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Abstract

We present a numerical code for the simulation of the dynamics of compressible to
incompressible, multicomponent flows, based on the finite element algorithm by Hauke
& Hughes (1998). Balance equations for mass, momentum, energy and composition
are solved with space-time Galerkin least-squares and discontinuity-capturing stabilizing
techniques. The code is used to study the dynamics of convection and mixing in magmatic
systems such as replenishment of magma chambers and volcanic conduits, and it reveals
the occurrence of previously not described processes. The fluid-structure interaction of
fully coupled magma-rock dynamics is being implemented by using the deforming-spatial

domain method by Tezduyar (2006), that intrinsecally includes moving meshes.

Keywords: space-time finite element, fluid-structure interaction,
Navier-Stokes equations, two-fields formulation, magma, rock.

1. Introduction

The geophysical problem considered in this work is the fluid-structure
(FS) interaction between magma in a magmatic reservoir and the surround-
ing rocks. The motivation is to understand the links between ground dis-
placement data and deep volcanic processes, which are crucial for the as-
sessment of short-term volcanic hazard (Fig. 1). The FS interaction model
is based on the space-time (ST) finite-element (FE) method, by using the

Licensed under the Creative Commons Attribution Noncommercial No Derivatives


http://creativecommons.org/licenses/by-nc-nd/2.5/it/deed.en_GB

A. Longo et al

special-deforming-spatial-domain technique (Tezduyar et al. [20]) for mov-
ing meshes. The method is suitable for the simulation of non-linear and
complex physical systems. The fluid formulation is stabilized with the least
squares and the discontinuity capturing terms (Hauke & Hughes [7]; Shakib
et al. [19]). The fluid model has been already implemented, while the solid
and interface models are under development.

- seismic e hsebenc
monitoring network  Go o "'*MW

records

ground i: - f e
deformations |- /"

Fig. 1. Magma-rocks interaction and monitoring network.

2. Physical Model and Governing Equations

The fluid dynamics model (Longo et al. [6], [5]) consists of a sin-
gle fluid (magma in applications to volcanological cases) compressible-
incompressible multicomponent mixture. The components can be in liquid
or gaseous state: magma is a multiphase homogeneous mixture of silicate
liquid and gas bubbles. The governing equations are the mass conservation
for each component, the momentum and energy balance of the mixture
Bird [!], Lamb [2], Landau and Lifsits [3]:

Opyk

T + V- (pvyr) = —=V(pDrAyr) fork=1,...,n,
Opv T 2

(1) W+V-(pv®v+p1) =V (p((Vv+v )—g(V-v)I))+pb,
dpe

o + V- (pve+pv) =V - (u(Vv+ vvl)v + KVT) +p(b-v+r),
where y = (y1,y2, ..., yn) are the weight fractions of components, p is pres-
sure, K is the thermal diffusion coefficient, T" is the temperature, r is the
heat supply per unit mass, e is total energy, y is the viscosity, b = (b1, by)”
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is the body force per unit mass and Dy is the diffusion coefficient of com-
ponent yi. The physico-chemical properties of the magma (p, i, cy, &, .. .)
depend on the local conditions of pressure, temperature, composition, veloc-
ity and phase distribution under the assumption of linear mixture (Modell
& Reid [15]):

L

P
2) e= Z yrep with ep =, T,
k,m
= con( Y oftn(a(T) ),
k,m

where k£ and 7 represent the number of components and phases, respec-
tively. Thus, pf, pg, cj, are viscosity, density and specific heat coefficients
at constant volume of component k in phase 7 (Prausnitz et al. [15]). In
case of magmatic mixtures, the exsolution law is computed as in (Papale et
al. [14]). The structural mechanics model assumes an isotropic solid mate-
rial with heterogeneous density and elastic properties (i.e., Lamé coefficients
s and Ag). The two dimensional linear dynamic problem is governed by
the classical Newton’s law for momentum conservation:
9?pu .
(3) 92 = V - 0s0id(VU) + pg, with (0sotid)it = Dij€jk,

where o 4.4 1S the stress tensor, D is the elastic moduli tensor and € is the
strain tensor. The fluid-structure interface model for the dynamic coupling
between fluid and solid is based on continuity of displacement vectors and
stress tensors at the interface (with no-slip fluid boundary conditions at the
chamber walls) (Michler et al. [13]):

(4) { V fluid = Vsolid,
O fluid + pI = O solid-

where vy = Ou/0t.

2.1. Governing Equations in Compact Form

In compact notation, equations (1) are rewritten as:

ou o
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where F = Fodv — Fdiff and

U = p(y,vi,v2,€)",
Fadv _ ) T 0.681:.80:. Vs T
i _p/U’L(ya’UlaUZae) +p( 5 017, 2’Lavl) )

n
F{ = (0,700, 72, mijv5) "+ (=33,0,0, —q; — Z TEhi)T,
k=1
J= (0, bl, bz, bj?)j + T')T,

¢; = KT ; are the components of the heat-flux, 7;; = M((Uz‘,j +uj’i)—§uk’k5i7j)
denote the coeflicients of the viscous stress tensor, Jik are the diffusive fluxes
of mass components, hi are the entalphy components and J denotes the
source vector. Defining the ST fluxes F = [ F; | Fx], and the ST divergence
as divex = [0/0t| Vx|

Fria(U) = [U

U
F] = divt,x(]:fluid(U)) = 887 + di’l)x(F),

(7)

9?pu
ot?

pu
ot

fsolid(u) = { — divx(De),

- De} = divy x(Fso1ia(U)) =

conservation equations can be further rewritten in compact notations as:
(8) divex(F) —3T = 0.

The fluid dynamics equations are solved in primitive variables Y =
(Y1,Y2, - Yn, P, T, v) (Hauke & Hughes [7]). This formulation gives the cor-
rect behaviour in both compressible and incompressible regimes, it is robust
in capturing singularities and high shocks, it provides a simple way to spec-
ify boundary conditions, and it is immediate for physical interpretation of
the results. The change of variables from conservative to primitive:

U= Y=

A

9 (Py1s s PYn—1s PYns pV5 pe)’ — (W1, -y Pyt Yns 0, v, T)T,
allows to rewrite (7) as:

(10) divex(F 1uia(U(Y))) = Uy Y + F yVxY,

where U y is the Jacobian matrix for the change of variables:

A(py1, py2, - - -, PYns PV, Pet)
8(y17 Y253 Yn, P, T7 V)

(11) Uy =

)
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and F y is similarly defined. It is useful to rewrite equation (5) in quasi-
linear form:

(12) Uﬂg + AiUﬂ' — (Kz'jU,j),z’ —-J=0.

where U; = 0U/0x;, A; = F;“Ihj is the i-th Euler-Jacobian matrix, and
K = (Kj;) is the diffusivity matrix satisfying the relation K;;U ; = F?iff.
The quasi-linear form with respect to the primitive variables Y is:

(13) UvyY;+ Ai(U7y)in7j — (Kij (U,Y)jkY,k),i +SY =0,

where J = —SY and S is the source matrix.

3. Mesh Model

The mesh deformation is governed by the equation of elasticity, with
pseudo-Lamé coefficients that depend on the shape of the mesh, in order to
avoid excessive distortion (Tezduyar et al. [20]). The FS interface and the
Earth surface have to follow the material motion of the fluid and/or rock.
Hence, the movement of internal mesh nodes is determined imposing node
velocities equal to fluid and/or rock velocities at F'S interface and at Earth
surface.

4. Space-Time Finite Element Formulation

The ST finite element formulation uses weighting and trial functions
dependent on space and time. The whole computational domain Q is given
by the evolution in time of the space domain from the initial to the final
configuration (Fig. 2): it is subdivided into ST slabs @, representing the
evolution between times ¢, and t¢,; of the space domain (Fig. 3). The
T-discontinuous/S-continuous method adopts weighting and trial functions
that are continuous in space and discontinuous in time. In this manner, the
weak formulation integrates over successive ST slabs @, assigning causal
time boundary conditions on the solution between consecutive slabs (Fig.
3).

Considering the ST compact notation (8), the ST weak formulation over
a time slab is:

W (x,1) - dive (F 1) dQ + W (x, t5)(U(tH) — U(t;))dQ
(14) Qn Qn_1

+ stabilizing terms = 0.

where Ffluz may equal Ff1iq or Fgoq. The ST formulation naturally
includes the mesh deformation: it is equivalent to the ALE formulation
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Fig. 2. The space-time domain Q. Fig. 3. Space-time slabs Qn.

as it results from integration by parts in space and time of equation (14)
(Masud & Hughes [12]; van der Vegt & van der Ven [21]). Integrating by
parts and applying the Gauss theorem to the first term in (14) it follows:

W, 1) divesF1)dQ = = [ gradn(W)T s FaQ
Cn Qn

(15)  + / n, - (W F{ww(U))dP + /Q W FM(U)(t,))dQ
[ WIEU))a,
Qn1

where ng; = (ng, ny) is the unit outward normal vector at the ST boundary
0Q, = Q-1 UQ, U P,. Here, 2, 1 and ,, are the space flow domain
Q(t) levels at the time steps t,_1, t, respectively, and P, is the lateral slab
boundary. Applying (15) for the fluid equations, the ST weak form reads:

find U € V,, such that VW e W,, :

(weak NS equations)

/ (- W, UY)-W,; Fi(Y) - W-3)dQ

n

(16) (Jump-condition + time-boundary weak NS term)

+ /Q (W(toey) UY(0) - W(ED) - UCY(E)))d2

Nel)n

(
+ Z LW -1y (LY —3)dQ (Least-Squares)
e=1 Q5
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(net)n
+ Z / V(g W ) - (UyY ;)dQ (Discontinuity Capturing)
e=1 n
= W - F;(Y)n;dP, (space-boundary weak NS term)
Pr

where V,, and W, are the space of the trial and weighting functions respec-
tively, L = U y0; + Fﬁc{”;ai —(0,)(K;;05) + S is the differential operator
associated to the quasi-linear form of the equations (13), Ty is the ma-
trix of intrinsic time-scales for equations in primitive variables, (g¥) is the
metric tensor for the change of coordinates and " is the discontinuity cap-
turing operator. Equation (15) is used also for the solid mechanics equation
(3) within the two-fields formulation (Hughes & Hulbert [9]), where both
displacements u and velocities v are taken as unknows. The complete ST
weak problem is formulated as:

find (u,v) € V,, such that V W = (Wy, Wy) e W, :

0= / (gmdt,x(WV)T : Fsotid — Wy - pg)dQ

(equation
+ [ na (W) Fuotia(u™))ds of motion)
o0Qn
(17) + VW, - 050ia(Vu) (881; — V) dQ (definition of velocity)
Qn

+ / (VW) () - o sotia(Vu)[u,]dY (displacement continuity)
Qn—l

+ / PWoy (t5) - [v,,]dQ, (velocity continuity)
Qn—l

where [u,] = u(t;)) —u(t;) and [v,] is defined similarly (Li & Wiberg [4]).
The first two integrals constitute the T-discontinuous Galerkin formulation
for the equation of motion, and the last two provide the mechanism by
which the information is propagated from one ST slab to the next.

5. Solution technique

The element by element computation is performed by partitioning
each space-time slab @), into isoparametric quadrilateral elements QF, e =
1,2,...,n¢, (Fig. 3) bilinear in space and linear in time. Trial and weight-
ing functions for slab Q,, V¢ € V,, and W¢ € W, are linear combinations
of first-order Lagrangian polynomials in space and time, defined on the
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reference element as:

(nnp)(n)
VEED) = > NIE) (Mur1(0) Vagusr) + m(0) Vagmy),
(18) (:n:pl)( )
wa(&v 9) = Z Ncsn) (5) (7Tn+1(9)wa(n+l) + 7Tn<0)Wa(n))a

a=1

where (npp) () is the number of nodal point per element, N, (&) are the basis
functions for the quadrilateral space elements, m,11(6) = (0p+1 — 0)/A0
and 7,(0) = (6 — 6,,)/A0 are the basis functions for the time coordinate
(Tezduyar et al. [20]). Introducing finite dimensional trial and weighting
function spaces V,, and W, into (16) and (17) the following discretized
equations, for fluid and solid, are obtained:

(19) G(W;V,V,_ 1) =0, YW eW,,

where G is the operator associated to the weak problems (16) and (17), V
is the vector of the unknowns and V,,_1 is the solution on the previous slab
Qn—1. Since G is such that G(W : V,Vn,l) =W -G(V,V,_1), it follows
the generalized principle of virtual work:

(200 W-G(V, V1) =0 < G(V,V,_1) =0 VW € W,.

The non-linear system of equations (20), as for fluid or non-linear elastic-
ity, can be linearized through a predictor multi-corrector Newton-Raphson
method, based on first order Taylor series expansion of G:

OG(VW V, 1)

AV®
oV ’

21) GV v, ) =GV v, )+

where V@ is the i-th iterative approximation of the solution V, =
(V(tt ), V(t;)) on Qn, and AV = V+D) V) The predictor phase
sets V(O = V, ;. then each correction pass computes the i-th iterative
V@, Imposing that:

8G(V(i)7vn—1)Av(i) =0 —

G(VY, V, 1)+

oV
22 Y. Vi ’ '
( ) aG(Va\;Vn 1) Av(z) — _G(V(l),vn—l)a
— M) R

the following linearized problem is obtained:

(23) MOAVE = RO,
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where M® is the tangent matrix and R the residual vector. For each iter-
ative step the system (23) is numerically solved and Vit = AVE L v
is retrieved. When the residual vanishes below convergence threshold, the
obtained value V(imaz) gives the required approximation of V, (Shakib et
al. [19]). Element by element contributions are computed with 2 point Gauss
integration, and system (23) is solved with a diagonal block-preconditioned
GMRES. In the case of linear elasticity direct solution is performed.

6. Code engineering

The numerical algorithm is implemented as a C++ software. Object
Oriented and Template Metaprogramming rational techniques are adopted
in order to decouple responsabilities and dependencies of classes, to obtain
an optimized incapsulation of data, and to increase the code reusability.
Furthermore, codified strategies like design patterns (e.g. observer, decora-
tor, composite, singleton...) are widely used in order to approach commonly
occurring problems in class interactions. A detailed Doxygen documentation
is provided. The TRILINOS [8] parallel computational C++ library pro-
vides an efficient parallel distribution of variables and computations among
processors in order to balance RAM and CPU usage and decrease interpro-
cessors communication.

7. Numerical cases

The fluid formulation, which has already been developed, was verified
and validated with laboratory experiments, exact solutions, and numer-
ical results from literature. The considered cases span the compressible-
incompressible regimes, and involve low to high viscosity fluids, with
Re€[0-10°], Pre[1-7], Sce[0-10°] and Me[0-3]. CFL numbers are in the
range 1072-10%. The complete list of test cases, and detailed results can
be found at http://www.pi.ingv.it/user/longo/gales/gales. Volcanological
cases can be found in Longo et al. [6] and [5].

The broken dam is a test on body force contribution and advection of
internal interfaces, with fluids being water and air. The examples in [17]
and [16] are reproduced. The same grid spacing and time step given in [17]
and [16] are also used in each example. Fig. 4 reports the contour line of
0.5 volume fraction calculated with the present model, along with the same
contour lines from [16]. Fig. 5 shows the comparison between the present
two simulation results and those from [17] and [16], along with the ex-
perimental data from [11]. There is a better agreement with the results
from [17] than with those from [16]. For each pair of simulations (present
and [17], present and [16]) the discrepancy with the experimental results



A. Longo et al

from [11] is of the same magnitude. The 2D shock-interface interaction
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Fig. 4. Broken dam: initial conditions, and contours corresponding to 0.5 volume frac-

tion at different times (this work: solid line; [16]: dashed line).
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Fig. 5. (a) Dimensionless height of the column, (b) dimensionless front position. Com-
parison between experimental data (crosses), numerical results from [16] (dotted line,
MGO05), from [17] (dashed line, NS98), and present calculations. Cases MG05 and NS98
correspond to conditions similar to [16] (dash-dotted line) and [17] (solid line), respec-
tively.

case consists in the reflection and refraction of a Mach 2 planar shock over
an oblique contact discontinuity and the displacement of the interface [10)].
The physical properties of inviscid perfect gases, initial and boundary con-
ditions and time step reported in [10] are used. The computational domain
is 0.5x0.6 m, discretized into 100x100 elements; the time step is 2.5-1076
s. The calculated density distribution (Fig. 6) shows that the model is able
to correctly predict the positions of the reflected shock and of the compo-
sitional discontinuity. On the contrary, the determination of the reflected
shock is less accurate, approximating the uncorrected solution of [10].

10
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Fig. 6. 2D interaction of a shock with a contact discontinuity from [10]: density colormap

and contours of 3, 4.5 and 15 kg/m3 resulting from this work (black line) and exact
solution (dashed line).

REFERENCES

1. R.B. Bird, W.E. Stewart, and E.N. Lightfoot Fenomeni di trasporto. Casa Ed.
Ambrosiana (1979).

2. Lamb Sir Horace Hydrodynamics. Cambridge University Press (1993).
3. L. D. Landau, and E. M. Lifsits Meccanica dei Fluidi. Editori Riuniti (1980).

4. X. D. Li, and N. -E. Wiberg, Implementation and adaptivity of a space-time
method for structural dynamics. Comput. Methods Appl. Mech. Engrg., 156

(1998), pp. 211-229.

5. A. Longo, D. Barbato, P. Papale, G. Saccorotti, and M. Barsanti Numerical
simulation of the dynamics of fluid oscillations in a gravitationally unstable,

compositionally stratified fissure Lane, S.J. Gilbert, J. S. (eds) Fluid Motions
in Volcanic Conduits: A Source of Seismic and Acoustic Signals. Geological
Society, London, Special Publications 307 (2008), pp. 33—44.

6. A. Longo, M. Vassalli, P. Papale, and M. Barsanti, Numerical simulation of
convection and mixing in magma chambers replenished with COs -rich magma.
Geophys. Res. Lett., 33 (2006), 1.21305.

7. G. Hauke, and T. J. R. Hughes, A comparative study of different sets of vari-
ables solving compressible and incompressible flows. Comput. Methods Appl.

Mech. Engrg., 153 (1998), pp. 1-44.

11



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A. Longo et al

M. Heroux et al., Sandia National Laboratories, http://trilinos.sandia.gov, The
Trilinos Project, Trilinos Release 9.0 (2009).

T. J. R. Hughes, and G. M. Hulbert, Space-time finite element methods for elas-
todynamics: Formulations and error estimates. Comput. Methods Appl. Mech.

Engrg., 66 (1988), pp. 339-363.

P. Jenny, B. Muller, and H. Thomann, Correction of conservative Euler solvers
for gas mixtures. J. Comput. Phys., 132 (1997), pp. 91-107.

Martin, J.C. and Moyce, W.J., An experimental study of the collapse of liquid
columns on a rigid horizontal plane, Phil. Trans. R. Soc. Lond., 244 (1955),
pp. 312-324.

A. Masud, and T. J. R. Hughes, A space-time Galerkin/least-squares finite ele-
ment formulation of the Navier-Stokes equations for moving domain problems.
Comput. Methods Appl. Mech. Engrg., 146 (1997), pp. 91-126.

C. Michler, E. H. van Brummelen, S. J. Hulshoff, and R. de Borst, The rel-
evance of conservation for stability and accuracy of numerical methods for
fluid-structure iteraction. Comput. Methods Appl. Mech. Engrg., 192 (2003),
pp. 4195-4215.

P. Papale, R. Moretti, and D. Barbato, The compositional dependence of the
saturation surface of HyO 4+ CO4 fluids in silicate melts. Chem. Geol., 229
(2006).

M. Modell, and R. C. Reid, Thermodynamics and its applications. Prentice
Hall, (1983).

A. Murrone, and H. Guillard, A five equation reduced model for compressible
two phase flow problems. J. Comput. Phys., 202 (2005), pp. 664-698.

T. Nakayama, and M.Shibata, A finite element technique combined with Cgas—
liquid two-phase flow calculation for unsteady free surface flow problems. Com-
putational Mechanics, 22 (1998), pp. 194-202.

J. M. Prausnitz, R. N. Lichtenthaler, and E. G. de Azevedo, Molecular ther-
modynamics of fluid-phase equilibria. Prentice Hall, (1986).

F. Shakib, T. J. R. Hughes, and Z. Johan, A new finite element formulation for
computational fluid dynamics: X. The compressible Euler and Navier-Stokes

equations. Comput. Methods Appl. Mech. Engrg., 89 (1991), pp. 141-219.

T. E. Tezduyar, S. Sathe, R. Keedgr, and K. Stein, Space-time finite element
techniques for computation of fluid-structure interactions. Comput. Methods

Appl. Mech. Engrg., 195 (2006), pp. 2002-2027.

J. J. W. van der Vegt, and H. van der Ven, Space-time discontinuous Galerkin
finite element method with dynamic grid motion for inviscid compressible flows.

J. Comput. Phys., 182 (2002), pp. 546-585.

12



	Introduction
	Physical Model and Governing Equations
	Governing Equations in Compact Form

	Mesh Model
	Space-Time Finite Element Formulation
	Solution technique
	Code engineering
	Numerical cases

