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SUMMARY

Large earthquakes are a potentially important source of relative sea level variations, since

they can drive global deformation and simultaneously perturb the gravity field of the

Earth. For the first time, we formalize a gravitationally self–consistent, integral sea level

equation suitable for earthquakes, in which we account bothfor direct effects by the

seismic dislocation and for the feedback from water loadingassociated with sea level

changes. Our approach builds upon the well established theory first proposed in the realm

of glacio–isostatic adjustment modeling. The seismic sea level equation is numerically

implemented to model sea level signals following the 2004 Sumatra–Andaman earth-

quake, showing that surface loading from ocean water redistribution (so far ignored in

post–seismic deformation modeling) may account for a significant fraction of the total

computed post–seismic sea level variation.
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1 INTRODUCTION

The problem of future climate changes and their impact on human activities is still far from a complete

solution (IPCC 2007). Nevertheless, the computational efforts devoted to this problem have reached

a phase in which second–order complexities are often taken into account to achieve real world reso-

lution levels (Shukla et al. 2006; Mitrovica et al. 2009; Bamber et al. 2009). The sea level variation

associated with seismic activity is a representative of these second–order effects. In fact, long term
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sea level change is driven primarily by eustatic processes,glacio–isostatic adjustments and thermo–

compositional volume variations (IPCC 2007), while seismo–tectonic deformations play a small (but

non negligible) role (Melini et al. 2004; Melini & Piersanti2006).

The main shortcoming of the investigations so far is that, instead of approaching the full Sea Level

Equation (hereinafter SLE), an approximated solution was computed only taking into account the di-

rect effects of seismic sources on deformation and gravity potential variations (e.g. Melini & Piersanti

2006). This is justified in regional post–seismic investigations on time–scales of a few decades for

which the isostatic response is expected to be negligible, but it is likely to be incorrect in global stud-

ies, where self–gravitation of the oceans plays a fundamental role (Farrell & Clark 1976). Recently,

De Linage et al. (2009) solved a zeroth–order sea level equation for the short-term relaxation follow-

ing the 2004 Sumatra-Andaman earthquake; according to their results, the response of the ocean has

to be taken into account in order to correctly interpret the observed geoid perturbations. To improve

these aspects of post–seismic rebound modeling, in this short note we describe and numerically solve

a gravitationally self–consistent SLE for seismic perturbations, generalizing the results of Farrell and

Clark (1976). In our study, the post–seismic deformation and gravity potential variation are first ob-

tained by a semi–analytical, self–gravitating viscoelastic model (Piersanti et al. 1995), and are then

used as initial conditions for an iterative solution schemefor the SLE, in which the loading problem

associated with the mass redistribution of the oceans is solved using a post–glacial rebound calculator

(Spada et al. 2004).

In Section 2 we discuss the theoretical aspects of our methodand in Section 3 we focus on the de-

tails of numerical implementation, investigating the convergence of the iterative solution and address-

ing a simple synthetic problem. In Section 4 the method is used to evaluate the global and regional sea

level variations following the Sumatra–Andaman earthquake of December 26, 2004.

2 METHODS

According to the theory of Farrell and Clark (1976), in the framework of glacio–isostatic adjustment

(GIA) the SLE reads

S(ω, t) =

(

Φ

γ
− U

)

+ SE −
(

Φ

γ
− U

)

, (1)

whereS is sea level change,ω = (θ, λ) denotes colatitude and longitude,t is time,Φ is the incremental

gravity potential,γ is the reference gravity acceleration at the Earth surface,U is vertical displacement,

andSE is the eustatic sea level change, which represents the solution of the SLE in the case of a rigid,

non–self–gravitating Earth:
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SE = − mi

ρwAo

, (2)

wheremi is the mass variation of ice sheets,ρw is the density of water,Ao =
∫

oceans dA denotes the

(constant) area of the ocean surface and the overline indicates the average

(. . .) =
1

Ao

∫

oceans

(. . .)dA. (3)

A SLE suitable for seismic perturbations can be readily obtained from Eq. (1) dropping theSE

term, since earthquakes do not imply any mass exchange with the oceans. However, the averaged

term must be kept, since it ensures that the free surface of the oceans always coincides with the geoid

(Farrell & Clark 1976). This gives:

S(ω, t) =

(

Φ

γ
− U

)

−
(

Φ

γ
− U

)

, (4)

whereS(ω, t) defines the history of sea level change at any pointω = (θ, λ) on the sphere, and where

nowΦ andU are the total gravity potential variation and surface displacement imposed by the seismic

dislocation, respectively. Consistently with the principle of mass conservation, in the seismic SLE (4),

S = 0.

The termsU andΦ in Eq. (4) stem from the sum of two contributions. The first, labeled byeq

below, represents the direct effect of the seismic dislocation, while the second (load) is associated with

the water load exerted by the changing sea level. Such decomposition is similar to that adopted in the

framework of GIA studies (Spada & Stocchi 2006). Thus we write:

U(ω, t) = Ueq + Uload(S) (5)

and

Φ(ω, t) = Φeq + Φload(S), (6)

where theS–dependence of the load terms can be expressed by a time–convolution between the vis-

coelastic loading–deformation coefficientshl(t) andkl(t) and the history of sea level change, which

makes Eq. (4) an integral (implicit) equation. The lack of the eustatic term and the simple Heaviside

time–history usually employed to describe the source (e.g.Piersanti et al. 1995) makes the seismic SLE

formally simpler but does not alleviate the numerical complexity of the problem, as will be discussed

below. In previous studies (Melini et al. 2004; Melini & Piersanti 2006), the ocean–averaged term in

Eq. (4) was neglected. For an incompressible Earth, this is equivalent to the assumption of a uniform,

non–self–gravitating ocean. Furthermore, the approximation Φload = Uload = 0 was adopted, which

reduces the SLE to

S(ω, t) =
Φeq

γ
− Ueq, (7)

a fully explicit equation that can be solved as soon as the direct effect of earthquakes is determined.



4 MELINI et al.

A zeroth–order approximation to the solutionS of the SLE (4) can be obtained neglectingΦload

andUload in front of theeqterms. WithΦeq ≡ Φ(0) andUeq = U (0), this gives:

S(0)(ω, t) =

(

Φ(0)

γ
− U (0)

)

−
(

Φ(0)

γ
− U (0)

)

, (8)

which is used to provide a first guess of the water load (mass per unit area) according to

L(0)(ω, t) = ρwS(0)O, (9)

whereO is the “ocean function” (O = 1 over the oceans, andO = 0 elsewhere) and where positive

and negative values ofL correspond to a sea level rise and fall, respectively. OnceL(0) is determined

globally, the response to loadingUload andΦload can be computed using pertinent load–deformation

coefficients, providing a new estimate of the total displacement and gravity potential:

U (1)(ω, t) = Ueq + Uload(S
(0)) (10)

Φ(1)(ω, t) = Φeq + Φload(S
(0)), (11)

which substituted into the right–hand side of Eq. (4) gives the new estimate of sea level change,S(1).

The method outlined above suggests the following general algorithm: i) givenS(k), thek–th order

approximation of the sea level change (k = 0, 1, . . .), compute the water load functionL(k)(ω, t) =

ρwS(k)O by Eq. (9),ii) using the direct responses to seismic dislocation and the solution to the loading

problem, evaluateU (k+1) = Ueq + Uload(S
(k)) andΦ(k+1) = Φeq + Φload(S

(k)), iii) from the SLE

(4), compute the further approximation to sea level changeS(k+1), iv) iterate until a previously defined

convergence criterion is satisfied,v) if needed, provide final estimates for the total perturbation to

gravity potential and vertical displacement field. This scheme is largely similar to that employed in

GIA investigations, which has been thoroughly validated ina number of case–studies (see Spada &

Stocchi (2006) and references therein), generally showinga fast convergence.

3 NUMERICAL IMPLEMENTATION

In our implementation, the response functionsUeq andΦeq in Eqs (5) and (6) are computed by the

viscoelastic normal–mode approach originally proposed byPiersanti et al. (1995), for an incompress-

ible, spherical self–gravitating model with Maxwell rheology. The algorithm outlined in Section 2

could be also applied to finely layered Earth models, possibly characterized by a generalized (linear)

rheology (Spada & Boschi 2006; Spada 2008; Melini et al. 2008) or mantle compressibility (Pollitz

1997; Pollitz 2003). The response of the Earth to surface loading is evaluated by suitably adapting the

TABOO post–glacial rebound calculator (Spada et al. (2004), seehttp://samizdat.mines.edu/taboo/).

The model, described in Table 1, is characterized by a coarse4–layer structure with PREM–averaged
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density and rigidity and includes a low–viscosity upper mantle beneath a perfectly elastic lithosphere,

and an homogeneous inviscid core. Considering the limitation of the post–seismic model by Piersanti

et al. (1995) to 4 layers, the choice of upper mantle viscosity finds it motivation in the importance

of the low–viscosity zone in the post–seismic relaxation process (Nostro et al. 1999; Piersanti et al.

2001).

The computation of surface integrals in Eq. (4) and of the responses to water load (i. e., functions

Uload andΦload in Eqs (5) and (6) are practically performed with the aid of the icosahedron–based

pixelization shown in Fig. 1, proposed by Tegmark (1996) forastrophysical applications. In the GIA

context, this grid has been employed for the first time by Spada & Stocchi (2007) for solving nu-

merically the SLE. The Tegmark discretization provides a natural set of Gauss points on the surface

of the sphere and allows for a straightforward computation of surface integrals involving spherical

harmonic (hereafter SH) functions as equal–weight finite sums. This property can be employed to

compute ocean–averages as:

f ≃ O−1
00

1

N

Nw
∑

i=1

f(ωi), (12)

wheref is a scalar function,N is the total number of pixels (according to Tegmark (1996),N =

40R(R − 1) + 12 whereR is a resolution parameter),Nw is the number of ocean pixels,ωi are

their coordinates, andO00 ≃ 0.71 is the degree zero and order zero harmonic coefficient of the

ocean function (4π–normalized complex SH will be used throughout). For a givengrid resolution

R, Tegmark (1996) has shown that approximation (12) is numerically valid as long as the maximum

degree of the SH expansion off is lmax ≤
√

3N .

The icosahedron–based pixelization is also employed to discretize the surface load defined by

Eq. (9). The load is distributed over axis–symmetrical disc–shaped elements with centers defined

by the ocean pixels of Fig. 1, each with a diameterd = 2a arccos(1 − 2
N

), a being Earth radius.

Since resolving each load component requires an SH expansion to a degreelmax ≃ 2πa/d, a correct

numerical implementation of the SLE thus requires

π

arccos
(

1 − 2
N

) ≤ lmax ≤
√

3N (13)

that allows an optimal trade–off between grid spacing and computational costs to be determined.

To satisfy Eq. (13), in our simulations we have used a grid with N = 15212 (this corresponds to

R = 20) and considered harmonic degrees up tolmax = 200. The computation ofUload andΦload

takes advantage of the symmetry of the load components, which makes these terms only dependent

upon the colatitude of the observer relative to each elementary disc. The convolution integrals that

involve load–deformation coefficientshl(t) andkl(t) and the history of sea level change within each



6 MELINI et al.

disk load are discretized in the time domain and computed by standard numerical methods (Spada et

al. 2004).

To test the stability and the convergence of the solution scheme and to verify the absence of

aliasing effects due to pixelization, we have performed a test imposingad–hocseismic effects. In

particular, we setΦeq = 0 and prescribe, for timet ≥ 0, a vertical displacementUeq = −1 m across a

circular region of half–amplitudeα = 5◦ placed atω = (π/2, π) (i. e., in the central Pacific Ocean).

Thus, in this experiment,

S(k)(ω, t) = S
(k)
load − (Ueq − Ueq) ≈ S

(k)
load − Ueq (14)

whereUeq is negligible in front ofUeq because of the localized displacement assumed for our toy

earthquake, and using Eq. (4) the load–induced sea level variation is

S
(k)
load(ω, t) =

(

Φload(S
(k))

γ
− Uload(S

(k))

)

−
(

Φload(S(k))

γ
− Uload(S(k))

)

. (15)

In Fig. 2,S(k)
load is shown fork = 1, 2, 5 and10, as a function of time and for various source–observer

angular distances∆. For∆ = 0◦ and relatively short times,S(k)
load slightly enhances the direct seismic

effectS(k)
eq ≡ −Ueq. However, with increasing time,S(k)

load becomes a large fraction (∼ 40%) of the

direct effect in the vicinity of the seismically deformed region, due to the visco–elastic relaxation

induced by the water load.S(k)
load is large in the vicinity of the source and decays quickly withthe

observer distance, falling by a factor of∼ 102 moving from∆ = 0 (frame a) to∆ = 20◦ (c). It is

interesting to observe that, in spite of the low–viscosity upper mantle (see Table 1), theS(k)
load curves

are still far from equilibrium at timet = 1 kyrs after loading, a time–scale that largely exceeds the

Maxwell relaxation time for this layer (3.7 yr). This may be interpreted as an effect of the response

of the lower mantle, which is involved due to the relatively large size of the area of the “fault plane”

employed in this synthetic case study. The density jump imposed at the depth of670 km is also likely

to play a role, due to the long relaxation times that characterize the return of compositional boundaries

to equilibrium (Piersanti et al. 1995).

The issue of the convergence of the iterative scheme is addressed more quantitatively in Fig. 3,

where the ratioS(k)
load/S

(10)
load is shown as a function ofk for ∆ = 0 (a) and∆ = 20◦ (b), and vari-

ous times following the synthetic earthquake already considered in the previous figure. It is apparent

that the convergence is monotonic ans relatively fast: these features are qualitatively similar to those

observed when the SLE is solved for glacial forcing (e.g. Spada & Stocchi 2007). The spherically–

averaged relative difference between subsequent iterations, defined as:

ǫ(k)
r (t) =

1

N

N
∑

i=1

∣

∣

∣

∣

∣

S(k)(ωi, t) − S(k−1)(ωi, t)

S(k−1)(ωi, t)

∣

∣

∣

∣

∣

(16)
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and shown in Fig. 4 for various values of timet, indicates thatk = 5 ensures incremental errors well

below the0.1% threshold, which is fully acceptable for any practical implementation.

4 SEA LEVEL VARIATIONS FOLLOWING THE 2004 SUMATRA–ANDAMAN

EARTHQUAKE

In this section we present an application of the proposed method to the sea level variations following

the 2004 Sumatra–Andaman earthquake. The seismic source has been modeled with five point dis-

locations corresponding to the multiple CMT solution obtained by Tsai et al. (2005). These sources

are obtained by fitting with the CMT method the long–period seismograms from the IRIS Global

Seismographic Network. They account for a cumulative energy release corresponding toMw = 9.3;

their location and focal mechanisms are shown in Fig. 5. Using the semi–analytical model of global

postseismic rebound originally developed by Piersanti et al. (1995) and subsequently extended by

Soldati et al. (1998) and Boschi et al. (2000), we have obtained the time–dependent deformation and

incremental gravitational potentialUeq andΦeq. These fields have been used as starting conditions to

iteratively solve Eq. (4), as discussed in Section 2.

To evaluate the zeroth–order solution of the SLE defined in Eq. (8), we need to compute oceanic

averages ofUeq and Φeq according to Eq. (3). Since the body–force equivalent representation of

a point source is based on localized Dirac delta functions and their spatial derivatives (Smylie &

Mansinha 1971; Mansinha et al. 1979), the spectra ofUeq and Φeq are rich at short wavelengths

and decay slowly with harmonic degree (Casarotti 2003; Melini et al. 2008). For this reason, to ob-

tain convergence, the SH expansion of the relevant scalar fields (Ueq andΦeq) has to be truncated to

lmax ≈ 103 − 104, depending on the source–observer distance (Sun & Okubo 1993; Riva & Ver-

meersen 2002; Casarotti 2003). In the present application,the postseismic solutions reach a stable

convergence forlmax = 4000. Since for numerical stability of Eq. (3) the relationlmax ≤
√

3N

must be satisfied, the computation ofUeq andΦeq requires a pixelization withN ≥ 5.3 × 106 points,

corresponding to a resolutionR = 366. We remark that, due to the linearity of oceanic integrals,

this high–resolution pixelization is not needed in subsequent iterations of the SLE solution scheme.

Indeed, onceUeq andΦeq are known, the evaluation of oceanic integrals of Eqs (5) and(6) requires

only the integration ofload terms, which can safely be carried out with anR = 20 pixelization, as dis-

cussed in the previous section. The computation ofUeq andΦeq on the high–resolution grid represents

a very intensive numerical task: even with a highly optimized parallel integration code on a 128–core

distributed–memory cluster, it requires about15 hours for each point source. For this reason, while a

2D source modeling would be certainly more realistic (Nostro et al. 1999), we are currently limited to

the point–source approximation; indeed, considering the exceptionally large rupture extension of the
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Sumatra earthquake, modeling a 2D source through a superposition of point sources would increase

the computation time above acceptable levels, even adopting a relatively coarse source discretization.

We remark that the iterative solution method for the SLE which has been outlined in Section 2 is

independent from the postseismic deformation model, whichis used only to provide initial conditions

to the iterative solution scheme. The seismic SLE can therefore be solved with the same prescriptions

if a more detailed model of postseismic deformation is employed. For the present application, whose

aim is a demonstration of the water load effects in a real case, we will theredore use a point source

approximation which anyway gives acceptable results on a global scale.

In Fig. 6 the average relative difference between iterations ǫ
(k)
r (t), as defined by Eq. (16), is shown

for a range of observation times. From a comparison with Fig.4 it can be observed that, when a real

seismic source is employed, the convergence of the iteration scheme is less regular than in the synthetic

case. This is likely to be the result of the increased numerical noise introduced by the rich spectrum

of harmonics that characterize the realistic seismic source compared with the ‘hat’ test displacement

considered in Section 3. In spite of this, however, afterk = 4 iterations the average relative difference

is≤ 5% and fork = 10 it is below the1% level. Looking at the spatial patterns ofS(k)(ω, t), we have

verified that less regular convergence specifically resultsfrom contributions toǫ(k)
r (t) from regions

close to the nodal lines of this function, where some of the terms in Eq. (16) become numerically

indeterminate, because ofS(k) ≃ 0, even if the solution has already reached a stable convergence in

the bulk of the spatial domain.

In Figs 7 and 8 we quantitatively evaluate the effect of waterload upon sea level changes, focussing

on a global and a regional scale, respectively. The left frames show snapshots ofS(k=0)(ω, t), which

only accounts for the effect of the seismic dislocation source, computed according to Eq. (8), while

in the right frames we considerSload = S(k=10) − S(k=0). From Fig. 7, the termSload turns out

to be smaller than the seismic contribution, but definitely not negligible, being a significant fraction

of the total signal even on a global scale. Its relative weight increases with time, due to the delayed

viscoelastic response of the ductile layers to the forcing of the seismically–induced sea level variations.

For the local scale analysis of Fig. 8, it results that the effect of the water load correction is even

stronger, but the results may be affected to some degree by the point–source approximation which

can affect significantly the near–field computations (Nostro et al. 1999). For short time–scales (a few

years) the load correction is manifest as a broad sea level fall, with a smoothed pattern with respect

to the negative lobe associated with the purely seismic contribution, consistently with the results of

the synthetic case discussed above. For longer time–scales(t = 100 yrs in Fig. 8) the contribution to

sea level from water load broadly follows the pattern of alternating lobes of the seismic term; this is
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a common feature found in postseismic relaxation of low–dipthrust faults (Rundle 1982; Volpe et al.

2007).

Fig. 9 shows predictions of post–seismic sea level variations at ten tide–gauge sites belonging to

the PSMSL network (seehttp://www.pol.ac.uk/psmsl/), whose locations are shown in Fig. 5. Solid and

dashed curves show results obtained neglecting and including the water load in the SLE, respectively.

All the sites share a qualitatively similar history of sea level variations, in which a post–seismic vis-

coelastic “wave” follows a quiescent initial phase on time–scales of a few centuries. As we have found

with the synthetic tests of Fig. 2, this time–scale exceeds the intrinsic Maxwell characteristic time

of mantle layers, suggesting that relaxation of internal compositional boundaries are indeed playing

a role, due to the large extent of the seismic source (Piersanti et al. 1995). At near–field sites (e. g.,

Ko Taphao Noi), our computations predict a sea level fall of∼ 1 m during the next century, which

would imply average rates of sea level change that greatly exceed the secular globally averaged trend,

close to1.5 mm/yr (IPCC 2007). Sensibly smaller (but still significant)effects are predicted for other

sites (Kanmen, Manila, and Danang), with a sea level rise of up to ∼ 5 cm during the same period.

The average trend, in this case, is∼ 30% of the current average global trend, and practically negli-

gible in comparison with the local sea level trend which amounts to∼ 12 mm/yr during the last few

decades in the case of Manila (Spencer & Woodworth 1993). While corrected and un–corrected sea

level predictions are generally similar on a decade time–scale, they may diverge for longer periods,

when the water loading effect may perturb the seismic contribution significantly, by values ranging

between10 and20%. This is also found for “far–field” tide–gauges (e. g., Port Louis and Broome),

where numerical artifacts due to the point–source approximation are likely to have a minor role. In

Fig. 10 the synthetic sea level time series are plotted on a20–year period, during which they are well

approximated by a linear trend. With a least–squares linearregression (see dotted lines), an estimate of

the rate of sea level variation has been obtained from the results of Fig. 10; numerical values are listed

in Table 2. The contribution to the rate of sea level variation due to the load correction,̇Sload, turns

out to be a large fraction the total trend, with a relative impact up to nearly50% at Vishakhapatnam.

The coseismic and postseismic gravity field perturbations following the 2004 Sumatra earthquake

have been evidenced by GRACE satellite measurements. Several authors have extracted the earthquake

signature from the GRACE solutions and found it to be consistent with seismological models (Han

et al. 2006; Ogawa & Heki 2007; Panet et al. 2007). Recently, De Linage et al. (2009) modeled the

postseismic geoid perturbation taking into account the static potential perturbation of a global incom-

pressible ocean; according to their results, the oceanic contribution is needed in order to successfully

reproduce the spatial features of the postseismic geoid perturbation observed by GRACE. As we ver-

ified by extracting the geoid signal from our results, the oceanic term obtained by De Linage et al.
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(2009) has the same sign and spatial extension of the short–term water load effect resulting from our

simulations, even if the seismic source model employed by DeLinage et al. (2009) is more realistic

than our point–source approximation. Our simulations predict larger peak values of geoid perturba-

tion, which is probably a bias effect of the point source model which leads to an overestimation of

coseismic effects in the near–field (Piersanti et al. 1997).

The spectral features of the sea level correction due to ocean loading can be investigated by com-

puting the harmonic coefficients

clm(t) =

∫

Ω
Y∗

lm(ω)Sload(ω, t)dΩ, (17)

whereΩ is the unit sphere andYlm are the4π–normalized complex SH. The normalized squared

coefficients|clm|2/maxl,m

(

|clm|2
)

, displayed in the diagrams of Fig. 11, show that on time–scales of

a few years most of the signal is confined to low harmonic degrees, while for longer times the relative

weight of higher harmonics increases. This indicates the presence of short–wavelength features of the

sea level signal in the area surrounding the seismic source as a consequence of stress concentration due

to viscoelastic relaxation in the ductile layer, which for low–angle thrust faults may result in small–

scale regions of opposite vertical deformation around the source location (Rundle 1982; Volpe et al.

2007).

5 CONCLUSIONS

For the first time we have obtained a solution for the gravitationally self–consistent SLE describing

sea level perturbations occurring after a large earthquake. The SLE has been solved numerically by

implementing an iterative scheme directly derived from those adopted in GIA studies (see e. g., Spada

& Stocchi, 2006). As a result, our analysis shows that feedback loading effects play a significant role

in assessing seismic quasi–static sea level variations. The viability of the proposed approach has been

assessed by means of a synthetic test with a disc–shaped oceanic load in order to verify its numerical

stability. The solution convergence turns out to be monotonic and relatively fast, similarly to what is

observed in post–glacial rebound applications (Spada & Stocchi 2007).

The method has then been applied to the prediction of sea level variations following the 2004

Sumatra–Andaman earthquake. We found that loading effectsrepresent an important contribution to

seismically induced sea level variations on time–scales ranging from a few decades up to several

thousands of years. These time–scales, which largely exceed the Maxwell relaxation times of the

involved layers, suggest that relaxation modes connected to internal compositional boundaries are

excited. An analysis of the predicted sea level signal on a set of PSMSL tide–gauge sites showed that,

for “near–field” stations, the expected post–seismic effect is not negligible even in comparison with the
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globally–averaged secular trend, although this result maybe biased by the point–source approximation

which is currently unavoidable due to computational requirements.

The presence of long–term effects suggests that a detailed knowledge of historical seismicity is

crucial in modeling present–day sea level rates. For timescales of a few years, the sea level signal

follows an approximately linear trend, and the loading termrepresents a non negligible perturbation to

the total rate. These short–term effects may be further enhanced in the presence of rheological layers

characterized by a transient rheology, since in that case a large postseismic signal occurs on time scales

of the order of months (Pollitz 2003).

In this respect, we can conclude that a detailed modeling of sea level change cannot neglect the

effect of seismic perturbations, which can be the predominant contribution in correspondence of sub-

duction zones characterized by large seismic energy release. Future high–resolution scenarios of sea

level variation should take into account, among other contributions, the highly heterogeneous signals

coming from short wavelength regional seismic activity, inorder to precisely assess the exact role

played by different phenomena in determining sea level variation. The inclusion of seismic effects in

a comprehensive approach based on a self–consistent solution of the SLE represents an opportunity to

create a unified formal framework to model non–eustatic sea level variations.
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Figure 8. As in Fig. 7, but on a regional scale.
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Figure 9. Sea level variations driven by the 2004 Sumatra–Andaman earthquake at the PSMSL sites whose

location is shown in Fig. 5. Solid and dashed curves show results obtained using the seismic SLE with and

without the ocean load included, respectively.
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Figure 10.The same as in Fig. 9, but on a time period of 20 years followingthe main shock. Dotted lines show

least–squares trends of the individual solutions.
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Figure 11. Non–dimensional, normalized spectral coefficients in the range of harmonic degrees2 ≤ l ≤ 120

computed according to Eq. (17).
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Table 1.Model parameters employed in this study.

Radius,r Density,ρ Rigidity, µ Viscosity,η

Layer (km) (103 kg m−3) (1010 Pa) (1021 Pa s)

1. Lithosphere 6291 – 6371 3.115 5.597 ∞
2. Upper mantle 5701 – 6291 3.614 8.464 0.01

3. Lower mantle 3480 – 5701 4.878 21.710 1

4. Core 0 – 3480 10.932 0 0

Table 2.Observed and predicted rates of sea level change at the PSMSLsites considered in this study. PSMSL

rates, obtained fromhttp://www.pol.ac.uk/psmsl/, are computed by standard least–squares over the whole time

period of observations. Modelled rates are obtained by linear interpolation of the syntheticS–curves shown in

Fig. 9.

PSMSL station Observed rate Ṡ Ṡload

(mm/yr) (mm/yr) (mm/yr)

Port Louis −0.94± 1.90 0.04 0.01

Diego Garcia 2.26 ± 3.63 −0.05 −0.01

Mangalore −1.08± 1.39 −0.03 −0.01

Vishakhapatnam 0.72 ± 0.31 −0.05 0.02

Ko Taphao Noi 0.08 ± 0.62 −9.72 −0.46

Danang 2.50 ± 0.92 1.59 0.10

Kanmen 1.70 ± 0.32 0.33 0.04

Manila, S. Harbor 6.68 ± 0.43 0.61 0.06

Kota Kinabalu 3.78 ± 2.21 1.00 0.08

Broome 11.64± 4.52 0.11 0.02


