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Abstract 

In July 1998, an Mw = 6.2 earthquake struck the islands of Faial, Pico and San Jorge (in the Azores 

Archipelago), registering VIII on the Modified Mercalli Intensity scale and causing major 

destruction in the northeastern part of Faial. The main shock was located offshore, 8 km North East 

of the island, and it triggered a seismic sequence that lasted for several weeks. The existing data for 

this earthquake include both the general tectonic environment of the region and the teleseismic 

information. This is accompanied by one strong-motion record obtained 15 km from the epicentre, 

the epicentre location of aftershocks, and a large collection of the damage inflicted to the building 

stock (as poor rubble masonry, of 2-3 storeys). The present study was carried out in two steps: first, 

with a finite-fault stochastic simulation method of ground motion at sites throughout the affected 

islands, for two possible locations of the rupturing fault and for a large number of combinations of 

rupture mechanisms (as a parametric analysis); secondly, the damage to buildings was modelled 

using a well-known macroseismic method that considers the building typologies and their 

associated vulnerabilities. The main intent was to integrate different data (geological, seismological 

and building features) to produce a scenario model to reproduce and justify the level of damage 

generated during the Faial earthquake. Finally, through validation of the results provided by these 

different approaches, we obtained a complete procedure for the parameters of a first model for the 

production of seismic damage scenarios for the Azores Islands region.  
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Introduction 

As a result of its location on the boundary of the triple junction between the three large North 

American, Eurasian and African tectonic plates, and of a hot-spot (Figure 1), the Azores 

Archipelago is subjected to frequent seismic activity. This is also seen by low magnitude seismic 

sequences triggered occasionally by moderate to large earthquakes. As most of this region is 

submerged, there is no clear location of the active faults, and the existing data (e.g. geological, 

geophysical, geodesic and seismological) do not yet fully support a consensus geodynamic model.  

During the dawn of 9th July, 1998, an Mw = 6.2 earthquake struck the island of Faial, causing 

major destruction on the northeastern part of the island, where more than 5,000 people were 

affected. There were eight deaths, 150 people were injured, and 1,500 people were left homeless 

(Senos et al., 1998). The main shock was located offshore, 8 km North East of the island (Matias et 

al., 2007), and it triggered a seismic sequence that lasted for several weeks. 

This earthquake allowed the collection of an unprecedented quantity of good quality data 

relating to the damage to constructions. A comprehensive evaluation of this damage and an accurate 

estimation of the earthquake intensities were provided by a case-by-case analysis of a total of 3,909 

damaged buildings, along with damage to monumental structures and to the road network, 

predominantly near the epicentre. The high level of destruction revealed by more than 2,100 badly 

affected buildings located up to 30 km from the epicentre appeared to be related to the high 

vulnerability of the predominant type of construction: essentially rubble masonry of 2-3 storeys.  

The present study is an analysis of the Faial earthquake undertaken for the International 

Seminar on Seismic Risk and Rehabilitation of Stone Masonry Housing 

(http://www.azores1998earthquake.org/). The level and variability of earthquake ground-intensity 

measures depend upon many factors (e.g. Mai, 2009), and the techniques of analysis are chosen on 

the basis of the type, quality and quantity of data available, with a search for the most appropriate 

approach in relation to the scale of the investigation (e.g. Douglas, 2003; Zonno et al., 2009).   

Many of the available ground-motion prediction equations were examined in Douglas 

(2003), in terms of: (1) data selection; (2) accelerogram processing techniques of strong-motion 

records used to construct the equations; (3) characterisation of an earthquake source; (4) travel path 

and local site used; and (5) regression techniques used to define the final equations. The ground-

motion prediction equations were derived based on different fault–distance metrics, considering 

magnitude, style of faulting, and various site parameters. However, these equations do not consider 

finite-fault effects (aside from directivity corrections) and potentially heterogeneous slip 

distribution effects, or the influence of the relative position of the nucleation point with respect to 

http://www.azores1998earthquake.org/


the overall fault, the areas of large moment release on the fault, and the site location. Indeed, for the 

Faial earthquake, there was an offshore seismic source very close to the affected islands (Faial and 

Pico). Hence a finite-fault source was preferred, avoiding the point source approximation of the 

ground-motion prediction equations (i.e. Spence, 2007).  

The procedure adopted can be summarised as two steps: (1) use of a stochastic finite-fault 

method (i.e. the EXSIM software; Motazedian and Atkinson, 2005) to furnish a level of shaking in 

terms of peak ground acceleration (PGA) or spectral acceleration. Calibration of the model 

parameters was performed with the regional information and using the available strong-motion 

records as a constraint (see following paragraphs); then (2) selection of a relationship between 

intensity and shaking parameters, because all available macroseismic data are expressed in the 

Modified Mercalli Intensity (MMI) scale (Wald et al., 1999). The constraint to evaluate the quality 

of the relationships available was realised using the macroseismic survey data (Matias et al., 2007 ). 

Another comparison at the level of macroseismic intensity was performed with the EMS-98 

macroseismic scale obtained from other independent information (Ferreira, 2008). 

Finally, the damage caused by the Faial earthquake was compared with the “mean damage 

index” (DImean) method (Dolce et al., 1999) with the damage obtained through a numerical model 

using a well-known macroseismic method (Lagomarsino and Giovinazzi, 2006). To conclude, the 

limits and uncertainties of the procedures of analysis used are discussed, and we provide some 

suggestions regarding the future prospects of improving the procedure itself and its calibration of 

the area investigated.  

 

Tectonic setting  

The Azores plateau marks the boundary between three large plates: the North-American to the 

West, the Eurasian to the North, and the African to the South (Figure 1). The 1998 Faial earthquake 

occurred in the Central Azores Islands, along the Azores–Gibraltar Fault Zone, an oblique 

spreading centre and a plate boundary with an abnormally thick oceanic crust (Madeira, 1998; 

Lourenço et al., 1998). The NW–SE trending ridges (Vogt, 1976; Dias et al., 2007) parallel to the 

plate boundary occur along a broad sheared region under a trans-tensile stress regime (Figure 1). 

Most of the seismicity and volcanism of these islands are clustered along three strike-slip 

fault systems that are roughly NW–SE trending and subparallel to the plate boundary (Figure 2a) 

(Madeira and Silveira, 2003). The fault geometry and kinematics indicate a stress field with the 



minimum horizontal compressive stress axis (σ3) trending NE–SW. However, permutations 

between the maximum (σ1) and intermediate (σ2) compressive stress axes (NW–SE horizontal, and 

vertical, respectively) can originate trans-tensile or tensile regimes (Reches, 1983), and can trigger 

alternating phases of intense tectonic activity and volcanism. 

The 1998 Faial earthquake had its epicentre North East of Faial Island (Borges et al., 2007), 

where seismicity occurs on NNW–SSE-trending strike-slip lineaments, according to the NE–SW 

trending σ3. The plane that ruptured in 1998 had an azimuth of 156°, a dip of 85°, and a left-lateral 

strike–slip motion (Senos et al., 1998). 

Shortly after the earthquake, a broad range of locations for the epicentre was issued by the 

various worldwide networks. This continued even after compilation of large sets of phase readings, 

due to inaccurate velocity-model and/or location procedures for this particular region of the Earth. 

Figure 2a shows the dispersion of the epicentre locations provided by different hypotheses, together 

with the fault plane solution obtained with the Centroid Moment Tensor method (Dziewonski and 

Woodhouse, 1983), as shown in Senos et al. (2008). However, the main shock relocation based on a 

one-dimensional (1D) velocity model suggested an epicentre about 8 km North East, offshore of 

Faial Island (EPI 1, Latitude 38.634°N, Longitude 28.523°W), and a hypocentre depth between 2 

km and 5 km (Matias et al., 2007).  

Seismic tomography analysis demonstrates a plutonic intrusion offshore, between the islands 

of Faial and Pico (Figure 2b, c), that is bounded by clusters of seismicity that outline the 

seismogenic zone (Dias et al., 2007; Schilling, 1991; Yang et al., 2006). The 1998 Faial earthquake 

might have occurred on the western-most flank of the intrusion (EPI 2, Latitude 38.640°N, 

Longitude 28.590°W; issued by SIVISA). Since high VP gradients revealed the presence of the 

fault, while high VP/VS ratios translated into rheological changes associated with the slip movement 

on a fault, it is possible to infer a hypocentre ranging from 4 km to 6 km, close to a high-slip patch.  

 

Data 

Strong motion and surface geology 

The 1998 Faial earthquake was recorded by accelerometric stations located on the Central Azores 

Islands (Table 1). At the Prince of Mónaco Observatory in Horta town (Faial Island), relatively 

large ground-shaking was recorded (PGA = 390 mg; see Figure 3). Further away, much lower 

shaking was recorded (PGA = 3-16 mg) in Terceira (GZC, SEB and PVI stations, at 113-133 km) 



and for the S. Miguel Islands (MOS station, at 250 km). The high value recorded at the Prince of 

Mónaco Observatory, on the top of a scoria cone in Horta, was due to large local site effects that are 

seen in time-histories from all of the events recorded there (Escuer et al., 2001). In the nearby 

downtown area of Horta, the PGA estimated from the behaviour of simple structures (Oliveira et al., 

2002) was 200 mg to 250 mg. These values are more consistent with the light damage suffered by 

the stock of buildings in Horta, with much lower shaking seen in the ground-motion recordings at 

Terceira and the San Miguel Islands (3-16 mg).  

 

Table 1: Epicentre accelerometric station recordings for the 9th July 1988 Faial earthquake.  

    Epicentre EPI 1 

Lat. 38.634; Long. -28.523 
Epicentre EPI 2  

Lat. 38.640; Long. -28.590 
Station Code Lat. Long PGA (mg) Distance (km) Distance (km) 
HORTA (Faial) 38.529  -28.63 ~ 327-400 14.88 12.77 
GZC (Terceira) 38.657  -27.22 ~ 12-14  113.25 119.05 
SEB (Terceira) 38.668  -27.09 ~ 9-23  124.68 130.47 
PVI (Terceira) 38.732  -27.06 ~ 5-10  127.52 133.25 
MOS (S. Miguel) 37.890   -25.82 ~ 3-5  248.99 254.68 

 

Geological surface formations can change the ground motion observed at the bedrock. The 

example of the Prince of Mónaco Observatory has been seen in other locations of soft-soil 

formations, such as in the alluvium valleys in the northeastern part of Faial Island (Oliveira et al., 

2002). To better approximate the ground motion at the building foundations, a simplified approach 

was included to consider the soil influence at such sites; otherwise, the bedrock input model for 

damage assessment was too biased, as indicated further below. 

Figure 4 shows a large-scale representation of the main superficial geological formations of 

the Faial and Pico Islands, grouped into three main categories according to Eurocode 8 (EC8, 2006). 

A soil amplification factor (SA) was assigned to each of these three categories, as proposed in EC8, 

with values that affected the PGA (see legend to Figure 4). The SA values are generally in good 

agreement with not only the strong-motion records of the Prince of Mónaco Observatory, but also 

of those other locations where the analytical studies developed support this proposal (Oliveira et al., 

2002). The simplified analysis developed herein should be refined in further studies, to provide 

better estimations of the impact of soil and topographic influences on buildings. 



 

Methods 

Stochastic ground-shaking simulation 

A finite-fault stochastic method was used to compute the motion with the EXSIM code (Motazedian 

and Atkinson, 2005). As we were interested in sites close to the fault trace, this method overcomes 

the limitations of the stochastic point-source model. It allows for fault geometry, although the 

motion from each sub-fault distributed over a fault surface is essentially given by a point-source 

stochastic simulation. Formally, the motion is computed only at higher frequencies and in the 

frequency range of engineering interest. The EXSIM finite-fault simulation programme 

(Motazedian and Atkinson, 2005) has been extensively used in the scientific community (Boore, 

2009; Atkinson et al., 2009) for purposes similar to that of the present study (e.g. Berardi et al., 

2000; Carvalho et al., 2008; Galluzzo et al., 2098; Castro et al., 2008).   

The fault plane was assumed to be a rectangle broken into an appropriate number of sub-

faults, which are modelled as point sources using the approach of Boore (2003). The sub-faults have 

ω2 spectra, and their sizes define the moment and corner frequency, while the number of triggered 

sub-faults is adjusted to reach a specified target moment. As merely kinematics, the finite-fault 

approach can provide simulations in good agreement with observations over much of the frequency 

range of engineering interest (e.g. Hartzell et al., 1999; Motazedian and Atkinson, 2005).  

The finite-fault model parameters require specification of: (1) the fault-plane geometry 

(length, width, orientation); (2) the source (slip distribution, stress drop, nucleation point, rupture 

velocity); and (3) the crustal properties of the region (e.g. geometric spreading coefficient, quality 

factor Q(f)). The ground motion at the bedrock was computed for two possible epicentre locations, 

EPI 1 and EPI 2 (Table 1), while neglecting the site-specific soil responses. Source scaling 

relationships (Wells and Coppersmith, 1994) provided a fault-plane dimension of 16.5-km length 

and 9.4-km width for an Mw = 6.2 event, while the aftershock distribution, the focal plane solution 

(Senos et al., 2008.), and tomographic studies (Figure 2) suggested a 165° strike and an 85° dip. 

The fault dimensions were consistent with the plate structure derived by seismic tomography, and 

with an aftershock distribution that showed a brittle plate within 4 km and 14 km of depth at the 

hypocentral location (Figure 2).  

The number of sub-faults (nine along the length, and five across the width) were set to have 

almost square dimensions, while the depth at the upper edge of 1.1 km was derived from published 



seismological studies (Matias et al., 2007; Dias et al., 2007). The shear-wave velocity and density 

were inferred by combining petrological interpretations of seismic tomography inversions (Matias 

et al., 2007; Dias et al., 2007) with published data on elastic properties of oceanic crustal rocks 

(Carmichael, 1990, and references therein). The stochastic waveform computation only requires 

crustal averages of S-wave velocity and density, while P-wave velocities are not specified. Simple 

assumptions based on the tomographic P-wave velocity (Figure 2b, c; Table 2) were used to derive 

the average shear-wave velocity and density for the entire crust. The number of recordings was not 

large enough to allow highly constrained ground-shaking analyses, as in the near-field only one was 

obtained for the accelerogram of the 1998 Faial earthquake. The other records were too far away to 

constrain the solution in the near-field. Therefore, at Faial Island, where the damage was assessed, 

some of the parameters used in the stochastic modelling had to be defined by making simple 

assumptions and using the available published information. 

The source-model parameters were defined assuming two different slip models (automatic 

random, Gaussian distribution) computed on given nucleation points for a moment magnitude of 

Mw = 6.2, a stress drop of 200 bars, and a rupture velocity on the fault of 0.8-fold the shear-wave 

velocity (Table 2). This stress drop of 200 bars was consistent with that derived from P-wave 

spectral analysis (Borges et al., 2007), and with a 200-bar deviatory stress at 5 km in depth (Matias 

et al., 2007). 

As the geometrical spreading coefficient and the quality factor, Q(f), are crucial to ground-

shaking simulation, and due to the lack of attenuation information specific for the studied area, a 

value was assumed from that used in areas with similar geodynamic settings (Olafsson et al., 1998; 

Carvalho et al., 2008). 
 

Table 2: Finite-fault ground-shaking simulation parameters. 

Parameter Value  Parameter Value 
Moment magnitude 6.2  K 0.03 s 
Fault orientation Strike 165°, dip 85°  Q(f) 239.0*f1.06 
Depth of top 1.1 km  Stress drop 200 bar 
Fault dimensions Length (width) 16.5 (9.4) km  Geometric attenuation If R < 30, R-1; else R-0.5 
Number of sub-faults Along length 9, along width 5  Distance-dependent duration  To + 0.1 R (s) 
Fast Fourier Transform  16,384 points  Windowing function Saragoni-Hart 
Sample interval  0.005 s  Amplification function Not applied 
Shear-wave velocity 3.5 km/s  Slip model  Random and Gaussian 
Density 2.8 g/cm3  Dynamic flag and pulsing (%) 1 and 50.0 
Rupture velocity 0.8 × shear wave velocity  Damping  5% critical damping 

 
The distance-dependent duration (To + 0.1R, with To = 4.0) was selected according to other 

previous simulation studies and validated with the average duration of the horizontal components at 

the Horta station. The duration chosen at the Horta station is consistent with the observed duration 

on the horizontal component waveforms (Figure 3). The computed motion is not a full wave field, 



with only S-waves simulated, and the resulting waveforms are averaged between the two horizontal 

components (Figure 3). Among the computed ground-shaking parameters, PGA (cm/s2) and 

response acceleration spectra (PSA; cm/s2) were used, considering 20 runs of the stochastic process.  

The intensity of the ground shaking can be inferred through empirical relationships between 

the recorded PGA, PGV and MMI developed from observations in several areas of the World (Wald 

et al., 1999; Boatwright et al., 2001; Atkinson and Kaka, 2007). However, recent studies have 

suggested that these MMI relationships are strongly dependent on efficient propagation of high-

frequency radiation and/or occurrence of thick sediment embayments (Atkinson and Kaka, 2007). 

We tested the relationship of Wald et al. (1999) as it is the most widely used, which computes the 

MMI as a function of PGA and PGV. The relationships are written as follows:  

 

MMI = 3.66 log(PGA)–1.66 if V ≤ MMI ≤ VIII (σ = 1.08) (1) 

MMI = 3.47 log(PGV)+2.35 if V ≤ MMI ≤ IX (σ = 0.98) (2) 

 

In Equation (2), the PGV was derived with the approximate relationship suggested by 

Bommer et al. (2006): 

 

PGV (cm/s) = PSA (0.5 s) / 20(cm/s2) (3) 

 

Although Wald et al., (1999) suggest that high intensities correlate better with PGV than 

PGA, Equation (2) was inadequate for our study areas. One reason for this appears related to the 

approximation used to derive PGV (Equation (3)), although this is widely used in the engineering 

community. Simulated intensities of ground shaking are more consistent with the observed 

intensities if Equation (1) is used. 

Two ground-shaking scenarios were considered using the two epicentres discussed above, 

and the PGA and MMI maps were constructed (Figure 5), with the MMI values compared using 

field data (Matias et al., 2007) and the ground-motion simulation for Faial Island. Isoseismic maps 

were drawn using the ArcGIS interpolation Inverse Distance Weight (IDW) method (Watson et al., 

1985).  

Depending on the epicentre location, the resulting higher levels of ground shaking shifted 2 

km in the East–West direction. Since a westward shift of high values of MMI is more consistent 

with the field data, from here on only EPI 2 was used to retrieve seismic damage. Figure 10 shows 

the macroseismic intensity distribution of the Faial earthquake as expressed through the MMI 

intensity scale. The left panel is based on the field observations (Matias et al., 2007), and in the 



panels from the middle to the right, the intensity values are computed according to a fault-rupture 

model. This uses the different hypotheses of epicentre locations (EPI 1 and EPI 2), and does not 

including the soil influences, because regional terms were being considered. The maximum 

intensity observed in Faial is VIII on the MMI scale (Figure 4.); however, given the high level of 

destruction seen in some localities, this indicates that the intensities at individual sites might have 

been one grade higher than those of the regional values plotted on the maps, as also seen if the soil 

influence is included.  

 

Parametric analysis 

A parametric analysis of the finite-fault bedrock stochastic simulation at the Horta site was 

performed to estimate the range of variations in amplitude and frequency. Our set of simulations are 

based on simplified sources with uniform slip, uniform rise times, and a constant rupture speed. 

They are aimed at obtaining rough first-order estimations of the influence of some of the key 

parameters, while keeping the slip distribution and nucleation point fixed. These estimations include 

the slip models (Figure 6) and hypocentre position, as well as the Q(f) and stress drop. 

Slip models are generated assuming a Gaussian distribution centred on nucleation points NP 

1, NP 2 and NP 3, and NP 4 (Figure 6), or using a random slip distribution generated automatically 

by EXSIM. On each slip model, four hypocentre positions have been set (nucleation points) located: 

(i) in the lower half of the fault, left-hand side; (ii) in the lower half of the fault, right-hand side; (iii) 

in the centre of the fault; and (iv) randomly. Therefore, the final values were obtained from 16 

rupture models (four hypocentres and four slip distributions); at the Horta site, these resulted in 480 

stochastic time series, and 120 time series for each slip model.  

The resulting ground-shaking scenarios are also considered in terms of the PGA of the 30 

stochastic realisations, compared with the observed acceleration-time history, to determine the best 

agreement to the PGA recorded (Figure 7). The medians, 75th and 84th percentiles, means, modes, 

minima and maxima considering the PGA are calculated for each of the time series of the 30 

stochastic realisations. The highest PGA is for the SLIP 3 slip distribution and the centred 

nucleation point (time series HORTA 01-28-32.acc in Figure 7). However, waveforms can look 

very different for both amplitude and frequency content depending on the chosen slip distribution 

and the position of the hypocentre on the fault plane that controls the rupture directivity. If the 

simulated (Figure 7, EW) and observed time histories at the Horta site are compared, this provides a 

qualitative estimate of site effects that influences the ground-motion variability. Although the 75th 



percentile time series best resembles the observed EW waveform, the maximum must be considered 

from among the simulated PGAs to have the closest match with the observed value.  

Another way to highlight the statistics-derived PGAs is by comparing the frequencies of the 

PGA classes for all of the rupture models (Figure 8, yellow bars) with those derived for each of the 

four models (SLIP 1-3, random). The slip distribution of SLIP 3 reveals a trend in frequency versus 

PGA class (Figure 8, green bars) that is shifted to a higher class of PGA. We can plot the response 

spectra of only the time series that have the maximum PGAs among the 30 stochastic realisations, 

and compare these to the observed data at the Horta site (Figure 9). Useful information can be 

extracted from the response-acceleration spectrum despite the lack of observed data as, for instance, 

the observed PSA represents the upper limit of the simulated one. Moreover, since the model does 

not generate low frequency waveforms, we cannot consider the PSA in its low frequency range (1-3 

Hz). No matter which rupture model is used, it is not possible to exactly match the observed PSA in 

the 30-40 Hz frequency range. This might be related to site and/or directivity effects on the wave 

propagation.  

 

Seismic Damage Assessment  

Building-stock characterisation and post-earthquake damage assessment  

The traditional architecture of the islands is a simplicity of construction based on the use of rubble-

stone masonry, wooden floors and roof. This gives the Azorean constructions the right to be 

considered a heritage of humanity, for their richness and formal variety in the combination of the 

different construction elements that make up these buildings. Normally, following an earthquake, 

some types of repairs produce changes to the traditional construction systems, techniques and 

materials. This arises from the poor seismic response that some buildings show, which is often 

associated with a lack of maintenance or with damage that was suffered in previous earthquakes. 

This will interfere with the traditional buildings, so to understand the structural behaviour of the 

constructions, it is of extreme importance to know the types of changes that have been introduced 

into the building stock and to characterise the traditional construction that was maintained following 

the earthquake.  

The most widely used type of construction in the central Azores Islands are “traditional 

construction” and “altered traditional construction” (Figure 11; Table 3: TC, ATC, respectively), 

which are highly vulnerable structures that were severely damaged during the earthquake.   

 



Table 3: Descriptions of the common structural systems of Faial and Pico Islands. 
Construction class  Description 
TC “Traditional construction” - the structure is mainly stone masonry, with wooden floors 

and roof 
ATC “Altered traditional construction” - very similar to traditional construction (structure in 

stone masonry and wooden roof), but parts of the floors (often bathroom and kitchen) 
are made of reinforced concrete  

MC1 “Mixed construction 1” - structure is masonry stone, with concrete floors and wooden 
roof 

MC2 “Mixed construction 2” - structure is masonry stone, but there are reinforced concrete 
columns and beams, wooden floors, wooden roof and concrete enlargements 

MC3 “Mixed construction 3” - reinforced concrete columns, beams and floors, either wooden 
or concrete roof  

CC “Current construction” - earthquake-resistant structures, where almost all elements of 
the house are reinforced concrete, except for the roof, which can be of wood 

 

As cited above, locations and characteristics of buildings were obtained from a survey 

conducted after the earthquake. These were further updated in 2007, and a database was developed 

to facilitate rapid analyses. After a careful analysis of the 3,909 buildings in the database from the 

parishes of Faial and Pico, Ferreira (2008) classified the building damage according to the 1998 

European Macroseismic Scale (EMS-98) (Grünthal, 1998). The EMS-98 scale provides the 

possibility of dealing with these different types of buildings, including five possible degrees of 

damage that are related to the level of structural and non-structural damage to an entire building (D1 

- negligible-to-slight damage; to D5 - total destruction). 

This post-earthquake damage database contains numeric data to quantify the percentage of 

damage to walls (exterior and interior), floors and the roof, and sometimes contains photographs of 

the houses, as well as a field for the "description of damage". Unfortunately, detailed descriptions of 

these parameters are not always available; sometimes there are only comments or general notes 

about the situation of the owners and tenants available, along with other information that is not 

relevant to the present study. This assessment also provided damage grades for 2,030 buildings in 

Faial and 885 in Pico; out of these, 1,468 were geo-referenced in Faial and 559 in Pico. This 

allowed the development of geospatial analyses to determine, for instance, the distribution of 

buildings with a given damage grade throughout a given area (Figure 12). The inland faults, 

landslides and individual buildings superimposed on the same map have provided a better 

understanding of the damage grades to the buildings, indicating the damage that resulted from the 

earthquake. 

 



Seismic damage using the mean damage index 

Another way to assess this damage is through the DImean (Dolce et al., 1999), extended to a larger 

geographical unit (parish/ “freguesia”): 
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where di is the normalised damage grade (di = 1,…5, not-null damage levels, n = 5), and fi is the 

relevant frequency within the geographical unit. DImean ranges from 0 to 1; where DImean = 0 

indicates a total absence of damage, and DImean = 1 is for total destruction.  

This DImean (0-1 scale) is a synthetic tool to account for the expected damage. As seen in 

Figure 13, for each census tract (“freguesia”), a DImean was derived and, in particular, the analysis 

shows the presence of three census tracts (Salão, Ribeirinha and Pedro Miguel), with DImean = 0.60-

0.80. These correspond to the parish with the most vulnerable buildings and the highest level of 

destruction (partial and total collapse). This approach shows an overall pattern similar to the 

intensity map shown in Figure 10 (left), and proves that the building-by-building damage evaluation 

described in this section is a good indicator of the macroseismic intensities obtained in the field. 

 

Seismic damage using the macroseismic method 

To simulate damage scenarios, the ground motion and the seismic vulnerability of the building 

stock are needed. In the macroseismic EMS-98 scale, five discrete damage grades can be selected 

(D1 to D5) to describe the damage grades of the main structural components and non-structural 

elements. The Lagomarsino and Giovinazzi approach was obtained by analysing how the EMS-98 

macroseismic scale suggests implicit and fuzzy values for the probability damage matrix for the 

different classes of buildings, as opposed to the standard procedure of estimating the local 

macroseismic intensities on the basis of damage observed. Therefore, they “transposed” the 

linguistic expression of the vulnerability matrix given by EMS-98 for each vulnerability class of 

building into numerical bounds of the probability of any damage level. Following this method, once 

a value has been fixed for building vulnerability (VI) and intensity I, a mean damage grade (µD) can 

be determined using the following analytical function (proposed in Giovinazzi and Lagomarsino 

(2003), Lagomarsino and Giovinazzi (2006) and Bernardini et al. (2007)): 
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Application to Faial Island 

Two models of ground motion were used, based on fault rupture EPI 2 for each of the 1,669 

buildings for which damage assessment was available (D1-D5). The first model (M-I) considers 

bedrock intensities, while the second model (M-II) considers the influence of the soil through the 

simplified amplification factor (SA). The mean damage grades (µD) obtained with M-I and M-II 

were compared building by building with the observed damage of Figure 12. 

Statistical analyses of the differences between observed and estimated damage grades were 

performed using the Minitab 15.1® statistical software (2006). Even though the differences are 

important in several cases, for model M-I (Figure 14a) the mean value of the differences is almost 

one degree (0.9438) (damage grade), with a 95% confidence interval of 0.87 to 1.01; for M-II 

(Figure 14b), this error is almost zero (0.0367), with a 95% confidence interval of -0.03 to 0.11.  

Taking M-II as a better solution, comparison can be made between the observed and estimated 

damage grades (grade by grade; Figure 15). Even though the overall averages are similar, for 

damage grade D2-D3, M-II overestimates the observed damage, while slightly underestimating it 

for D1 and D4-D5. The discrepancies between the simulated levels of damage (Figure 13) and the 

observed damage (Figure 12) arise from the uncertainties in the use of this procedure, as specified 

as follows: 

a) The simplified model for the surface geology, which requires further refinement; 

b) The conversion of PGAs into EMS-98 intensities, which might exceed one degree; 



c) The classification of the typologies of the rubble-stone masonry structures into EMS-98 

categories; 

d) The uncertainties involved in the Lagomarsino and Giovinazzi method, which might account 

for another degree of damage (only mean value estimators have been used).  

 

If the estimations from the individual buildings are averaged out as parishes, the results from 

these simulations would be more closely related to the reality as the heavy and low damage average 

out. 

 

Discussion and Conclusions 

Finite-fault ground-shaking stochastic simulation allows parameters to be retrieved as the input for 

assessment of seismic damage. However, the method computes ground shaking at the bedrock 

without taking into account the influence of site effects that soft soil might have on the final 

shaking. This could be the case for the high levels of shaking that were recorded at the Horta 

station. To better reproduce the amplitude and frequency contents of the recorded ground motion at 

the Horta station, more geological and geotechnical site information will be introduced into future 

analyses. To investigate the high levels of PSA at low frequencies (see Figure 9), full-wavefield 

finite-fault simulations (e.g. the COMPSYN software; Spudich and Xu, 2003) will probably be 

necessary to produce better results at the Horta station for low frequencies (f < 3 Hz). 

On the basis of the tectonic environment and the most recent interpretations of possible fault 

mechanisms, a large set of ground-motion simulations have been developed that consider the 

various rupturing hypotheses (a parametric analysis). Despite the limits of our analysis in terms of 

the input-model parameters, it has been possible to conclude that in terms of MMI shaking, the EPI 

2 scenario parameter best reproduced the observed effects of the Faial Earthquake.   

The seismic damage scenarios computed from the DImean allow the inference that high 

values of this index (DImean = 0.6-0.8) correspond to the most vulnerable buildings according to the 

EMS-98 scale. By introducing a simple soil characterisation of the site based only on three classes, 

it was possible to reproduce the mean damage observed. A more refined analysis of the soil model 

with more details of the vulnerability classification and the choice of other estimators of shaking 

parameters (e.g. mode, median, maximum, 75th percentile) should provide better results for 

reproduction of the damage effects. 

A future improvement to this seismic damage procedure would include a calibration of a 

probabilistic relationship combining EXSIM macroseismic simulations with EMS-98 surveys based 



not only on the Fail Earthquake information, but also on other events that have occurred in the 

Azores Islands region.  
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Figure captions 

Figure 1. Colour-coded bathymetry of the Azores plateau  

Corvo and Flores Islands (western group); Graciosa, Terceira, Faial and Pico Islands (central 

group); São Miguel and Santa Maria Islands (eastern group). Redrawn after Lourenço et al. (1998). 

 

Figure 2. Tectonic map of the central Azores Islands 

(a) Simplified tectonic map of the central Azores Islands (Faial, left; Pico, right). Red lines, faults; 

red circles, epicentres of the seismic sequence triggered by the 1998 Faial earthquake; red stars, 

epicentre locations according to the EPI 1 and EPI 2 (see text) fault-plane solutions (after Senos et 

al., 2008); X, Y, location of the profiles for 3D tomography (Dias et al., 2007); (b, c) Tomographic 

cross-sections along the line from a to b on the map. Top panel, P-wave velocity colour-coded 

maps; bottom panel, Vp/Vs ratio colour-coded maps.  

 

Figure 3. Comparison between recorded and simulated records  

Top three panels (black lines): accelerometer time histories recorded at the Horta site (Faial Island). 

Bottom panel (red line): horizontal component of an accelerogram computed using EXSIM 

(average of two). The simulation was carried out with EPI 2 (see Table 1), the model parameters are 

listed in Table 2, and the automatic random slip distribution was performed with nucleation point 2 

(bilateral rupture). 

 

http://elsa.jrc.ec.europa.eu/events.php?id=4


Figure 4. Lithological map of Faial and Pico Islands, and observed intensities (Modified 

Mercalli Intensity scale)  

Grey, soft soil formations (type class D – EC8); blue, intermediate soil formations (type class C – 

EC8); yellow, hard soil formations (type B – EC8); according to the geotechnical soil classification 

of the Azores Archipelago (Forjaz et al., 2001). Source: Matias et al. (2007). 

 

Figure 5. PGA and MMI maps for the central Azores Islands (Faial, Pico and S. Jorge)  

The maps were computed on a 0.02° × 0.02° grid using EXSIM, and the parameters are listed in 

Table 2. (a) Maps using EPI 1, and the location of EPI 1; (b) Maps using EPI 2, with the location of 

EPI 1 shown for comparison. Intensity was computed from the PGA (cm/s2) using Relationship (1) 

(Wald et al., 1999). Black triangle, the Horta site on Faial Island.  

 

Figure 6. Colour-coded slip distributions used in the parametric study at the Horta site 

The nucleation points are plotted on each slip map (Slip 1, Slip 2, Slip 3 and Slip 4): bold black 

squares and numbers, nucleation points centred on highest slip patch; white circles, other nucleation 

points. Bottom right panel: random slip distribution generated by EXSIM, using the parameters 

listed in Table 2. 

 

Figure 7. Simulated time series 

Simulated time series derived for the median, 75th (75%) and 84th (84%) percentiles, mean, mode, 

minimum and maximum PGA (cm/sec2). Each time series represents the one (among all of the 480 

time series) that is closest to these absolute values. Red, recorded E-W component waveform at the 

Horta site.  

 

Figure 8. Frequency of PGA classes versus PGA for the four slip models 

Yellow bars, EPI 2; blue bars, SLIP 1; red bars, SLIP 2; green bars, SLIP 3; magenta bars, SLIP 4. 

 

Figure 9. Comparison of the response acceleration spectra at Horta 

Acceleration spectra (5% damping) at Horta station for the horizontal components. Recorded 

responses: blue, NS; green, WE; magenta, DU. Simulated response: black. 

 

Figure 10. Colour coded MMI scale intensity maps 



Left to right: MMI map derived from the surveyed data; MMI map computed from the PGA (Wald 

et al., 1999) using EPI 1; MMI map computed using EPI 2. The isoseismal maps were drawn using 

the ArcGIS interpolation Inverse Distance Weight (IDW) method. 

 

Figure 11. Distribution of building types on Faial Island 

Main panel: colour-coded spatial building distribution by construction class. Right panel: 

relationships between construction classes and vulnerability. 

 

Figure 12. Observed damage grades 

Damage grade classification using the EMS-98 scale directly from the observed data (Ferreira, 

2008). D1, negligible to slight damage; D2, moderate damage; D3, substantial to heavy damage; 

D4, very heavy damage; D5, total destruction.  

 

Figure 13. Mean damage index map for Faial Island for each census tract  

Analysis of Faial Island subdivided into census tracts (“freguesia”) using the DImean method (Dolce 

et al., 1999), showing, in particular, the census tracts with the highest levels of damage (Salão, 

Ribeirinha and Pedro Miguel). 

 

Figure 14. Summary of statistical analysis of the differences between the observed and 

estimated damage using the models  

Estimated damage according to M-I (A) and M-II (B) (see text). 

 

Figure 15. Observed and estimated damage obtained with the M-II model.  
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