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Abstract 8 

The amount of energy radiated from an earthquake can be measured using recent methods 9 

based on earthquake coda signals and spectral ratios. Such methods are not altered by 10 

either site or directivity effects, with the advantage of a greatly improved accuracy. 11 

Several studies of earthquake sequences based on the above measurements showed 12 

evidence of a breakdown in self-similarity in the moment to energy relation. Radiated 13 

energy can be also used as a gauge to estimate the average dynamic stress drop on the 14 

fault. Here we compute the dynamic stress drop, infer the co-seismic friction and estimate 15 

the co-seismic heating resulting from the frictional work during events from different 16 

main shock-aftershock earthquake sequences.  We relate the dynamic friction to the 17 

maximum temperature rise estimated on the faults for each earthquake. Our results are 18 

strongly indicative that a thermally triggered dynamic frictional weakening is present, 19 

responsible for the breakdown in self-similarity. These observations from seismic data 20 

are compatible with recent laboratory evidence of thermal weakening in rock friction 21 

under seismic slip-rates, associated to various physical processes such as melting, 22 

decarbonation or dehydration. 23 



Introduction 24 

Whether earthquakes show a strict self-similar scaling (Ide and Beroza, 2001), or whether 25 

they obey a more complex scaling law (Izutani, 2005) is still an open debate in the 26 

seismological community (poll results of the 2005 Chapman Conference on Radiated 27 

Energy and the Physics of Earthquake Faulting: https://eed.llnl.gov/scaling-28 

workshop/pdf/BWalter_Intro.pdf). 29 

Both models may actually apply, with departures from self-similarity in some 30 

mainshock/aftershocks sequences but not in others (Mayeda and Malagnini, 2009). The 31 

difficulty in discriminating between the two models is in great part due to the lack of 32 

precision of the classic tools that may be used for determining earthquake energies and 33 

sizes (Mayeda et al., 2007). In addition, trivial variations in fault behavior due to changes 34 

in lithology or faulting type may be rather large and hinder unusual variations in the 35 

scaling. This last point may be improved by comparing only earthquakes generated 36 

within the same fault region or fault zone, with the disadvantage of reducing the available 37 

catalog and of working on a much smaller group of earthquakes at a time. 38 

Very small earthquakes (Mw< 2) may be characterized by extreme static stress drops: 39 

200 MPa or more have been estimated from repeating earthquakes by Nadeau and 40 

Johnson (1998), whereas Griffith et al. (2009), showing evidence of fossil seismicity, 41 

inferred large static stress drops for small faults affecting mostly fresh rocks. However, 42 

we do not consider those end members here, but rather earthquake sequences with 43 

magnitudes in the range (3.8<Mw<7.6). Among these, in the cases where self-similarity 44 

does not hold, larger events generally appear to have a relatively larger radiated energy 45 

(normalized to moment); simple scaling laws are not strictly obeyed, indicating that either 46 

the static or the dynamic properties of the fault somehow depend on the earthquake’s 47 

magnitude. Among others, we may conjecture the occurrence of a systematic variation 48 

with magnitude either of rupture velocity, or of high frequency radiation due to fault 49 

complexity, or of initial stress on the fault. Any of the above properties, indeed, affects 50 

the relative amount of radiated energy. However, a systematic variation in either rupture 51 

velocity or fault complexity is difficult to justify, while a variation in the initial stress 52 

seems more reasonable. For example, smaller events may belong to aftershocks triggered 53 

on weaker neighboring faults, after the principal stress direction became more favorably 54 



oriented, or after the pore pressure increased in the vicinity of the fault, as a consequence 55 

of the main shock. In addition, one may argue that the apparent energy increase with 56 

magnitude is an artifact due to bandwidth limitations (smaller events may have part of the 57 

higher frequency attenuated or poorly sampled) and great care should be taken in 58 

verifying this issue. 59 

Finally, one straightforward interpretation of the fact that larger earthquakes appear to 60 

radiate more energy (per unit fault area, per unit slip) is that larger earthquakes are 61 

characterized by a lower residual friction, because faults are progressively weakening 62 

under dynamic slip, resulting in an increased dynamic stress drop for events with a larger 63 

slip. Here, we explore the consequences of the latter interpretation in terms of the friction 64 

dynamics of faults and leave aside other possible interpretations for future studies. 65 

Numerous mechanisms have been invoked to quantitatively describe the dynamic 66 

weakening of faults: acoustic fluidization (Melosh, 1996), elastohydrodynamic 67 

lubrication (Brodsky and Kanamori, 2001), pore fluid thermal pressurization (Rempel 68 

and Rice, 2006), flash heating (Rice, 2006), decarbonation with formation of 69 

nanopowders (Han et al, 2007), dehydration (Hirose and Bystricky, 2007), formation of 70 

gel (Di Toro et al., 2004), frictional melt (Nielsen et al., 2008), and coseismic fluid 71 

pressurization due to frictional CO2 exsolution (Famin et al., 2008); a number of them 72 

were reproduced in laboratory experiments (Han et al., 2007; Hirose and Bystricky, 2007; 73 

Di Toro et al., 2004; Nielsen et al., 2008; Famin et al., 2008). Most of these mechanisms 74 

are triggered by frictional heating and, thus, enhanced weakening should prevail 75 

whenever a large slip occurs in a short time (Rice, 2006; Nielsen et al., 2008, Famin et 76 

al., 2008). Seismic events that release more heat are those where a larger stress drop is 77 

expected (Madariaga, 2007), so that the breakdown in self-similarity may appear when 78 

comparing cold events (typically, small earthquakes with low slips and slip rates) with 79 

hot events (generally, large earthquakes with high slips and slip-rates) within a given 80 

sequence.  81 

If the preferred mechanism for a magnitude-dependent dynamic weakening is fluid 82 

pressurization, we expect that only the faults characterized by low gouge and damage 83 

zone permeability may develop dynamic lubrication. In this paper we will show six cases 84 

in which breaks in self-similarity occur with different severities.  85 



Although in most cases we do not have direct information about fault permeability, 86 

valuable borehole and laboratory information is available for the Chelungpu fault, which 87 

is responsible for the Chi-Chi earthquake of 20 September 1999 (Mw 7.6). This fault is 88 

very important for the seismological community (and for the present study): it represents 89 

a specific case in which portions of a fault that cumulate a substantial amount of slip (8-90 

10 m) are at such a shallow depth that they could be reached by borehole, and samples of 91 

the fault core could be extracted and analyzed for investigating the energetics of the 92 

mainshock (Ma et al., 2006).  93 

Laboratory experiments were performed on different parts of the fault, indicating 94 

different permeability structures. Tanikawa and Shimamoto (2009) concluded that the 95 

fault is divided in two patches: a southern one with high permeability, and a northern 96 

patch with low permeability. Tanikawa and Shimamoto also performed friction 97 

experiments and determined that the low-permeability patch to the north is characterized 98 

by velocity strengthening frictional properties (i.e., stable sliding) at low slip rates, 99 

whereas the southern patch with high permeability is characterized by velocity weakening 100 

(i.e., unstable sliding). Based on results from a numerical model, they stated that, during 101 

the Chi-Chi mainshock, substantial thermal fluid pressurization occurred on the northern 102 

patch of the Chelungpu fault, whereas the more permeable host rocks and core materials 103 

of the southern patch did not allow dynamic lubrication. 104 

Tanikawa and Shimamoto provided a lab estimate of dynamic friction coefficients for 105 

samples taken on each one of the fault patches: 

� 

µ
d

= 0.15 was obtained for the northern 106 

part of the fault, 

� 

µ
d

= 0.22 for the southern part, whereas Kano et al. (2006) determined a 107 

very low dynamic friction coefficient on the northern fault patch during the Chi-Chi main 108 

shock (

� 

µ
d

= 0.04 ÷ 0.08). After considering the large range of possible values for 

� 

µ
d
 on 109 

the northern psrt of the Cheungpu fault, we decided that, for our calculations, we would 110 

have used a “conservative” estimate, 

� 

µ
d

= 0.2, close to the mean of those given by 111 

Tanikawa and Shimamoto (2009).  112 

Based on borehole temperature measurements, the dynamics of faulting of the Chi-Chi 113 

event was recently studied by Wang (2009): in order to explain the shear stress-slip 114 

function inferred by Ma and Mikumo from seismic data (unpublished manuscript, 2008), 115 

he hypothesized the occurrence of severe dynamic weakening through thermal 116 



pressurization. In the square patch of the fault that contained the borehole in which the 117 

sample of the fault core shown in Wang (2009) was taken, the unpublished shear stress-118 

slip function of Ma and Mikumo showed a strongly decreasing shear stress as a function 119 

of slip, reaching a null value at 10.7 m of slip, before going up again to a final shear 120 

stress level of 4.6 MPa. In his conclusions, Wang (2009) cited a previous study (Wang, 121 

2008, unpublished manuscript), in which he modeled the coseismic frictional heat of the 122 

Chi-Chi mainshock in the same square fault patch, and found that during faulting most of 123 

the heat was retained within the slip zone, consistently with the hypothesis of dynamic 124 

lubrication by thermal pressurization. Consistently with our findings, he concluded that 125 

the seismic radiation efficiency varies very much with the earthquake size for small 126 

events, whereas it stays almost constant for large earthquakes. 127 

Because of the amount of information available in the literature on the Chi-Chi 128 

mainshock and seismic sequence, and on the Chelungpu fault in particular, our results on 129 

this sequence are particularly emphasized in this study. Unfortunately, no specific 130 

information on fault architecture and permeability structure, or on fault frictional 131 

properties, are available for the rest of the sequences that are investigated here.  132 

This study describes a total of six different mainshock/aftershock sequences: (1) San 133 

Giuliano (Southern Italy), (2) Colfiorito (Apennines, Central Italy), (3) Wells (NV), (4) 134 

Hector Mine (CA), (5) Chi-Chi (Taiwan), and (6) Iwate (Japan). Results are given in 135 

terms of the coefficients of dynamic friction relative to each event in all sequences. We 136 

show that dynamic weakening characterizes all the sampled seismic sequences, severely 137 

in some cases. Differences in the dynamic behaviors of the studied faults/fault zones are 138 

explained in terms of the different effectiveness of thermal pore fluid pressurization due 139 

to frictional heating. On each individual fault, the phenomenon is modulated by the 140 

permeability of the fault zone. 141 

Role of fluid pressure in faulting 142 

The role of pore fluid pressure in fault mechanics is extremely important in both static 143 

and dynamic conditions: it determines the fault strength during the inter-seismic period, 144 

and it may strongly affect the coseismic phase by lubrication effects induced by dynamic 145 

pulses (Malagnini et al., 2008). In static conditions, numerous studies are available on the 146 



spatial (generally depth) distribution of pore fluid pressure within the crust, or on 147 

temporal fluctuations induced by a spatially and temporally varying bulk permeability, 148 

which is controlled mostly by active faulting (Sibson, 1994; Hunt, 1990; Barton et al., 149 

1995; Miller et al. 2004; Townend and Zoback, 2000). Generally, pore fluid pressure in 150 

the Earth’s crust greatly varies with depth, and so does its gradient. Fluid pressures may 151 

be anything between underpressured (Hunt, 1990), hydrostatic and lithostatic. When pore 152 

fluid pressure gets too large, it can be relieved through the occurrence of hydrofracturing.  153 

Pore fluids in a crystalline crust are generally in hydrostatic conditions (Zoback and 154 

Townend, 2001; Zoback and Townend, 2001; Grawinke and Stockhert, 1997). On the 155 

contrary, regions characterized by substantial sedimentation rates may be characterized 156 

by buried overpressured compartments, and by super-hydrostatic gradients. High pore 157 

fluid pressures are generally found in accretionary prisms (Caine et al., 1996).  158 

Hunt (1990) analyzed the mechanisms of overpressure generation, and the relationships 159 

between the nature and distribution of abnormal pore fluid pressures and the presence of 160 

oil reservoirs. One of his observations is of our particular interest: the depths of the top 161 

seals of the overpressured reservoirs in his worldwide data set cluster around 3000 m.  162 

In deforming sedimentary basins, gradients of pore fluid pressure may turn to lithostatic 163 

at the depth where compaction ceases, and below which sediments are increasingly 164 

undercompacted and overpressured. Such depth represents the top seal of an 165 

overpressured compartment, and may be called fluid retention depth (Suppe and Yue, 166 

2008). 167 

Meeting specific sedimentation/deformation conditions is not the only way to reach 168 

crustal fluid pressures in excess of hydrostatic conditions. In some situations (e.g., the 169 

Umbria-Marche region of the Colfiorito sequence), the confined fluid (overpressured 170 

CO2) is of mantle origin, and percolates upward through the crust until it reaches a seal 171 

where a sub-horizontal pressure discontinuity may form. In such a case, the expression 172 

“fluid retention depth” is no longer to be used for identifying the top of the overpressured 173 

compartment.  174 

However, the mechanical influence of the overpressured fluids on the seismogenic faults 175 

is independent of the nature of overpressure, and thus in all cases we will indicate the 176 

depth where the transition to a super-hydrostatic pressure regime occurs with the same 177 



general expression (gradient transition depth, ZGT, see Figure 1), regardless the nature of 178 

the transition itself. For simplicity, in our pore fluid pressure model, we will only deal 179 

with hydrostatic and lithostatic gradients. The reader should note that, regardless the 180 

“true” pressure-depth profiles, any absolute value of pore fluid pressure at depth can be 181 

met by varying the ZGT parameter (Figure 1). 182 

For what concerns our study, direct measurements of pore-fluid pressure at depth are 183 

available only for one single point on the Chelungpu fault, where the Chi-Chi main shock 184 

occurred. For each one of the analyzed seismic sequences, the available information 185 

taken from the scientific literature is listed in the specific subsections of Appendix A1. 186 

From Seismic Source Scaling to Dynamic Friction 187 

We show how the uneven scaling of seismological data may be interpreted as the 188 

signature of dynamic frictional weakening of earthquake faults, compatibly with 189 

observations of laboratory experiments performed on fault rocks. We use recently 190 

developed low-noise spectral measurements techniques (Mayeda et al., 2007; Mayeda 191 

and Malagnini, 2009), which provide very accurate estimates of radiated energy, in order 192 

to investigate details of the physics of faulting which can be related to non self-similar 193 

behavior. We compare the estimates of the co-seismic temperature rise to the amount of 194 

relative friction drop in six seismic sequences around the world. We show our results in 195 

terms of the apparent dynamic friction coefficient 

� 

µ
d
 of the investigated faults, defined as 196 

the ratio of dynamic shear stress to effective normal stress: 197 

� 

µd =
! d

" n # Pf

,          (1) 198 

where

� 

!
d
 is the dynamic shear stress, 

� 

!
n
 is the normal pre-stress, and 

� 

Pf  is the pore fluid 199 

pressure. By definition of dynamic stress drop 

� 

!"
d
, we may write:  200 

� 

!
d

= !
0
"#!

d
,          (2) 201 

where 

� 

!
0
 is the initial stress.  It is easy to show that:  202 

� 

µd = µs !
"# d

$ n ! Pf

,         (3) 203 

where 

� 

µ
s
 is the static coefficient of friction. All quantities are assumed to be an average 204 

across the fault, and 

� 

!
d
, 

� 

µ
d
 are computed for each event. This is a limitation of our 205 



method, since faults are highly inhomogeneous and both friction and stress will vary 206 

across the fracture surface. In order to compute 

� 

µ
d
 based on equation (3) we require an 207 

accurate estimate of the dynamic stress drop, which is the critical parameter expected to 208 

vary from event to event in case of frictional weakening. We also require an independent 209 

estimate of values, or range of possible values, for the normal stress 

� 

!
n
 and the ambient 210 

pore pressure 

� 

Pf , and, for equation (2), for the initial shear stress 

� 

!
0
, as we discuss later 211 

on.  212 

We propose a simple relation between dynamic stress drop and radiated energy, based on 213 

the energy balance for an expanding crack. The expanding crack model, though it is an 214 

idealization and a simplification of the actual faulting process, is physically more 215 

reasonable than the Brune model, which assumes an instantaneous stress pulse on the 216 

entire fault. Our crack model assumes that the main dynamic friction drop takes place in a 217 

small region located in the immediate vicinity of the advancing crack tip; under such 218 

conditions it was shown (Freund, 1990) that radiation of seismic energy essentially 219 

originates from the vicinity of the crack tip. It can be shown (Appendix A2 to this study) 220 

that the dynamic stress drop is proportional to the radiated energy 

� 

E
R

 through the 221 

equation: 222 

� 

!"
d

= F µ
E
R

M
0

,         (4) 223 

where 

� 

µ is the shear stiffness of rocks and 

� 

M
0
 is the seismic moment. The 224 

proportionality factor 

� 

F  is a dimensionless coefficient (of the order of unity) which, in 225 

the crack model, depends essentially on the ratio of fracture speed to wave velocity. 226 

However, we expect that the value of 

� 

F  analytically derived for the crack model is an 227 

underestimate for natural earthquakes, where radiation is affected by the complexity of 228 

the rupture process; we propose instead to estimate a lower bound of 

� 

F  from the 229 

seimological data as outlined in Appendix A2.  230 

The quantity 

� 

µ
E
R

M
0

 is also known as the apparent stress (Wyss, 1970). The accurate 231 

estimate of radiated energy, 

� 

E
R

, is obtained through a recently developed spectral ratio 232 

method, yielding low variance estimates with respect to classical techniques (Appendices 233 

A1.1 through A1.6; Appendix A2; Wyss, 1970). 234 



According to equation (3), the magnitude of dynamic friction scales with the effective 235 

normal stress 

� 

(! n " Pf ), the value of which cannot be precisely known. Moreover, the 236 

stress ratio in equation (3) depends upon the orientation of the fault plane with respect to 237 

the principal stress axes (the angle 

� 

!  indicated in Figure 2), and the final result depends 238 

also upon the initial static friction coefficient. It is well known that the absolute level of 239 

stress within the Earth is practically impossible to measure, except punctually at borehole 240 

sites. Indeed, the value accessible through seismological observations is only the relative 241 

co-seismic stress drop (Kanamori and Heaton, 2000), with the remarkable exception of 242 

cases where the coseismic rake rotation can be inferred, (Spudich, 1998). As a 243 

consequence, we explore a range of different values: results for a limited range of 244 

parameters are shown here, and more can be found in Appendix 1. The range of the 245 

admissible normal stress 

� 

!
n
 and shear pre-stress 

� 

!
0
 (Figure 2) is estimated by assuming 246 

Andersonian faulting and by varying the orientation of faults with unknown orientation, 247 

like strike-slip ones, from optimal to unfavorable (Sibson, 1974). Let 

� 

!
1
,!

2
,!

3
 be the 248 

maximum, intermediate and minimum effective principal stresses (including the effect of 249 

pore pressure 

� 

Pf ), with the convention of positive compressive stress; let 

� 

!r g z  be the 250 

lithostatic load. Then Andersonian faulting equates to assuming that one of the three 251 

principal stress axes is vertical and that 

� 

!
3

= "r g z # Pf  for thrust faulting, 252 

� 

!
1

= "r g z # Pf  for normal faulting, 

� 

(!
1

+ !
3
) /2 = "r g z # Pf  for strike-slip faulting. For 253 

optimally oriented faults only, there is a relationship between 

� 

!  and 

� 

µ
s
 such that 254 

� 

! = 0.5 arctan(1/µ
s
)  (Sibson, 1974). However, in the general case of non-optimally 255 

oriented faults they are independent and we have to solve for the following system where 256 

� 

! y is the yield stress:  257 

� 

! y = µs " n

! y =
"1 #" 3

2
sin(2 $)

" n =
"1 + " 3

2
#
"1 #" 3

2
cos(2 $)

% 

& 

' 
' ' 

( 

' 
' 
' 

       (4b) 258 

Different fluid pressure distribution with depth are tested by varying the fluid gradient 259 

transition depth (Suppe and Yue, 2008), 

� 

z
GT

, according to the following profile:  260 



� 

Pf =
!wgz z " zGT
!wgzGT + !rg z # zGT( ) z > zGT

$ 
% 
& 

      (5) 261 

where

� 

!
w

 and 

� 

!
r
 are the densities of water and rock, respectively (Figure 1).  262 

According to the above definitions, in the case of thrust faulting we obtain: 263 

� 

z ! zGT :
" n =

g z (#r $ #w ) cos(%)
cos(%) $ µs sin(%)

& y = µs" n

' 

( 
) 

* 
) 

z > zGT :
" n =

g zGT (#r $ #w ) cos(%)
cos(%) $ µs sin(%)

& y = µs" n

' 

( 
) 

* 
) 

 (5b) 264 

and equivalent expressions for the case of normal faulting:  265 

� 

z ! zGT :
" n =

g z (#r $ #w ) sin(%)
µs cos(%) + sin(%)

& y = µs" n

' 

( 
) 

* 
) 

z > zGT :
" n =

g zGT (#r $ #w ) sin(%)
µs cos(%) + sin(%)

& y = µs" n

' 

( 
) 

* 
) 

 (5c) 266 

and strike slip faulting: 267 

� 

z ! zGT :
" n =

g z (#r $ #w ) sin(2%)
µs cos(2%) + sin(2%)

& y = µs" n

' 

( 
) 

* 
) 

z > zGT :
" n =

g zGT (#r $ #w ) sin(2%)
µs cos(2%) + sin(2%)

& y = µs" n

' 

( 
) 

* 
) 

(5d) 268 

 269 

We find that our results are relatively insensitive to fault orientation and static friction 270 

coefficient, and that the only relevant parameter for our study, which can be derived from 271 

equation (5), is the pressure ratio 

� 

! = Pf "rgz  at the seismogenic depth. 272 

In the following developments, we shall assume that the difference between initial and 273 

yield stress is negligible on the studied faults, i.e., 

� 

! y = !
0
. While this is a limit case, the 274 

more likely situation where 

� 

!
0

< ! y  equates to lowering the value of the static friction 275 

coefficient 

� 

µ
s
 in the model. Since we explore a range of different static friction values 276 

(which, as commented above, does not alter the results significantly), we implicitly 277 

account for different prestress levels. 278 

The presence of fluids within the fault core at the occurrence of an earthquake is not a 279 

necessary condition for dynamic lubrication to occur through fluid pressurization. 280 

Experiments on marbles (Han et al. 2007; 2009) and on dolomites from the Colfiorito 281 

fault system (De Paola et al., 2008) showed production of CO2 and water as a result of 282 

the decomposition of fault rocks induced by shear heating. As a consequence, the 283 



dynamic pressurization of the newly produced fluids would induce enough lubrication to 284 

sustain possible initial dynamic weakening due to the pressurization of pre-existing 285 

ambient fluids, maybe already in super-hydrostatic pressure conditions, and extend the 286 

mechanism where overpressurization is not already in place. Moreover, even though 287 

nucleation may be more likely to occur in overpressured patches of the fault plane, 288 

dynamic pressurization of CO2 from thermal decomposition can either sustain dynamic 289 

weakening where ambient pore pressure is low, or boost dynamic lubrication if the 290 

dynamic weakening is already driving the rupture.  291 

Finally, we introduce the co-seismic temperature as an indicator of thermally activated 292 

lubrication effects on the fault. The thermal diffusion problem (Carslaw and Jaeger, 293 

1959) can be solved by imposing the work rate 

� 

V !
d
 as a heat source on the fault plane.  294 

Assuming constant slip rate V and stress 

� 

!
d
 during the slip, we obtain the temperature 295 

evolution (Nielsen et al., 2008): 296 

� 

T = T
i

+
2V!

d
t

"
r
c #$

         (6) 297 

� 

T
i
 is the ambient initial temperature, 

� 

t  is the duration of sliding,  

� 

!  is the heat diffusivity, 298 

� 

!
r
is the rock density, and 

� 

c  is the rock specific heat. Finally, the average dynamic 299 

frictional stress 

� 

!
d
 on the fault is given by equation (2). For seismological applications, 

� 

t  300 

needs to be of the same order of magnitude of the rise time.  Under the usual assumption 301 

that rupture duration scales with Brune’s corner frequency 

� 

fc , and observing that rise-302 

time appears to last about 10% of rupture duration (Heaton, 1990), we may 303 

write

� 

t !1 10 fc( ). It should be noted that the temperature estimate of equation (6) may not 304 

be the actual temperature on the fault plane, but rather an indicative maximum 305 

temperature reached in case that no heat was lost in phase transitions (melting, fluid 306 

pressurization) or fluid convection. It is, though, representative of the power density 307 

produced coseismically per unit fault surface. 308 

Fault maturity and apparent stress 309 

Choy et al. (2006) used a global data set of shallow-focus earthquakes, and classified the 310 

seismogenic faults based on their apparent stress, that is, a measure of the seismic energy 311 

radiated by a square meter of fault, in a meter of coseismic slip. They observed that the 312 



average of the apparent stress calculated worldwide for subduction earthquakes was the 313 

lowest, whereas the average apparent stress of strike-slip events was the highest (most of 314 

them were intraplate oceanic earthquakes that ruptured fresh oceanic crust, and the rest 315 

were from transform faults). Finally, the average apparent stress calculated on a global 316 

data set of normal faulting earthquakes had an intermediate value, on the low side.  317 

Choy’s (2006) translated the information on the average apparent stress in terms of fault 318 

“smoothness” (i.e., earthquakes generated on “smoother” structures have lower apparent 319 

stresses), and thus in terms of fault “maturity”, because the faults with larger cumulative 320 

offsets are expected to be smoother. In their framework, subduction faults are the most 321 

mature structures on earth, whereas the least mature faults are the oceanic transforms that 322 

rupture fresh oceanic crust.  323 

In the context of the present study, an immature fault is defined as a structure that 324 

accumulated a maximum total amount of slip of the order of a few kilometers only 325 

(Shipton et al, 2006), and may be characterized by a thin core and a thin damage zone. 326 

For geometrical reasons, if we exclude listric, sub-horizontal detachments which can 327 

cumulate large offsets, normal faults cannot accommodate a cumulative offset that is 328 

much larger than a fraction of the thickness of the seismogenic zone where they are 329 

active, and thus they should be relatively immature. Examples in our data set are 330 

Colfiorito and Wells. Even though fault size may not necessarily imply the level of 331 

maturity, small strike-slip faults need also to be immature (an example may be the fault 332 

responsible of the San Giuliano sequence), whereas Hector Mine is a larger fault 333 

characterized by a larger cumulative offset, and it is probably more mature.  334 

On the contrary, a mature fault is a structure that accommodated a cumulative slip up to 335 

several tens or even hundreds of kilometers, and that typically possesses a large damage 336 

zone. Examples of mature faults, in the sense defined here, are found in subduction 337 

zones, where hundreds of km of oceanic lithosphere may slip past the bottom of the more 338 

buoyant continental lithosphere, or in mature transform fault zones like the San Andreas, 339 

for which Revenaugh and Reasoner (1997) estimated a cumulative offset ranging 340 

between 300 and 330 km. Across the San Andreas fault zone, Unsworth et al. (1999) 341 

found anomalous low-resistivity zones up to 1 km thick, which were interpreted as 342 

volumes permeated by fluid-filled fractures in the wide damage zone.  343 



In the hypothesis that breaks in self-similarity take place beyond a critical magnitude 344 

threshold due to fluid pressurization, the characteristics of coseismic flow of pore fluids 345 

within the fault zone, and thus the potential for dynamic fluid pressurization during large 346 

earthquakes, must be determined by the architecture of the fault zone itself (made of its 347 

core and damage zone), via its permeability structure. This is where the fault maturity 348 

may come into play.  349 

Fault permeability structure and dynamic behavior 350 

Caine et al. (1996) provided a possible classification of faults based on the ratio between 351 

the width of the damage zone and the fault zone’s total width (damage zone plus fault 352 

core), in which the (high) permeability of the damage zone is dominated by its network of 353 

fractures, and where the (low) permeability of the fault core (interseismically) is 354 

generally less than the permeability of the host rocks. They based their classification on 355 

two parameters, thickness of fault core, and total thickness of the fault damage zone. Four 356 

end-members may be recognized:  357 

• E1) thin-cored faults with no damage zone;  358 

• E2) thick-cored faults with no damage zone;  359 

• E3) thin-cored faults with a wide damage zone made of thin-cored fractures;  360 

• E4) thick-cored faults with wide damage zone.  361 

The hydrological behavior during the coseismic phase of an E1-type fault is that of a thin 362 

conduit, with the ability of becoming a fluid barrier when resealed, shortly after the 363 

earthquake. The fluid flow in such a fault takes place through its core, and dynamic fluid 364 

pressurization is most likely to occur. We state that E1-type faults may be found in the 365 

Apennines, where we observe substantial dynamic effects at the largest magnitudes of our 366 

data sets, which we interpret as dynamic lubrication through pore-fluid pressurization. 367 

In Caine et al.’s (1996) classification, accretionary prisms coincide with the E3-type end-368 

member, in which a large fault zone (decollement) is characterized by a thin core, and by 369 

a very large damage zone permeated by a network of thin-cored fractures. As a 370 

consequence of such architecture, the permeability structure of an accretionary prism is 371 

that of a distributed conduit (Moore and Vrolijk, 1992), where the transport of fluids is 372 



dominated by fracture flow, and where large dynamic pulses of fluid pressure may still 373 

occur.  374 

Accretionary prisms are generally characterized by very high pressures of pore fluids, 375 

sometimes close to lithostatic values (Moore and Vrolijk, 1992). In case of the large Chi-376 

Chi earthquake, which occurred on the Chelungpu decollement, there are borehole 377 

measurements of super-hydrostatic pressures at depth (Tanikawa et al., 2004). These 378 

observations are in sharp contrast with the hydrostatic pressure field predicted by Yue 379 

(2007) down to 10 km.  380 

Based on wedge tapers’ experiments, Suppe (2007) used Yue’s (2007) results in order to 381 

compute an extremely low strength for the Chelungpu fault. In any case, whether the 382 

pore-fluid pressure is hydrostatic or lithostatic, the Chelungpu detachment may be 383 

characterized by low coefficients of static friction. At least, locally. 384 

As far as the dynamic coefficient of friction is concerned, significant dynamic lubrication 385 

must have taken place during the Chi-Chi main shock. At least the northern part of the 386 

fault, for which Ma et al. (2003) hypothesized the occurrence of substantial elasto-387 

hydrodynamic lubrication that caused a large pulse of ground velocity and low 388 

acceleration amplitudes. A substantially different behavior must have characterized the 389 

southern portion of the Chelungpu fault, which caused large ground accelerations and low 390 

velocity amplitudes (Ma et al., 2003).  391 

In addition to Wang (2009), whose conclusions on the occurrence of dynamic 392 

pressurization on the Chelungpu fault during the Chi-Chi earthquake have already been 393 

described in a previous section, the same hypothesis was formulated by Ishikawa et al. 394 

(2008), on the ground of the analysis of core samples from three active areas of the fault 395 

zone, and by Doan et al. (2006), based on the low hydraulic diffusivity observed in situ, 396 

together with the presence of high-temperature fluids. Their interpretation was that the 397 

average stress-drop of the Chi-Chi main shock was dominated by the rupture of the 398 

asperity to the south, whereas the northern part of the fault did passively follow the 399 

dynamic push. In other words, when pushed beyond a critical slip velocity, thanks to a 400 

dramatic lubrication effect through thermal pressurization, the northern patch of the 401 

Chelungpu fault could act as an efficient decoupling interface for the hanging wall. As a 402 

consequence of the described dynamics, the northern part of the Chelungpu fault is 403 



characterized by aftershocks with low values of apparent stress, whereas the large values 404 

of the aftershocks’ apparent stresses are all concentrated in the southern side of the fault 405 

zone, as shown in Figure A9. 406 

Finally, two recent works went down to the root of the problem of the complex seismic 407 

radiation observed during the Chi-Chi main shock: the first one (Tanikawa and 408 

Shimamoto, 2009) provided estimates of the permeability coefficients in the northern and 409 

in the southern patches of the fault, whereas the second one (Noda and Lapusta, 2009, 410 

personal communication) used them in order to implement a 3D earthquake model. These 411 

two studies allowed us to understand the average behavior of the Chi-Chi sequence, in 412 

terms of the observed break in self-similarity, and of the calculated coefficients of 413 

dynamic friction. 414 

Coefficients of dynamic friction 415 

We present the coefficients of friction for the events of six different 416 

mainshock/aftershock sequences: (1) San Giuliano (Italy), (2) Colfiorito (Italy), (3) Wells 417 

(NV), (4) Hector Mine (CA), (5) Chi-Chi (Taiwan), and (6) Iwate (Japan). All the details 418 

of the calculations, together with the descriptions of the sequences and data sets, are left 419 

in Appendices A1.1 through A1.6.  420 

Sequences (1) through (3) (Appendices A1.1 through A1.3) occurred on small faults, 421 

capable of events with a maximum magnitude between Mw 5 and Mw 6, and Figure 3 422 

shows they are characterized by severe progressive weakening with increasing 423 

temperature. Sequence (4) (Appendix A1.4) occurred on a relatively large strike-slip 424 

fault. Sequence (5) (Appendix A1.5), occurred on a large structure capable of an Mw 7.6 425 

mainshock, shows very similar apparent stresses between the mainshock and some of the 426 

largest aftershocks, but the smaller events have substantially smaller apparent stresses. 427 

Sequence (6) (Appendix A1.6) occurred on a crustal thrust fault, ~100 km above a 428 

subducting slab: although self-similarity clearly breaks in this data set (see Figures A11 429 

and A12), the computed friction coefficients do not show a dramatic weakening. The 430 

different behavior is due to the fact that, for fixed pore fluid pressure, coefficient of static 431 

friction, and θ, a thrust fault is characterized by the largest pre-stresses of all the three 432 



fault types, and thus by the lowest stress drop/pre-stress ratio, according to equations (2) 433 

and (3).   434 

Sequences (4) and (6) occurred on structures capable of Mw~7 mainshocks. They both 435 

show that below Mw~5.5, the aftershock sequences look self-similar, but a jump in the 436 

apparent stresses is necessary to match the mainshocks. A similar behavior, although 437 

more complex, distinguishes sequence (5), occurred on the Chelungpu fault, which is 438 

capable of Mw 7.6 earthquakes. Even though we know the importance of the maximum 439 

magnitude that can occur on each structure, we stress that the relationship between 440 
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 and fault maturity is anything but simple.  441 

In the results of Figure 3, we note that the amount of absolute fault weakening (i.e., the 442 

value taken by the coefficient of dynamic friction, 

� 

µ
d
) does not depend only on how far 443 

the sequence is from self-similarity: Appendix A2 demonstrates that the absolute value of 444 

� 

µ
d
 depends on: 1) the fault type (thrust, normal, or strike-slip), that is, on the prestress 445 

level, 2) the orientation of the fault plane with respect to the principal compressional 446 

stresses, and 3) (as seen in Figure 3) on the ambient pore fluid pressure. Of all sequences 447 

shown in this study, regardless its substantial departure from self-similarity (Figures A11 448 

and A12), sequence (6) seems to be characterized by the least “absolute” dynamic 449 

weakening. 450 

Discussion 451 

Possible causes of bias in the results should be carefully checked, in particular, the 452 

eventuality of an insufficient bandwidth in the measurements concerning smaller events 453 

(Bill Ellsworth, personal communication, 2008). Indeed, calculations based on data with 454 

limited bandwidth in the high-frequency range would neglect a large part of the seismic 455 

energy radiated by smaller earthquakes, thus biasing their dynamic stress drops toward 456 

lesser values. In this case the observed source scaling of Figure 3 would be an artifact and 457 

may not allow to conclude against self-similarity. We verified that for results of Figure 3, 458 

A1, A3, A5, A7, A9, and A11, the bandwidth does include the corner frequencies of the 459 

smaller events. Further evidence is provided in the Figures A2, A4, A6, A8, A10, and 460 

A12, where the observed spectral ratios (red squares) and the theoretical best fit curves 461 

are shown (solid blue sigmoidal curves). In each figure, the horizontal blue solid lines 462 



represents the theoretical asymptotic low- and high-frequency limits of the spectral ratio 463 

for two perfectly self-similar earthquakes. The low-frequency limit of 
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M
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02
 (where 464 

� 

M
01

> M
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) is represented by the top horizontal, solid blue line. The high-frequency limit 465 

of 
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M
01
M

02( )
1!

p

3 , where 

� 

p  is the high-frequency roll-off parameter of the observed 466 

spectra (in the specific case where 

� 

p = 2), is represented bottom horizontal, solid blue 467 

line. 468 

We observe that dynamic weakening, when present, is always strongly correlated with 469 

earthquake magnitude (Figure 4). Nevertheless, in order to stress the existence of some 470 

thermally-activated processes, the coefficients of dynamic friction given by equation (3) 471 

are always shown as a function of the virtual fault temperature computed using equation 472 

(6).  473 

Figure 5 goes down to the core of our results: the apparent stresses calculated for all 474 

events, in all sequences. The most important attribute of our measurements is represented 475 

by their extreme accuracy, which could be reached only by using the coda-based 476 

methodology initially developed by Mayeda et al. (2007), and subsequently refined by 477 

Mayeda and Malagnini (2009). Based on the
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a( )  pairs of Figure 5, and on 478 

information on fault orientation taken from the published moment tensor solutions (dip-479 

slip faults), or for three possible orientations for strike-slip faults, we calculated all the 480 

dynamic parameters shown in this study.  481 

Figure 5 indicates that non-self-similar source scaling characterizes all sequences: the 482 

logarithm of the apparent stress tends to increase linearly with the logarithm of the 483 

seismic moment, at least up to a moment magnitude Mw between 4.5 and 5.5 (the Iwate 484 

data set seems to be an exception to the rule), and saturates to a constant value beyond a 485 

threshold moment magnitude, between Mw6 and Mw7. A limiting value for the apparent 486 

stress, well below 10 MPa, is common to all sequences. 487 

For a given fault zone, the process of dynamic weakening is indicated by the temperature 488 

dependence of the coefficient of dynamic friction, which generally decreases when the 489 

fault temperature increases coseismically. The invoked physical mechanism is that of the 490 

abrupt buildup of thermal fluid pressurization within the fault core during slip. For the 491 

sequences analyzed, we hypothesize that substantial weakening is likely to occur on the 492 



thin-cored end-members (E1, E3) of the classification scheme of fault zones provided by 493 

Caine et al. (1996). 494 

In particular, the analysis of the Chi-Chi sequence shows that dynamic weakening may 495 

occur regardless of the presence of a wide damage zone, if the latter is made of a network 496 

of fractures that still allows dynamic pressurization to occur on the main fault. In such an 497 

environment, in order to maintain the super-hydrostatic pore fluid pressure that is 498 

observed inter-seismically in boreholes above the Chelungpu fault (Tanikawa et al., 499 

2004), the same network of fractures need to be effectively sealed, at least during the 500 

inter-seismic periods.  501 

We hypothesize that the presence of pore fluids always tends to prevent excessive 502 

temperature increases. On faults where fluid confinement is not efficient due to a core 503 

and damage zone of high permeability, heat may be removed from the fault core by fluid 504 

advection. On the contrary, on faults where confinement is efficient, the thermal response 505 

of pore fluids to frictional heating allows lubrication by core pressurization. The effect of 506 

fluid pressurization as a function of increasing temperature may be understood by looking 507 

at the different families of dynamic friction coefficients plotted in Figure 3, or at the 508 

complete set of plots shown in Figures A1, A3 A5, A7, A9, and A11. Our qualitative 509 

argument is that both mechanisms (dynamic lubrication or fluid flow) will tend to 510 

prevent, or limit, melt production and temperature rise. In the scarcity of fluids, we 511 

expect lubrication to occur through melting, decarbonation, gel formation, or any 512 

lubrication mechanism other than fluid pressurization, as discussed in the Introduction. 513 

All events analyzed in this study are assumed to occur on the mainshock’s fault plane, 514 

which is most probably the case at least for the largest aftershocks. However, one can 515 

argue that the small aftershocks of some sequences may occur, within the location error, 516 

either on the main fault plane, or on off-plane fractures driven by the local (residual) 517 

stress fields (Mayeda and Malagnini, 2009). Regardless of their locations, our 518 

calculations show that the small earthquakes in our sequences never dissipate enough 519 

frictional energy to thermally pressurize pore fluids. As a consequence, the information 520 

of whether the small aftershocks are located on or off the main plane is irrelevant to our 521 

conclusions. In other words, the positions of the small events in the plots of dynamic 522 

friction vs. temperature of Figure 3 are always in the upper left corners of the different 523 



frames, and would not appreciably change if we had to use slightly different fault 524 

orientations. 525 

Conclusions 526 

Based on the results shown in Figure 3, and on the details of the analyses described in 527 

Appendices A1.1 through A1.6, we conclude that pore fluid pressurization, as a physical 528 

mechanism for causing fault weakening, is compatible with the departure from self-529 

similarity observed in the discussed seismic sequences. Such phenomenon is effective 530 

only if fluids remain trapped in narrow vessels. Alternatively, if pore fluids are allowed to 531 

expand in wider regions of high permeability around the fault core, they can remove heat 532 

from the primary slip zones by advection rather than pressurizing the fault. In either case 533 

(lubrication or heat removal), the presence of fluids is expected to limit the coseismic 534 

increase of fault temperature.  535 

In the hypothesis that fluid pressurization is the key mechanism, a fault classification 536 

based on maturity may not be able to capture the average dynamic behavior of all the 537 

different structures. More suitable for this task would be a classification scheme based on 538 

the permeability architecture of the fault core and damage zone (Caine et al., 1996), for 539 

which the opposite end-members, from most prone to dynamic lubrication, to least prone 540 

to dynamic lubrication, are:  541 

• E1, E3) thin-cored faults, with or without a wide damage zone of thin-cored fractures, 542 

respectively. In our interpretation, dramatic dynamic lubrication is likely to occur on 543 

these faults/fault zones, and we show evidence that, within a specific sequence 544 

occurred on such structures, the average dynamic friction is indeed smaller for larger 545 

and hotter events. 546 

• E2, E4) thick-cored faults with or without a wide damage zone, respectively, for 547 

which we imagine the volumes containing the primary slip zones pervasively 548 

crisscrossed by permeable networks of fractures. Faults like these are more likely to 549 

behave self-similarly, unless/until other weakening mechanisms, like melt production, 550 

would take over. We believe we do not have examples of such end-members in the 551 

investigated data sets. 552 



Small, immature faults may not have wide damage zones, and thus they probably are E1-553 

type. On the contrary, for a mature fault like the San Andreas, the damage zone may be 554 

up to ~1 km-wide (Shipton et al., 2006), and the permeability structure of a wide damage 555 

zone may, in specific cases, prevent fluid and heat containment during faulting. In the 556 

Caine’s classification, accretionary prisms like Taiwan are the prototypes of the thin-557 

core-wide damage-zone end-member that we named E3.  558 

Based on our results, we think that the two fault classification schemes (the one based on 559 

maturity, and the one based on permeability structure) need to partially overlap, but it 560 

must be the permeability structure of a fault what dominates its behavior. Our hypothesis 561 

is that immature faults with very small cumulative slips are likely to be E1-type structures 562 

(sequences (1), (2), and (3)), whereas the Chelungpu fault (sequence (5), by definition an 563 

E3-type fault zone) is probably a smoother, more mature, structure. Yue et al. (2005) 564 

found that the Chelungpu fault accommodated a total displacement of ~14 km, but the 565 

largest slip (~10 m) occurred on a newly propagated (cumulative offset of only 300 m) 566 

North Chelungpu Chinshui detachment, which shows abnormally smooth rupture 567 

dynamics. 568 

About the Hector Mine and Iwate sequences ((4) and (6)), we believe they may be 569 

representative of an intermediate situation in which the fluid pressurization is modulated 570 

by a critical value of the permeability of the fault core and damage zone: high enough to 571 

dissipate the pressure pulses of the small events but low enough to allow some dynamic 572 

lubrication for a large event like the mainshock. About sequences (4) and (6), for which 573 

the dynamic weakening is less pronounced, it is interesting to note that they both show a 574 

clear non self-similar energy scaling. 575 

Opposite end-members in the maturity classification scheme given by Choy et al. (2006), 576 

from less mature to most mature fault zones, are oceanic transform faults that rupture 577 

fresh oceanic crust, and subduction faults. For what has been shown in this study, we 578 

think it would be important to perform our analysis also on fault maturity end-members. 579 

Unfortunately, no complete data sets of broadband waveforms from such kinds of 580 

sequences are available at the moment. The analysis proposed here is difficult to apply to 581 

subduction events because the distances involved are generally too large to record 582 

broadband seismograms of the small events with good S/N ratio, which are necessary for 583 



defining the source scaling. For the same reason, data from the other end-members of 584 

fault maturity (oceanic transforms on fresh oceanic crust) are also difficult to obtain, and 585 

dedicated experiments need to be planned.  586 

 587 
Figure 1.  Pore fluid pressure vs. depth. We use two possible gradients only, hydrostatic and lithostatic, 588 
connected by a variable crossover depth. 589 

 590 
Figure 2.  Orientation of the maximum and minimum stress axes with respect to the fault plane. The 591 
cartoon indicates the conventional relationship used for the angle 

� 

!  in the fault geometry. A reverse fault 592 
is presented here. 593 



 594 

Figure 3.  Coefficients of dynamic friction computed for the events of the five seismic sequences analyzed 595 
in this paper. Shown here is a single calculation for each sequence, but a limited search in the parameter 596 
space is given, for each sequence, in Appendix 1. Pressure increases from the white symbols to the black 597 
ones, given the corresponding decrease of the fluid retention depth. In other words, for each sequence we 598 
fix the pore fluid pressure to three plausible values, and obtain three different “families” of possible friction 599 
coefficients: white are hydrostatic conditions, gray are higher pressure, black are very high pore fluid 600 
prssures. Larger symbols indicate the mainshock of the specific sequence. For San Giuliano, the figure 601 
contains the indication of its two mainshocks. 602 



 603 
Figure 4.  The coefficients of dynamic friction shown in Figure 3 are shown here as a function of seismic 604 
moment. The picture indicates that, generally, the dynamic friction is strongly correlated with the size of 605 
the earthquake. Two apparent discrepancies are observed: 1) the Colfiorito seismic sequence is 606 
characterized by multiple mainshocks with comparable size, and the lowest dynamic friction is computed 607 
for the second largest event; 2) for the Chi-Chi sequence, the map in Figure A9 indicates that the event with 608 
the largest apparent stress (and thus the lower dynamic friction) is not the mainshock, but the largest event 609 
occurred within the southern patch of the fault. For the meaning of the gray scale, see the caption of Figure 610 
4. 611 



 612 
Figure 5.  Apparent stress (horizontal axes) as a function of seismic moment (or moment magnitude), for 613 
the events of the investigated sequences. In each frame, seismic moment is on the left vertical axis, and the 614 
corresponding moment magnitude is on the right vertical axis. All sequences are characterized by non-self-615 
similar source scaling. 616 
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A1.1: The San Giuliano sequence (Southern Italy) 628 

Two mainshocks of similar magnitude (Mw ~ 5.7) struck the town of San Giuliano di 629 

Puglia (Molise, Southern Italy) on 10/31/2002 at 10:33 UTC, and on 11/01/2002, at 15:09 630 

UTC. The first earthquake caused the collapse of an elementary school, and the death of 631 

26 children and one teacher. Both events had almost pure strike-slip mechanisms, and 632 

best centroid depths at 15 km (Catalog of the INGV-Harvard Regional Centroid-Moment 633 

Tensor Solutions, http://www.ingv.it/seismoglo/RCMT).  634 

Both the high-quality hypocentral depths of the two mainshocks were below 20 km; the 635 

distribution of the aftershocks delineated a single, E-W-striking fault plane, where both 636 

mainshocks were located. All the events in the sequence were deeper than 10 km, and the 637 

energy radiated by both mainshocks was entirely generated no deeper than 24 km 638 

(Latorre et al., 2008).  639 

Breakout data in the adjacent Gargano area demonstrated that the regional stress field is 640 

characterized by a horizontal, NE-SW-striking minimum principal stress (Montone et al., 641 

1999), so that the fault orientation, in Sibson’s classification (Sibson, 1990), is 642 

presumably at the transition between favorable and unfavorable (i.e., at about 150 from 643 

the optimal orientation). 644 

In our calculation of shear friction on the fault plane for the events of this sequence 645 

(Figure A1), we sample the case where the fault plane is oriented close to the optimal 646 



reactivation angles, 
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s( )  (26.5 and 30.0 degrees, for 
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= 0.75 and 647 
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= 0.58, respectively). We also sample non-optimal orientations (5 degrees added to the 648 

optimal angles), and unfavorable orientations (20 degrees added to the optimal angles). 649 

The same orientations are explored for the other strike-slip fault described in this study: 650 

the one of the Hector Mine earthquake. Results are based on the best fits shown in Figure 651 

A2. 652 

High pore fluid pressure at mid-crustal depths was hypothesized in the region, due to 653 

substantial CO2 degassing of mantle origin, and a lower bound estimate for the 654 

overpressure parameter (

� 

! = 0.65) is available at the seismogenic depth (Boncio, 2008; 655 

Chiodini et al., 2004). It is not clear at what depth the pore fluid pressure becomes super-656 

hydrostatic, so we produce an exploration of the possible regimes (2000 m and 4000 m 657 

for the transition depth, and hydrostatic conditions for comparison). The apparently low 658 

stress drop for the San Giuliano mainshocks, and the anomalous pore fluid pressure at 659 

depth were erroneously linked together (Boncio, 2008), whereas it was demonstrated 660 

(Malagnini and Mayeda, 2008) that both the two main earthquakes have in fact high 661 

stress drops: a characteristic to be expected when substantial dynamic weakening is 662 

inferred.  663 

Based on the hypothesis of total stress release for the largest mainshock of the sequence, 664 

in a regime of high pore fluid pressure (i.e., transition depth set to 2000 m) and optimal 665 

orientation to the regional stress field, the coefficient F in equation (36) of Appendix A2 666 

was calibrated to the value F=3.0. That of a null frictional stress is a rather arbitrary 667 

choice, although necessary to fix the value of the coefficient F. If we had independent 668 

information on the actual value of the dynamic friction, the null friction should have been 669 

substituted with the specific value.  670 

The value F=3.0 was used throughout this study, for all the calculations shown. In terms 671 

of dynamic behavior, we note that the friction coefficients in Figure A1 define a 672 

distribution that systematically decreases with increasing magnitude (or, which is the 673 

same, any increase of friction-induced virtual temperature). The cited value for the 674 

coefficient F=3.0 represents an upper bound for the conditions described above.  675 

Such behavior indicates a high sensitivity of the dynamic friction to changes in the 676 

generated frictional heat, and thus a very efficient confinement of heat and fluids within 677 



the fault core during faulting. The described dynamic characteristics of the San Giuliano 678 

fault are consistent with the E1 end-member in the Caine (1996) classification (thin 679 

conduit/core, no damage zone). 680 

A1.2: The  Colfiorito sequence (Central Italy) 681 

The first two mainshocks of a long sequence (Amato et al., 1998) occurred in Central 682 

Italy on September 26, 1997, at 00:33 UTC, and at 09:40 UTC. A total of six mainshocks 683 

with magnitudes Mw between 5 and 6 struck over a time span of about one month. The 684 

seismogenic structure consisted of a low-angle extensional fault elongated in the NW-SE 685 

direction (dip of about 40o). The extension took place over a reactivated thrust that could 686 

be classified at the transition between favorable and unfavorable orientations (Sibson, 687 

1990). The seismicity of the sequence was confined to the top 8 km of the crust.  688 

The fault-valve behavior of the main fault (Sibson, 1992a,b) was documented during this 689 

seismic sequence (Miller et al., 2004): the fault ruptured a seal at a depth of about 5000 690 

m, liberating a large amount of CO2 of mantle origin that was overpressured below this 691 

surface (Chiodini et al., 2004).  The present study analyzes six spectral ratios, computed 692 

between two of the maishocks (Mw 5.91 and Mw 5.48), and five aftershocks with coda 693 

magnitude Mw between 3.85 and 4.29. The depth of the top of the pressured volume in the 694 

area was fixed to 5000 m: due to the shallow depths of the earthquakes, hydrostatic 695 

conditions would yield overlapping results with those of a seal depth of 5000 m. For 696 

comparison, results for a seal depth of 2000 m are also computed. Results are shown in 697 

Figures A3 and A4. 698 

It is well known (Sibson, 1994) that fault-valve behaviors may modulate the regime of the 699 

pore fluid pressure in the entire crust, and thus the events that occurred later in the 700 

sequence may have experienced a substantially lower pore fluid pressure with respect to 701 

those occurred at its beginning. The amplitude of the described variation in the pore fluid 702 

pressure within the sequence was neglected in our calculations.  703 

Dynamic weakening by fluid pressurization has been invoked by Malagnini et al. (2008) 704 

in order to explain the source scaling relationship found for the Colfiorito sequence, for 705 

which they found: 
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" 4.7±0.3( ) . The computed dynamic weakening does not seem to 706 

correlate with the time elapsed from the mainshock, and thus with the decreasing ambient 707 



pore fluid pressure below the broken seal, but a clear correlation is seen with the events’ 708 

magnitudes.  709 

The pulse of pore fluid pressure experienced above the broken seal triggered some of the 710 

aftershocks that entered in our analysis. Our interpretation is that the variations of pore 711 

fluid pressure due to the fault-valve behavior is not the dominant mechanism in reducing 712 

the dynamic coefficient of friction, at least in the Colfiorito area, but lubrication of 713 

immature fault is dominated by dynamic fault pressurization.  714 

Again, for a possible classification of the Colfiorito fault system in Caine’s (1996) terms, 715 

we can only infer its permeability structure from the observation that the dynamic 716 

behavior of the sequence, as described in Figure A3, is very similar to that of the events 717 

on the fault responsible for the San Giuliano events. For this reason, we believe that the 718 

Colfiorito fault system is close to the E1 end-member of Caine’s (1996) scheme. 719 

A1.3: The Wells sequence (NV)  720 

On 2008 February 21, at 14:16:02 UTC, the area surrounding Wells (NV) was struck by 721 

an Mw 6.0 earthquake. The event occurred during the deployment of USArray in the 722 

region. For this earthquake, UC Berkeley computed a normal faulting mechanism, with a 723 

slight oblique component. For the epicentral area, the USGS Quaternary Faults and Folds 724 

Database indicate the existence of a network of widely distributed faults west of Wells 725 

Peak. Nevertheless, based on the revised location, the aftershocks’ distribution, and the 726 

depth of the mainshock, it was difficult to associate the Wells event with a specific fault 727 

(http://earthquake.usgs.gov/eqcenter/recenteqsww/Quakes/us2008nsa9.php#summary). The 728 

conjugate planes of the UC Berkeley mechanism dip at 65 and 31 degrees (~32.5 and 729 

~15.5 degrees from the vertical maximum stress, respectively): the first plane is around 730 

the optimal orientation to the axis of maximum compressional stress; the second plane is 731 

at the transition to the range classified as unfavorably oriented (Sibson, 1990). 732 

We analyze 6 spectral ratios, computed between the mainshock (coda-based moment 733 

magnitude Mw 5.90), and 6 aftershocks (coda-based moment magnitudes Mw’s between 734 

4.10 and 4.57). Results are shown in Figures A5 and A6. 735 

The pore fluid pressure regime in this area is, to our knowledge, unknown, and so a full 736 

exploration is performed over standard pressure conditions (overpressure regime with 737 



hydrostatic/lithostatic gradient transition at depths of 2000 m and 4000 m, and fully 738 

hydrostatic regime), for the two possible orientations of the fault planes. The qualitative 739 

analysis of the dynamic behavior of the sequence suggests a low-permeability structure 740 

that allows the occurrence of strong coseismic pulses of pore fluids. Although not as 741 

extreme as the San Giuliano seismic sequence, we can attribute to this sequence a 742 

behavior compatible with that of the end-member E1 in the Caine’s (1996) scheme.                                       743 

A1.4: The Hector Mine sequence (CA) 744 

The Hector Mine earthquake, Mw 7.0 (from full waveform inversion, Ichinose, personal 745 

communication, 2006), occurred in the Mojave desert on 16 October, 1999, at 09:46 746 

UTC. The focal solution indicated a sub-vertical strike-slip earthquake occurred on a N-747 

NW-striking fault.  748 

The six spectral ratios analyzed in this study were computed between the Mw7.0 749 

mainshock and six aftershocks with coda-based moment magnitudes Mw’s between 3.76 750 

and 4.97 (Mayeda et al., 2007). Our calculations (Figure A7) are carried out using the 751 

same orientations and static coefficients of friction that are used for the San Giuliano 752 

sequence (26.5, 31.5 and 46.5 degrees for 

� 

µ
s

= 0.75, and 30.0, 35.0, and 50.0 degrees for 753 

� 

µ
s

= 0.58, corresponding to optimal, non-optimal, and unfavorable orientation, 754 

respectively, for the two coefficients of static friction). The theoretical fits of the 755 

observed spectral ratios used for the computation of the results shown in Figure A7 are 756 

plotted in Figure A8.  757 

We have no specific data on the pressure gradients in the area surrounding the fault: the 758 

only information we have to date (Peltzer et al., 1996) hypothesized hydrostatic pore fluid 759 

pressure conditions for the Landers earthquake, whose epicenter lies some 45 km from 760 

the Hector Mine epicenter (rupture planes lie about 20 km apart).  761 

Strike-slip faults are not clearly oriented with respect to the axis of the regional maximum 762 

compressive stress; an outstanding example in California is that of a major fault like the 763 

San Andreas, for which a number of studies invoked the presence of overpressured fluids 764 

(or other weakening mechanisms) in order to explain the slipping of a fault that may be, 765 

in Sibson’s (1990) classification, severely misoriented. In a severely misoriented fault, 766 

the reactivation angle (i.e., angle between the fault plane and the maximum compressive 767 



stress) is beyond lockup (

� 

!
r

> 2!
r

*, where 

� 

!
r

* is the optimal reactivation angle). Such 768 

faults are able to slip only if the pore fluid pressure is super-lithostatic (i.e., in a strike-769 

slip or reverse-slip fault, 

� 

Pf > !
3
), so that the effective stress becomes tensile. Of course, 770 

in super-lithostatic pressure conditions, in order for a severely misoriented fault to move, 771 

the following condition for the differential stress must be met: 

� 

!
1
"!

3( ) < 4T , where 

� 

T  is 772 

the tensile rock strength (Sibson, 1990). For higher values of the differential stress, rocks 773 

would rupture on a new shear plane at the optimal orientation (or on an existing surface 774 

of weakness with a better orientation). In this study we do not sample severely 775 

misoriented angles. 776 

The tendency of other California sites towards lithostatic pore pressure conditions was 777 

documented based on the analysis of pore fluid pressure measurements from the 778 

sedimentary basins within the San Andreas fault system (Sibson, 1990). Since we do not 779 

have precise information about the specific area surrounding the Hector Mine epicenter, 780 

we will explore the situations where pore fluid pressure around the fault is hydrostatic, or 781 

if there is a fluid seal of some sort at depth that allows the build-up of a super-hydrostatic 782 

pore fluid pressure, with a hydrostatic/lithostatic gradient transition at depths of 2000 and 783 

4000 m, and for totally hydrostatic conditions as well. 784 

The Hector Mine seismic sequence shows a dynamic behavior characterized by a 785 

substantial, yet moderate, decrease of the dynamic friction coefficient only for the 786 

mainshock. We interpret such behavior as follows: the permeability of this fault is high 787 

enough to prevent substantial lubrication episodes during the small events, but low 788 

enough to still allow large pressure pulses to cause dynamic lubrication, at least for M~7 789 

events like the recorded mainshock. A critical slip velocity must exist, above which 790 

lubrication takes place, according to the interpretation of a step-like break in self-791 

similarity given for this fault by Mayeda and Malagnini (2007), who predicted the critical 792 

cross-over magnitude be Mw~5.5. In the Caine’s scheme, the Hector Mine fault must 793 

occupy an intermediate location, somewhere between the end-members where dynamic 794 

pressure pulses can easily occur, and the ones where pressure pulses are forbidden.  795 



A1.5: The Chi-Chi sequence (Taiwan) 796 

The Chi-Chi earthquake (Mw 7.6) struck Taiwan on September 20 1999, at 17:47 UTC. 797 

The Harvard CMT solution showed a reverse fault mechanism with one of the conjugate 798 

planes dipping 250, close to the optimal reactivation angle. The mainshock ruptured the 799 

newly propagated North Chelungpu Detachment, and was characterized by an 800 

anomalously smooth rupture dynamics (Yue et al., 2005). The peculiar characteristics of 801 

the recorded ground motion (large pulse of ground velocity and low accelerations to the 802 

North; low ground velocities and large accelerations to the South) make this sequence 803 

particularly interesting. 804 

The data set analyzed here is made of 17 spectral ratios calculated between the 805 

mainshock and 17 aftershocks with magnitudes ranging between Mw 4.70 and Mw 6.30. 806 

Results are displayed in Figure A9, and the best fits are shown in Figure A10. More 807 

information on the present Chi-Chi database of spectral ratios is available in the literature 808 

(Mayeda and Malagnini, 2009). The 

� 

M
0
 vs. 

� 

fc  plot for this sequence shows a moderate, 809 

step-like, departure from self-similarity at Mw ~ 5.5 (lower-left frame of Figure A9). 810 

Taiwan serpentinites (present along the detachments) have been used in lab experiments 811 

to explain the extreme dynamic weakening of some faults in terms of the effects of 812 

serpentine dehydration, through the subsequent fluid pressurization of the fault core 813 

(Hirose and Bystricky, 2007). Such a mechanism could help explain the lack of 814 

pronounced heat flow observed along major crustal faults such as the San Andreas (e.g., 815 

Brune et al., 1969), and the low temperature anomaly recorded in a borehole that went 816 

through a shallow part of the northern patch of the Chelungpu fault (1100 m deep), even 817 

six years after the Chi-Chi earthquake.  818 

The latter observation (Kano et al., 2006) is evidence of a very low level of friction that 819 

could not generate much heat at the time of the earthquake. From a measured peak value 820 

of 0.06 0C for the thermal anomaly observed during the experiments across the northern 821 

patch of the Chelungpu fault, with a spatial width of the anomaly of about 40 m (20 m 822 

from each side of the peak), a diffusion equation was used in order to estimate a 823 

coseismic shear stress of 1.1 MPa, at a depth of 1111 m (Kano et al., 2006). Based on the 824 

mentioned observations, conduction must be the predominant mechanism of heat 825 

transport in the investigated fault patch, so that the heat transported by fluid flow does not 826 



have a dominant effect. This must be true also for the coseismic phase, although the very 827 

shallow depth at which the measurements were taken did not assure the sampling of the 828 

seismogenic portion of the fault. For the northern patch of the Chelungpu fault, where the 829 

temperature anomaly was observed, based on the computed frictional heat, an extremely 830 

low apparent coefficient of dynamic friction was estimated by Kano et al. (2006), in the 831 

range between 0.04 and 0.08. 832 

There seems to be no unanimous consensus on the pore fluid pressure regime in this 833 

region, although an overwhelming portion of the published studies leans toward an over-834 

pressurized environment. Accretionary wedges are generally characterized by pressured 835 

compartments (Hunt, 1990): in the region of Tiehchanshan (Taiwan), the seal of an 836 

overpressured compartment is found at a depth of about 3200 m (Hunt, 1990).  837 

Nevertheless, hydrostatic pore fluid pressures were predicted by Yue (2007) down to 10 838 

km in the region of the Chi-Chi earthquake (Mw 7.6), and used for the calculation of a 839 

very low friction coefficient on the basal detachment of the western Taiwan wedge 840 

(Suppe, 2007), that was explained in terms of the presence of weak minerals. Yue’s 841 

(2007) results conflict with the actual pore fluid pressure measurements taken down a 842 

deep borehole reaching the Chelungpu fault in the Taiwan Western Foothills, right in the 843 

focal area of the 1999 Chi-Chi earthquake. Such data set showed a clear departure from 844 

the hydrostatic gradient 5500 m down a borehole (Tanikawa et al., 2004). Finally, the 845 

presence of overpressured fluid compartments in the Hsinchu basin (Hunt, 1990), 846 

suggests that such situation may be widespread in the Taiwan accretionary prism.  847 

Tanikawa and Shimamoto (2009) carried out low- and high-velocity friction tests on rock 848 

samples from shallow boreholes in the Chelungpu fault, together with measurements of 849 

permeability. They showed that the northern part of the fault is characterized by a 850 

velocity-strengthening behavior at low velocities, and has very low values of 851 

permeability, so that the slip zone is very susceptible of dynamic fluid pressurization 852 

when a large rupture, nucleated in the south, is able to push the northern patch past its 853 

critical slip velocity, so that the patch may become unstable and a large rupture may 854 

occur.  855 

Tanikawa and Shimamoto (2009) showed that, on the contrary, the southern part of the 856 

fault is characterized by a velocity-weakening frictional behavior, and by larger values of 857 



permeability that inhibit fluid pressurization. Noda and Lapusta (2009), motivated by the 858 

laboratory measurements of Tanimawa and Shimamoto (2009), implemented a 3D 859 

earthquake sequence simulations for a simplified model of the Chelungpu fault. The 860 

model was made of two different patches with different physical characteristics: velocity-861 

strengthening friction and low permeability for the northern patch; velocity-weakening 862 

friction and high-permeability for the southern patch. Clearly, events could nucleate only 863 

in the southern portion of the fault, but they could propagate also in the northern portion. 864 

Generally, stable sliding conditions in the northern patch of the fault killed the rupture 865 

propagation, but sometimes, when the slip velocity in the northern patch could go beyond 866 

a critical threshold and initiate thermal pressurization, a large event could rupture the 867 

entire fault. Noda and Lapusta (2009, personal communication) observed that the 868 

combined effect of rate hardening at slow slip rates, and efficient thermal pressurization 869 

at high slip rates in the northern patch of the fault is very consistent with the 870 

characteristics of the ground motion that were observed during the Chi-Chi earthquake: 871 

low accelerations/high velocities/large slips to the north, and high accelerations/low 872 

velocities to the south. 873 

The described dynamic interaction between the two main parts of the fault makes the 874 

Chelungpu earthquake cycle consist of multiple events of different sizes. The patch to the 875 

south, where unstable sliding occurs and dynamic pressurization is forbidden, breaks 876 

frequently in smaller events that cannot relieve large amount of shear stress. The region 877 

to the north, of more efficient thermal pressurization, produces larger slip when it is 878 

ruptured, and thus has lower inter-seismic values of shear stress and does not rupture in 879 

every event.  880 

It must be clear that our observations cannot discriminate between the different behaviors 881 

of the two fault patches. In fact, our coefficients of friction, plotted in the upper frames of 882 

Figure A9, represent a weighted average (on the amount of radiated energy) of the two 883 

different behaviors. If, as we hypothesize, the break in self-similarity that affects the main 884 

shock was due to dynamic fluid pressurization, the overall effect was lessened by the 885 

(more self-similar) contribution of the unstable southern patch. From the visual 886 

inspection of Figure A10, the break in self-similarity is very clear.  887 



As for the Caine’s (1996) classification, the Chelungpu belongs to the Taiwanese 888 

accretionary prism, and thus it is, by definition, an E3 end-member. The northern patch of 889 

the Chelungpu fault zone is thus part of a mature detachment where very strong frictional 890 

heating-generated pulses of pore fluid pressure are very likely to happen, and where 891 

extreme dynamic lubrication may take place. On the contrary, dynamic pressure pulses 892 

appear to be forbidden on the southern patch of the Chelungpu fault zone.  893 

As stated in the main text, the fault maturity seems to be too vague in order to be the 894 

fundamental characteristics for dynamic lubrication to occur through pore fluid 895 

pressurization. For what concerns the Chi-Chi event, however, it is worth repeating that 896 

Yue et al. (2005) found that, although the Chelungpu fault accommodated a total 897 

displacement of ~14 km, the largest slip occurred on a newly propagated fault called 898 

North Chelungpu Chinshui detachment, which coincides with the area where the 899 

abnormally smooth rupture dynamics was observed. 900 

A1.6: The Iwate sequence (Japan) 901 

The Iwate event occurred on June 13, 2008, at 23:43:53.2 in northern Japan. The CMT 902 

catalog indicates the epicentral location: 39.03N, 14.85E. The centroid depth of the 903 

earthquake was at 12 km. Its half-duration was 6.7 sec, for a moment magnitude 904 

� 

M
wCMT

= 6.9 , and a coda magnitude (this work) 

� 

M
wCODA

= 6.90 . The magnitude of the 905 

Japanese Meteorological Agency was 

� 

M j = 7.2. The focal mechanism of the main shock 906 

was that of a pure thrust with a dip angle of 420. The coseismic displacement was inferred 907 

from InSAR data by Takada et al. (2009), who proposed a complex rupture that took 908 

place over five different planes and Ohta et al. (2008) provided a coseismic fault slip 909 

model on three subfaults, based on data from a dense GPS network, with a maximum slip 910 

of 3.5 m on the southern fault segment. 911 

The seismic sequence used in this study contains 5 aftershocks (

� 

4.60 ! M
w
! 5.62 ). 912 

Wang et al. (2008) described a distinctive, anomalous low-VP, low-VS, and low-Poisson 913 

ratio in the upper 10 km of the crust, where the fault strength may be weaker than in other 914 

regions of the seismogenic layer, which was interpreted as due to the presence of fluids 915 

from slab dehydration. The hypocentral depth from regional data was 8 km (Wang et al., 916 



2008), well above the subducting Pacific plate (the slab depth in the Iwate epicentral area 917 

is between 100 and 150 km), and just to the East of the volcanic belt of NE Japan.  918 

The Iwate earthquake is not a subduction earthquake, but results from the compressional 919 

rupture of a shallow crustal structure, which is probably in a tectonic environment 920 

characterized by high pore-fluid pressure.  921 

This sequence (see bottom frame in Figure A11) shows a familiar behavior: the small 922 

events are almost self-similar, but a jump in Brune stress drop is needed to match the 923 

corner frequency of the main shock. According to the 

� 

M
0
vs. fc  plot, the computed 924 

dynamic friction coefficients (Figure A11, top frame) are about constant for all the 925 

aftershocks, with a slight decrease (lubrication) for the main shock.  926 

The Iwate fault is clearly not a mature one, and the fits of Figure A12 confirm the break 927 

in self-similarity with respect to the main shock that may be inferred after the visual 928 

inspection of Figure A11. Finally, the complex fault architecture responsible for the Iwate 929 

mainshock is compatible with the presence of a wide damage zone that dominates its 930 

permeability structure. In terms of the Caine’s (1996) classification, we think that Iwate 931 

and Hector Mine may be very similar. The limited amount of apparent dynamic 932 

lubrication seen in Figure A11, compared with the results obtained for the Hector Mine 933 

fault zone (Figure A7) indicate a similar behavior for the two structures, with the Iwate 934 

fault plane (the only thrust fault analyzed) characterized by the largest shear pre-stress of 935 

all the faults sampled in this study. 936 

A2: Scaling of dynamic stress drop with radiated energy 937 

For a mixed mode II-III fracture with constant rupture velocity and homogeneous 938 

dynamic stress drop, we derive the following expression for the crack’s dynamic stress 939 

drop: 940 

� 

!" = F #,$,% ,k( )" a
, 941 

where 

� 

!
a

= µ
E
R

M
0

 is the apparent stress, and 

� 

F !,",# ,k( )  is a function of four 942 

dimensionless parameters. 943 



Our energy-based estimates of dynamic stress drop correlate very strongly with the 944 

corresponding values of the Brune’s stress parameter, but with substantially smaller 945 

uncertainties. 946 

Crack models have long been used in seismology for the quantitative description of the 947 

ground motion observed spectra; the most widely used one was developed by Brune 948 

(1970, 1971): an earthquake dislocation is described as a tangential stress pulse 949 

instantaneously applied to the interior of a dislocation surface, and the resulting time 950 

function of the dislocation motion is directly related to the effective stress available to 951 

accelerate the two sides of the faults. The Brune crack model does satisfactorily describe 952 

the near-field and the far-field displacement time-functions and Fourier amplitude spectra 953 

of point-source earthquakes. Such capabilities, together with the simplicity of use, are the 954 

most important contributions to its widespread success.  955 

Even today, the Brune stress drop is a common estimate of the dynamic stress drop, 956 

which is determined from the zero-frequency level (

� 

!
0
), and the corner frequency (

� 

fc ) of 957 

the far-field displacement amplitude spectrum. Snoke (1987) found “remarkable that the 958 

application of such a simple model has resulted in easily interpretable scaling relations 959 

among source parameters for many suites of earthquakes”.  960 

However, the physical description of faulting given in the Brune model suffers for an 961 

important oversimplification of the entire phenomenon. Moreover, as we will show later, 962 

the uncertainties associated to the Brune stress drops from corner frequency 963 

measurements may be too large for these parameters to be effectively used for the 964 

investigation of the thermal characteristics of faulting, because of the amplification of the 965 

errors on the corner frequencies through their formal propagation.   966 

More recently, dynamic fracture models were based on the calculation of energy balance 967 

at the crack tip, where the most important physical processes take place during fracture 968 

propagation. Important reviews of the basic principles of dynamic fracture mechanics are, 969 

among others, those by Kostrov and Das (1988), Freund (1990), and Broberg (1999).  970 

If friction on the actively slipping fault surface remains low after break-down, it may be 971 

considered as time-independent except in a small region near the crack edge (i.e. the 972 

breakdown region where the friction drops abruptly during rupture advancement). In this 973 

case, it can be shown that the amount of radiated energy 

� 

E
R

 can be stated in terms of a 974 



difference of energy flow at the propagating tip of the crack only (Freund, 1990, p. 293, 975 

eq. 5.8.18): 976 

� 

E
R

= F 0(t
'
) ! F(t ' )( )

!"

+"

# dt
'         (1) 977 

Here 

� 

F 0(t)  and 

� 

F(t)  stand for the instantaneous rate of energy flow into crack tip, 978 

integrated along the crack edge, in the case of quasi-static and dynamic crack 979 

propagation, respectively. 

� 

F  and 

� 

F 0 are in units of force

� 

!length/time (

� 

J ! sec
"1 or 980 

� 

N !m ! sec
"1). Since a static crack does not radiate, the difference between the static and 981 

the dynamic case equates to the radiated amount in the crack energy balance. Adapting 982 

the definitions from (Freund, 1990), we may write: 983 

� 

F(t) = F(
!(t )

" s, t) ds         (2) 984 

where s is the position along the crack edge and 

� 

!(t) the crack perimeter at time t, and 985 

� 

F(s, t)  is the instantaneous flow at a given position s along the crack edge and at time tIn 986 

order to estimate 

� 

F  and 

� 

F 0, by assuming a simple crack model, we may relate them to 987 

the stress intensity factors KII and KIII through the definition of the energy flow G, or the 988 

rate of mechanical energy flow out of the body and into the crack tip per unit crack 989 

advance, and per unit length of crack edge, according to (Freund, 1990, eq. 5.3.2):  990 

� 

G t( ) = lim
!"0

F(!)

V
r

# 
$ 
% 

& 
' 
( 

         (3) 991 

and, under the usual assumption that the breakdown region and 

� 

!  are reasonably small, 992 

we can get rid of the limit, and, upon integrating on position s around the crack edge 

� 

! , 993 

we obtain: 994 

� 

F(t) = V
r
(s)G t, s( )ds

!

"         (4) 995 

� 

F 0(t) = V
r
(s)G

0
t, s( )ds

!

" .        (5) 996 

For simplicity, we henceforth reduce our analysis to the simple case of radial symmetry 997 

(circular crack expanding at constant velocity 

� 

V
r
) and constant material properties. For a 998 

circular crack of diameter 

� 

L t( ), equations (4) and (5) become: 999 

� 

F t( ) =V
r
L(t) G(t,!)d

0

2"

# !         (6) 1000 



� 

F
0
t( ) =V

r
L(t) G

0
(t,!)d

0

2"

# !         (7) 1001 

For mixed mode cracks, (Broberg, 1999), if we neglect opening (mode I) for tectonic 1002 

earthquake faults, we can relate G to the stress intensity factors and to the Yoffe functions 1003 

as: 1004 

� 

G = G
II

+ G
III

=
1

4 (1! k 2)µ
K

II

2
Y
II
(k," ) +

1

2µ
K

III

2
Y
III
(#)     (8) 1005 

where Yoffe function 

� 

Y
II
(k,! ) and 

� 

Y
III
(!) are functions of the velocity ratios 

� 

! =V
r
/c

P
, 1006 

� 

k = (1! 2" ) /(2 ! 2") = c
S
/c

P
 and 

� 

! =V
r
/c

S
 (from Broberg, 1999, equations: (3.5.15), 1007 

(3.5.16), and (3.5.17)).  1008 

For the stress intensity factors, assuming a mixed mode where 

� 

!  is the angle between 1009 

slip direction and the local propagation direction of the crack edge, we may define: 1010 

� 

K
II

= cos(!)"#
D

$ L

2
%
II
(k,& )        (9) 1011 

(modified from Broberg, 1999, eq. 6.9.90), and: 1012 

� 

K
III

= sin(!)"#
D

$ L

2
%
III
(&),       (10) 1013 

where, again, 

� 

!
II
(k," )  and 

� 

!
III
(") are functions of the velocity ratios defined above 1014 

(modified from Broberg, 1999, eq. 6.9.147), and 

� 

!"
D

 indicates the dynamic stress drop.  1015 

We introduced the amplitude factors 

� 

cos(!)  and 

� 

sin(!)  to account for the mixed mode 1016 

fracture. On the edge of the crack propagating perpendicular to the slip direction, 

� 

! = 90 1017 

and only 

� 

K
III

 is nonzero. On the edge propagating parallel to slip, only 

� 

K
II

 remains, 1018 

whereas on an intermediate location a mix of both modes will be active. Note that in the 1019 

quasi-static case 

� 

! = " = 0 , so the right-hand side fractions in KII and KIII equate to 1. 1020 

Finally, we may write: 1021 

� 

G t( ) =
! "#

D

2
L t( )

4µ
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)
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     (11) 1022 
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2
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2$

(1% k 2
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      (12) 1023 

where 

� 

!
II

=Y
II
"
II

 and 

� 

!
III

=Y
III
"
III

 are functions of the velocity ratios  only. 1024 



Radiated energy and dynamic stress drop 1025 

By combining equations (1), (2), (3), (16), (7):  1026 

� 

E
R

= F 0(t
'
) ! F(t ' )( )

t
'

" dt
'         (13) 1027 

� 

E
R
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� 

=
! 2"#

D

2
L t( )

4µ

1$%
II

(1$ k 2)
+1$%

III

& 

' 
( 

) 

* 
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and write the coefficient 

� 

! for the rupture velocity function  1032 

� 

! =
1"#

II

(1" k 2)
+1"#

III

$ 

% 
& 

' 

( 
)         (18) 1033 

While 

� 

! may be computed for the case of a circular, sharp/edged crack propagating at a 1034 

constant velocity with the above equation, it has no relevance for real earthquakes where 1035 

rupture is a more complex process. In that case we consider 

� 

! as a dimensionless 1036 

coefficient that may be estimated empirically from the data.  1037 
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V
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At this point we may use the rupture duration  1040 

� 

! =
L "( )

2V
r

           (21) 1041 

in order to write: 1042 
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r
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0
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2         (22) 1043 

we finally obtain: 1044 
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E
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3         (23) 1045 

by using the definition (21) of rupture duration: 1046 
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E
R

=
!
2
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D

2

48µ
$L

3
%( )          (24) 1047 

When rupture velocity tends to zero, 

� 

T
3
V
r

3 remains constant for a given rupture 1048 

dimension, however 

� 

!
II

 and 

� 

!
III

 tend to one so that the radiated energy tends to zero. 1049 

About the assumption of constant propagation velocity, this implicitly neglects the 1050 

radiated energy in the starting (accelerating) and stopping (decelerating) phases of 1051 

fracture. However, the faulting size in the starting phase is small, while the duration of 1052 

the stopping phases can be expected to be short and at a reduced value of rupture velocity 1053 

� 

V
r
, so that the contribution to 

� 

E
R

 from those phases may be less relevant. 1054 

The next step is the quantification of the stress drop as a function of the seismic moment, 1055 

and of the crack radius. From the definition of seismic moment: 1056 

� 

M
0

= µA < d >         (25) 1057 

From Eshelby (1957, 1959): 1058 
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Substituting (27) into (25): 1062 

� 

M
0

=
2

7
!"L

3
#( )          (28) 1063 

and: 1064 

� 

L !( ) =
7M

0

2"#
$ 

% 
& 

' 

( 
) 

1
3

         (29) 1065 

Using again the definition (21) of rupture duration in (29), and substituting in (24): 1066 
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Using 
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with 1070 
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From (30), (31), (32) we can write:  1072 
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where: 1075 
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is called the apparent stress (Wyss, 1970). 1077 

We may now write our relationship for radiated energy and stress drop as: 1078 

� 

!"
d

= F µ
E
R

M
0

,         (36) 1079 

where, in the theoretical case of an expanding circular crack with a sharp tip, 

� 

F  is 1080 

defined above. However, in natural earthquakes fracture propagation is a more complex, 1081 

heterogeneous process and differs in several ways from the simplified circular sharp 1082 

crack model. In particular, the entire fault area is not slipping owing to the presence of 1083 

barriers (stronger patches) and the fracture tip is not sharp but rather expanded over a 1084 

process region of finite length. It is expected that the value of F obtained for the sharp 1085 

crack model may represent a lower bound for natural earthquakes, which, due to their 1086 

reduced crack tip singularity and their reduced slipping area,  are likely to radiate less 1087 

energy for a similar amount of stress drop.  1088 

As a consequence, we rather estimate a value of F by assuming that, within the whole 1089 

investigated dataset, the lowest value of the sliding friction coefficient corresponds to a 1090 

situation where the residual dynamic friction is negligible (this case corresponds to the 1091 

largest of the twin main shocks of the San Giuliano sequence, see appendix A1.1). In 1092 

other words, we assume that the dynamic stress drop for such event is total. While this 1093 

assumption represents an ideal lower bound, it is in part justified by several experimental 1094 

results (Di Toro et al., 2006, 2004) showing that, under favorable circumstances and 1095 



seismic slip conditions, the dynamic friction coefficient may drop down to values as low 1096 

as 0.05. Thus we obtain an estimate 

� 

F ! 3, which, owing to the assumption of total stress 1097 

drop, is obviously an upper bound for the value of F. Taking smaller values reduces the 1098 

difference between events in term of stress drops, but the fundamental observation of 1099 

gradual weakening remains unaltered. We do not show the effect of increasing F, as it is 1100 

in all ways similar to that induced by an increase in the pore pressure as illustrated in Fig. 1101 

A2, A4, A6, A8, A10, and A12 within this Appendix, as well as in Fig. 3 of the main 1102 

report. 1103 
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 1310 
Figure A1.  Top frames: coefficients of dynamic friction for the evens of the San Giuliano sequence, as a 1311 
function of fault temperature. Darker symbols indicate shallower gradient transition depths, and thus higher 1312 
pore fluid pressures. We sample two typical coefficients of static friction (0.75 and 0.58), and three 1313 
orientations (optimal, optimal + 5 degrees, and optimal + 20 degrees. The latter orientation is called 1314 
unfavorable, following Sibson, 1990).  Of the six frames on dynamic friction, note that the largest event is 1315 
missing in the two lower frames (left and middle). For those orientations, the coefficient relative to the 1316 



larges event become negative (unacceptable). The coefficient F in equation (36) of Appendix A2 was 1317 
calibrated to the value F=3.0 based on the hypothesis of total stress release for the largest mainshock of the 1318 
sequence, in a situation of optimal orientation to the regional stress field. 1319 
Bottom frame: distribution of the seismic moments and corner frequencies for the San Giuliano sequence. 1320 
The data set is consistent with a functional form: 

� 

M
0
! fc

"(3+# ), with 

� 

! = 0.9 ± 0.3. 1321 



 1322 
Figure A2.  Fits between data (red squares) and the theoretical best scaling model (blue curve) for spectral 1323 
ratios of the San Giuliano seismic sequence. Solid horizontal lines in blue represent the asymptotes 1324 
expected for self-similar scaling. In the frame of each spectral ratio are indicated both the event 1325 
identification numbers, with the earthquakes’ moment magnitudes. 1326 



 1327 



Figure A3.  Top and middle frames: coefficients of dynamic friction for some evens of the Colfiorito 1328 
sequence, as a function of the fault temperature. Darker symbols indicate shallower gradient transition 1329 
depths, and thus higher pore fluid pressures. We sample two typical coefficients of static friction (0.75 and 1330 
0.58), and the orientation dictated by the dip of the fault plane that was observed in the sequence. 1331 
Bottom frame: distribution of the seismic moments and corner frequencies for the sequence. A functional 1332 

form: 

� 

M
0
! fc

" 3+#( ) , where: 

� 

! =1.5 ± 0.6 , can be used to describe the plot. 1333 

 1334 
Figure A4.  Fits between data (red squares) and the theoretical best scaling model (blue curve) for spectral 1335 
ratios of the Colfiorito seismic sequence. Solid horizontal lines in blue represent the asymptotes expected 1336 
for self-similar scaling. In the frame of each spectral ratio are indicated both the event identification 1337 
numbers, with the earthquakes’ moment magnitudes. 1338 



 1339 



Figure A5.  Coefficients of dynamic friction as a function of the fault temperature for the evens of the 1340 
Wells sequence. Darker symbols indicate shallower gradient transition depths, and thus higher pore fluid 1341 
pressures. We sample two typical coefficients of static friction (0.75 and 0.58), and the orientations of the 1342 
two conjugate planes dictated by the available moment-tensor solution. 1343 
Bottom frame: distribution of the seismic moments and corner frequencies for the sequence. The data set is 1344 
consistent with a functional form: 
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"(3+# ), with 
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! =1.0 ± 0.2 . 1345 

 1346 
Figure A6.  Fits between data (red squares) and the theoretical best scaling model (blue curve) for spectral 1347 
ratios of the Wells seismic sequence. Solid horizontal lines in blue represent the asymptotes expected for 1348 
self-similar scaling. In the frame of each spectral ratio are indicated both the event identification numbers, 1349 
with the earthquakes’ moment magnitudes. 1350 



 1351 
Figure A7.  Coefficients of dynamic friction for the evens of the Hector Mine seismic sequence, as a 1352 
function of the fault temperature. Darker symbols indicate shallower gradient transition depths, and thus 1353 



higher pore fluid pressures. We sample two typical coefficients of static friction (0.75 and 0.58), and three 1354 
possible orientations. 1355 
Bottom frame: distribution of the seismic moments and corner frequencies for the sequence. The data set 1356 

may be consistent with a functional form: 
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"3 , with a discontinuity at 
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W
5.5 , or with a 1357 

functional form: 
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"3+# , with 
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 1359 
Figure A8.  Fits between data (red squares) and the theoretical best scaling model (blue curve) for spectral 1360 
ratios of the Hector Mine seismic sequence. Solid horizontal lines in blue represent the asymptotes 1361 
expected for self-similar scaling. In the frame of each spectral ratio are indicated both the event 1362 
identification numbers, with the earthquakes’ moment magnitudes. 1363 



 1364 
Figure A9.  Upper frame: coefficients of dynamic friction for the evens of the Chi-Chi seismic sequence, 1365 
as a function of the fault temperature. Darker symbols indicate shallower gradient transition depths, and 1366 
thus higher pore fluid pressures. We sample only one typical coefficients of static friction (µS=0.75), 1367 
because there is evidence (Tanikawa and Shimamoto, 2009) for a large coefficient of static friction. We use 1368 
an optimal dip angle (26.50) that is very close to the dip of the CMT solution (250). The high-pressure 1369 



gradient transition depth was put at 725 m in order to match, on average, the coefficients of dynamic 1370 
friction obtained in the lab for the Chelungpu fault (Tanikawa and Shimamoto, 2009). 1371 
Bottom left frame: distribution of the seismic moments and corner frequencies for the sequence. The data 1372 
set shows a self-similar behavior. Bottom right frame: map of the island, where we plot the locations of the 1373 
events used here, with an estimate of the logarithm of the apparent stress. The mainshock and the largest 1374 
aftershocks are characterized by similar apparent stresses. 1375 

 1376 
Figure A10.  Fits between data (red squares) and the theoretical best scaling model (blue curve) for spectral 1377 
ratios of the Chi-Chi seismic sequence. Solid horizontal lines in blue represent the asymptotes expected for 1378 
self-similar scaling. In the frame of each spectral ratio are indicated both the event identification numbers, 1379 
with the earthquakes’ moment magnitudes. 1380 



 1381 
Figure A11.  Coefficients of dynamic friction for the evens of the Iwate seismic sequence, as a function of 1382 
the fault temperature. Darker symbols indicate shallower gradient transition depths, and thus higher pore 1383 
fluid pressures. We sample two typical coefficients of static friction (0.75 and 0.58), and the orientation of 1384 
the focal mechanism. 1385 
Bottom frame: distribution of the seismic moments and corner frequencies for the sequence. The data set 1386 
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 1389 
Figure A12.  Fits between data (red squares) and the theoretical best scaling model (blue curve) for spectral 1390 
ratios of the Iwate seismic sequence. Solid horizontal lines in blue represent the asymptotes expected for 1391 
self-similar scaling. In the frame of each spectral ratio are indicated both the event identification numbers, 1392 
with the earthquakes’ moment magnitudes. 1393 
 1394 


