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The principal aim of this study is to evaluate, by means of geodetic leveling data analysis, possible postseismic movements

related to the January 13th, 1915 Fucino earthquake (Ms = 6.9). It was one of the largest and most destructive events
occurred in Central Italy during the last century.

1. The1 rthquake
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10°E! agg 127 L el The 1915 earthquake epicentral area is centered in the Abruzzi
E region (Central ltaly), where seismotectonic studies suggest a NE-
SW oriented active extension (e.g.: Anderson & Jackson, 1987).

Present state of stress in Central Apennines for past 25 years, CMT
solution of largest earthquakes and minimum principal stress
=" vectors, derived from background seismicity and aftershock
' sequences, are shown on the left (figure from Pace et al., 2002).
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The 1915 earthquake caused more than 30,000 casualties f
and strong damages (shown in the two pictures below) over an
area of about 500 km®.

A compilation of January 13", 1915 intensity data (Is) from the |
DOM4.1 catalogue extents all over Central Italy, with values |

up to XI (in figure we plotted only intensity points with values” -
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The 1915 earthquake fault produced detectable The rupture extended to ground surface, as evidenced
coseismic surface ruptures for about 20 km along also by several paleoseismological studies (figure from
NW-SE striking structures (Oddone, 1915). The Galadiniand Galli, 1999).

related fault scarp is well visible in the Fucino basin
area (picture from Valensise & Pantosti, 2001). 10 -

Clues of Post-seismic Relaxation for the 1915 Fucino Earthquake (Central Italy) from Modeling of Leveling Data
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We use data frc_)m high precision leveling lines located arOl_Jnd the eplce_ntrgl area and measured 35 and 85 years after the {?J-;;: 1) Istituto Nazionale di Geofisica e Vulcanologia, via di Vigna Murata 605, 00143, Rome (ltaly) G1 3 A'0796
earthquake. This work concerns our approach to the modeling of postseismic movements recorded by leveling benchmarks il

and the implications for the lithospheric layering in Central Italy.

Our dataset consists of three unpublished high precision leveling
lines located in a wide sector around the Fucino basin. These
routes were measured in 1950 and 1997-2000 by IGM (/stituto
Geografico Militare) and their total length is about 360 km with a
mean benchmark density higherthan 0.5 bm/km.
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We calculate elevation changes referring them to the nodal benchmark of Popoli. Relative elevation changes show
maximum values between 5 and 12 cm, with a signal wavelength of 40-70 km. The elevation changes stand significantly
above the calculated total error of 1.13 sqrt(L), in mm (where L is the distance between benchmark, in km) (D'Anastasio,
2004). Asharp gradient can be noticed between km 0 and 40, along the Popoli-Terni and the Popoli-Pescara lines.

We use Pollitz (1997) code for computing gravitational-viscoelastic postseismic relaxation on a layered spherical Earth.

Computed postseismic benchmark elevation changes are compared with observed ones, by means of a L1-norm misfit
function including correlated and uncorrelated uncertainties.

Observed elevation changes in the Fucino earthquake area seem to comprise both regional tectonic deformation and post-
seismic relaxation. The former and the latter effects are expected to dominate along sections of the leveling lines which are
respectively about perpendicular and parallel to the Apennines, thus in the misfit function we multiply observed benchmark
vertical movements along the Popoli-Pescara and the Popoli-Terni lines by two free parameters (P1 and P2). The two free
parameters are optimized in the misfit minimization procedure.

Reference source fault (from Amoruso et al., 1998)
Location (lat, lon of corner on lower fault edge closest to strike direction): 41°49°12” N, 13°41°31" E
Length: 35 km; width: 9 km; upper side depth: 2 km; strike: 143°; dip: 55°
Three rake values: -90°, -60°, -42°
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4. Postseismic Modeling Results

Best-fit misfit

For each (slip, viscosity) point we compute the best-fit misfit
optimizing P1and P2.

Depth of the upper crust lower boundary: 10 km

viscosity factor

Depth of the transition zone lower boundary: 20 km

Depth of the mantle upper boundary: 35 km

Rake angle: -60°

slip factor

Misfit minima for all Best-fit misfits for three values of the mantle upper boundary depth: 25 km, 30 km, 35 km
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Results indicate that:

1. upper crust thickness is about 10 km, in agreement with rupture geometry (Amoruso et al. 1998)

2.the existence of a transition zone (Aoudia et al. 2003) is here confirmed

3. total crust thickness is larger than about 25 km

4. rake angle is not well constrained, but the existence of a left-lateral component (Amoruso et al. 1998) seems
confirmed.

Misfit maps in the (slip, viscosity) plane show that acceptable viscosity values are well inside the ranges suggested by
Aoudiaetal. (2003) and slip is fully consistent with Amoruso et al. (1998).

Best-fit P1 and P2 indicate that postseismic relaxation contributes to Popoli uplift with respect to benchmarks out of the
Apennines by about 30%.

Residual plot is about flat for benchmarks along the Apennines and
decreases aside the Apennines, showing a quasi-symmetric shape
toward the Adriatic Sea and the Tyrrhenian Sea. Numerical values and

! : - Slip: 0.5 to 3 times 1.23 m shape are fully consistent with expected regional tectonic deformation in
S 30| o £ _ Central Apennines (D'Anastasio, 2004).
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relaxation effects refer to a late stage of the process, accounting for about 30% of the observed geodetic
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