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ABSTRACT

The development of the INGV (Istituto Nazionale di Geofisica e Vulcanologia)-CMCC (Cen-

tro Euro-Mediterraneo per i Cambiamenti Climatici) Seasonal Prediction System (SPS) is

documented. In this SPS the ocean initial conditions estimation includes a Reduced Order

Optimal Interpolation procedure for the assimilation of temperature and salinity profiles

at the global scale. Nine member ensemble forecasts have been produced for the period

1991-2003 for two starting dates per year in order to assess the impact of the subsurface

assimilation in the ocean for initialization.

Comparing the results with control simulations (i.e.: without assimilation of subsurface

profiles during ocean initialization), we showed that the improved ocean initialization in-

creases the skill in the prediction of tropical Pacific SSTs in our system for boreal winter

forecasts. Considering the forecast of the El Niño 1997-1998, the data assimilation in the

ocean initial conditions leads to a considerable improvement in the representation of its onset

and development.

Our results indicate a better prediction of global scale surface climate anomalies for the

forecasts started in November, probably due to the improvement in the tropical Pacific. For

boreal winter, in both tropics and extra tropics, we show significant increases in the capability

of the system to discriminate above normal and below normal temperature anomalies.

1. Introduction

The scientific basis for seasonal predictions lies in the interaction of the atmosphere with

slowly varying components of the climate system such as the ocean (e.g: Navarra 2002; Shukla
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and Kinter 2006). Early studies showed that El Niño can be predicted seasons in advance

using numerical models of the coupled ocean-atmosphere covering the tropical Pacific (Cane

et al. 1986; Zebiak and Cane 1987). Since then, there have been many developments in

forecasting Sea Surface Temperature (SST) anomalies in the tropical Pacific (e.g: Latif

et al. 1998; Palmer 2006; Balmaseda et al. 2007).

The ability of models to predict ENSO is critically important, as the most significant

climate variability on the interannual timescale is related to this phenomenon (Ji and Leet-

maa 1995; Trenberth et al. 1998; Wallace et al. 1998) and as the SST in the tropical Pacific

have a global impact on atmospheric circulation (e.g: Shukla and Wallace 1983; Trenberth

et al. 1998). However, models skill in predicting tropical Pacific SSTs is still limited. For

instance, most of the seasonal prediction systems underestimate or do not predict the onset

of the exceptional 1997/98 El Niño (e.g: McPhaden 1999; Vitart et al. 2003).

The importance of the oceanic subsurface memory—as expressed by slow variations in

the equatorial Pacific upper ocean heat content—for the evolution of ENSO has been shown

in many observational and modeling studies (e.g: Chen et al. 1995; McPhaden et al. 1998;

Latif et al. 1998; McPhaden 1999; Navarra et al. 2008). Subsurface data assimilation can

contribute in obtaining skillful seasonal forecasts and beneficial effects on predictability have

been also reported increasing the space-time coverage of the observational network (Rosati

et al. 1997; Alves et al. 2004; Ji and Leetmaa 1995; Wang et al. 2002; Balmaseda et al.

2007; Vidard et al. 2006). These studies have often showed reductions of the model errors.

However, the reduced model errors not always corresponds to significant increases in predic-

tion skill and the results are substantially depending on the model, the geographical region,

the year and the season under consideration (e.g.: Ji and Leetmaa 1995; Vidard et al. 2006;
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Balmaseda et al. 2007).

In order to be useful for decision-making, seasonal climate predictions need to be prob-

abilistic and the capability of probability forecasts to provide valuable informations needs

to be assessed (e.g: Richardson 2006). Specifically, it would be desirable to evaluate how

well a set of probability forecasts is able to discriminate among the occurrence of Mutually

Exclusive and Collectively Exhaustive (MECE) climate events, with the simplest possible

situation represented by dichotomous yes/no cases (e.g: temperature above normal or not).

Considering predictions of dichotomous events, the joint distribution of the observed pre-

dictands and of the respective probability forecasts can be conveniently analyzed through

the likelihood-base rate factorization (Wilks 2006). This kind of analysis can be used for a

direct quantification of the forecasts ability to discriminate among the occurrence of one or

the other of a pair of dichotomous events.

This work documents the development of the INGV-CMCC Seasonal Prediction System

(SPS), which includes an assimilation of in situ vertical profile observations in the oceanic

model in order to produce Initial Conditions (ICs). The ocean data assimilation system

has been developed at CMCC-INGV (Pietro and Masina 2009; Bellucci et al. 2007) and it

has been used in order to assimilate observed profiles of temperature and salinity through

the water column. The main focus of the paper is on the assessment of the impact of the

assimilated initial conditions on the forecast skill.

The paper is organized as follows. Section 2 describes the seasonal prediction system, the

experiments performed and the data used for validation. After a description of systematic

errors and skill performance of the latest release of the system, Section 3 and Section 4

contain the comparison with control forecasts (i.e: without ocean assimilation) to analyze
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the effects of the improved ocean ICs on SST bias and on prediction skill, respectively. The

effects of the assimilation on the skill of global scale probability forecasts of dichotomous

predictands is the topic addressed in Section 5. Finally, Section 6 contains the discussion of

the main results and the summary of the conclusions of the study.

2. The Seasonal Prediction System

The SPS documented in the present study represents the evolution of the system de-

scribed in Gualdi et al. (2004) and developed in the framework of the EU project DEME-

TER (Palmer et al. 2004). The ICs for the ocean-atmosphere system are prepared separately

for the atmosphere and for the ocean. For each start date the atmospheric ICs are obtained

from prescribed SST simulations. Differently, the ocean component is obtained from the

ocean data assimilation or simply from a flux-forced ocean simulation for the control fore-

casts. Figure 1 summarizes the hindcasts generation strategy of the latest versions of our

seasonal prediction system. The details of the set-up and integrations performed in this

study are described in Subsection c.

a. The coupled model

The coupled model included in the System is the ocean-atmosphere CGCM Scale Interac-

tion Experiment-Frontier (SINTEX-F; Gualdi et al. 2003b,a; Luo et al. 2005). SINTEX-F is

an evolution of SINTEX (Gualdi et al. 2003b), where both oceanic and atmospheric compo-

nents have been improved. The model components are ORCA2 for the ocean and ECHAM-4
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for the atmosphere.

ORCA2 is the global implementation of the OPA 8.2 ocean modeling system developed by

the Laboratoire d’Oceanographie Dynamique et de Climatologie (LODYC) in Paris (Madec

et al., 1998; see full documentation at http://www.lodyc.jussieu.fr/opa/). It is a finite

difference oceanic GCM and solves the primitive equations with a non-linear equation of

state on an Arakawa C-grid. The horizontal mesh is orthogonal and curvilinear on the

sphere, and its space resolution is roughly equivalent to a geographical mesh of 2◦ x 2◦ (with

a meridional resolution of 0.5 near the equator). 31 vertical levels are used with 10 levels in

the top 100 m. In the configuration used there is no interactive model for the dynamics of

sea-ice, whose area coverage is relaxed towards observed monthly climatology.

ECHAM-4 (Roeckner et al. 1996) is the fourth generation of the ECHAM atmospheric

general circulation model developed at the Max-Planck-Institut Fur Meteorologie in Ham-

burg. The model equations are solved on 19 hybrid vertical levels (top at 10 hPa) by using

the spectral transform method. In these simulations, ECHAM-4 is used with a triangular

truncation T106, corresponding to an associated Gaussian grid of approximately 1.1◦ x 1.1◦.

As shown in Gualdi et al. (2004), this relatively high resolution improves considerably the

prediction skill compared to a coarser atmosphere (T42) and gives a better representation

of the delayed oscillator mechanism (Navarra et al. 2008). An exhaustive description of the

dynamical and physical structure, and of the simulated climatology of ECHAM-4 are given

by Roeckner et al. (1996).

Atmospheric and oceanic components are coupled through OASIS2.4 (Valcke et al. 2000).

No flux adjustment or restoring were used in the simulations. Air-sea fluxes and SST between

atmosphere and ocean were exchanged every 2 h. The features of the SINTEX-F climatology
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and variability have been widely described in the past (e.g.: Gualdi et al. 2003b,a).

b. Ocean assimilation

The latest version of the CMCC-INGV Global Ocean Data Assimilation System (CIGO-

DAS, Pietro and Masina 2009; Bellucci et al. 2007) has been used in order to assimilate

observed profiles of temperature and salinity through the water column of the global config-

uration of the OPA8.2 ocean model. The assimilation scheme used in CIGODAS is based

on the System for Ocean Forecasting and Analysis (SOFA; De Mey and Benkiran, 2002)

which is a Reduced Order multivariate Optimal interpolation (ROOI) scheme. As described

in Bellucci et al. (2007), CIGODAS considerably corrects the subsurface thermal structure

of the oceanic model. In particular, tropical Pacific and western boundary currents regions

show a beneficial impact from the assimilation. Details of the CIGODAS and of the effects

on the ocean model simulated climatology and variability are found in Pietro and Masina

(2009) and in Bellucci et al. (2007).

The temperature and salinity profiles used for this study are taken from the EN3 package

(an assembling of WOD05, GTSPP and ARGO databases, as summarized in Table 1; more

informations available at http://hadobs.metoffice.com/en3/). Only the profiles which passed

all the quality checks described in Ingleby and Huddleston (2007) have been retained for

assimilation. The temperature profiles spatial coverage over different latitudes and regions

of the globe are reported in Table 2 for the period 1991-2003.
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c. Experiments and Data

We performed an experiment composed of 5 months seasonal forecasts for the period

1991-2003. In order to consider the possible impact of the seasonal cycle on the forecasts, the

simulations are started from two different dates of the year: 1st of May and 1st of November.

Two sets of nine member ensemble forecasts have been produced taking the same ICs for

all the coupled model components but the ocean. In the first set the ocean initial states

were estimated through the use of the data assimilation system described in Subsection b

(hereinafter DAS) while in the second no observed in situ data were assimilated (hereinafter

NODAS). For both DAS and NODAS, the ocean model was forced starting from 1955 with

momentum, heat and fresh water flux data from the European Centre for Medium-Range

Weather Forecasts (ECMWF) 40-yr reanalysis (ERA-40; Uppala and co authors 2005)

before 2002 (ERA40 only covers up to August 2002) and from the ECMWF operational

analysis after 2002. Furthermore, in order to keep the simulated SST close to observations,

the model field was damped with a timescale of seven days towards the Reynolds SSTs

(Reynolds and Smith 1994) from 1982 onward and the ERA40 SSTs before. In practice, the

NODAS experiment produced ICs are simply forced from atmospheric fluxes and relaxation

to surface SST, whereas the DAS experiment further included assimilation of in situ ocean

profiles.

The scientific basis for seasonal predictions lies in the interaction of the atmosphere with

slowly varying components of the climate system. As such, seasonal climate predictions

are believed to be firstly an initial value problem for the slow ocean component (Palmer

2006; Shukla and Kinter 2006), while the solution for the atmosphere can be conceived
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as a boundary value problem (Navarra 2002; Palmer 2006). Consistently, the atmospheric

initial conditions were obtained through an Amip-type simulation, that is by prescribing

observed SST boundary forcing to the atmospheric model. It is argued that, compared

to the method based on atmospheric data assimilation (as widely developed for Numerical

Weather Predictions), with the Amip-type approach atmosphere and oceanic conditions (i.e:

SST) are more in balance and this could minimize the initial coupling shock (e.g.: Tribbia

and Troccoli 2008). The AMIP-type run was performed by using the observed SSTs from

the Met Office Hadley Centre’s data set (HadISST1.1 Global Sea-ice and SST; Rayner et al.

2003) for the period 1985-2003. In order to represent the uncertainties in the initial state of

the system, an ensemble of nine atmospheric ICs has been produced by taking lagged days

as initial states. For each starting date we consider the reference date, for instance May 1st

(or November 1st) but also the four days before and after (see Fig. 1).

In summary, for each starting date an ensemble of nine atmospheric initial states were

created. Starting from these ICs, for both DAS and NODAS (i.e: with and without oceanic

assimilation of in situ data), the coupled model has been integrated for five months, produc-

ing two sets of nine-member ensemble forecasts covering the period 1991-2003.

1) Observed and Reanalysis Datasets

The predictive skill of the model is assessed comparing the forecasts with analyses and

observational products. The ERA-Interim reanalyses (Uppala and co authors 2005; Berris-

ford et al. 2009) are used for verification of the forecasts. For precipitation, we use the

Climate Prediction Center (CPC) Merged Analysis of Precipitation (Xie and Arkin 1997)
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dataset. The model and the observed (reanalysis) anomalies are defined as the deviations

from the respective climatology for the period 1991-2003.

3. Improved Ocean IC effect on SST Bias

An important source of inaccuracy of the forecasts performed using CGCMs is represented

by the model systematic errors (e.g: Gualdi et al. 2004). This problem is especially important

for the prediction of the SST anomalies. The magnitude of the model SST bias, in fact, can

be as large as the amplitude of the observed SST anomalies that should be predicted. In this

section, we present a description and discussion of the effect of oceanic subsurface assimilation

on the bias of the SPS forecasts. Before analyzing the details of the impact of the improved

ocean IC, we discuss briefly the main features of the bias in the DAS experiment, with the

main focus in the tropical Pacific.

a. Bias of the System

The DAS SST systematic error for both May (panel a) and November (panel b) start

dates are shown in Fig. 2. The biases are defined as the difference between the forecast

ensemble means and ERA-Interim SST climatologies of the period 1991-2003. The months

from 2 to 4 of the forecast period are considered in the averages which means that for the

May 1st start dates we used the average of monthly means for June, July and August while

monthly means for December, January and February are used for the November 1st forecasts.

The results shown in Fig. 2 indicate that the systematic error of the model in predicting the
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SST field is moderate in most of the tropics. Over a large portion of the tropical belt, in fact,

the model exhibits an averaged cold bias smaller than 1 ◦C. The error is remarkably small in

the tropical Indian Ocean. In the south-eastern tropical Pacific and in the upwelling regions

off the American coast and in the Gulf of Guinea the model is too warm and the averaged

error is larger than 1 ◦C. The equatorial cold tongue is too pronounced and penetrates too

far into the west Pacific, producing SST patterns too symmetrical around the equator. It

follows a tendency to produce a double intertropical convergence zone (ITCZ) in the tropical

Pacific, consistently to what described in Gualdi et al. (2004).

Figure 2 shows a seasonal dependency of the systematic errors on the date of the ICs.

For example, the SST warm bias in the tropical south-eastern Pacific and Atlantic oceans

and Southern Hemisphere middle latitudes appears to be more pronounced for the forecasts

with start date in November (Fig. 2b), whereas a warm bias in the tropical north-eastern

Pacific and Atlantic is found in the forecasts with start dates in May (Fig. 2a). The error

in the equatorial Pacific cold tongue, on the other hand, is more evident for the forecasts

starting in November.

b. Sensitivity to ocean assimilation

Figure 2 compares the systematic error in the DAS SST (panels a and b), averaged over

the 2-to-4 forecast months, with the one suffered by NODAS (panels c and d). Panels e and

f report the SST bias difference between DAS and NODAS, with the shading evidencing

the areas of significant (10% level, bootstrap method) systematic error increase (light) and

decrease (dark) in DAS. The assimilated Ocean IC estimate in DAS leads to a reduced mean
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bias over the tropical belt. For both the May (panels a, c and e) and November (panels b,

d and f) start date, the warm bias in the upwelling regions off the American Coasts and in

the Gulf of Guinea is significantly reduced over large areas. Similarly, the systematic error

in the subtropical south-central Pacific is reduced. The SST bias in the regions influenced

by the western boundary currents in the extra tropical Pacific and Atlantic appears also to

be affected by the subsurface profile assimilation. During boreal summer, the temperature

bias over the regions influenced by the Kuroshio current is considerably reduced over large

areas. Similarly, the forecasts started in November display a reduction of the SST systematic

error over the Gulf current regions in the Atlantic sector poleward of 45◦N. In contrast, in

the Atlantic southward of 45◦N the SST bias in some regions bounded by the Gulf current

appears to increase in DAS.

As the tropical Pacific cold tongue region was shown to be the region with the strongest

bias for the forecasts started in both May and November, we focused on the mean systematic

errors averaged over the Niño3.4 region (5◦S-5◦N; 190◦-240◦E) for DAS (dashed) and for

NODAS (dash-dots) experiments (Fig. 3). The forecasts started in May have relatively

moderate drifts, reaching about 1 K after 5 months in both NODAS and DAS (Fig. 3).

Stronger drifts, exceeding 1.5 K after 5 months, are found for the forecasts starting in

November. The cold bias of about 0.5 K already present in the first month (Fig. 3a) indicates

rapid adjustments going on due to quite a prominent ”coupling shock”. Noteworthy, this

initialization related adjustments appears to be more effective for the November start date.

The DAS forecasts have a smaller drift than NODAS during the first part of the predic-

tions. In particular the first month averaged bias for the November start date is reduced

by about 0.25 K (" 40%) in DAS (Fig. 3a). However, the bias tends to converge to similar
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values in the latter stages of the forecasts (from month 4 on), as the forecasts tend toward

the modeled climatology (e.g: Alves et al. 2004; Jin and Kinter 2008). Our results indicate

that this tendency is reduced for the first 3 months of the forecasts by the use of consistent

subsurface temperature and salinity informations in order to initialize the ocean component.

Please note that the uncertainty associated with analyzed SST data (based on satellites and

in situ measures) is on the order of 0.2 K (e.g: Rayner et al. 2005) and this could limit the

significance of the systematic error differences reported above.

4. Improved Ocean IC effect on predictability

This section reports the contribution of the oceanic subsurface assimilation on the skill

of the SPS. Subsection a describes the main characteristics of the system skill as obtained

for DAS. The comparison between DAS and NODAS is then discussed in Subsection b.

a. Skill of the System

Figure 4 (panels a and b) shows the point by point correlations between predicted (DAS)

and observed (ERA-Interim) surface air temperature anomalies (hereinafter TAIRA). Time

correlations are computed retaining for each year all the monthly means from the one month

lead-time seasonal predictions (forecast months from 2 to 4: June, July and August for May

1st start dates and December, January and February for November 1st start dates). Higher

correlation values are found for both the May start date (panel a) and the November start

date (panel b) over the tropical Pacific. Positive significant correlations are also found over
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most of the tropical Indian and Atlantic oceans with relatively higher values and significant

area coverages for the forecasts started in November. The high correlations over tropical

Pacific display the skill of our coupled model in predicting ENSO (see the Niño3.4 index

in Fig. 5). As summarized in Table 3 the SPS performs particularly well in predicting

the Niño3.4 index both for the seasons with one month lead-time (months from 2 to 4;

hereinafter lead 1 seasons) and for the seasons with two months lead-time (months from 3

to 5; hereinafter lead 2 seasons). The correlation between predicted and observed monthly

Niño3.4 index always exceed 0.9 for both May (0.94 and 0.91 for lead 1 and lead 2 seasons,

respectively) and November (0.97 at lead 1 and 0.95 at lead 2) start dates. Correspondingly,

the RMSE is moderate with values below 0.4 for November. In the cases with start date

May RMSE is 0.44 and 0.53 respectively for lead 1 and lead 2 seasons (Table 3).

From the tropical Pacific, the positive significant correlations tend to irradiate towards

the whole tropical belt and towards extra tropics (Fig. 4a,b). Some positive correlations

are also found in land regions strongly influenced by ENSO teleconnections (Shukla and

Wallace 1983; Trenberth et al. 1998). During boreal winter, such regions are identified over

Central and Southern Africa, the Amazon basin and South Eastern South America, the

Middle latitude Western Pacific Coasts of Asia and North-Western as well as North-Eastern

North America. Boreal summer positive correlations are found in Northern Australia and

Indonesian archipelago, Gulf of Mexico and Central America and over south-eastern Asia.

Remarkably, significant correlations between forecasts and observed temperatures are found

in the Euro-Mediterranean region as well as Middle East during boreal summer, suggesting

some predictability over these regions for the forecasts started in May. However, most areas

evidencing significant correlations are found over the oceans (Fig. 4a,b). This indicates a
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lower predictability over lands and it may follow at least in part from the absence, in the

experiments we performed, of any kind of assimilation in order to suitably initialize the long

persisting land variables (e.g: Koster and coauthors 2004, 2006; Ferranti and Viterbo 2003;

Alessandri and Navarra 2008).

Although the Niño3.4 index shown in Fig. 5 is frequently used to characterize the state

of the ENSO and to quantify the quality of simulations and predictions of the oscillation,

it describes the averaged SST over only a small portion of the Pacific ocean. The ocean

anomalies associated with ENSO, on the other hand, affect the whole tropical basin with

the development of wide scale anomaly patterns. It is therefore of interest to check the skill

of the forecasting system to predict the evolution of the SST pattern anomalies over the

entire tropical Pacific. To this aim, spatial Anomaly Correlation Coefficients (ACCs) and

spatial Root Mean Squared Errors (RMSEs) for the forecast SST anomalies in the tropical

Pacific (defined as 25◦S-25◦N, 140◦-280◦E) have been computed. Figure 6 reports the RMSE

(panels a and b) and the ACCs (panels c and d) for the forecasted SST anomalies in the

tropical Pacific together with the results obtained for persistence forecasts (dashed line).

Thick solid lines (and filled circle marks) are the ensemble means while thin lines stand for

each ensemble member of the DAS experiment. Filled triangles also reports the results for

the NODAS ensemble mean forecasts—see the next subsection for a comparison between

DAS and NODAS. The ACCs and the RMSEs have been computed relative to the ERA-

Interim SST and persistence forecasts are made by persisting ERA-Interim monthly anomaly

from the month prior to the start date of the model forecasts. For example, SST persistence

forecasts for the period May-September 1991 have been made by persisting the SSTA found

for the observed April 1991. The results in Fig. 6 indicate that the ensemble mean forecasts
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have better skill than any ensemble member. This is in agreement with the results found with

other coupled model forecast systems, and can be explained, at least in part, by the fact that

the ensemble average reduces the internal dynamics noise present in the individual forecasts

(Kirtman and Shukla 2002), thus potentially increasing the correlations and reducing the

RMSE.

Overall, DAS displays a good skill in reproducing the observed SST over tropical Pa-

cific, with the ensemble mean forecasts (hereafter, simply ’forecasts’) performing usually

better also than persistence forecasts (dashed lines), especially on lead times greater than

one month. However, both the anomaly correlations and the RMSEs show some seasonal

dependence, with some evidence of the so-called ’spring predictability barrier’ in our system.

Higher capability to beat persistence forecasts, in fact, are found for the forecasts that start

in May compared to the forecasts starting in November. These results are consistent with

several previous studies (e.g: Gualdi et al. 2004; Schneider et al. 2003).

b. Sensitivity to ocean assimilation

Figure 4 compares the correlations between observed TAIRA and respectively DAS (pan-

els a and b) and NODAS (panels c and d) 2-to-4 months forecasts. Panels e and f report the

DAS minus NODAS difference in correlations, with the shaded areas evidencing grid points

with significant (10% level, bootstrap method) increase (red) and decrease (blue) in DAS. To

better illustrate the skill difference as shown between panels a/b vs c/d of Fig. 4, we report

in Table 4 for both DAS and NODAS the fractional areas with significant correlations as

well as with correlations exceeding given thresholds. Overall, the global area fraction with
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significant correlations between November forecasts and observations is 0.60 in DAS and

only 0.55 in NODAS (Table 4). For the forecasts started in May the difference in global

fractional areas reduces at 0.03 (0.61 in DAS vs. 0.58 in NODAS). Considering the areas

with correlations above 0.8, DAS still outcompete NODAS with 0.08 vs. 0.05 of the global

area exceeding this threshold in the forecasts started in November (Table 4). In contrast, the

boreal summer forecasts do not display any difference in fractional area with correlations

above 0.8 (0.05 in both DAS and NODAS). The areas evidencing significant correlation

difference between DAS and NODAS (Fig. 4e, f) are mostly placed over subtropical and

middle latitude oceans. For the forecasts started in November (Fig. 4f), DAS displays areas

with significant increase over equatorial central Pacific, subtropical central South Pacific,

subtropical Indian and Atlantic oceans as well as Northern Hemisphere western boundary

currents regions. DAS evidences some significant correlation increase also over continents,

and in particular the coastal areas adjacent to North Pacific and Atlantic oceans. The May

start date forecasts has fewer grid points displaying significant correlation improvements in

DAS (Fig. 4e), which appears to be outperformed by NODAS over large areas surrounding

the Kuroshio current. On the other hand DAS is significantly better than NODAS over the

North Eastern Pacific.

1) Tropical Pacific

The prediction of SST over the tropical Pacific appears to be affected by the assimilation

of temperature and salinity with stronger improvement for the November start date. From

Fig. 6 (panels b and d) it is clear that DAS (filled circles) improves noticeably compared to

16



NODAS (filled triangles), particularly in terms of ACCs from the third month on. Less clear

is the impact for the May start date (panels a and c) where both the ACC and RMSE values

appear to be only slightly affected. While DAS improves to some extent in the forecast

months 1 and 4, the results are uncertain for month 5 and the skill is almost identical for

months 2 and 3.

The significance of the above results can be more clearly evaluated by means of scat-

terplots of the ACCs and RMSEs computed on the one month lead-time seasonal mean

predictions (averages of forecast months from 2 to 4: June, July and August for May 1st

and December, January and February for November 1st start dates). Figure 7 compares the

forecasts performed with assimilated ICs (DAS) with the control (NODAS) in the tropical

Pacific. ACCs (upper panels) and RMSEs (lower panels) for each forecast year (diamonds)

as well as the average of the values over all the 13 forecast years (cross marks) are displayed.

In some years, an increase of the ACC for DAS in both May and November is visible (Fig. 7).

Using a montecarlo bootstrap procedure we checked the significance of the difference in the

13 year means (table 5). We found that the 5% level of significance is verified only for the

November case. The ACCs for the lead 2 seasons (averages of forecast months from 3 to

5) display similar results (table 5), evidencing a significant improvement in DAS for the

November start dates. For what concern the impact of the assimilation of temperature and

salinity profiles on the SST RMSE, it appears to be smaller than that for ACCs, with the

13 year averages which do not pass the significance test for the difference at the 5% level.

For completeness, we checked the results also over the Niño3.4 region (Table 6). Compared

to the tropical Pacific the ACCs decrease considerably, reflecting the fact that this smaller

region has a strong SST signal and may develop anomaly patterns characterized by steep
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gradients. Nevertheless, for the lead 1 season the effect of subsurface assimilation is similar

to what evidenced by the comparison over the whole tropical Pacific basin. In contrast for

the lead 2 season, our analysis do not evidence any significant difference at the 5% level

between DAS and NODAS over the Niño3.4 region (Table 6).

A synthesis of the time-space SST variability over the tropical Pacific is reported in ta-

ble 7. For each forecast month, the standard deviations for the ensemble mean SST anomalies

in DAS (1st column), NODAS (2nd column) and for the observations (3rd column) are com-

puted retaining both the space and interannual time variabilities. Compared to NODAS,

in both May and November start dates the DAS ensemble mean predictions variability is

closer to the observed value, in particular for the forecast months from 3 to 5. This is due to

the fact that DAS do not display the marked progressive weakening of the predicted ensem-

ble mean anomalous signal which characterizes NODAS. This result indicates an increased

signal-to-noise ratio of the forecasts performed in DAS from month 3 to 5, driven by the

improved subsurface initialization of the ocean. As discussed above, this appears to produce

an increased skill only for the forecasts started in November, while for May the enhanced

signal appears not to correspond to a better fit to the observed anomalies.

2) El Niño 1997-1998

The Niño3.4 index for all start dates in the forecasts performed with NODAS (black)

and DAS (red) is reported as box plot time series in Fig. 8. The distribution of predicted

monthly mean anomalies is represented by boxes (25th-75th percentiles) and the median is

represented by the inside box mark. The shaded band includes the interannual standard

18



deviation in the observations while the dashed lines refer to the forecasts. DAS appears to

better represent the observed (green filled circles) anomalies in the Niño3.4 index compared

to NODAS (correlation coefficient 0.94 vs 0.91; see also Table 8 for the comparison of the

skill in the lead 1 and lead 2 seasons for each start date). The evolution of the two major El

Niño events (1991-1992 and 1997-1998) appear to be better represented in DAS. Particularly,

DAS considerably improves the onset amplitude of El Niño 1997-1998. The strength and

length of the El Niño 1991-1992, staying well above one standard deviation till May 1992

in the observations, is also more seemly represented in DAS. However, DAS and NODAS

appear to anticipate the onset of El Niño 1991-1992 both providing a false alarm in the

forecast started May 1991. The considered forecasting period also includes the 1994-1995

and 2002-2003 moderate intensity El Niño events. They appear to be quite well predicted

by both DAS and NODAS with the 1994 El Niño onset better captured in NODAS. On the

other hand the 2002 onset appears to be slightly better represented in DAS.

The observed El Niño 1997/1998 onset amplitude is very well reproduced by DAS, with

an observed averaged anomaly of about 2.3K in September 1997. In contrast NODAS reaches

an anomaly of only 1.5K at that time. The Hovemöller diagrams of the evolutions of the

heat content anomaly (shaded) and zonal wind stress anomaly (contours) for NODAS (panel

a), DAS (panel c) and the ocean analysis (panel b) is reported in Fig 9. Note that for the

model ensemble mean anomalies are reported, thus averaging out the ”non signal variability”

intrinsically working at the shorter time and smaller space scales (Kirtman and Shukla 2002).

As shown in Fig. 9, DAS well represents the initial positive heat content anomaly along the

equatorial Pacific and off the Peru coast. Similarly, the Kelvin wave train travelling eastward

through the tropical Pacific as well as the associated heat content anomaly propagation
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appears to be captured correctly by DAS. In contrast, the NODAS heat content anomaly

is much weaker than observed and the Kelvin wave signal appears to be less clear and

somewhat delayed compared with observations. This results in a reduced development and

west-to-east propagation of the heat anomaly and in the consequent weak simulation of the

onset of the El Niño 1997-1998 in NODAS. It is important to note here that this weak initial

development of the El Niño 1997-98 has been pointed out to be a major problem for most

of the dynamical as well as statistical ENSO forecast models (e.g: McPhaden 1999; Vitart

et al. 2003).

Interestingly, the second Kelvin wave train do not appear to be captured by DAS, prob-

ably because of uninitialized intra-seasonal wind bursts (McPhaden 1999). Nevertheless the

initial heat content anomaly to the east of the dateline is correctly propagated eastward in

this experiment. The resulting heat content prediction is still close to observed at the end

of the DAS forecast.

5. Probabilistic forecasts of dichotomous predictands

In the previous section we have evaluated the impact of the improvement of the oceanic

ICs estimation on the prediction of the tropical Pacific SST, which represents the main source

of climate predictability at the seasonal time scale (e.g: Ji and Leetmaa 1995; Trenberth

et al. 1998; Wallace et al. 1998). In the following we will give an estimate of the associated

global scale impact on the performance of probabilistic forecasts of dichotomous observed

predictands. In particular, we will concentrate on the forecasting of below normal (i.e: below

lower tercile of the sample distribution) and above normal (i.e: above upper tercile of the
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sample distribution) observed surface air temperature (hereinafter TAIRA) and observed

precipitation (hereinafter PRECA).

The joint distribution of forecasts and observed dichotomous predictands can be con-

veniently analyzed and displayed graphically through the likelihood-base rate factoriza-

tion (Wilks 2006):

p(yi, oj) = p(yi|oj) · p(oj) (1)

i = 1, . . . , I

j = 0, 1

where the conditional distributions p(yi|oj) express the likelihoods that each of the al-

lowable forecast value yi would have been issued in advance of each of the observed di-

chotomous event oj (occurrence j = 1; no occurrence j = 0). Together with the associated

sample climatological probabilities, p(oj), it completely represents the information of the full

joint distribution. Specifically, the conditional likelihood distributions, p(yi|oj), are directly

indicative of how well a set of forecasts are able to discriminate among the events oj. Graph-

ically, this can be appreciated through diagrams consisting of superimposed plots of the two

likelihood distributions as a function of the forecast probability, yi (hereinafter discrimina-

tion diagrams). As pointed out by Wilks (2006), the above mentioned characteristics of the

two likelihood distributions could be used effectively to recalibrate the probability forecasts

by calculating posterior probabilities for the two events given each of the possible forecast

probabilities.

Differently from previous sections which were mostly focused on climatology and pre-
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dictability of seasonal means, here we focus on the probabilities of monthly means to exceed

tercile thresholds and on the capability of the forecasts to discriminate the corresponding

observed outcomes. To this aim we retain all the forecast months from 2 to 5 in the analysis

that follows. Figure 10 shows a comparison between DAS and NODAS of the discrimina-

tion diagrams evaluated over the tropics (0-360E; 25S-25N) and considering all the monthly

means from month 2 to 5 of the forecasts started in November (panels a and b; Decem-

ber, January, February and March monthly means considered) and in May (panels c and d;

June, July, August and September monthly means considered). The left panels (a and c)

relates to the forecast probabilities of the event of TAIRA being below the lower tercile of

the climatological sample distribution (E−
T ). In contrast, panels b and d refer to the forecast

probabilities to exceed the upper tercile (E+
T ). In Fig. 10 the dashed lines represent the

likelihood distribution given the no occurrence of the event [p(yi|o0)], while solid lines are

the likelihood distributions verified o1 [p(yi|o1)]. Both NODAS in red and DAS in blue are

displayed in the same diagram. In the forecasts started in November (panels a and b), DAS

displays larger p(yi|o0) values (dashed lines) for the smaller forecast probabilities for both

E−
T and E+

T . Similarly, conditional probabilities given o1 (solid lines) are higher in DAS com-

pared to NODAS for the larger probability forecast outcomes. This determines an increase

in DAS of the separation between the two respective likelihood distributions, indicating an

improved ability of the forecasts to discriminate warm and cold events.

The separations of the two likelihood distributions are also plotted in the same figure

(bottom horizontal bars) in the form of discrimination distances (d), a scalar attribute defined

as the difference between the means of the two likelihood distributions (µ) following Wilks
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(2006):

d =| µy|o1
− µy|o0

| (2)

In Fig. 10, star marks are placed in correspondence of the discrimination values to indicate

that they are significantly (at the 5% level, using a montecarlo bootstrap method) higher than

the other experiment. DAS increases significantly d compared to NODAS for both E−
T,Nov

and E+
T,Nov (Fig. 10a, b). This result indicates that, for the forecast started in November,

the assimilation of temperature and salinity profiles improves the ability of the model to

discriminate between the occurrence of below normal or above normal events over the tropics.

Differently from the November start date case, the forecasts started in May (Fig. 10c, d)

do not display any significant (5% level) difference in d. In fact, considering both E−
T,May

and E+
T,May, the two likelihood distributions, compared between DAS and NODAS, are

respectively very close to each other, resulting in discrimination distances almost identical.

The panel insets in the discrimination diagrams in Fig. 10 also report the refinement

distributions, p(yi). The dispersion of p(yi) reflects the overall confidence of the forecasts,

so that forecasts that deviate rarely from their average value exhibit little confidence (Wilks

2006). Interestingly, all the refinement distributions in Fig. 10 evidence an increased con-

fidence in DAS. This is verified even when the discrimination distance is not affected con-

siderably, as it is the case for the May start date. This result indicates that the addition

of subsurface informations to the ocean IC tends to increase the signal-to-noise ratio of

the predictions and consequently drives the predictions to fall preferentially outside nor-

mal conditions. However, consistently with the results in Section 4, this produces increased

discriminations only for the November start date, while for May the enhanced signal does
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not appear to coincide with better correspondence to observations. Table 9 summarizes, for

both November and May, the discrimination distances for E−
T,P and E+

T,P (where T and P

indicates Temperature and Precipitation, respectively) in the tropics, northern extra tropics

and southern extra tropics. Considering precipitation over tropics, DAS show an enhanced

d+

P,Nov (5% significance level) and, interestingly, also the forecasts started in May display

an improvement due to the initialization of the subsurface ocean. In fact d−
P,May increases

significantly compared to NODAS.

From table 9, it is shown that discrimination distances outside the tropics tend to de-

crease to values close or below 0.1 in both DAS and NODAS. Nevertheless, extra tropics

discrimination appears to be affected by the assimilation of temperature and salinity as

well. Considering winter northern extra tropics TAIRA, E−
T,Nov and E+

T,Nov are improved

considerably in DAS compared to NODAS (5% level significance verified). Differently, the

PRECA field discrimination is affected during boreal summer in the northern extra trop-

ics, with d+

P,May which increases significantly in DAS. Similarly to the Northern Hemisphere

case, the comparison of the d values for the southern extra tropics display improvements for

TAIRA during boreal winter. In this case d−
T,Nov is increased in DAS compared to NODAS.

Interestingly, d+
T,May displays an higher value in NODAS (not significant however). This is

probably due to the fact that only a very small number of profiles is available in the southern

extra tropics during austral winter and spring for initialization purposes (see table 2).

Table 10 reports the comparison of the discrimination distances between DAS and NODAS

for the three tropical ocean basin sectors. For the tropical Pacific, results emphasize the anal-

ysis performed in Section 4. Compared to NODAS, the DAS discrimination distances over

this ocean basin increase significantly (5% level) in the November start date forecasts for
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all the cases considered (E+

T,Nov, E−
T,Nov, E−

P,Nov and E+

P,Nov). Differently, for the May start

dates the discriminations appear to be little affected, with no significant differences between

DAS and NODAS over tropical Pacific. On the other hand, the assimilation of subsurface

observations leads to the enhancement of the May prediction performance in the Indian

Ocean. A significantly increased discrimination has been verified for E+

T,May, E−
P,May and

E+
P,May (Table 10).

Tropical Atlantic behaves differently from the other tropical oceans. Considering the

May start date, in this basin the assimilation of subsurface temperature and salinity leads

to a clear worsening of the predictions in terms of discrimination distance. In fact, the dis-

criminations for E−
T,May and E+

P,May increase significantly in NODAS compared with DAS

(Table 10). From Fig. 11a it is shown a clear reduction of the overlapping between p(yi|o0)

and p(yi|o1) in NODAS compared with DAS and this ends up in a significantly (5% level)

higher d−
T,May value. Fig. 11d documents the increased NODAS discrimination for E+

P,May.

Noteworthy, in this case the refinement distribution (inset histogram) show much less confi-

dence than for the temperature cases, and correspondingly the discrimination values appear

to be reduced. Nevertheless, there is a considerable improvement of NODAS compared to

DAS. The forecasts over tropical Atlantic started in November (Fig. 12) display improved

temperature discriminations in DAS. In fact, E−
T,Nov and E+

T,Nov are significantly better dis-

criminated by DAS (Fig. 12a, b). In order to understand the opposite behavior of boreal

winter and boreal summer forecasts over tropical Atlantic, we compared the subsurface ther-

mal climatology of the ICs taken from the ocean analysis with a long free simulation of the

coupled model (radiative boundary conditions of the 1991-2003 period were used). We found

that the equatorial Atlantic subsurface thermal structure is very badly represented in the
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coupled model during boreal spring and early summer (not shown). During these seasons the

coupled model shows an opposite slope of the thermocline with respect to observations. This

result suggests that the subsurface correction, due to the data assimilation during spring,

drives the coupled model too far from and not ”in balance” with the state it would have and

thus leading to a negative impact on the forecasts started in May.

Table 11 compares the DAS and NODAS discriminations over the Pacific North Ameri-

can (150E-300E; 40N-65N; PNA) and the Euro-Atlantic (80W-40E; 35N-65N) regions. For

the PNA region, the results indicate increased discriminations in the forecasts started in

November for the TAIRA prediction. Differently, the performances for the precipitation

are in general very little affected. Even if discriminations appear to decrease considerably

compared to tropical regions, the refinement distributions show good confidences for both

November (Fig. 13a, b) and May (Fig. 13c, d) start dates. In this context DAS exhibits a

considerably higher sharpness of the forecast distribution. This result appears to drive the

increased discrimination in DAS, which is verified for significance (5% level) for E+

T,Nov and

E−
T,Nov.

Figure 14 is the same as Fig. 13 but considering the Euro-Atlantic region. Compared

to Fig. 13, it is noted that discrimination performances over this area is considerably lower

than for PNA (see also table 11). However, for the forecasts starting in November, DAS

improves the TAIRA results if compared with NODAS. In particular, for the E+
T case there

is a significant (5% level) increase (2.5 times) of the discrimination from the very low value

of 0.011 to 0.026, leading to a noticeable increase in the performance. This is an important

result, as it leads to increased predictability in the region. However, increased discrimination

is achieved by reducing the overlapping in the ”not conventional” direction: in fact DAS
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displays lower p(yi|o0) values for the smaller forecasts probabilities and the p(yi|o1) are

smaller for the larger forecasts probabilities. From a physical point of view, this is of course

deprecable, as it means that the model tends to represent the opposite than reality in this

region. Nevertheless, as soon as it is systematic, it is as well useful for predictions.

6. Conclusions

The forecasts performed using the assimilation of subsurface temperature and salinity

profiles during ocean initialization (DAS experiment) has evidenced an enhanced signal to

noise ratio of the predicted surface temperature anomalies. In particular, in the tropical

Pacific the magnitude of the time-space variability of the ensemble-mean SST anomalies

predicted by DAS appears to be very well simulated when compared with observations. It

is improving over NODAS (i.e: without subsurface assimilation during initialization), which

underestimate considerably the predicted anomalous SST in the tropical Pacific from the

third forecast month on. In terms of ACCs and RMSEs, subsurface initialization improves

the November start date forecasts over tropical Pacific. In fact, the averaged (over the thir-

teen forecast years) ACCs computed on the seasonal mean anomalies increase significantly

(5% level) in the tropical Pacific for the forecasts started in November (considering the one

month lead-time predictions it increases by 8% with respect to NODAS ). The impact on

the SST RMSE is smaller (5% reduction for the one month lead-time predictions) and the

significance in this case can only be verified at the 10% level. In contrast, for the forecasts

started in May ACC and RMSE values are only slightly affected by the subsurface oceanic

initialization and the averages over all forecast years are not significantly modified.
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NODAS shows the tendency to underpredict the ENSO anomalies. This has been re-

ported as a major problem also for other dynamical as well as statistical ENSO forecast

models (e.g: McPhaden 1999; Vitart et al. 2003). In particular, when no subsurface data

are assimilated, our system appears to considerably underestimate the development of El

Niño 1997/1998. In contrast, the assimilation of temperature and salinity profiles in DAS

leads to a considerable improvement of the representation of the initial positive heat con-

tent anomaly along the equatorial Pacific and off the Peru coast. Similarly, the observed

Kelvin wave train travelling eastward through the tropical Pacific as well as the associated

heat anomaly propagation appears to be captured correctly by DAS. These results further

highlight the importance of subsurface data assimilation for the improvement in forecasting

the development and evolution of El Niño events .

The assimilated ocean initial conditions, and the resulting enhanced tropical Pacific pre-

diction, has been shown to improve the probabilistic predictions of dichotomous events glob-

ally. Considering the tropical belt, DAS displays significantly (5% level) enhanced capability

to discriminate both warm (above upper tercile of the sample distribution, E+
T ) and cold

(below lower tercile, E−
T ) surface air temperature events in the forecasts started in November.

For boreal winter, the discrimination distance of anomalous temperature forecasts increases

by 7% for E−
T and by 9% for E+

T over the tropics. In some cases, the enhancement in the

discrimination distance has been shown to be significant (5% level) not only for tempera-

ture but also for precipitation. In particular, wet events appear to be significantly better

discriminated during boreal winter (12% increase with respect to NODAS), while dry events

improve in boreal summer (6% increase with respect to NODAS). Differently from Novem-

ber, the forecasts started in May do not display a significant increase in the discrimination
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of anomalous temperature events considering the whole tropics. And this even though the

refinement distributions show increased confidence of the forecasts in a way similar to the

November case. This result indicates that the addition of subsurface informations to the

ocean IC tends to increase the signal-to-noise ratio of the forecasts and consequently drives

the predictions to fall preferentially outside normal conditions. However, this improves the

skill in discrimination only for the November start dates, while for May the enhanced signal

does not appear to coincide with significantly better correspondence to observations.

The Tropical Atlantic is found to behave differently from the other tropical basins, with

a marked and significant worsening in DAS of the discrimination distance for the prediction

of cold and wet events during boreal summer. By contrast, the November forecasts improve

the prediction of the anomalous temperature quite similarly to the other tropical basins. The

results in the Atlantic are in agreement with previous studies evidencing the tendency to a

degradation of the prediction skill over tropical Atlantic when subsurface data assimilation

is used (e.g: Vidard et al. 2006; Balmaseda et al. 2007). Our analysis suggests that the sub-

surface correction due to the assimilation of observed profiles in spring leads to a change too

drastic in the tropical Atlantic and drives the system too far from the state that the coupled

model would have there—in this season the slope of the equatorial Atlantic thermocline in

free coupled-model long runs is opposite than observed—thus leading to a negative impact

on the forecasts started in May.

The assimilation of subsurface data in the ocean IC impacts the extra tropics as well

in the forecasts started in November. For the boreal winter forecasts, the discrimination

distances appear to increase significantly (5% level) for anomalous temperature events in

both northern middle latitudes (compared to NODAS, the discrimination of both warm and
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cold events increase respectively by 24% and 38%) and southern middle latitudes (cold events

discrimination increases by 10%). The Pacific-North American sector displays the strongest

improvement in the Northern Hemisphere middle latitudes. In this region, a significant

increase in the discrimination for both warm (46% increase with respect to NODAS) and

cold (39% increase with respect to NODAS) events for the forecasts started in November

is evidenced. Remarkably, DAS increases the capability to discriminate warm dichotomous

events during boreal winters even in the Euro-Atlantic region. However, this is achieved

through smaller conditional likelihoods for the smaller forecast probabilities, given the no-

occurrence of the event. Concurrently, when the event occurs, smaller conditional likelihoods

correspond to the higher forecast probabilities.

Dynamical Weather and Climate Prediction is challenging: progress did not occur in the

last 30 years because of drastic breakthroughs, but because of slow incremental progresses

and through a great deal of hard work (Shukla and Kinter 2006). This study has evidenced

beneficial effects on the boreal winter forecasts deriving from the subsurface initialization of

the ocean model in our prediction system. However, the impact of the ocean data assimilation

is small and mostly negligible for the forecasts started in May. Large SST biases in the central

tropical Pacific and quite a prominent initial ”coupling shock” have been evidenced in our

system. With this regard, more efforts are needed on the initialization of the coupled model

and on reducing SST biases as they are probably limiting the positive impact of subsurface

assimilation in our system.

In this study we considered the climate predictability using our SPS at scales up to

the first 5 months and mostly focusing on the one month lead-time seasonal (months 2-4)

forecasts. The predictability of seasonal climate at longer lead times is also an important
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issue that requires a large effort and it will be considered in future works. Furthermore,

given the relatively short prediction scales considered in this work, the atmospheric initial

conditions may have an impact on the skill of the system. Recently, some dynamical forecasts

of Intraseasonal Oscillations produced rather credible simulations of the Madden Julian

Oscillation, with evidence of some prediction skill out to a lead-time of about 2 weeks (Kim

et al. 2007; Vitart et al. 2007). Whether or not this kind of atmosphere initialization can

affect the prediction of ENSO and of climate at seasonal time scale still needs to be evaluated.
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Data sources in EN3 v1c dataset; Ingleby and Huddleston, 2007
http://hadobs.metoffice.com/en3

WOD05 World Ocean Database ’05 (WOD05; Boyer et al. 2006).

Data availability and documentation: http://www.nodc.noaa.gov/OC5/WOD05/pr wod05.html

Instrument Description Starting Ending

Code Year Year

OSD Ocean Station Data 1958 2003

CTD Conductivity-Temperature-Depth (Pressure) Data 1961 2003

XBT Expendable Bathythermograph Data 1966 2003

PFL Profiling Floats Data 1994 2003

MBT Mechanical Bathythermograph Data 1958 2003

MRB Moored Buoy Data 1980 2003

DRB Drifting Buoy Data 1985 2003

UOR Undulating Ocean Recorders Data 1992 2000

APB Autonomous Pinniped Bathythermograph Data 1997 1999

GTSPP Global Temperature-Salinity Profile Program

(Data availability and documentation: http://www.nodc.noaa.gov/GTSPP/)

Instrument Description Starting Ending

Code Year Year

BA BATHY radio message (temperature with depth) 1990 2003

BF Undulating Oceanographic Recorder (e.g. Batfish CTD) 1996 2003

BO Bottle temperature data 1990 2003

CD Conductivity-Temperature-Depth (Pressure) down trace 1990 2003

CT Conductivity-Temperature-Depth (Pressure) data, up or down 1990 1999

CU Conductivity-Temperature-Depth (Pressure) up trace 1991 2003

DT Digital Bathythermograph 1990 2003

MB Mechanical Bathythermograph 1992 1993

PF Profiling float 1992 2003

TE Temperature Salinity Current (TESAC) radio message 1990 2003

TO Towed Conductivity-Temperature-Depth (Pressure) 1993 1993

TR Thermistor chain 1990 2003

XB Expendable Bathythermograph 1990 2003

XC Expendable Conductivity-Temperature-Depth (Pressure) 1999 1999

Argo (Data availability and documentation: http://www.argo.net)

Instrument Description Starting Ending

Code Year Year

- Argo profiling float 1999 2003

Table 1. Data sources in the EN3 v1c dataset, which is an assembling of World Ocean Database ’05

(WOD05), Global Temperature-Salinity Program (GTSPP) and Argo database. The left column list the

instrument codes as reported in the respective database documentation. We also reported start and end year

of availability of each data source for the assimilation we performed to produce Ocean initial conditions.
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Profiles spatial availability

Region November − to− May − to−
April October

Tropics 0.17 0.17
lat(25N-25S) - lon(0-360)
NorthernExtraTropics 0.19 0.24
lat(30N-90N) - lon(0-360)
SouthernExtraTropics 0.05 0.02
lat(90S-30S) - lon(0-360)

TropicalPacific 0.17 0.17
lat(25N-25S) - lon(190E-240E)

IndianOcean 0.1 0.11
lat(20N-25S) - lon(50E-110E)

TropicalAtlantic 0.17 0.16
lat(40N-35S) - lon(60W-10E)

PacificNorthAmerican 0.22 0.32
lat(40N-65N) - lon(150E-300E)

Euro −Atlantic 0.78 0.83
lat(35N-65N) - lon(80W-40E)

Table 2. Fractional space coverage of the quality checked EN3 Temperature profiles used for
this work. The annual cycle is divided into the May-to-October and the November-to-April time
periods. The temperature profiles have been distributed to a 0.5◦x0.3◦ global map of monthly

means before computation of the averaged fraction for each region. We considered as covered the
grid points with at least one measure available in the first 100 mt ocean depth in period 1991-2003.
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Niño3.4 index prediction skill

May November

Lead 1 - months 2-4

Correlation 0.94 0.97
RMSE 0.44 0.34

Lead 2 - months 3-5

Correlation 0.91 0.95
RMSE 0.53 0.38

Table 3. Skill in the prediction of the monthly Niño3.4 index (averaged temperature anomaly

over 5S-5N; 190E-280E) for the DAS experiment. Monthly time correlations and RMS Errors are
computed against ERA Interim for both one month lead-time (upper rows) and two months lead-
time (lower rows) predicted seasons. All the forecast months from 2 to 4 (one month lead-time)

and months from 3 to 5 (two months lead-time) have been used in the computation of the skill.
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Start date Start date
1 May 1 November

DAS NODAS DAS NODAS

significant r 0.61 0.58 0.60 0.55
significant with r > 0.5 0.29 0.27 0.30 0.25
significant with r > 0.6 0.19 0.17 0.22 0.16
significant with r > 0.8 0.05 0.05 0.08 0.05

Table 4. DAS vs. NODAS global area fractions with significant correlations (r) between modeled
and observed TAIRA (first row; see also Fig. 4). Rows 2 to 4 also displays the fractional areas with
correlations significant and above 0.5, 0.6 and 0.8, respectively.

44



Skill comparison in the Tropical Pacific

May November

DAS NODAS DAS NODAS

Lead 1 - months 2-4

ACC 0.63 0.61 0.68** 0.63**
RMSE 0.36 0.36 0.39* 0.41*

Lead 2 - months 3-5

ACC 0.58 0.58 0.61** 0.58**
RMSE 0.41 0.41 0.43 0.44

Table 5. Comparison between DAS and NODAS of the 13 years mean ACCs and RMSEs
computed against ERA Interim over the tropical Pacific (25S-25N; 140E-280E) for one month lead-

time (months 2-to-4; upper rows) and two months lead-time (months 3-to-5; lower rows) seasonal
mean predictions. Using a montecarlo bootstrap procedure we checked the significance of the

differences in the 13 year averages. Two asterisks (one asterisk) indicate the 5% (10%) significance
level.
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Skill comparison in the Niño3.4 region

May November

DAS NODAS DAS NODAS

Lead 1 - months 2-4

ACC 0.51 0.50 0.47** 0.43**
RMSE 0.43 0.44 0.34* 0.39*

Lead 2 - months 3-5

ACC 0.33 0.33 0.35* 0.33*
RMSE 0.53 0.51 0.43* 0.48*

Table 6. Same as table 5 but for the Niño3.4 region.
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SSTA Standard Deviation

DAS NODAS OBS

May 0.60 0.54 0.60
0.58 0.51 0.56
0.56 0.49 0.55
0.57 0.50 0.57
0.57 0.50 0.58

November 0.70 0.63 0.69
0.70 0.62 0.72
0.66 0.57 0.70
0.63 0.52 0.65
0.55 0.45 0.59

Table 7. Standard deviations of the SST anomalies over the tropical Pacific (25◦S-25◦N; 140-
280◦E) for each forecast month: 1st and 2nd columns are the DAS and NODAS ensemble mean
forecasts, respectively; observations are reported in the 3rd column. Both the space and interannual

time variabilities are retained in the computations.
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Skill comparison of the Niño3.4 index
May November

DAS NODAS DAS NODAS

Lead 1 - months 2-4

Correlation 0.94 0.93 0.97** 0.93**
RMSE 0.44 0.45 0.34* 0.39*

Lead 2 - months 3-5

Correlation 0.91 0.90 0.95* 0.92*
RMSE 0.53 0.52 0.38 0.39

Table 8. Comparison between DAS and NODAS of the prediction skill for the monthly Niño3.4
index (averaged temperature anomaly over 5S-5N; 190E-280E). Monthly time correlations and
RMS Errors are computed against ERA Interim for both the one month lead-time (upper rows)

and the two months lead-time (lower rows) seasons. All forecast months from 2 to 4 (one month
lead-time) and months from 3 to 5 (two months lead-time) have been used in the computation

of the skill. Using a montecarlo bootstrap procedure we checked the significance of the DAS vs
NODAS differences. Two asterisks (one asterisk) indicate the 5% (10%) significance level.
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Temperature Precipitation

E−
T E+

T E−
P E+

P

Tropics lat(25S-25N)-lon(0-360)

dMay DAS 0.200 0.192 0.113 0.072
NODAS 0.201 0.190 0.107 0.067

dNov DAS 0.208 0.219 0.109 0.070
NODAS 0.195 0.200 0.108 0.062

Northern Extra Tropics lat(30-65N)-lon(0-360)

dMay DAS 0.083 0.077 0.020 0.009
NODAS 0.084 0.076 0.016 0.003

dNov DAS 0.076 0.078 0.016 0.016
NODAS 0.055 0.063 0.016 0.014

Southern Extra Tropics lat(65-30S)-lon(0-360)

dMay DAS 0.131 0.121 0.026 0.021
NODAS 0.126 0.129 0.029 0.022

dNov DAS 0.125 0.115 0.021 0.017
NODAS 0.114 0.109 0.018 0.014

Table 9. NODAS vs DAS discrimination distances for the tropics, northern extra tropics and
southern extra tropics. The probability forecasts for above upper tercile (E+

T,P ) and below lower

tercile (E−
T,P ) of the sample climatological distributions are reported for both temperature (left

columns) and precipitation (right columns). Underlined bold discriminations stand for values which
are significantly increased compared to the other experiment at the 5% significance level.
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Temperature Precipitation

E−
T E+

T E−
P E+

P

Tropical Pacific lat(25S-25N)-lon(190-240E)

dMay DAS 0.318 0.262 0.136 0.112
NODAS 0.320 0.260 0.130 0.109

dNov DAS 0.299 0.267 0.137 0.117
NODAS 0.287 0.251 0.130 0.100

Indian Ocean lat(25S-20N)-lon(50-110E)

dMay DAS 0.135 0.156 0.070 0.042
NODAS 0.128 0.137 0.055 0.032

dNov DAS 0.147 0.198 0.139 0.063
NODAS 0.150 0.192 0.140 0.060

Tropical Atlantic lat(40N-35S)-lon(60W-10E)

dMay DAS 0.105 0.083 0.48 0.012
NODAS 0.135 0.090 0.045 0.024

dNov DAS 0.093 0.136 0.065 0.015
NODAS 0.069 0.113 0.064 0.010

Table 10. Same as table 9 but for tropical Pacific, tropical Indian and tropical Atlantic Oceans.
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Temperature Precipitation

E−
T E+

T E−
P E+

P

Pacific North American lat(40-65N)-lon(150-300E)

dMay DAS 0.092 0.079 0.006 0.006
NODAS 0.084 0.074 0.006 0.003

dNov DAS 0.101 0.103 0.008 0.010
NODAS 0.069 0.074 0.014 0.006

Euro-Atlantic lat(35-65N) - lon(80W-40E)

dMay DAS 0.026 0.035 0.020 0.009
NODAS 0.026 0.036 0.019 0.005

dNov DAS 0.012 0.026 0.005 0.008
NODAS 0.011 0.011 0.001 0.002

Table 11. Same as table 9 but for Pacific North American (PNA) and Euro-Atlantic regions.
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Fig. 1. Scheme summarizing the hindcasts generation strategy adopted in this work. For
each start date we obtain the ocean initial conditions from off-line forced ocean analysis.
Similarly, the atmospheric ICs are obtained from a simulation performed with prescribed
observed SSTs. For each start date, an ensemble of 9 atmospheric initial states is produced
by taking lagged days for the atmospheric component. Specifically, we sample the atmo-
spheric IC by taking not only the actual start date but also the four days before and after,
respectively. See text for further details.
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Fig. 2. Systematic error of seasonal mean predicted SST (target months from 2 to 4).
DAS forecasts with starting dates in (a) May and (b) November. The error is defined as
the difference between the 1991-2003 climatologies obtained respectively from the forecast
ensemble means and from the ERA-Interim SST. Dark (light) shading indicates values above
0.5 (below -0.5) K. Contours: solid lines correspond to positive values and dashed lines
correspond to negative values. Contour interval is 0.5 K. (c) and (d) are the same as (a)
and (b) but for NODAS forecasts. (e) and (f) are the SST bias difference between DAS and
NODAS, respectively for May and November (Contour interval 0.3 K). Shaded are the areas
of increase (light) and decrease (dark) in DAS which passed a significance test at the 10%
level. 57



Fig. 3. Mean drift of the Niño3.4 SST over the period 1991-2003 for both May 1 and
November 1 starting dates. (a) difference between modeled and observed climatologies and
(b) absolute values. Dashed (dash-dot) lines indicates DAS (NODAS). In (b) the solid line
refers to the observations.
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Fig. 4. Ensemble mean forecasts vs. ERA-Interim surface air temperature anomalies: point
by point correlations of months 2-to-4 of the predictions. DAS forecasts with starting dates
(a) May 1st and (b) November 1st. The grid points in which correlations are significant at
the 10% level (bootstrap method) are shaded. (c) and (d) are the same as (a) and (b) but
for NODAS forecasts. (e) and (f) are the DAS minus NODAS difference in correlations,
respectively for May and November (Contours interval 0.2). Shaded are the areas of increase
(light) and decrease (dark) in DAS which passed a significance test at the 10% level.

59



may91 may92 may93 may94 may95 may96 may97 may98 may99 may00 may01 may02 may03 may04
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
Predicted NINO34 Plumes 

Years

An
om

alie
s −

 de
gC

 

 
OBSERVATIONS
ENSMEAN
MEMBERS

Fig. 5. Spaghetti plot of the monthly mean Niño3.4 index (SST anomaly averaged in the
region 190-240E, 5S-5N). Red thin lines indicate the predicted (DAS) anomalies for each
ensemble member and the red square marks stand for the ensemble means. Observations
are in black.
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Fig. 6. RMSEs (upper panels) and ACCs (lower panels) between predicted (DAS) and ERA-
Interim SST anomalies over tropical Pacific (25S-25N; 140-280E). The 1991-2003 averaged
RMSEs and ACCs for the forecasts with starting dates May 1st (a and c) and November
1st (b and d) are plotted as a function of the forecast target month. Solid thick lines and
filled circle marks are for the ensemble means, while thin lines show the results for each
ensemble member forecast. The dashed lines stand for the persistence forecasts, obtained
persisting the monthly anomaly observed during the month prior to the start date of the
model forecasts. The filled triangles indicate RMSEs and ACCs obtained for the ensemble
mean forecasts performed with the system without ocean assimilation (NODAS).
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Fig. 8. Box plot showing the Niño3.4 index in the NODAS (black) and in the DAS (red)
forecasts. Green filled circles stand for observations. The distribution of predicted monthly
mean anomalies is represented by boxes (25th-75th percentiles), the median is represented by
the inside box marks and empty circles indicate outliers. The interannual monthly standard
deviation is indicated by the shaded bands for the observations and by the dashed lines for
the forecasts.
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Fig. 9. Onset of the El Niño 1997-1998: hovemoller diagram of the evolution of the heat
content anomaly (Shaded; units are J/m2 x 108) and the zonal wind stress anomaly (contour;
interval is 0.04 Pa). (a) NODAS, (b) the ocean analysis and (c) DAS. Forecast anomalies
are ensemble averages.
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Fig. 10. Discrimination diagrams for the forecasts started in November (a and b) and
May (c and d) computed using each grid point and the forecast months from 2 to 5 of the
surface air temperature anomalies (TAIRA) over the tropics (0E-360E; 25S-25N) and using
ERA-Interim data as reference. Left panels represent the dichotomous event of temperature
being below the lower tercile of the sample climatological distribution and right panels are
for the case of the temperature exceeding the upper tercile. The inset histogram in the
diagrams indicate the refinement distribution. In red is the NODAS experiment and in blue
DAS. Discrimination distance values are reported and a star mark is placed to indicate if the
value is significantly higher compared to the other experiment at the 5% level (montecarlo
method).
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Fig. 11. As in Fig. 10 but computed over the tropical Atlantic (35S-35N; 60W-10E) for
May TAIRA (a and b) and for May Precipitation anomalies (PRECA; c and d)
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Fig. 12. As in Fig. 11 but for November starting dates.
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Fig. 13. As in Fig. 10 but for the PNA region (40-65N; 150-300E).
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Fig. 14. As in Fig. 13 but for the Euro-Atlantic region (35-65N; 80W-40E).
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