Costa et al. 2009).

The approximation of using a fixed emission rate
for each size class is comparable to deterministic ap-
proaches (e.g. Barberi et al. 1990; Macedonio et al.
2008). It may be argued that this approximation may in-
troduce a bias into the final hazard assessment because
an eruption of a generic size class is usually character-
ized by a range of emission rates not just by a single
value (Cioni et al. 2003). Nonetheless, the variability of
the emission rate among different size classes is much
larger than the variability of the emission rate for one
specific size class. Therefore, a hazard assessment that
accounts for the variability of different ESs (as we
will show later) may be only slightly affected by the
inclusion of variability of emission rates within each size
class.

Finally, it is worth noting that the assumption of
a constant wind (we consider only daily wind varia-
tions) may be not general for small scale eruptions
(sometimes characterized by a prolonged activity over
periods of days to weeks, during which low-level winds
can be largely variable). However, in the case of the
eruption chosen as reference for the low-magnitude
eruption, i.e. Averno 2, the proximal deposit shows a
uniaxial distribution (Costa et al. 2009) that justifies this
assumption.

BET_VH: nodes 7 and 8

To set the prior probabilities at nodes 7 and 8, we follow
the scheme presented above and in “Appendix”. First,
we define the potentially impacted region as a rectangle
of 80 × 100 km. Then, we divide it into 2,613 areas
with size increasing with the distance from the caldera.
In each of these areas, the probability is assumed to
be homogeneous. The distance between the centers of
adjacent areas ranges from a minimum of 1 km (within
the caldera) to a maximum of 4 km (at the limit of the
rectangular region); Fig. 3 shows a map representing
the central points of each cell. As regards the threshold
for tephra loading at node 8, we select s = 300 kg m−2

according to Costa et al. (2009) and references therein.
To limit the CPU time for the evaluation of the

BET_VH parameters, we randomly selected 1,000 runs
of the model (Nr = 1,000) among the 13,149 different
wind profiles. This choice does not affect the results
since this will only limit (approximately to 0.01) the
precision of the estimate. In principle, we can even
select only runs relative to a given season for which
the wind variability is smaller, obtaining the probability

Table 3 Input parameters
used for the different size
classes, from Table 1 in Costa
et al. (2009)

Model parameters Large explosive Medium explosive Small explosive

Total mass 5.2 × 1011 kg 1.2 × 1011 kg 2.3 × 1010 kg
Column height 26 km 12 km 7 km
Column shape coefficients 4/1 4/1 3/1
Number of Vsettclasses 6 6 6
Bulk settling velocity 0.5 m/s (18) 0.5 m/s (12) 0.5 m/s (10)
distribution Vsett (wt.%) 2.5 m/s (52) 2.5 m/s (28) 2.5 m/s (16)

4.5 m/s (18) 4.5 m/s (36) 4.5 m/s (29)
6.5 m/s (6) 6.5 m/s (17) 6.5 m/s (26)
8.5 m/s (3) 8.5 m/s (5) 8.5 m/s (12)
10.5 m/s (3) 10.5 m/s (2) 10.5 m/s (7)

Diffusion coefficient K 5,000 m2/s 5,000 m2/s 1,000 m2/s

Mass eruption rate
<∼ 108 kg/s

<∼ 107 kg/s
<∼ 106 kg/s

Daily wind profiles NOAA NOAA NOAA
(period 1968–2003) (latitude 40◦; (latitude 40◦; (latitude 40◦;

longitude 15◦) longitude 15◦) longitude 15◦)
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Fig. 3 Grid point for the
probability maps at nodes 7
and 8. The step of the grid
becomes larger moving away
from the possible sources of
eruptions; see text for more
details. Adapted from Google
Earth (2010 Europa
Technologies; 2010 Tele
Atlas)

for an event occurring in spring, summer, autumn and
winter, respectively.

Finally, we set the equivalent number of data of the
model �m = 10 and α

(k)

7;i, j = β
(k)

7;i, j = α
(s)
8;i, j,k = β

(s)
8;i, j,k = 1.

The choice of taking a uniform distribution for the
hyper-prior is not critical since the fallout model results
are assigned a much larger weight (�m = 10), with
the model covering all the considered ESs, i.e. all size
classes and vent locations.

With the choices described above, we have the fol-
lowing input parameters for node 7:
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12

}

+ ν
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1,000
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where i = 1, 2, ..., 700 indicates the vent location, j =
2, 3, 4 indicates the size class, k refers to the k-th area
and ν

(k)

7;i, j is the number of times that tephra reaches the

k-th area in the 1,000 random realizations of the model
(see Table 2).

Similarly, at node 8, we have:
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2

{
2

12

}

+ ν
(s)
8;i, j,k

ν
(k)

7;i, j

{
10

12

}

if ν
(k)

7;i, j > 0

1

2
if ν

(k)

7;i, j = 0

(5)

�
(s)
8;i, j,k =

{
11 if ν

(k)

7;i, j > 0

1 if ν
(k)

7;i, j = 0
(6)

where ν
(s)
8;i, j,k is the number of times that the selected

threshold of 300 kg m−2 is overcome in the k-th area
in the 1,000 random realizations of the model (see
Table 2).

Results

To analyze the effects of the combined ESs approach,
we present the results relative to a selection of single
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and combined ESs. As single ESs, we select the follow-
ing settings:

1. S1: probability of an eruption similar to the Averno
2 event. For this ES, we select vent location 480 at
node 4 and size class 2 at node 5.

2. S2: probability of an eruption similar to the As-
troni 6 (prototype of medium explosive eruptions
at CFc). For this ES, we select vent location 521 at
node 4 and size class 3 at node 5.

According to the results reported by Orsi et al.
(2009), S1 reflects the most likely size class of eruptions
(small explosive), while S2 represents the medium ex-
plosive eruption class, often adopted for civil protection
application (e.g. for Vesuvio, Barberi et al. 1995, 2008;
DPC 1995).

We also consider the following ESs combinations:

1. COMBO1: probability of an eruption of any size
class in the most probable vent location, i.e. within
the Agnano crater (see Fig. 2). For this case, we
select vent location 520 at node 4 and all size classes
at node 5.

2. COMBO2: probabilities of an eruption of any size
class from all possible vent locations. For this case,
we select all vent locations at node 4 and all
size classes at node 5; each vent and size class is
weighted by its probability of occurrence.

In summary, both COMBO1 and COMBO2 are a
weighted average of ESs, where each ES is weighted
by its own probability of occurrence (see Marzocchi
et al. 2010, Eqs. 20 and 21). Both COMBO1 and
COMBO2 account for all combinations of size classes.
Only COMBO2 also includes the variability of all vent
locations.

The results for S1, S2, COMBO1 and COMBO2
cases are reported in Figs. 4, 5, 6 and 7, respectively;
we plot the conditional best guess (average) proba-
bility maps for node 7 (upper panel, probability that
tephra will reach a specific area) and for node 8 (lower
panel, probability that tephra will overcome a loading
of 300 kg m−2 in each area). Referring to the symbols
in Marzocchi et al. (2010, Eqs. 20 and 21), we plot the
average of [φc] and [φd] for areas k = 1, ..., 2613. Note
that the maps relative to the node 8 are zoomed. All
these probabilities are conditional to the occurrence of
an eruption belonging to the selected single or com-
bined ESs. The absolute probability [�] in the time
window τ is obtained multiplying these probabilities
by the conditional probability of the selected single
or combined ESs ([φES]) and the probability to have

an eruption in the time frame τ ([θ1−2−3], independent
from the ES), that is

[�] =
{[

θ1−2−3
] [[φES] [φc] for node 7

[
θ1−2−3

] [[φES] [φd] for node 8
(7)

Notably, the conditional probability of occurrence of
single or combined ESs, i.e. [φES], strongly varies across
the possible ESs. We may interpret such probabilities
as the relative weight of each output probability map
(at nodes 7 and 8, as in Figs. 4–7). In other words,
if [φES] is relatively small, there is a relatively high
probability that next eruption will occur with a different
ES, i.e. the map will not be representative. On the
contrary, if the probability of occurrence [φES] is close
to 1, it means that the output map is based on almost
the totality of the possible eruptive settings (in terms
of size class and vent location), i.e. the characteris-
tics of the next eruption will be represented well by
the probability values shown in the map. Therefore,
[φES] symbolizes the degree of representativeness of
the map with respect to all possible ESs. As regards
the selected ESs, S1, S2, COMBO1 and COMBO2, the
average of [φES] is 2.24 × 10−3, 1.19 × 10−3, 4.79 × 10−3

and 1.0, respectively. Note that the representativeness
of COMBO1 is several times greater than the single
ESs S1 and S2. On the other hand, COMBO2 has a
representativeness three orders of magnitude greater
than all the other cases (S1, S2 and COMBO1).

The results for S1 and S2 were discussed by Costa
et al. (2009). Here, we highlight the comparison be-
tween results for single ESs (S1 and S2) and those
obtained considering a combination of ESs (COMBO1
and COMBO2). As it appears clear from the figures,
the maps relative to COMBO1 and COMBO2 plotted
in Figs. 6 and 7 are significantly different from those
obtained for single ESs (Figs. 4 and 5). Figure 6, relative
to COMBO1, shows the effect of the uncertainty on the
eruption size. Even though the most likely size class
is the smallest explosive one, the probability map for
COMBO1 (at both nodes 7 and 8) is more spread than
for S1 (Fig. 4). This is due to the fact that COMBO1
considers events of greater size classes; therefore, more
distant areas can be reached by tephra. Notably, the
results for COMBO1, in terms of most dangerous areas,
are between the ones obtained for S1 and S2. This
may have an important impact in PVHA for central
volcanoes, where the uncertainty on vent location is rel-
atively less important; in fact, the extension of the most
likely damaged areas (node 8) in COMBO1 is smaller
than the extension of the most likely damaged areas for
S2, where only and event of size class 3 is modeled. In
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Fig. 4 Probability maps for
node 7 (a) and node 8 (b) for
S1 (Averno 2). Further details
can be found in the text.
Adapted from Google Earth
(2010 Europa Technologies;
2010 Tele Atlas)

other words, if the latter is taken as reference event,
we show that the hazard map derived by this event may
represent an overestimation of the real hazard.

In Fig. 7, the effect of the inclusion of vent location
uncertainty on the probability estimation for nodes 7

and 8 is shown. At CFc, as well as in all large calderas
with many possible eruptive centers, such spatial uncer-
tainty is one of the greatest sources of uncertainty. In
fact, the changes in the probability maps are striking.
In particular, the spatial uncertainty strongly increases
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Fig. 5 Probability maps for
node 7 (a) and node 8 (b) for
S2 (Astroni 6). Further details
can be found in the text.
Adapted from Google Earth
(2010 Europa Technologies;
2010 Tele Atlas)

the spreading of the probability distribution since all
areas inside the caldera find themselves close to one
possible vent. A second aspect to be considered is that
the maximum value of the conditional probability is

lower than the maximum values in all previous cases
(note the color scales in the figures). This is clearly an
effect of the uncertainty in the vent location since the
probability of high tephra loading close to a vent is
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Fig. 6 Probability maps for
node 7 (a) and node 8 (b) for
COMBO1 (most likely vent
and all size classes). Further
details can be found in the
text. Adapted from Google
Earth (2010 Europa
Technologies; 2010 Tele
Atlas)

high, but the position of the vent is not certain as in
the other cases (S1, S2 and COMBO1). That said, it is
noticeable that the peak value of the absolute probabil-
ity for COMBO2 is the largest since the relative [φES]

for COMBO2 is the highest compared to S1, S2 and
COMBO1 (see Eq. 7).

A third interesting feature to be noted is that the
central-eastern part of the caldera has a non-negligible
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Fig. 7 Probability maps for
node 7 (a) and node 8 (b) for
COMBO2 (all vents and all
size classes). Further details
can be found in the text.
Adapted from Google Earth
(2010 Europa Technologies;
2010 Tele Atlas)

probability both at nodes 7 and 8; this is a stable and
common feature that only partially depends on the vent
opening probability distribution used (node 4; Fig. 1a).
In fact, this feature mostly depends on the fact that

this area is downwind with respect to the vast majority
of vents, thus a stacking effect is present. The global
result of the spatial uncertainty is that the probability
of reaching and overcoming episodes has an almost
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uniform and relatively high (about 0.6 and 0.2, respec-
tively) value within the whole caldera, in particular in
its central-eastern part.

Discussion and final remarks

The main goal of this paper is twofold: to explore the
effects of including intrinsic uncertainties onto PVHA
and to describe a realistic tutorial example for the use of
the BET_VH code (described in the companion paper,
Marzocchi et al. 2010) that can be easily extrapolated
to many other applications. These goals are achieved
through the application of the BET_VH model to the
long-term tephra fall hazard for CFc.

The analysis reported here clearly shows that the
inclusion of some uncertainties usually neglected in
PVHA has a major impact on the final assessment.
In particular, the use of combined ESs (COMBO 1
and COMBO 2) give results significantly different from
single ESs (S1 and S2). The combination of all ESs
generally gives smaller values of conditional probability
and more spread distributions over the region around
the volcano. As practical consequence of this, the most
likely impacted area for the next eruption obtained
combining different ESs is much larger than the one
estimated by using a single ES, leading to a greater
uncertainty about the most dangerous areas. This result
suggests that the common practice in PVHA to use sin-
gle “reference” events, such as the “maximum expected
event”, the “most likely event”, or the “worse expected
event”, may lead to significant biases, in particular for
calderas. Single ESs are not able to capture the wide
variability of the hazard, and the combination of all
possible ESs becomes essential to achieve an unbiased
PVHA. Specifically, in this application, we note that the
uncertainty in vent location plays a major role, and it
must be included to get a reliable PVHA. This is a basic
point because a reliable PVHA must be accurate (i.e.
absence of significant biases) because a biased estima-
tion would be useless in practice; on the other hand, it
may have a low precision (i.e. a large uncertainty) that
would reflect our scarce knowledge of some physical
processes involved (Marzocchi et al. 2004, 2008).

Noteworthy, we do not attempt to obtain the “best”
PVHA for CFc because this would require the inclusion
of more models and field data. Anyway, we argue that
this attempt, including different ESs, may represent a
drastic reduction of bias into the long-term tephra fall
hazard assessment for CFc.

Finally, with this application, we have shown how
BET_VH model may manage the output of different
models, even models that describe just a single sce-

nario, producing a prior probability distribution that
averages them. This strategy has several similarities to
the ensemble forecasting used in climate and weather
forecasting (e.g. Krishnamurti et al. 2000), and it may
be potentially used for any kind of volcanoes.
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Appendix: From simulation outputs to the prior
distribution parameters at nodes 7 and 8

In this appendix, we develop a possible scheme to
convert the output of one or more theoretical models
into prior probability distributions of BET_VH. This
procedure is meant to be general and applicable to
all possible volcanic phenomena (e.g. tephra fallout,
pyroclastic flows, lahars, lava flows etc.), as well as to
any possible theoretical model. In particular, here we
present a formulation that directly links the simulation
output results of a model to the distribution parameters
at nodes 7 and 8. Since the procedure may be applied
recursively, such a formulation can be extended to
more than one model.

In the companion paper (Marzocchi et al. 2010), we
argue that a single run of a model, regardless of its
intrinsic reliability, cannot be used to make a reliable
forecasting, mostly due to the variability of the eruptive
source and/or of the initial/boundary conditions. For
instance, for tephra fall, even though the good knowl-
edge of the atmospheric tephra transport leads to the
availability of many reliable models (e.g. Bonadonna
and Costa 2010), the modeling results strongly depend
on wind distribution, column height, eruption intensity
etc. In practice, we need to simulate a large number of
different conditions (e.g. Costa et al. 2009). This set has
to mimic the whole range of possible initial/boundary
conditions, each one weighted with its own probability
of occurrence. Based on this set of runs, we can evaluate
hazard maps relative to single ESs (e.g. Bonadonna
et al. 2002). Here, we describe how such a set of runs
(together with the degree of reliability of the model
itself) may be used to define the input parameters for
the prior distribution at nodes 7 and 8 in BET_VH (see
Marzocchi et al. 2010).

We define Nr as the number of runs of a model that
are produced to account for the statistical variability
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of the model input, given an eruption occurred in a
specific vent location (node 4) and size class (node 5).
As in Marzocchi et al. (2010), with the expression “size
class”, we mean either a specific size (e.g. V.E.I.), or
type (e.g. effusive), or group of sizes (e.g. V.E.I. ≥
3). We call K7 the number of areas (either regularly
spaced or not) in which the region around the volcano
has been divided in order to model the outcome. With
the symbol πi, j,k,r, we indicate the output parameter of
interest relative to the phenomenon (e.g. the loading
for tephra fall or the dynamic pressure for pyroclastic
density currents) in the k-th area for the r-th run of the
model simulating an eruption occurring in vent location
i and of size class j. We call reaching episode in a
given area every run of a model in which the phenom-
enon reaches the area. In analogy, we call overcoming
episode every time a certain threshold s (in terms of
the model output parameter of interest) is exceeded in
a specific area. All the πi, j,k,r data have to be used to
define the prior models at node 7, i.e. the probability of
a reaching episode, and at node 8, i.e. the probability of
an overcoming episode, in all the K7 areas around the
volcano.

As presented in the BET_VH model discussion
(Marzocchi et al. 2010) since reaching and overcoming
episodes in different areas are not mutually exclusive,
each area has a specific Beta distribution at both nodes
7 and 8, for each eruption size class and each vent
location. In practice, we have to set the two parameters
of the Beta distribution (α and β) for two nodes in
K7 areas for I4 locations and J5 size class different
distributions (Marzocchi et al. 2010).

As regards indexes and symbols that follow, they are
in common with the companion paper Marzocchi et al.
(2010) and have been reported in Tables 1 and 2. The
index names are kept the same all over both papers:
The letter i always refers to vent location (node 4), j to
size class (node 5), k to impacted area (node 7), s to the
specific threshold (node 8), and r to a single run of the
model, while the index relative to the phenomenon (p
at node 6, see Marzocchi et al. 2010) is omitted since
in this paper, we refer to a single phenomenon (tephra
fallout; see Table 1).

To set all the Beta distributions in each area, we fol-
low a scheme that resembles the one used to account for
past data (e.g. see Marzocchi et al. 2010); the difference
is that “real” data are replaced by “fake” data coming
from the numerical model. In this case, each run must
be properly weighted accounting for the accuracy of
the overall model rather than counting as one datum.
This is done in order to avoid a decrease in variance in
the final estimation provided by the model as a mere
consequence of a large number of runs of the model

itself. In other words, the variance has to be reduced
only by adding new real data and/or by increasing the
reliability of the model and/or by using the information
derived from other models.

To obtain the analytical relationship between the
output of the model and the parameters of the Beta
distributions, at first we focus on node 7, and we refer to
the generic k-th area, the generic i vent location and the
generic j size class. The number of reaching episodes
ν

(k)

7;i, j , i.e. the number of times for which πi, j,k,r > 0,
r = 1, 2, ..., Nr, is given by:

ν
(k)

7;i, j =
Nr∑

r=1

H(πi, j,k,r) (8)

where H(x) is 1 if x > 0 and 0 elsewhere. Note that ν
(k)

7;i, j
represents the number of “successes” on the Nr “trials”.

As mentioned before, each run output has a weight
that accounts for the reliability of the model, i.e.

w7 = �m

Nr
(9)

where �m is the weight of the model measured in
terms of “equivalent number of data”. In few words,
such a number measure the degree of confidence we
assign to the model (greater the number, greater the
confidence), from a minimum of 1 (largest variance).
For a more detailed discussion, see Marzocchi et al.
(2004, 2008 and 2010). As we will show later, the weight
given by Eq. 9 ensures that the variance of the prior
distribution is controlled only by �m and does not
depend on Nr.

The parameters of the beta distribution at node 7 are
then defined as

α
(k)

7;i, j = α
(k)

7;i, j + w7ν
(k)

7;i, j (10)

β
(k)

7;i, j = β
(k)

7;i, j + w7

(
Nr − ν

(k)

7;i, j

)
(11)

where α
(k)

7;i, j and β
(k)

7;i, j represent the parameters of a
sort of hyper-prior Beta distribution. Such a hyper-
prior distribution may represent our very first order
guess. A possibility is to base such a hyper-prior Beta
distribution on empirical observations in other volca-
noes (see, for instance, Tables 2 and 3 in Newhall and
Hoblitt 2002), whenever such generalization is assumed
to hold. Alternatively, we can set α

(k)

7;i, j = β
(k)

7;i, j = 1 that
would mimic the least informative starting hypothesis
(see discussion in Marzocchi et al. 2004, 2008, 2010).

With these definitions, we can now evaluate the total
weight of the information brought by the theoretical
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model in terms of equivalent number of data (see Mar-
zocchi et al. 2010).

�
(k)

7;i, j = α
(k)

7;i, j + β
(k)

7;i, j − 1 = α
(k)

7;i, j + β
(k)

7;i, j − 1 + �m (12)

that is the number of equivalent data of the hyper-
prior plus the number of equivalent data of the model.
The average probability of this Beta (e.g. Gelman et al.
1995) is

�
(k)

7;i, j = α
(k)

7;i, j

α
(k)

7;i, j + β
(k)

7;i, j

= α
(k)

7;i, j

α
(k)

7;i, j + β
(k)

7;i, j

⎧
⎨

⎩

α
(k)

7;i, j + β
(k)

7;i, j

α
(k)

7;i, j + β
(k)

7;i, j + �m

⎫
⎬

⎭

+ ν
(k)

7;i, j

Nr

⎧
⎨

⎩

�m

α
(k)

7;i, j + β
(k)

7;i, j + �m

⎫
⎬

⎭
(13)

that represents the weighted average between the

hyper-prior average
(

α
(k)

7;i, j

α
(k)

7;i, j+β
(k)

7;i, j

)

and the observed fre-

quency of reaching episodes in the Nr realizations of

the model
(

ν
(k)

7;i, j

Nr

)

; the weights are the relative strengths

of the two pieces of information. The parameters �
(k)

7;i, j

and �
(k)

7;i, j completely set the prior distribution parame-
ters for node 7 and represent the input parameters of
the BET_VH model (see Marzocchi et al. 2010).

For node 8, in analogy with node 7, we set the num-
ber of overcoming episodes, i.e. the number of times
πi, j,k,r > s, and the weight of the single datum coming
from one model realization as

ν
(s)
8;i, j,k =

Nr∑

j=1

H(πi, j,k,r − s) (14)

w8 = �m

ν
(k)

7;i, j

(15)

Consequently, the parameters of the beta distribu-
tion at node 8 will be

α
(s)
8;i, j,k = α

(s)
8;i, j,k + w8ν

(s)
8;i, j,k (16)

β
(s)
8;i, j,k = β

(s)
8;i, j,k + w8

(
ν

(k)

7;i, j − ν
(s)
8;i, j,k

)
(17)

where α
(s)
8;i, j,k and β

(s)
8;i, j,k represent the parameters of a

sort of hyper-prior Beta distribution at node 8 and may
be set both at 1 (least informative starting hypothesis).
Note that at node 8 since ν

(k)

7;i, j may be 0, Eq. 15 may be

not defined. In this case, since from the definitions we
have that

ν
(k)

7;i, j ≥ ν
(s)
8;i, j,k ≥ 0 (18)

when ν
(k)

7;i, j = 0, also ν
(s)
8;i, j,k is equal to 0. In this case, the

model does not bring any information (see Eqs. 16 and
17), therefore we set

α
(s)
8;i, j,k = α

(s)
8;i, j,k (19)

β
(s)
8;i, j,k = β

(s)
8;i, j,k (20)

Proceeding in analogy with node 7 and accounting
for the case ν

(k)

7;i, j = 0, we finally obtain the parameters
of prior distributions at node 8, i.e. the input parameters
for BET_VH:

�
(s)
8;i, j,k =

{
α

(s)
8;i, j,k + β

(s)
8;i, j,k − 1 + �m if ν

(k)

7;i, j > 0

α
(s)
8;i, j,k + β

(s)
8;i, j,k − 1 if ν

(k)

7;i, j = 0
(21)

�
(s)
8;i, j,k

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α
(s)
8;i, j,k

α
(s)
8;i, j,k + β

(s)
8;i, j,k

⎧
⎨

⎩

α
(s)
8;i, j,k + β

(s)
8;i, j,k

α
(s)
8;i, j,k + β

(s)
8;i, j,k + �m

⎫
⎬

⎭

+ ν
(s)
8;i, j,k

ν
(k)

7;i, j

⎧
⎨

⎩

�m

α
(s)
8;i, j,k + β

(s)
8;i, j,k + �m

⎫
⎬

⎭
if ν

(k)

7;i, j > 0

α
(s)
8;i, j,k

α
(s)
8;i, j,k + β

(s)
8;i, j,k

if ν
(k)

7;i, j = 0

(22)

The interpretation of �
(s)
8;i, j,k and �

(s)
8;i, j,k is the same as

at node 7. The only difference worth being noted is that
if in a specific area the phenomenon is never recorded
in the Nr simulations (i.e. ν

(k)

7;i, j = 0), we completely

rely on the hyper-prior distribution given by α
(s)
8;i, j,k

and β
(s)
8;i, j,k. Obviously, in this case, the variance of the

distribution is not decreased by the model since it is not
informative.

The only parameter that is not set by the model runs
is �m, i.e. the equivalent number of data to be assigned
to the model. We stress that �m must be set depending
on the (subjective) reliability that the researcher gives
to the modeling procedure adopted, i.e. not only to
the model itself but also the underlying assumptions
and the capability of the Nr realizations to successfully
describe the whole physical system (e.g. for tephra fall,
wind variability, emission rates variability during the
eruption, DEM models etc.).

We remark that the use of a hyper-prior distribution
has two main interesting consequences. First, if prop-
erly chosen, it eliminates areas with “zero” probability,
i.e. areas never reached by models’ runs: in the cases
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for which ν
(k)

7;i, j = 0, in Eq. 10, we have α
(k)

7;i, j = α
(k)

7;i, j,
meaning that the Beta distribution has average > 0 if,
and only if, α

(k)

7;i, j > 0 (see, e.g. Gelman et al. 1995). The
second and maybe the most important consequence is
that it allows different models to be applied recursively;
specifically, the Beta parameters α and β resulting from
one model become the hyper-prior parameters for the
new model: At node 7, the hyper-prior parameters α

(k)

7;i, j

and β
(k)

7;i, j for the second model will be set equal to α
(k)

7;i, j

and β
(k)

7;i, j from Eqs. 10 and 11 for the first model; in

analogy, at node 8, the hyper-prior parameters α
(s)
8;i, j,k

and β
(s)
8;i, j,k for the second model will be set equal to

α
(s)
8;i, j,k and β

(s)
8;i, j,k from equations of (16) and (17) for

the first model; the same procedure can be applied for
a third model and so on.

Finally, note that it is not necessary that all models
cover the whole set of possible ESs, i.e. all the possible
combinations of i and j. Obviously, the consistency of
the hazard estimation is guaranteed only if at least one
model covers all the possible ESs.
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