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Abstract 

The quiescent Colli Albano volcano is presently characterised by moderate intensity earthquakes, 

seismic swarms, gas emissions and ongoing uplift that reflects the current evidences of its residual 

activity. An uplift of ~30 cm over the last 43 years was recently detected by levelling surveys 

performed in the time span 1950-1993 along a levelling line that crosses the highest elevation area 

of the western flank of the volcano. Space based GPS and Synthetic Aperture Radar Interferometry 

geodetic observations confirm that this uplift is distributed in a wide area around the craters of 

Albano and Nemi, where the most recent volcanic activity occurred. GPS data from continuous 

monitoring stations indicate that both horizontal and vertical deformations do occur and that can be 

addressed to a shallow magmatic source. All the geodetic observations are in agreement and 

highlight that the Colli Albani is still a potentially active volcano. Being located in a densely 

populated area close to Rome, the volcano should deserve the same monitoring and hazard 

assessment effort of any active volcano within urbanized areas. Here we review the geodetic results 

obtained during the last decades for the Colli Albani volcano. 

 

Introduction 

Surface deformation detection of volcanoes is traditionally performed through repeated geodetic 

surveys over control networks. Geodetic data from these networks play an important role to 

determine the occurrence of magma injection and to forecast volcanic eruptions. Triangulation, 



levelling and tilt measurements were the first techniques used over tailor made networks established 

on several active volcanoes of the world since the end of the 19th century. They provided the former 

valuable data for the detection of long and short term surface deformations of volcanoes (e.g. 

Dvorak 1995; Dvorak & Dzurisin 1997; Bonaccorso et al. 1995; Fernandez et al. 1999; Battaglia et 

al. 2003a,b).  Since the end of 1980s, the satellites of the Global Positioning System (GPS) become 

the primary tool for a space based geodetic monitoring of volcanoes, so that measurement 

campaigns are now carried out at different epochs, or alternatively are operated using a network of 

permanent stations (Anzidei et al. 1998; Battaglia et al. 2003a,b; Puglisi & Bonforte 2004; Janssen 

2007; Troise et al. 2007). This technique has nearly completely substituted the conventional 

terrestrial optical and tilt measurements, due to the low costs, independence from weather and time 

(i.e. measures can be done with any atmospheric condition and during day and night), user friendly 

receivers, data reduction software availability and for the high accuracy (at mm level) with which it 

is possible to estimate the 3-D positions of geodetic benchmarks. After statistical and strain 

analysis, the geodetic results can be correlated or combined with volcanological and geophysical 

data thus providing a crucial contribution to mitigate the volcanic risk in dangerous areas, such as 

the case of cities on volcanoes (Anzidei et al. 1995). Recently, the combination of punctual and 

spatial measurements from GPS and Synthetic Aperture Radar (SAR) satellite sensors, respectively, 

even if taken at different times (continuous or discrete GPS measurements and 35 days repeat cycle 

of the ERS satellites) have become a powerful tool to obtain spatial deformation rates and trends of 

volcanoes. The SAR signal processing technique, referred to as SAR Interferometry (InSAR), is 

now widely used in Earth's sciences demonstrating to have unique capabilities for mapping the 

topography and the deformation of the Earth surface. The InSAR approach is based on extracting 

the phase component of SAR data to compute the pixel-by-pixel difference of SAR signal relative 

to a specific area and acquired from nearby geometric conditions. The interferogram, i.e. the result 

of the interferometric processing, contains the measurement of the sensor to target distance and of 

any possible changed distance. 

Since early 1990s the capabilities of InSAR technique have been exploited to study the surface 

displacements as effects of volcanic and seismic activities (Massonnet et al. 1995; Amelung et al. 

2000; Salvi et al. 2004). More generally InSAR demonstrated its capability to provide an accurate 

measure of surface deformations from space, being operative with every atmospheric condition, 

during day and night. Furthermore, the wide coverage of each image, the global coverage, the 

repetitiveness of the observations allow considering InSAR a valuable tool for the monitoring of 

volcanic areas during pre-crisis and syn-eruptive phases.  



During the last decades, systematically repeated surveys of terrestrial GPS networks and SAR 

observations have been carried out in most of the Italian active volcanoes, such as Etna (Bonforte et 

al. 2009), Phlaegrean Fields (Dvorak 1991), and in the volcanic arc of the Aeolian islands 

(Bonaccorso et al. 2002; Esposito et al. 2007; Bonforte & Guglielmino 2008; Esposito et al. 2009). 

Recently, also the Colli Albani volcano has been studied using seismological, geodetic, and 

geochemical data (Amato & Chiarabba 1995; Chiarabba et al. 1997; Chiodini & Frondini 2001; 

Beaubien et al. 2003; Carapezza et al. 2003; Carapezza et al. 2005a; Carapezza & Tarchini 2007; 

Chiarabba et al. 2010, this volume; Carapezza et al. 2010, this volume; Riguzzi et al. 2009). Results 

are in agreement to indicate that this volcano, which is currently affected by an ongoing uplift, by 

periodic seismic swarms and by a huge release of gas of magmatic origin, is a potentially active 

volcano. Here we review and discuss the recent geodetic results obtained in the Colli Albani 

volcano, located in a densely populated area close to Rome.  

 

Levelling surveys 
 
The levelling route no. 24 was set up in 1950 by the Italian Istituto Geografico Militare (IGM) 

(Fig.1) along the S.S. Appia (Appian Way). It crosses the whole Colli Albano volcano from North 

West near Rome to South East toward Cisterna di Latina. Both ends of the levelling route are 

located outside the volcanic edifice. The first survey was carried out in 1950/51 by the IGM and 

repeated in 1997 and 1999. The present configuration of the levelling line consists of 120 

benchmarks with a linear span of about 80 km, running along a SE-NW profile (Cisterna di Latina-

Roma) and including two circuits bordering the Albano and Nemi lakes (Fig.1). The most recent 

survey was performed during October 2006 by optical auto-levelling and one electronic level 

equipped with micrometers and invar rod stadia, following the classical measurements procedures. 

As usual, the observations (heights differences between benchmarks) were adjusted to obtain height 

and errors, keeping fixed the height of a reference benchmark. The reference benchmark was 

chosen on the basis of the deformation history of the line looking for a site far from the zone with 

the highest deformations common to the four main surveys of 1950-1951, 1997-1999, 2002 and 

2006. The benchmark is IGM 24/141C (Cisterna di Latina) and its elevation (65.4836 m a.s.l.) was 

selected as the reference elevation. The comparison between the 1950-1999 surveys has evidenced a 

remarkable uplift, whereas the subsequent surveys (1997-1999 and 2002) have not shown 

significant uplift at a confidence level of 95% (Fig.2a). In the last period, from 2002 to 2006, a 

small uplift is detected along the line and the Albano lake circuit, even if within the confidence 

interval (Fig.2b). The circuit around the Nemi lake was set up and surveyed only once in 2006 

(Fig.1).  



In conclusion, the results obtained by the levelling surveys seems to indicate a pulsating inflation 

behaviour, so a longer and more continuous dataset, along with comparison with data from other 

measurement techniques are needed to reliably infer the deformation pattern and to model the 

source. 

 

GPS data 

To extend the monitoring of the Colli Albani, in 1995 a discrete GPS network consisting of 10 

benchmarks was set up and repeatedly surveyed (Fig.1). The first results from this network were not 

highly significant, and only some minor horizontal deformations were detected (Anzidei et al. 

1998). Since such network was not properly designed to detect vertical motion, due to the reduced 

accuracy of the GPS technique along this component, in 2006 three continuous GPS stations were 

installed as test sites to improve the detection of the vertical motion (Riguzzi et al. 2009) (Fig.1). 

Compared to non-permanent networks, a continuous monitoring highly improves the accuracy of 

site velocity estimations by the analysis of long time series of GPS observations (Betti et al. 1999; 

Devoti et al. 2008). Moreover, the recent development of the RING GPS permanent networks in 

Italy (Selvaggi 2006) provides the necessary constraints to anchor the velocity field of this local 

network to the ITRF2005 reference system (Altamimi et al. 2007), to refer local motions in a 

regional tectonic frame. 

The three permanent GPS stations of the Colli Albani network are located at Astronomical 

Observatory of Monteporzio Catone (RMPO); at the INGV Observatory of Rocca di Papa (RDPI), 

and at the Padri Verbiti monastery of Nemi (NEMI). The first one (RMPO) is located on the 

external edge of the Colli Albani caldera, RDPI on the smaller caldera at the top of the Faete 

intracaldera stratovolcano, and NEMI on the edge of the recent Nemi maar (Fig.1). 

The monument of RMPO is a reinforced concrete pillar equipped with a stainless steel rod on which 

the GPS antenna is screwed on. RDPI and NEMI are placed on reinforced concrete buildings and 

the antenna mount consists in a short steel pillar (0.65 m height) screwed on a stainless steel 

benchmark permanently and deeply fixed to the top of the building. The antenna is screwed on the 

top of the steel pillar in horizontal position through 2 spherical spirit bubbles and 3 horizontal 

screws. Such monument preserves the horizontal and vertical datum if the antenna has to be 

changed for maintenance. RMPO and RDPI are equipped with LEICA GRX1200PRO receivers and 

LEIAT504 choke-ring antennas (RMPO with radome LEIS). NEMI is equipped with a TRIMBLE 

5700 receiver and a Zephyr Geodetic antenna TRM41249.00. The data analysis of the GPS 

observations are performed in the framework of the processing of all the Italian CGPS stations 

(Riguzzi et al. 2009), focusing on those stations located in the near field of the Colli Albano 



volcano (INGR, ROMA and MOSE). As NEMI, RDPI and RMPO started to work in the middle of 

2006, data processing covers a time span of ~2.5 years. 

The data analysis was performed by the Bernese Processing Engine (BPE) of the Bernese 5.0 

software (Beutler et al. 2007), using the phase double differences as observables. The IGS precise 

orbits and Earth’s orientation parameters were kept fixed and the absolute elevation-dependent 

phase center corrections, provided by IGS, were applied. Each daily solution was estimated in a 

loosely constrained reference frame, close to the rank deficiency condition. Each loosely 

constrained solution was realized in an intrinsic reference frame, defined by the observations itself, 

differing from day to day only for rigid network translations, keeping the site inter-distances always 

well determined. The constraints for the realization of the chosen reference frame were imposed 

only a posteriori. The daily loosely constrained cluster solutions were then merged into global daily 

loosely constrained solutions of the whole network applying a classical least squares approach 

(Bianco et al. 2003). 

The velocity field was estimated by fitting the loosely constrained time series of daily coordinates 

with the complete covariance matrix, obtaining a loosely constrained velocity solution. Site 

velocities, together with annual signals and sporadic offsets at epochs of instrumental changes, were 

simultaneously estimated. The Eurasian fixed representation highlights a different trend between the 

horizontal velocities of the Colli Albani sites (NE trending) with respect to those located in Rome 

(NW tending), about 20 km away. The three sites INGR, M0SE and ROMA have a coherent motion 

with the GPS velocities of sites located along the Tyrrhenian belt (Devoti et al. 2008). The different 

behaviour of the Colli Albani with respect to the Tyrrhenian sites is better evidenced showing their 

residual velocities with respect to the NGR, M0SE and ROMA sites (Fig. 3). The continuous GPS 

observations have allowed to estimate, for the first time with this technique, the possible source of 

deformations. To model the source, the velocities of the Colli Albani sites were referred to the 

nearest sites external to the volcano edifice (INGR, M0SE and ROMA), to remove any regional 

pattern from the data. The simplest model able to fit the low number of available observations (14 

measurements from 6 GPS stations, 4 rejected due to local effects) is a point-pressure source (Mogi 

1958). The source parameters were retrieved by a non-linear inversion based on the Levenberg–

Marquardt (LM) least squares approach. This LM algorithm is one of the most efficient and widely 

used optimization algorithm consisting in a combination of a gradient descent and Gauss-Newton 

iteration (Levenberg, 1944; Marquardt, 1963). The non-linear inversion sets the point-source at a 

depth of about 4.7 km, on the western flank of the Colli Albani complex (Fig. 3). Such results are in 

a good agreement with those from Salvi et al. (2004), where a prolate ellipsoid double source is 

used to model DInSAR data. In terms of volume, the best-fit solution corresponds to an increase of 



1.14×106 m3/year. The observed and modelled GPS rates are reported in Table 1, while in Table 2 

the comparison between modelling parameters of Mogi source is shown. 

Till now, GPS data confirm the uplift trend evidenced by leveling survey and PS-InSar. Plotting the 

uplift rate of each GPS site against the distance between the site itself and the center of the 

estimated Mogi source shown in Fig. 3, a significant clear decrease is evidenced. The modeled and 

the GPS uplift trends well agree within the errors, even if the predicted rates appear underestimated 

with respect to those obtained from GPS surveys (Fig. 4). 

 

PSInSAR observation and data analysis  
Recent remote sensing observation of the current deformation of the Colli Albani volcano were 

performed through the Permanent Scatterers (PS) InSAR technique. The PSInSAR technique is a 

methodological development of the classical Differential SAR Interferometry, which allows 

retrieving ground displacement velocity map (of the order of mm per year) thanks to its capability 

to improve the SAR measurement accuracy (Ferretti et al. 2001). PSInSAR focuses on natural 

targets which have a good stability in term of backscattered signal in all the images of the dataset 

(the so called Permanent Scatterers, hereinafter PS) and these are considered for the calculation of 

the phase differences between acquisitions. The tropospheric bias to the phase signal cannot be 

neglected, hence it has to be estimated and removed. For this purpose a specific algorithm is 

applied. 

The most recent SAR dataset used to study the Colli Albani area is composed by ERS1 and ERS2 

images, for a total of 66 SAR descending acquisitions available from June 1992 to December 2000, 

whilst 34 images from April 1993 until November 2000 concern the ascending dataset (Salvi et al. 

2004). More than 240000 and 280000 PS with a coherence greater than 0.7 were identified on the 

descending and ascending subsets respectively. PS velocities estimated along the line of sight 

(LOS) for both subsets, are shown in Fig. 5. In general, the pattern of the velocity field is rather 

clear but for a better understanding of the deformation activity, the ascending and descending 

velocity maps are combined in order to extract the vertical and the horizontal components of the 

deformation field. In Fig. 6 are reported the resulting maps. It is worth noting that these maps show 

a less dense PS distribution because only the common PS within ascending and descending velocity 

maps can be combined. Moreover, the reported maps are re-sampled to a spatial grid of 200 m x 

200 m per pixel. 

An uplift zone, mainly located on the west part of the Colli Albani caldera complex is clearly 

evident. A maximum of about 2.5 mm/yr is measured by the PS close to the villages of Ariccia and 

Albano (Salvi et al. 2004). 



The validation of the PS velocity map has been carried out through independent ground data. GPS 

measurements and optical levelling have been considered for this purpose (Fig. 1), consequently the  

ten GPS benchmarks of the Colli Albani network (Anzidei et al. 1998) surveyed in the time span 

1995-1998 were used (Salvi et al. 2004). Unfortunately, the only three monuments which show 

significant velocity estimates fall in areas with no PS. The other sites do not show significant 

deformation with the exception for the period 1995-96, when 2 cm subsidence had been measured 

at INGR, CVA and VVR (probably due to shallow earthquakes in 1995). Moreover, continuous 

GPS data from 2000 to 2003 at the INGR station show the absence of local horizontal velocity 

components and a negative vertical velocity of about 1 mm/y. The ING site, located about 20 km 

from the uplift centre, has been selected as reference point, and the PS velocities are rescaled with 

respect to it. 

The vertical PS ground velocities were compared with the average vertical velocities derived from 

the levelling technique along the IGM line (Fig. 1). The ground velocity is extracted considering a 

constant ground displacement rate resulting from the 1951–1997 IGM height differences. Ten 

levelling benchmarks have been considered and the PS ground velocity was averaged within a 

circular radius of 200 m from each benchmark. Fig. 7 reports the 10 selected benchmarks and in 

Fig. 8 the ground velocity related to levelling and InSAR processing are reported in the upper and 

lower panels, respectively. Despite some differences in the absolute values, the general trend of 

both curves is in agreement and the maximum uplift is detected close to Albano and Ariccia 

villages. The PS ascending and descending velocities, and hence the vertical velocity, represent the 

average displacement in the time interval between 1992 and 2000. Taking into account such 

consideration, the different amount of average displacements between InSAR and levelling, could 

be interpreted as due to a slowing phase of the deformation phenomenon.  

 
Conclusions 

Geodetic data from levelling surveys, GPS stations and InSAR observations have been analyzed 

during the last decades to measure the current deformation of the Colli Albani volcanic area. The 

analysis of about 2.5 years of GPS observations has evidenced a peculiar velocity pattern of the 

Colli Albani stations with respect to those located nearby, but outside the volcano edifice. With 

respect to Eurasia, the horizontal velocities are NE directed with magnitudes of 2.2±1.4mm/year 

(RDPI), 3.0±0.8mm/year (RMPO) and 3.3±1.2mm/year (NEMI). The uplift rates are determined 

with minor accuracy and range from 3.3 and 6.0 mm/year. All data sets are in agreement and 

indicate that this volcano shows active deformations with uplift rates within 6 mm/year. These are 

mainly located in a well defined area that includes the surroundings of the Albano and Nemi lakes 

and the main villages of Marino, Albano and Ariccia, the area of the most recent volcanic activity 



(Funiciello et al. 2003; Giordano et al. 2006; Freda et al. 2006; De Benedetti et al. 2008). Although 

this point is a still debated matter, there exist some evidences that last eruptions may have occurred 

during historical times in this area (Andretta & Voltaggio 1988). Moreover gas emissions  sources 

affects this part of the volcano (Funiciello et al. 2002; Carapezza et al, 2010a; Carapezza et al. 

2010b) and recent studies suggest that the Albano lake has undergone significant Holocene level 

changes and overflows, possibly related to lake rollovers triggered by injections of hot and CO2 rich 

fluids at the base of the lake (Funiciello et al. 2003; Anzidei et al. 2008). 

The  source of deformation based on GPS data was estimated as point-pressure source (Mogi 1958). 

Modelling results set the point-source at a depth of about 4.6 km beneath the western flank of the 

volcano, leading to a volume variation of 3.6 ×10-4m3/year. These data are in agreement with PS-

InSAR data but rather different from levelling surveys.  

Several decades of geodetic observations suggests that the Colli Albani volcano deserves the same 

monitoring and hazard assessment effort of any active volcano, especially when its location is 

within an urbanized area. Due to its potential hazard, this area should be systematically studied in 

order to timely recognize significant surface deformations related with the structure of the volcano 

or possibly to a non-linear trend of the shallow hydrothermal system. 
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Figures 
 
 

 
 

Fig.1 The geodetic networks of the Albano volcano. Gravimetric stations (white circles) are include 
in the map (after Riguzzi et al., 2009, modified). 
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Fig.2 Height variations from levelling surveys: a) along Line 24 and b) along Albano circuit. 



 
  
Fig.3 Residual (black arrows) and modelled (white arrows) GPS velocities of RMPO, NEMI and 

RDPI with respect to INGR, M0SE and ROMA. The white dot shows the location of the Mogi 

source (after Riguzzi et al. 2009, modified). 

 

 

 

 
 

Fig.4 Observed (black triangles) and predicted (open triangles) vertical velocities vs distance of 
each site from the center of the Mogi source. A linear decrease of rates is shown with increasing 
distances (after Riguzzi et al. 2009, modified).  
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Fig. 5 Deformation patterns of the a) ascending and b) descending PS analysis. 
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Fig. 6 Vertical (a) and  East-West (b) components of the surface deformation field. 



 
 
Fig. 7 The selected levelling benchmarks (light grey triangles) used for PS validation. 
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Fig. 8 Levelling and PS results comparison: a) average velocity extracted by 1950-1997 levelling 

campaigns; b) vertical velocity by PSInSAR analysis.  



 
Tables 

 
 

 
Site 

 GPS rate components and errors modeled rates 
VE VN Up ±VE ±VN ±Up VE VN Up 

mm/yr mm/yr mm/yr mm/yr mm/yr mm/yr mm/yr mm/yr mm/yr 
INGR 0.0 0.0 0.0 0.8 0.6 1.5 -0.51 0.72 0.24 
M0SE 0.0 0.4 -1.6 0.8 0.6 1.7 -0.22 - - 
ROMA 0.3 -0.3 -3.5 1.0 1.1 4.0 -0.20 - - 
NEMI 3.2 1.4 4.7 1.4 1.2 5.0 3.26 0.37 2.17 
RDPI 2.7 0.2 3.3 1.5 1.3 5.2 1.94 1.69 1.39 

RMPO 2.2 1.5 1.9 0.6 0.8 3.5 0.66 1.24 0.51 
 
Table 1 Observed and modeled rates of deformation from GPS data. Dash indicates data excluded 
from the non-linear inversion (Riguzzi et al. 2009). 
 
 
 

Model 
observation 
time span 

(yr) 

Lon 
 (°E) 

Lat  
(°N) 

Depth 
 (km) 

ΔV  
(km3/yr) RMS 

PS-InSAR M2 North 
(Salvi et al. 2004) 8 12.665 41.751 4.6 2.0 ·10-4 0.57 

PS-InSAR M2 South 
(Salvi et al. 2004) 8 12.654 41.666 7.2 4.4 ·10-4 0.57 

levelling S1 
(Feuillet et al. 2004) 43 12.687 41.745 4.9 21.9 ·10-4  2.00 

GPS 
(Riguzzi et al. 2009) 2 12.635 41.709 4.6 3.6 ·10-4 0.12 

 
Table 2 Comparison between modelling parameters of Mogi sources(Riguzzi et al. 2009). 
 
 
 
 
 


