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ABSTRACT

This paper analyzes the ocean forecast response to surface vector wind (SVW) distributions

generated by a Bayesian Hierarchical Model (BHM) developed in Part I (Milliff et al., 2009).

A new method for Ocean Ensemble Forecasting (OEF), so-called BHM-SVW-OEF, is de-

scribed. BHM-SVW realizations are used to produce and force perturbations in the ocean

state during 14-day analysis and 10-day forecast cycles of the Mediterranean Forecast Sys-

tem (MFS). The BHM-SVW-OEF ocean response spread is amplified at the mesoscales and

pycnocline of the eddy field. The new method is compared to an ensemble response forced by

ECMWF Ensemble Prediction System (EEPS) surface winds, and to an ensemble forecast

started from perturbed initial conditions derived from an ad hoc Thermocline Intensified

Random Perturbation (TIRP) method. The EEPS-OEF shows spread at the basin scales

while the TIRP-OEF response is mesoscale intensified as in the BHM-SVW-OEF response.

TIRP-OEF perturbations fill more of the MFS domain while the BHM-SVW-OEF perturba-

tions are more location-specific, concentrating ensemble spread at the sites where the ocean

model response to uncertainty in the surface wind forcing is largest. The BHM-SVW-OEF

method offers a practical and objective means for producing short-term forecast spread by

modeling surface atmospheric forcing uncertainties that have maximum impact at the ocean

mesoscales.
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1 Introduction

The aims of this paper are: 1) to analyze the impact of the Bayesian Hierarchical Model

(BHM) Surface Vector Winds (SVW) derived in Part I ( BHM-SVW, Milliff et al., 2009)

on the Ocean Ensemble Forecast (OEF) response; and 2) to compare the response with

other ensemble forecast generating methods. The assessment will be carried out for the

short-term, open-ocean Mediterranean Forecasting System (MFS, Pinardi et al., 2003 and

2009). The MFS produces deterministic ten-day ocean forecasts starting from ocean analyses

that incorporate both satellite and in situ data. The MFS ocean forecasting model is eddy

resolving and mesoscale variability dominates the flow field on weekly timescales. Phase and

amplitude errors associated with the eddies are the main causes of forecast predictability

loss and forecast errors in temperature, salinity and sea level double on time scales of a few

days (Tonani et al., 2009).

Given that the predictability limit of short term ocean forecasting is associated with the

oceanic mesoscale eddies, any ocean ensemble forecasting method should consider both initial

condition and atmospheric forcing errors. Starting from uncertainty in the atmospheric SVW

fields, Part I of this paper constructed an ensemble of initial conditions consistent with the

assimilation of observations and atmospheric wind errors during the analysis cycle of MFS.

This paper will now study the characteristics of the 10-day OEF standard deviation, i.e.

the spread, deriving from the ensemble initial conditions and the BHM-SVW forecast wind

realizations.

The BHM-SVW-OEF spread will be compared to the ensemble standard deviation pro-

duced with: 1) wind realizations coming from the European Centre for Medium Range

Weather Forecast (ECMWF) Ensemble Prediction System (EPS); and 2) a fixed initial con-

dition perturbation method, already shown to be efficient for producing spread at ocean

mesoscales (Pinardi et al., 2008). The sensitivity of the OEF spread to the ocean forecast

model horizontal resolution will also be studied for both the BHM-SVW and ECMWF EPS

ensemble generating methods.

The impact of wind forcing errors on ocean ensemble forecasts has been studied by other

authors. Burillo et al. (2002) develope a pseudo-random perturbation method for the winds

and perform 100 forecasts with the same initial condition, generating ensemble spread in the

mixed layer (first 100 meters). Auclair et al. (2003) uses again pseudo-random perturbations

of the winds, initial density, the lateral boundary conditions and the river inputs, for a

1
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coastal model domain. They show that the model response spread is sensitive to each

perturbation type depending on the dominant ocean current regime. Lucas et al. (2008)

perturb winds, air temperature and incoming solar radiation fields deducing the errors from

the comparison of the ECWMF re-analyses forcing fields with data from the Co-ordinated

Ocean-Ice Reference Experiments (CORE). Again, the perturbations to the ECMWF re-

analysis fields are modeled in a pseudo-random way and the ocean response peaks in the

eddy field of the Gulf Stream and tropical regions of the North Atlantic. However, the

perturbations at 100 meters need several months to grow, limiting the utility for real-time

daily ensemble forecasting systems. These previous attempts did not use realistic estimates

of the atmospheric wind errors as we have developed with the BHM-SVW method, and they

did not use model adjusted initial condition perturbations, as we have shown in Part I of

this paper (Milliff et al., 2009).

In section 2 we describe the main characteristics of the MFS operational ocean forecast-

ing system and the different resolution models used in this paper. Section 3 describes the

two ensemble generating methods from BHM and ECMWF EPS winds and section 4 offers

the comparison of ensemble responses to the two methods. Section 5 describes an alterna-

tive initial condition perturbation method and the comparison with the previous ensemble

results. Section 6 describes the vertical temperature and salinity structure of the ensemble

variance generated by the BHM-SVW-OEF method and section 7 provides a summary and

conclusions.

2 The Mediterranean Forecasting System: assimila-

tion scheme and models

The MFS1 is composed of a large observational network, a numerical prediction model and

a data assimilation scheme. The observational network consists of real time satellite and in

situ data. The latter includes temperature vertical profiles down to 700 meters provided by

a ship of opportunity program (Manzella et al., 2007), and temperature and salinity profiles

down to 700 and 2000 meters implemented by the MedArgo program (Poulain at al. 2007).

The real-time satellite measurements include along track Sea Level Anomaly (SLA) from

altimetry (Le Traon et al. 2003) and Sea Surface Temperature (SST; Buongiorno Nardelli

1http://gnoo.bo.ingv.it/mfs

2
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et al., 2003).

The MFS ocean model is described in Tonani et al. (2008) and here we outline only its

main characteristics. The model has 71 non-uniform z-coordinates levels and a horizontal

resolution of 1/16◦ × 1/16◦. The model domain covers the Mediterranean Sea and a portion

of the Atlantic Ocean where an Atlantic box is designed to parameterize coupling between

the Mediterranean and the Atlantic. The operational model is forced by ECMWF surface

fields using interactive air-sea physics (Tonani et al., 2008, Pettenuzzo et al., 2009). A lower

resolution implementation of the MFS numerical ocean model, with 71 vertical levels and

a horizontal resolution of 1/4◦ × 1/4◦ is also used in this paper. The geographical domain

of the low-resolution model is the same as the high-resolution model except for the Atlantic

box which is taken from previous investigations at the lower resolution (Korres et al., 2000,

Brankart and Pinardi, 2002). In the following, the high- and low-resolution versions of the

MFS models are referred to as MFS1671 and MFS471 respectively. The MFS471 model is

initialized from MFS1671 fields using bilinear interpolation.

The atmospheric forcing used in MFS is derived from the ECMWF analysis fields and the

10 day ECMWF single deterministic forecast fields, starting at 12:00 UTC. The ECMWF

forecast model has a spectral representation with a triangular truncation of 511 waves in

the horizontal and 60 levels in the vertical (T511L60) which means a nominal horizontal

resolution of 40 km. The surface fields are utilized in a reduced regular grid of 0.5 x 0.5

degrees of latitude and longitude. The ECMWF surface fields, i.e. SVW, mean sea level

pressure, air temperature, relative humidity are used in bulk formulas (Pettenuzzo et al.,

2009) that, combined with the model SST, provide momentum and heat fluxes to the ocean

model. The ocean operational forecast outputs that use the deterministic ECMWF SVW

forecast fields will be called hereafter control forecasts.

All the real time data are assimilated in both ocean models using a reduced order optimal

interpolation scheme adapted by Dobricic et al. (2007) to produce daily ocean analyses.

Ocean state analyses are constructed using ECMWF surface analysis forcing fields and by

assimilating available ocean data using a one day temporal window. In Figure 1, the MFS

analysis and control forecast cycle is schematized. At day J of the week, a 14-day analysis

period is started from day J-14 to J-1 producing 1A to 14A analysis fields. A control forecast

is then started from the 14A analysis snapshot (Day 0 of the forecast period), producing

1F to 10F control forecast fields. Both the MFS1671 and MFS471 models use the same

3
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Figure 1: Schematic of the MFS analysis and control forecast cycle and the BHM-SVW-

OEF method: J indicates the day at which the forecasts start, the 1A to 14A and 1F to 10F

symbols indicate analysis and forecast days respectively. The BHM-SVW members are used

to force n OEF members starting from perturbed initial conditions at day J.

assimilation scheme, observational data and deterministic atmospheric forcings.

3 Ocean Ensemble Methods generated by wind ensem-

bles

In the following two subsections we will describe the two ocean ensemble forecast methods

that use wind forcing perturbations to generate ocean ensemble forecasts.

3.1 The BHM-SVW Ocean Ensemble Forecast method

The BHM-SVW posterior distributions, developed in Part I of this paper (Milliff et al., 2009)

are used to design a new ensemble forecast method, so-called BHM-SVW Ocean Ensemble

Forecast (OEF) method. The method samples realizations of SVW produced by the BHM

to force the ocean models during the ocean analysis period, leading to an ensemble of ocean

initial conditions from which ensemble ocean forecasts can be started. The differences with

4
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respect to other existing methods are twofold: 1) the wind realizations force the models

during the assimilation cycle in order to produce initial condition perturbations; and 2) the

BHM-SVW realizations transition smoothly between the analysis and forecast periods. The

first difference insures that perturbations grow in the ocean field only where observations are

not sufficient to reduce the initial condition uncertainty. The second difference insures that

the ensemble forecast and analysis wind fields have distribution variances that are smoothly

changing across the analysis and forecast periods.

The BHM-SVW-OEF method is then designed as follows (Fig. 1). During the 14-day

analysis period, each ocean ensemble member is forced with a different BHM-SVW realiza-

tion, while assimilating the ocean temperature, salinity and SLA observations. The n ocean

initial conditions produced at day J are then forced with the corresponding n BHM SVW

realizations in the forecast period. The BHM-SVW data stage contains QuickSCAT data

and ECMWF analyses during the 1A-14A period and the ECWMF deterministic forecast

during the 1F-10F period. The BHM-SVW process model used in this work is the A1E3

version of the Rayleigh friction equation model described in Part I of this paper (Milliff et

al., 2009). The number of ensemble members is 10 for MFS1671 and 100 for MFS471. It is

important to note that the BHM-SVW realizations produce not only perturbed wind stresses

and thus momentum fluxes, but also perturbed surface heat and water fluxes as well. Using

interactive bulk formulae in the model together with BHM-SVW perturbs all surface fluxes

affected by uncertainty in surface winds.

3.2 The EEPS-Ocean Ensemble Forecast method

The second ocean ensemble forecast method studied in this paper uses SVW realizations from

the ECMWF Ensemble Prediction System (EEPS). We call this method the EEPS Ocean

Ensemble Forecast (EEPS-OEF). EEPS for the global atmosphere has proven to be useful in

a wide range of applications (Buizza, 2006). However, the utility of EEPS surface winds as

forcing to generate ocean ensemble forecasts has not been tested. It will be compared here

with the BHM-SVW-OEF method.

EEPS uses singular vectors to perturb the atmospheric forecast initial conditions (Lacarra

and Talagrand, 1988; Farrell, 1990). The singular vectors identify patterns with maximum

growth rates within the first 48 hrs of the forecast and for the synoptic scales. Small errors in

the initial condition state will amplify most rapidly in patterns corresponding to the leading

5
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singular vectors, and will affect the forecast accuracy (Buizza, 1995). Since the end of 2000

and up to 2005, the operational implementation of the EEPS includes 50 perturbed members

at T255L62 resolution, plus an unperturbed forecast (i.e. 51 ensemble members in total).

The nominal resolution of the EEPS winds is approximately 80 km, i.e. two times lower than

the deterministic ECMWF forecast winds.

The EEPS-OEF method makes use of a single analysis field snapshot at 14A as the initial

condition for the ocean forecast. For the high-resolution model, MFS1671, 10 forecasts are

forced by EEPS wind members. For the low-resolution model, MFS471, all 51 members of

the EEPS are used. The EEPS-OEF method has a clear disadvantage in terms of producing

useful spread in the ensemble forecast since it starts from an unperturbed initial condition.

Figure 2 shows the posterior SVW amplitude standard deviation generated by the BHM,

by EEPS, and the comparison with the root mean square (rms) forecast error. The latter

is defined as the rms of the difference between ECMWF 10-day deterministic wind forecasts

and the corresponding wind analyses, computed for 255 10-day forecast periods in the years

2000-2004, and averaged over the basin. The BHM-SVW and the EEPS wind spread are

instead calculated for the period from 25 January to 17 February 2005 only. For EEPS the

spread is calculated as the standard deviation from the mean of the 51 ensemble members.

The BHM-SVW amplitude, W (x, y, t) = |!U |, is calculated from the !U BHM realizations and

the distribution is given by:

W (x, y, t) ∼ N(Wmean(x, y, t), σ2
W ) (1)

(for notation see Part I, Milliff et al., 2009) where x, y, t denote space and time coordinates

and σW is the standard deviation represented in Figure 2.

Clearly, different concepts of uncertainty are being implemented in the EEPS and BHM

SVW distributions. For the BHM-SVW case, the uncertainties in the surface wind during

the analysis period derive from parameters selected to represent observational errors (i.e.

for QuikSCAT and ECMWF analysis winds) and process model errors. During the forecast

period the error parameters represent uncertainties in the ECMWF forecast winds and the

process model (Milliff et al., 2009). Figure 2 shows that the spread varies periodically during

the period 1A-14A due to the insertion of scatteromenter data. The spread remains constant

during the forecast period since the ECMWF forecast wind variance has been modeled as

time independent (see Part I, Milliff et al., 2009). The EEPS wind spread (blue curve) mimics

6
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Figure 2: Comparison of wind amplitude spread for different wind ensemble generating

methods and the ECMWF surface wind forecast errors. a) Wind amplitude spread σW (see

equation 1) of BHM-SVW distribution in the analysis and forecast periods (25 January to

7 February 2005 (1A-14A), 8 to 17 February 2005 (1F-10F)). b) same as (a) but for EEPS

winds during the forecast period. c) ECMWF root mean square forecast error computed for

the period 2000-2004 and averaged over the basin.
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instead the growth of the forecast error (black curve), albeit offset to lower amplitude after

day 6F. The BHM-SVW amplitude spread during 1F-10F period is slightly larger than 1.5

ms−1 which is the spread of EEPS winds and the forecast error at day 5F.

It is important to note the difference between EEPS and BHM SVW distribution spread

at 1F. The BHM-SVW method smoothly carries the variance information from the analysis

time to the forecast period without discontinuities. EEPS instead jumps from almost zero

at the forecast initial time to a value larger than 2.5 ms−1. This discontinuity may cause un-

wanted response in the ocean forecast ensemble and contamination by ocean surface gravity

waves, as has been shown in other papers (Powell et al., 2008).

In order to better describe the differences between EEPS and BHM-SVW distributions,

Figure 3 shows snapshots of the SVW and wind curl from the two data sets in the north-

western Mediterranean Sea (Gulf of Lyon) during a Mistral event occurring on 14 February

2005, i.e. day 7F. Three realizations are shown from the EEPS and BHM-SVW ensemble

winds. The amplitude of the wind curl is large over wider areas in the unperturbed EEPS

forecast, probably due to the low resolution of the EPS atmospheric model. EEPS members

differ in synoptic-scale patterns while the BHM-SVW are different at finer spatial scales; i.e.

sub-synoptic or atmospheric mesoscales. The scales of uncertainty given by these two wind

ensembles are not overlapping since the EEPS distributions focus on the error growth in the

500 hPa geopotential height field while the BHM-SVW focus on the surface wind errors as

characterized by QuikSCAT. Our analyses indicate that the surface atmospheric flow field

exhibits finer spatial scale errors probably due to orographic effects and land-sea temper-

ature and humidity differences. In the sections below, we will show that the smaller-scale

uncertainties in the wind field realizations are important in generating an ensemble response

at the ocean mesoscale.

4 Comparison of BHM-SVW and EEPS Ocean Ensem-

ble Forecast Methods

In this section we compare the ocean responses of the two ensemble ocean forecast per-

turbation methods described in the previous section for the high-resolution, MFS1671, and

the low-resolution, MFS471, model systems. The ocean ensemble forecast initial conditions

are generated by BHM-SVW-OEF in the period 25 January to 7 February 2005 (1A-14A),

8
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Figure 3: Western Mediterranean (Gulf of Lyon) wind fields from 3 realizations of the EEPS

(left column, including the unperturbed EPS fields at the top left) and the BHM-SVW (right

column). Surface winds (vectors [m/s]) and wind curl (color contours [Nm−3 ∗ 106]) for 14

February 2005 at 00:00 UTC, day 7F.
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while the forecast period is from 8 to 17 February 2005 (1F-10F). We call this the canonical

ensemble forecast experiment which is carried out in parallel to the control MFS forecast.

The ocean initial condition spread for the BHM-SVW-OEF with MFS1671 has been

discussed in Part I (Milliff et al., 2009). We have shown there that the initial condition

spread in Sea Surface Height (SSH) and Sea Surface Temperature (SST) is located in specific

regions of the basin, where we suspect ocean hydrodynamic instabilities, eddy interaction

and eddy propagation processes are occurring.

4.1 High-Resolution Model Ensemble Response

Figure 4 compares the BHM-SVW-OEF and EEPS-OEF responses at the end of the forecast

period (day 10F, 17 February 2005) for the MFS1671 model. The daily mean SSH for the

control forecast at day 10F (Fig. 4, panel a) shows high SSH and intense gradients along

the southern coastlines of the basin and along the northern Levantine coastline, off Turkey.

Local maxima occur in the Algerian current (6◦E, 38.5◦N) and in the area of the Mersa-

Matruh gyre (29◦E, 32◦N). Sub-basin scale cyclonic gyre circulations are indicated by SSH

minima in the Gulf of Lyon (5◦E, 42◦N), the central Ionian Sea (19◦E, 38◦N) and in the

Rhodes Gyre region of the Levantine Sea (27.5◦E, 35◦N).

Fig. 4, panel b shows that the BHM-SVW-OEF spread is localized in specific regions, at

the scale of the eddies, and it has doubled in amplitude from the initial condition values (see

Part I, Milliff et al., 2009). The spread is associated with large gradients in the SSH field

that identify currents (i.e., the Algerian current in the western basin, from 0◦E to 10◦E, the

Atlantic-Ionian Stream in the central Ionian Sea, from 15◦E to 20◦E, and the North African

current up to the western edge of the Mersa Matruh Gyre in the Levantine basin, from 20◦E

to 30◦E). In these regions SSH spread for BHM-SVW-OEF reaches values of 6 cm. On the

other hand, spread for the EEPS-OEF method (Fig. 4, panel c) is large everywhere and non-

localized (i.e. a basin-wide uniform value of approximately 2.5 cm ). Additional amplitude

in SSH spread for the EEPS-OEF occurs in the Aegean Sea, the Adriatic Sea and the Gulf

of Gabes (10◦E, 34◦N), as well as in the same regions identified for BHM-SVW-OEF but

at smaller amplitude. For both methods, the average spread is relatively small (order 3 cm)

and comparable to the SLA satellite errors (Dobricic et al., 2005).

Highest ensemble variance values are observed in both the BHM-SVW-OEF and EEPS-

OEF responses at the location of the Algerian current anticyclonic eddies, one of which during
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Figure 4: MFS1671 SSH fields for 17 February 2005, last day of forecast period (10F). a)

Control forecast daily mean SSH, contour interval is 0.05 m. b) Standard Deviation [m] of

SSH from BHM-SVW-OEF at 10F . c) Standard deviation [m] of SSH from EEPS-OEF at

10F. The contour interval in (b) and (c) is 0.01 m.
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this period is centered at 6◦E, −38.5◦N . Figure 5 shows how this structure is represented in

the ensemble responses to both the BHM-SVW-OEF and EEPS-OEF. Figure 5 also depicts

the effect of evolving currents in three ensemble members for each method on the simulated

trajectories of 6 drifters released at the center of the anticyclone in each member at day 1F

and tracked through day 10F. In this depiction, it is clear that the BHM-SVW-OEF members

present a wider range of possible states than the EEPS-OEF members. A mesoscale eddy

structure has detached in the period between 1F and 10F (not shown) from the northeastern

edge of the anticyclone in BHM-SVW-OEF members 1 and 2, but not in member 3. The

western border of the anticyclone is interacting with a second smaller eddy in BHM-SVW-

OEF members 1 and 3, but this process is almost absent in BHM-SVW-OEF member 2.

The cyclonic circulation north of the anticyclone strengthens in member 2 and not in the

others. Conversely, the 3 EEPS-OEF members do exhibit similar variability, being different

only in the strengthening/weakening of the cyclonic synoptic eddy on the northern border of

the anticyclone. The simple trajectory simulations allow us to visualize better the effect of

the uncertainty on the dynamical evolution of the anticyclonic eddy due to the deterministic

components of the particle trajectories since no random dispersion due to lagrangian sub-grid

scales was considered. In this simplified framework we observe that the EEPPS-OEF does

not allow for any of the particles to exit the anticyclonic eddy, while the BHM-SVW-OEF

exhibits a greater spread, i.e. members 2 and 3 show several particles escaping the eddy

center in different directions.

Fontanet et al. (2004) explained the dynamics of similar Algerian current anticyclonic

eddies in terms of two-dimensional turbulence. In particular they show that the high current

amplitude core of the eddy is characterized by shear stresses and strains that can cause large

changes in the paths of drifters released along the currents at the eddy core. Our results

show that the uncertainty in the winds can produce changes in the eddy field that in turn

determine large sensitivity in the particle trajectories due to such eddy field.

The BHM-SVW-OEF method seems to be more effective than EEPS-OEF in generating

changes in the jets around the anticyclone and the interaction of the anticyclone with nearby

mesoscale eddies. The pinch-off of the border of an anticyclone, the merging of two eddies

and the cyclogenesis near an anticyclone are all familiar processes associated with nonlinear

barotropic/baroclinic instabilities of open-ocean eddies (e.g. Pinardi and Robinson, 1987,

McWilliams et al., 1983). The BHM-SVW-OEF method seems to be capable of amplifying,
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Figure 5: MFS1671 SSH mean daily fields at day 10F (17 February 2005) and 6 simulated

particle trajectories (black lines) for EEPS-OEF members 1 to 3 (panels a, b and c), and

for BHM-SVW-OEF members 1 to 3 (panels b, d and e). The contour interval is 0.02 m.

Trajectories depict simulated drifter paths from 1F to 10F.
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in one week, the initial condition perturbations at the time and space scales of the open-ocean

baroclinic/barotropic instability processes.

As additional support for this interpretation, we show a density section across the Alge-

rian current and the Gulf of Lyon gyre, where maximum spread is found at day 10F (Figure

6). Atlantic water, depicted as the lightest waters from the surface to 200 meters on the

left side of the section (dark blues), flows along the Algerian coast over the salty and dense

Mediterranean waters (reds). The region between 41◦−42◦N is the deep water formation area

of the Gulf of Lyon gyre. A deep water formation event has already occurred (not shown)

and dense water chimney remnants are still visible up to 100 m depth. High values of BHM-

SVW-OEF spread are found down to 400 m (Fig. 6, panel b) consistent with the variability

of the Algerian current anticyclonic eddy discussed above. The BHM-SVW-OEF method

modified the eddy pycnocline and enables multiple realizations of baroclinic/barotropic in-

stability processes. On the other hand, panel c shows that the EEPS-OEF also modifies

the pycnocline but at different locations and at smaller amplitudes. EEPS-OEF does not

perturb the pycnocline of the anticyclonic eddy, only the surface density of the cyclonic eddy

north of it (see Figure 5), and it alters the pycnocline structure of the Algerian current.

We argue that the different ocean ensemble spread vertical structure is directly re-

lated to the different scales of the SVW fields. In the BHM-SVW-OEF case the spread

is amplified around the unstable eddy jets, enabling multiple realizations of a process of

barotropic/baroclinic instability, while in the EEPS-OEF case the spread is at lower ampli-

tude and suggestive of large-scale, surface-intensified modes.

4.2 Low-Resolution Model Ensemble Response

In this section we study the response of the lower resolution forecasting model, MFS471,

to the BHM-SVW-OEF and EEPS-OEF wind ensemble spread for the canonical ensemble

experiment. We expect that the BHM-SVW-OEF method will be sensitive to the model res-

olution since the method amplifies the unstable modes associated with the ocean mesoscales

and the MFS471 model is not eddy resolving (the Rossby radius of deformation is 10−15 km

in the Mediterranean Sea). The MFS471 is started from the upscaled initial condition at

1A, so the impact of low resolution is present throughout the analysis and forecast periods.

Figure 7 shows the effects of the lower resolution model in the control forecast SSH

(top panel) which is smoother than the equivalent field of Figure 4. In the BHM-SVW-OEF
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Figure 6: Meridional section of σ = ρ − 1000 [kg m−3] at 5◦E (Algerian coast to the left,

French coast to the right) for 17 February 2005 (10F). a) MFS1671 daily mean σ for the

control forecast at 10F. The contour interval is 0.1 kg m−3. b) σ standard deviation for BHM-

SVW-OEF at 10F. c) σ standard deviation of EEPS-OEF at 10F. The contour interval in

panels b and c is 0.03 kg m−3.
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spread (middle panel) the maxima are somewhat localized as in the high-resolution case, but

the amplitudes are lower (below 1 cm everywhere). The BHM-SVW-OEF method does not

seem to be as effective at low resolution in amplifying the wind perturbations in the ocean

response in the horizontal or vertical (not shown). On the other hand, the EEPS-OEF

low-resolution experiment exhibits a similar response to the corresponding high-resolution

case; both in terms of structures and amplitude. The localized spread areas (i.e. Algerian

Current, Mersa Matruh gyre, etc.) are missing in the EEPS-OEF low-resolution case and the

large-scale uniform response is dominant. The overall response is less sensitive to the model

resolution than in the BHM-SVW-OEF case. This result supports the notion that the new

method, BHM-SVW-OEF, amplifies the uncertainty due to winds at the ocean mesoscales,

while EEPS-OEF is mainly changing the uniform, large-scale SSH patterns.

5 Comparison with an Initial Condition Perturbation

Method

In this section we compare the wind ensemble perturbation methods above with a more

traditional initial condition perturbation method. Pinardi et al. (2008) have developed a

Thermocline Intensified Random Perturbation Ocean Ensemble Forecast method (TIRP-

OEF) that prescribes initial perturbations with an ad hoc horizontal and vertical structure.

The temperature and salinity perturbed initial conditions, Tp and Sp, are written as:

Tp(x, y, z, t0) = T (x, y, z, t0) + p(x, y)
M∑

j=1

ejfj(z) (2)

Sp(x, y, z, t0) = S(x, y, z, t0) + p(x, y)
M∑

j=1

ejgj(z) (3)

where t0 is the initial time, T and S are the temperature and salinity fields at 14A, p(x, y)

is a two-dimensional horizontal structure field with random amplitude, fj(z) and gj(z) are

pre-defined vertical structure functions with amplitudes ej. This method was originally used

to generate Kalman filter background error ensembles in Evensen et al. (2003) and extended

by Pinardi et al.( 2008) with vertical structure functions.

For this experiment, 20 vertical structure functions were selected from a set of Empirical

Orthogonal Functions (EOFs) computed from the analysis of the variance of a long ocean
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Figure 7: MFS471 SSH fields for 17 February 2005, last forecast day (10F). a) Daily mean

SSH fields from the control forecast, contour interval is 0.05 m. b) Standard Deviation [m] of

SSH for BHM-SVW-OEF. c) Standard deviation [m] of SSH for EEPS-OEF . The contour

interval in panel (b) is 0.001 m; and in panel (c) is 0.01 m.
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Figure 8: TIRP-OEF SSH standard deviation [m] at 10F. The contour interval is 0.01 m.

model simulation. The ej are the explained variance or eigenvalues for each mode. The

EOFs have maximum amplitude at the depth of the thermocline, around 100− 200 m, and

they are discussed in Pinardi et al. (2008), Dobricic et al. (2005) and Sparnocchia et al.

(2003). The p field at each grid point is modeled by a Gaussian function with a decay radius

of 60 km that roughly mimics the size of large mesoscale eddies in the Mediterranean Sea.

The amplitude of p was set in order to obtain the horizontally integrated perturbations up

to a value of ±0.2 cm in the SSH initial states. Initial perturbations of greater amplitude

generate a noise signal in the forecast ensemble spread that does not allow clear identification

of dynamical patterns in the forecast response (not shown).

The TIRP perturbations are clearly not consistent with data assimilation since each point

in the domain has the same probability to be perturbed, regardless of whether or not an

observation has been assimilated close by. Furthermore it is a method not strictly related

to the wind-driven response and is ad hoc in that all free parameters (i.e. the number and

type of EOFs, the horizontal structure radius and the amplitude) are decided on the basis

of experience.

The TIRP-OEF method implemented here produces 10 perturbed initial T and S fields

for the MFS1671 model. The initial condition ensemble members are forced by the single

deterministic ECMWF wind forecast from 8 to 17 February 2005.

In Figure 8 we show the TIRP-OEF spread at 10F. The values are relatively large, up to

6 cm, and they are preferentially organized around mesoscale circulation structures. Three
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Figure 9: σ (σ = ρ − 1000 [kg m−3]) field standard deviation of TIRP-OEF at 10F. The

contour interval is 0.1 kg m−3 .

maxima of SSH spread can be identified in the Algerian current, in the Ionian Sea and in

the Levantine basin around the Mersa Matruh gyre, as in the case of BHM-SVW-OEF.

The section at 5◦E (Figure 9) reveals a structure of the density spread that is similar to

what was observed in the BHM-SVW-OEF experiment (Fig. 6b), but at slightly smaller

amplitude and shallower depths. The BHM-SVW-OEF and TIRP-OEF methods seem to

have commensurate forecast ocean responses; more so than for BHM-SVW-OEF and EEPS-

OEF. This suggests that the two ensemble methods activate similar dynamical processes.

We argued above that the BHM-SVW spread is associated with the ocean mixed barotropic-

baroclinic instability processes. The TIRP perturbations are designed to produce modifica-

tions of the initial vertical stratification, thus changing the potential energy of the initial field

at the thermocline, and potentially activating baroclinic/barotropic instabilities. Comparing

Figures 4, 6, 8 and 9, it is evident that both methods can produce spread growing around ei-

ther localized circulation structures, such as the Mersa-Matruh gyre and the Ionian Stream,

or the mesoscale open ocean eddy fields, such as the anticyclonic eddy of the Algerian cur-

rent. The TIRP-OEF spread however depends on the choices of the initial vertical EOFs

(not shown) and the initial random amplitude. It will be difficult to generalize TIRP-OEF

even in the Mediterranean Sea, where the thermocline depth changes are seasonal and the

field is dominated by mesoscale eddies.
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6 Ensemble Variance versus Forecast and Model Errors

A set of 47 BHM-SVW-OEF experiments of the same kind as described in the previous

sections were performed for the period January-December 2006. Ensemble forecasts are pro-

duced once a week and there is no propagation of ensemble uncertainties between successive

OEF cycles. Each cycle is considered to be independent even if the OEF initial conditions

at day 1A are only 1 week apart and they are all coming from the sequential analysis cy-

cle of MFS. The nearly one-year long experiment allows us to check the properties of the

BHM-SVW-OEF spread for a period of time that covers an entire cycle of formation and

destruction of the thermocline. It also allows us to compare this spread response with the

forecast and model error variance.

In a perfect model scenario, wherein it is assumed that the model numerical integration

does not introduce any error, the variance associated with the ensemble members around

their ensemble mean is an optimal estimate of the forecast error. If M is the number of

OEF cycles, and each cycle composed of N members, then Leutbecher and Palmer (2008)

demonstrate that under the perfect model assumption the following limit is satisfied:

lim
M→∞

1

M

M∑

m=1

γ = 0 and γ = 1− (N + 1)σ2
m

(N − 1)ε2
m

(4)

where σ2
m = 〈(Xm − X

m
)2〉 is the variance of the m-th OEF cycle, X is in our case the

temperature or salinity field at different depths and ε2
m is the mean square error of the m-th

ensemble, computed as the difference between the ensemble mean and the truth, considered

here to be the XBT and Argo observations. In our specific case we also compute the average

of ε2
m and σ2

m between 1F and 10F.

In real applications the limit of γ usually differs from zero. Negative values of γ indicate

over-dispersive ensemble behavior, i.e. the ensemble forecast variance is larger than mean

squared forecast error. Positive values of γ indicate under-dispersive ensembles, i.e. ensemble

variance too small compared to the mean squared error. For instance, Powell et al. (2008)

show that the Intra American Seas ocean ensemble prediction system had values of γ = −0.32

and γ = 0.88 for SSH and SST respectively. The over-dispersive behavior of SSH in Powell

et al. (2008) was artificially induced by inertia-gravity waves generated by the unbalanced

initial conditions. Under-dispersive ensembles are usually more common than over-dispersive

ensembles (Houtekamer and Mitchell, 2001) .

20

Page 22 of 32Quarterly Journal of the Royal Meteorological Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Figure 10: Values of γ (see text) as a function of depth and for temperature and salinity

fields for the period January 2006-December 2006 and averaging between day 1F and 10F

values.

The BHM-SVW-OEF is always under-dispersive, as shown in Figure 10. Over a series

of 47 ensemble prediction cycles we found values of γ = 0.89 for SSH (not shown), while

values for temperature and salinity range between 0.7 and 0.95. Under-dispersive minimum

values are found in Figure 10 between 0 and 100 m for temperature and between 30 and

200 m for salinity. This result quantifies what was found before for the January-February

2005 study case. The BHM-SVW-OEF method amplifies the ensemble spread in the surface

layer (0− 100 m) and in the main thermocline (100− 200 m), but is not efficient in exciting

all forms of uncertainties that contribute to the total forecast error. In fact, the BHM-SVW-

OEF method maps only the forecast uncertainties that project on the possible errors in the

wind fields over the 14-day analysis cycle and it is reasonable that it will underestimate the

total forecast error.
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Another estimate of the forecast system error is given by the root mean square (rms) of

the difference between the model simulation during analysis time and the observations; i.e.

the so-called misfit (Dobricic et al., 2007). The rms of the misfits quantifies the errors due

to data scarcity, data assimilation inadequacies and the limited representation of processes

by the numerical model. The rms of the misfit is typically used as the estimate of the

background field or first guess errors. We compare the vertical BHM-SVW-OEF ensemble

spread to the rms of the misfit to show how much of the background error field the BHM-

SVW-OEF method captures in different seasons.

Figure 11 shows that summer intensification of the rms misfit is reproduced by the BHM-

SVW-OEF method but the amplitude is largely underestimated (i.e. note changing gray

scales in Fig. 11). This large underestimation is partially due to the data scarcity in the

computation of the misfits when compared to the ensemble spread computed over every

grid point in the discretized Mediterranean domain. However, the BHM-SVW-OEF method

is capable of producing, without any ad hoc assumptions, the seasonal errors due to the

formation of the thermocline which is the most significant error in ocean forecasting models,

associated with the forcing inaccuracies and the mesoscale eddy field. These results indicate

that the BHM-SVW-OEF method could be used in the future to produce ensemble members

that can quantify the model background error covariance matrix.

7 Conclusions

In this paper we have studied different methods of ocean ensemble forecasting applied to

the Mediterranean Sea. We have developed a new method, called BHM-SVW-OEF, that

uses the posterior realizations of winds coming from BHM-SVW distributions described in

Part I of our work (Milliff et al., 2009). The method produces initial condition perturbations

during a 14-day analysis cycle leading up to the 10-day forecast period, by forcing with the

BHM-SVW realizations. Part I of this paper shows that initial condition spread in SSH

and SST localize in high shear and eddy rich regions during the analysis cycle. Continuing

with the BHM-SVW realizations in the forecast period, perturbations grow; doubling in

amplitude in ten days. The BHM-SVW-OEF method generates an ocean forecast spread

that concentrates in the ocean mesoscale eddy field. The variance at this scale is probably

connected to mixed barotropic/baroclinic instabilities of the open ocean flow field.
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Figure 11: Vertical distribution of temperature and salinity root mean square of misfits

and BHM-SVW-OEF ensemble spread averaged for the whole Mediterranean Sea for the

period June-December 2006. a) Root mean square of misfit and b) BHM-SVW-OEF spread

for temperature in ◦C. c) Root mean square of misfit and d) BHM-SVW-OEF spread for

salinity in PSU .

23

Page 25 of 32 Quarterly Journal of the Royal Meteorological Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

The new method has been compared with two more traditional methods of generating

ocean ensemble perturbations and forecasts. The first uses the ECMWF EPS surface winds

starting from a single initial condition and forcing the ocean forecast ensemble with 10

realizations. The second is an ad hoc perturbation method for the T and S initial condition

fields, i.e. the so-called Thermocline Intensified Random Perturbation or TIRP.

BHM and EEPS winds differ substantially during the forecast time. EEPS wind ensemble

spread mimics the forecast error growth in the ten-day forecast period while BHM-SVW

ensemble spread is constant over the same period. This is probably a short-coming of the

BHM-SVW assumptions that can be readily improved in future versions. On the contrary,

during the analysis period, the BHM-SVW distributions carefully track sources of surface

wind forcing uncertainty. This uncertainty can be quantified in an objective way (Chin

et al. 1999, Milliff et al. 1999, 2004) using abundant scatterometer and analysis data

so as to yield realistic estimates of the wind uncertainties. EEPS winds instead try to

maximize uncertainty in the growth of errors for the atmospheric forecast focused on middle

troposphere geopotential height dynamics. The EEPS-SVW realizations exhibit large-scale

differences in the surface winds (associated with synoptic disturbances of several hundred

kilometers scale), while the BHM-SVW differ at finer scales (see Figure 3). Our results show

that the finer scale differences in the BHM-SVW realizations can amplify the perturbations

at the ocean eddy scales much more efficiently than the EEPS-SVW realizations.

Furthermore, the EEPS-SVW fields are not able to alter sufficiently the vertical strat-

ification of the water column while the BHM-SVW-OEF vertical density spread peaks at

the pycnocline of the eddies and retains significant amplitudes below. The BHM-SVW-OEF

method activates a vertical, thermocline density ensemble spread that is much larger and

eddy intensified than the one generated by the EEPS-OEF method. EEPS winds have been

successfully applied to probabilistic modeling of ocean waves (Roulston, 2005) where depth-

intensified response is less important. Our results suggest that short-term ocean circulation

forecasts show a limited response to EEPS SVW realizations, mainly confined to the surface

and at basin scales.

The experiments conducted with high- and low-resolution ocean models and the BHM

and EEPS SVW realizations show a very different forecast response for the two methods.

While the EEPS-OEF method yields almost identical ensemble spread between high- and

low-resolution experiments, the BHM-SVW-OEF spread amplitude and structure depend
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crucially on the high-resolution model eddy field representation. As such, the BHM-SVW-

OEF method will be particularly useful for coastal ocean forecasting systems where the

uncertainty due to winds is very important and high resolution is mandatory.

The comparison between BHM-SVW-OEF and TIRP-OEF methods demonstrates anal-

ogous responses in the ensemble spread generated by the two methods. The TIRP-OEF and

the BHM-SVW-OEF produce thermocline intensified responses at the ocean mesoscales,

with the former slightly more effective in the horizontal, and equivalent to the latter for the

vertical ensemble spread. However, the TIRP method is not connected to data assimilation

constraints, and is sensitive to the EOF modes chosen. The TIRP-OEF method is ad hoc

and needs to be customized, probably at the seasonal and interannual time scales, for general

applications.

Ensemble techniques are generally evaluated in terms of their ability to reduce and ac-

count for forecast error. We have shown that the BHM-SVW-OEF method does not fully

represent the forecast or background field errors. In fact only a small per centage of the

forecast error is accounted for in terms of ocean BHM-SVW-OEF spread. However, the

vertical structure of the ensemble density spread mimics well the background field errors,

being peaked at the thermocline and seasonally varying in depth (Fig. 11).

At this research stage of development we argue that the BHM-SVW-OEF offers a compet-

itive method of producing short-term ocean ensemble forecasts if compared with other, more

conventional, methods. Furthermore, it starts from an objective evaluation of uncertainty

in the atmospheric forcing for the ocean models and it avoids discontinuities in variance

between analysis and forecast periods. To our knowledge, it is the only method that insures

continuity between the two periods, avoiding the excitement of large-scale gravity wave mode

disturbances due to artificial changes in the surface wind. A natural extension of this work

will be the consideration in the BHM-SVW of time varying wind variance errors for the

forecast period and the combination of ad hoc TIRP perturbations with BHM-SVW during

the analysis period.
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