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(Aeolian Islands, Italy) from GPS data. 
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Panarea volcano (Aeolian Islands, Italy) was considered extinct until November 3, 2002 when 

a submarine gas eruption began in the area of the islets of Lisca Bianca, Bottaro, Lisca Nera, 

Dattilo and Panarelli, about 2.5 km  east of Panarea Island. The gas eruption decreased to a 

state of low degassing by July 2003.  

Before 2002 the activity of Panarea volcano was characterized by mild degassing of 

hydrothermal fluid. The compositions of the 2002 gases and their isotopic signatures 

suggested that the emissions originated from a hydrothermal/geothermal reservoir fed by 

magmatic fluids.  

We investigate crustal deformation of Panarea volcano using the GPS velocity field obtained 

by the combination of continuous and episodic site observations of the Panarea GPS network 

in the time span 1995-2007. 

We present a combined model of Okada sources which explains the GPS results acquired in 

the area after December 2002. The kinematics of Panarea volcano show two distinct active 

crustal domains characterized by different styles of horizontal deformation, supported also by 

volcanological and structural evidences. A subsidence in the order of several mm/yr is 

affecting the entire Panarea volcano and a shortening of 10-6 yr-1 has been estimated in the 

Islets area. 

Our model reveals that the degassing intensity and distribution are strongly influenced by 

geophysical-geochemical changes within the hydrothermal/geothermal system. These 

variations may be triggered by changes in the regional stress field as suggested by the 

geophysical and volcanological events that occurred on 2002 in the Southern Tyrrhenian area.  

 

Key words: GPS monitoring, model, gas eruption, active volcanism, Aeolian arc. 

 2



1. Introduction 41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

Crustal deformation measurements are among the most sensitive and reliable indicators to 

evaluate the volcanic hazard related to volcanic unrests (Dvorak and Dzurisen, 1997) caused 

by magma emplacement and/or fluid migration (Gottsmann et al., 2007). A clear link for the 

hydrothermal fluid contribution to geophysical signals has been found in several volcanoes 

(Todesco et al., 2004; Tikku et al., 2006) .  

On November 3  2002, a gas eruption began about 2.5 km offshore, east of Panarea Island 

(Aeolian Islands, Italy). Submarine craters opened at the top of a 2.3 km2 shallow rise of the 

seafloor, between -2 m and -30 m below sea level in the area surrounded by the islets of 

Panarelli, Lisca Bianca, Bottaro, Lisca Nera and Dattilo (hereinafter as the “Islets area”) 

(Figure 1) (Anzidei et al., 2003a, 2003b; Esposito et al., 2006). The degassing of Panarea on 

November 3rd followed a sequence of geophysical and volcanological events which occurred 

in the southern Tyrrhenian zone (Anzidei et al. 2003b; Esposito et al., 2006): the offshore 

earthquake (Ml=5.6) between Palermo and Ustica Island on September 6th, the onset of the 

paroxysmal eruption at Mt Etna on  October 27th and the eruption at Stromboli that started on  

December 28th (Figure 1 a). 

Until November 2002, the presence of a hydrothermal/geothermal system at Panarea was 

interpreted in terms of post-volcanic phenomena caused by fluid circulation due to cooling of 

a magmatic source (Romano 1973; Bellia et al.,1986; 1987; Gabbianelli et al., 1990; Italiano 

and Nuccio, 1991; Calanchi et al., 1995, Anzidei, 2000). A deep and a shallow zone were 

recognized (Italiano and Nuccio 1991; Calanchi et al. 1995). However, gas eruptions of 

similar intensity to the 2002 eruption had not been previously observed during the last century 

(Mercalli, 1883). Gas compositions and isotopic signatures suggested that  the 2002 emissions 

originated from a hydrothermal/geothermal reservoir fed by sea water and magmatic fluids 
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(Caliro et al., 2004; Chiodini et al., 2006; Capaccioni et al, 2005, 2007). Geomorphological 

evidence of past phreatic explosions, like that of November 2002, have been found in the 

relics of several craters on the seafloor, revealed by multibeam bathymetry (Anzidei et al., 

2005), as well as by geological investigations (Esposito et al., 2006). Intense hydrothermal 

activity is also evident in the Islets area.  

Prior to the 2002 event one GPS station was present on Panarea Island as part of Tyrgeonet 

Mediterranean GPS network (Anzidei et al., 1995) After November 2002, a dedicated GPS 

network was planned and set up to monitor the short-term surface and subsurface dynamics at 

Panarea volcano. In this paper we show and discuss results from GPS data from 1995 to 2007 

which include the discontinuous data from the single station for the pre-eruption period and 

seven non-continuous and two continuously monitoring stations for the post-eruption period. 

We estimate the active strain and discuss the relationship between the deformation processes 

related to the hydrothermal/geothermal system and the regional and local tectonic setting. We 

use an elastic Okada model to fit the GPS velocity field to explain the present evolution of the 

hydrothermal/geothermal system in the post eruption stage.  

 

2. Structural and Volcanic setting 

Panarea Island is located on the eastern sector of the Aeolian volcanic arc, located along the 

margin of the Southern Tyrrhenian Sea, facing the Calabrian-Peloritan mountain chain to the 

south-east and the abyssal Marsili basin to the north-west (Barberi et al., 1973, Beccaluva et 

al., 1985). The Aeolian volcanoes comprise of seven major islands (Alicudi, Filicudi, Salina, 

Lipari, Vulcano, Panarea and Stromboli), and several seamounts (Figure 1 a) emplaced on a 

15 - 20 Km thick continental crust. Their products have been dated between 1.3 Myr and the 

present (De Astis et al., 2003 and reference therein). Volcanism started during the Pliocene, in 
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connection with the subduction of the Ionian lithosphere beneath the Calabrian Arc. 

Structural, seismological, geodetic and geochemical data suggest that since the Pleistocene, 

the south-eastern propagation of the Tyrrhenian rifting and the western margin roll-back have 

been controlled by the NNW-SSE fault system (Tindari-Letojanni fault system) and different 

styles of rifting processes have been recognized (Gvirtzman and Nur, 1999; 2001; Faccenna et 

al., 2001; De Astis et al., 2003). Recent regional geodetic data show maximum strain 

contraction axes with a N-S trend off of Sicily and in the western portion of the Aeolian 

Islands and a minor NW-SE extension in the eastern Aeolian Islands (Hollenstein et al., 2003; 

Pondrelli et al., 2004; D’Agostino and Selvaggi, 2005, Esposito, 2007). The transition from 

compressional to extensional regime happens through an area with transtensional deformation 

clustering along the NNW-trending Tindari-Letojanni fault system which runs across the 

central Aeolian Islands (Pondrelli et al. 2004; D’Agostino and Selvaggi, 2005, Serpelloni et 

al., 2005; Esposito, 2007). Panarea Island is located on the eastern active sector of the Aeolian 

volcanic arc which also includes Stromboli Island and the Lamentini, Alcione and Palinuro 

seamounts. A prevailing NNE- to NE trending fault system affects the Panarea and Stromboli 

Islands (Gabbianelli et al., 1993; De Astis et al., 2003; Tibaldi et al., 2003).  

Panarea volcano is the emergent portion of a submarine stratovolcano ~ 1600 m high and ~18 

km across (Gabbianelli et al., 1993; Gamberi et al., 1997; Favalli et al., 2005) characterized by 

a large and ellipsoidal shaped platform, at ~100 m. The emergent portion of this platform 

forms Panarea Island (421 m a.s.l.) and the small archipelago with the islets of Basiluzzo, 

Dattilo, Panarelli, Lisca Bianca, Bottaro, Lisca Nera and Le Formiche. Panarea and the Islets 

are made of high-K calcalkaline, andesite to dacite and rhyolite rocks, lava domes, plugs, 

coulees and lava flows, interbedded with subordinated pyroclastic deposits also of external 

provenance. Age ranges from 149±5 to 54±8 ka (Calanchi et al., 1999; Lucchi et al., 2007). 
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Recently, the youngest age of the Panarea dome complex was determined at 20 ± 2 ka (Dolfi 

et al., 2007). The outcropping lava units on the Islets area are characterized by a variable 

degree of hydrothermal alteration that have heavily modified their mechanical parameters 

(Cas et al., 2007).  

Gravimetric measurements revealed the existence of a positive local gravimetric anomaly 

between the islet of Basiluzzo and the island of Panarea (Gabbianelli et al., 1990). Cocchi et 

al. (2008) estimated a negative magnetic anomaly between Panarea and the Islets area. In the 

Islets area a positive residual magnetic anomaly is present. A NE-trending gravity minimum, 

centered on the west of Panarea was also measured (Cocchi et al., 2008). 

Before November 2002, Panarea volcano  had been undergoing active subsidence at 1.87 mm 

yr_1 for the last 2000 years (Tallarico et al. 2003) and  continuous exhalative activity from 

several fumaroles located both inland and offshore (La Calcara, Punta Levante and Lisca 

Bianca – Bottaro, in Figure 1).  

Panarea volcano shows faults and fractures with a prevailing NE-NNE-trend and minor NW-

trend (Gabbianelli et al., 1990, 1993; De Astis et al., 2003). During the 2002 gas eruption 

(Anzidei et al., 2005; Esposito et al., 2006, 2008) two fracture systems opened on the seafloor 

in the degassing area: NNE-SSW and NW-SE trending (Anzidei et al., 2005; Esposito et al., 

2006; 2007). 

 

3. GPS networks and data analysis 

The Panarea GPS network includes seven non-continuous stations and two continuous stations 

(Figure 2). Two of the non-continuous stations are located on Panarea Island (PANA-PA3D; 

PCOR) and the others on the Islets area (BA3D, LIBI, BOTT, LINE, and PNRL) (Figure 2 

and Table 1) (Anzidei et al. 2003b; Esposito et al., 2008). BA3D, BOTT, LINE, PNRL, PA3D 
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stations were established after the 2002 gas eruption while PANA station is part of the 

Tyrrhenian Geodetic Network (Anzidei et al., 1995) and LIBI and PCOR of the IGMI network 

(Surace, 1993). Only PANA station, which is located ~3 km west of the degassing zone, was 

repeatedly occupied during five distinct campaigns before 2002 (Figures 2 and 3). So far most 

of the GPS data were collected within the 2002-2006 time span (Table 1), after the gas 

eruption. After the 2004 campaign, PANA was replaced by PA3D, located on the same 

building at a distance of ~3 m.  

The two continuous stations were installed at Panarea Island (CPAN) and at Lisca Bianca Islet 

(LI3D) (Figure 2) on May 2004 and they are included in the RING network (Selvaggi et al., 

2006).  

The non-continuous stations of Panarea network was repeatedly measured every six months in 

the 2002-2006 time span using observation windows of 48-120 hour periods in each campaign 

(Table 1). 

We analyzed the GPS data set (1995-2007) of the Panarea network together with some 

southern Italian and European EUREF permanent sites using the Bernese GPS software v.5.0 

(Dach et al., 2007).  

Daily loosely constrained solutions were generated for each campaign and later combined 

with ~ 10 years of loosely constrained solutions of a regional network of continuous stations 

in Italy, and surrounding regions, provided routinely by the INGV (Serpelloni et al., 2007). To 

assure a reliable combination, nine continuous anchor IGS sites (Figure 2a) were always 

included in all daily solutions. To express the time series in a stable reference frame, the 

Panarea solutions were combined with other available clusters whose networks cover a large 

part of the European region (Serpelloni et al., 2007). This strategy allowed us to obtain a daily 

Helmert transformation on the ITRF2005 reference system (Altamimi et al., 2007), based on 
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20 common sites. The combined daily solutions were then transformed into the ITRF2005 

reference system by estimating four  parameters: three translations and a scale factor .  

Fitting the ITRF2005 time series we estimated site velocities together with periodic signals, 

eventual steps, always using the complete covariance matrix. To properly calibrate the formal 

errors, the standard errors were re-scaled, according to the procedure proposed by Williams 

(2003). 

The velocity field with respect to the fixed Eurasian plate (Table 2) suggests a complex 

kinematic framework, where regional tectonics and local volcanic and tectonic deformations 

coexist. Comparing the residual velocity field relative to the Panarea network barycenter 

(Panarea reference frame) with the one computed with respect to the Calabrian rigid block 

(Gvirtzman and Nur, 1999, 2001; Doglioni et al.1991, D’Agostino and Selvaggi, 2004), 

defined by the GPS sites PORO, CELL, VLSG and MSRU, did not reveal any significant 

difference (0.39 ± 0.25 mm/yr) in the deformation field of Panarea. We therefore, concluded 

that adopting the Panarea reference frame would allow to describe the local magmatic and 

tectonic deformation from the regional deformation.  

 

Velocity and strain rate fields 

The GPS time series shown in Figure 3 are relative to the fixed Eurasian plate. A general 

subsiding trend affects all the stations of  the Panarea network with values ranging from -3 to -

9 mm/yr, with the exception of PCOR station. The latter is placed on the west sector of 

Panarea Island and does not show any vertical motion.  

PANA is the only GPS station observed before 2002 (Figure 3a), hence we used its data to test 

the possibility of a change in the subsidence rate caused by the gas eruption. After November 

2002, PANA was occupied during three different campaigns in December 2002, May 2003 
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and May 2004. Our analysis does not reveal any significant change in the rate of the Up 

component of PANA, before and after the 2002 gas eruption (-6.7 ± 1.3 mm/yr before 

November 2002; -7.4 ± 0.9 mm/yr after November 2002). A relevant feature recorded in the 

PANA time series, a 4.2 ± 0.1 cm uplift, occurred between June 2000 and November 2002, 

probably during the 2002 gas eruption. 

Another puzzling discontinuity occurred at LI3D continuous station, located on Lisca Bianca 

Islet (Figure 3b). Between June 18th  and 19th 2005 an instantaneous step in the horizontal 

components, of 12.1 ± 0.7 mm in the SE direction, was recorded. The inspection of this site 

did not reveal any manipulation or failure of the receiver-antenna equipment and the GPS data 

were continuously recorded during the event. Neither did the sky plot (i.e. the intrinsic noise 

of each single GPS satellite range observation) reveal any anomaly during the entire month of 

June 2005. For these reasons we argue that the signal recorded by LI3D is related to volcano 

dynamics. In the same time the other continuous station, CPAN, not recorded a the horizontal 

displacement indicate by an offset in time serie (Figure 3b)  

 

The velocity field of the Panarea volcano with respect to the Panarea reference frame is shown 

in Figure 2. PANA is the only site that was measured before the 2002 gas eruption and where 

the pre- and post- event velocity can be estimated. Before the gas eruption its velocity was low 

(1.8 ± 1.3 mm/yr) and WNW trending. Just after the gas eruption, it changed abruptly in 

direction and magnitude, pointing towards SSE.  

The horizontal velocity field, within the 2002 – 2007 time span, subdivides the Panarea area 

into two different parts, which are separated by a major NE-trending fault system revealed by 

bathymetric surveys (Gabbianelli et al., 1990; Gamberi et al., 1997; Anzidei et al., 2005). We 

labeled “Area A” the one corresponding to the NW portion of Panarea Island and “Area B” 
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the one corresponding to the Islets area and the SE portion of Panarea Island (Figure 2). The 

velocities of Area B are roughly convergent towards the 2002-2003 degassing area.  

The horizontal strain rate estimated by STRAINGPS software (Pietrantonio and Riguzzi, 

2004) of Area B, is shown in Figure 2b. The current deformation of the Islets area shows 

contraction at 3.7 ± 0.5 μstrain/yr with a WNW trend.  

 

4. Modeling of GPS data 

Esposito et al. (2006) interpreted the 2002 gas eruption in terms of an accumulation at depth 

of pressurized gas from a steady or quasi-steady release of gas from a deep magmatic source, 

probably a cooling magma body, and from the periodic release of the overpressure when the 

tensile strength of the overlying rocks is overcome either by the increased internal pressure or 

by external changes in the tectonic stress.  

Starting with this qualitative model of Panarea volcano we analytically modeled the GPS 

results collected between 2002, after the November crisis, and 2007.  

We defined the computational domain of Panarea volcano (Figure 4) as composed of a largely 

submarine volcano extended below sea level for 1100 m and of emerged islands above sea 

level characterized by the presence of a hydrothermal-geothermal system where volcanic gas 

sampled in 2002-2003 had an estimated  temperature of up to 300°C and a bulk fluid pressure 

of about 100 bar (Chiodini et al., 2006). We also considered the presence of a) a regional NE-

SW fault system as suggested by structural data (Gamberi et al., 1997; De Astis et al., 2003; 

Esposito et al., 2006; Esposito, 2007; Acocella et al., 2008) and constrained by GPS results; b) 

two main vertical fracture systems with NNE and NW trends located west of Bottaro Islet that 

have been the main pathways for upwelling of hydrothermal fluids(Esposito et al., 2006).  
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We exploited the capability of the Okada solutions (Okada, 1985) to model the GPS data. 

Although such models account for only an elastic behavior, neglecting heterogeneities and 

structural discontinuities, they are widely used in the modeling of volcanic areas (Dvorak and 

Dzurisin, 1997; Miura et al., 2000; Lowry et al., 2001; Jousset et al., 2003; Lagios et al., 2005; 

Sepe et al., 2006) where cracks or discontinuities slightly alter the elastic constants but not the 

fundamental elastic behavior of a volcano (Jaeger and Cook, 1977; Dvorak and Dzurisn, 

1997). 

To reproduce the realistic hydrothermal-geothermal system (Figure 4), we carefully set up a 

system of four tensile/shear sources, partially constrained (see Table 3) by the geochemical, 

volcanological and structural remarks illustrated above. 

The depth of the pressure source is assessed to be between 800 m and 900 m accounting for 

the geochemical data (Chiodini et al., 2006). The NE major regional fault system, dipping 70° 

with an azimuth of 45° from the north (Gamberi et al. 1997; De Astis et al., 2003; Esposito, 

2007; Acocella et al., 2008), is considered to have an infinite length to avoid the unrealistic 

border effects; finally, the two vertical fracture systems, NNE (27°) and NW (135°) located at 

Islets area, are modeled with two segments of length 1100 m and 800 m, respectively 

(Esposito et al., 2006). 

For the retrieval of the source parameters left free (Table 3), we used a non-linear inversion 

algorithm based on the Levenberg-Marquardt least-square approach (Levenberg, 1944; 

Marquardt, 1963) and its implementation in the MINPACK library (Moré et al, 1980). This 

algorithm is an efficient combination of the gradient descent and the Gauss-Newton 

algorithms (Press et al., 1992) and the best-fit configuration of the parameter vector m is 

found by minimization of a cost function of the type: 
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where, for the ith point, dobs are the observed data, dmod(m) are the predicted data based on the 

model m and σi are the standard deviations coming from the GPS data processing. 

Our results (Table3) show that the source that best fits the GPS velocities during post eruption 

stage is a composite by inflation/deflation of a hydrothermal /geothermal system combined 

with  movement along the regional NE-SW fault and displacements of the fracture systems at 

the 2002 degassing area. 

The model results show (italic in Table 3) the horizontal source located at a depth of  900 m 

and characterized by a vertical movement of -0.7 cm/yrs. The NE regional fault, 800 m wide, 

shows a rake of -120°, 0.2 cm/yrs of slip and an opening of 0.3 cm/yrs. The NW fracture 

system is 800 m wide with a negligible displacement while the NNE fracture system, 900 m 

wide, shows a closing of -0.7 cm/yrs. Results show  good reliability: the RMS of the residual 

of the best-fit solution is 0.2 cm/yrs and the normalized χ2 is 1.1. Figure 2 shows the velocity 

field obtained by GPS data and the results of the inversion . 

In addition, we tried to test the reliability of a Mogi (1958) point-pressure source, setting this 

source beneath the Islets area. Unfortunately, this simple model could not explain the 

displacements of the Panarea GPS network, because of the wide discrepancy between the 

observed and the modeled data (χ2 = 3.12), and was therefore, excluded. 

 

5. Discussion 

Gas eruptions are typical of active volcanoes as a consequence of  the combination of several 

processes that may involve only the variations of pressure and temperature conditions in 

hydrothermal/geothermal systems and/or the response to shallow magmatic intrusions 
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(Battaglia et al., 2006; Gottsmann et al., 2007). The 2002 gas eruption at Panarea volcano 

reflects a deep magmatic intrusion which modified the equilibrium of the 

hydrothermal/geothermal system reservoir (Chiodini et al., 2006; Capaccioni et al., 2007).  

We propose a sketch to explain the evolution of the 2002 gas eruption using GPS velocities 

compared to the volcanological and structural framework. The sketch defines three stages pre-

, syn- and post-gas eruption (Figure 5). The hydrothermal/geothermal system is represented by 

two layers: a) a fluid reservoir b) a shallow reservoir characterized by a mixture of volcanic 

fluids and marine water. We consider that Area A, including the NW portion of Panarea 

Island, is mostly made of coherent rocks, whereas Area B, representing the SE portion of 

Panarea Island and the Islets, is characterized by highly fractured and permeable rocks. 

 

Pre-eruption stage – Stage 1 

In the pre-eruption stage the PANA GPS site recorded a subsidence of 6.7 ± 1.3 mm/yr 

(Figure 3) with a WNW motion of about 2 mm/yr (Figure 2). During this period degassing 

was mild and mostly located in Area B (Islets area) and, subordinately, in Panarea Island (La 

Calcara, Figures 1 and 4) and Basiluzzo (Punta Levante, Figures 1 and 4). In stage 1, 

conditions for degassing depend on the rock properties. Hydrothermal fluids upwell mostly 

through the highly fractured rock mainly present in Area B, without overpressure since 

fractures are semi-opened. The gas pressure inside the reservoir (Figures 4 and 5) is  and 

the tensile strengths of rocks are 

1P

Aτ and Bτ  in correspondence of Area A and Area B, 

respectively. We assumed 

297 

Bτ <  Aτ  since Area B is characterized by more intense fracturing.  

does not reach the tensile strengths of the rocks.  

1P298 

299 

300 Syn-eruption stage - Stage2 
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The addition of magmatic gases in 2002 (Caliro et al., 2004; Capaccioni et al., 2007) within 

the hydrothermal/geothermal system induced an increase of pressure and temperature and 

produced the gas eruption in the Islets area (Area B), with the opening of hundreds of gas 

vents aligned NNE and NW trending (Anzidei et al., 2005; Esposito et al., 2006) and vertical 

crustal deformation of 4.2±0.1 cm recorded at PANA site, located at ~3 km to the west, in 

Area A. Furthermore, about 20 low magnitude (Md ≥ 1.0) and high-frequency seismic events 

occurred on November 3, 2002 between 3:37 GMT and 5:00 GMT i.e. only a few hours 

before the local inhabitants of Panarea witnessed boiling sea in the surroundings of Lisca 

Bianca and Bottaro (Saccorotti et al., 2003; Linde et al., 1994). Stage 2 is characterized by an 

increase in pressure inside the horizontally extended reservoir, where P

301 

302 

303 

304 

305 

306 

307 

308 

309 

310 

311 

2 >> P1, favors 

conditions for the initiation of hydrofractures and rupture. This condition is expressed by the 

relation τσ +≥+ 3el pp  (Gudmundsson et al., 2001) where is the lithostatic pressure, 

 is the exceeding pressure obtained by the difference between  pressure P

lp312 

313 ep 2 , in the reservoir 

at the time of the rupture and the lithostatic pressure, 3σ  is the minimum compressive 

(considered positive) principal stress, acting perpendicular to the fractures and 

314 

τ  is the tensile 

strength of the rocks (

315 

Aτ and Bτ  at Area A and Area B, respectively). Normally, rupture and 

initiation of hydrofractures occur when  reaches the tensile strength of the local rocks 

(Gudmundsson et al., 2001).  

316 

317 

318 

319 

320 

321 

322 

323 

ep

Post-eruption stage - Stage 3  

GPS data collected after the gas eruptive event in the 2002 - 2007 time span, (Figure 3) show 

a general subsidence with a mean rate from -3 to -9 mm/yr. This subsidence is likely to be 

associated with degassing of the hydrothermal/geothermal system, though a rate of subsidence 

spread over the region of the Aeolian Islands is present (Bonaccorso, 2002; Mattia et al., 
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2008). The planar velocities of Area B are roughly convergent towards the 2002 degassing 

area (Figure 2). The pre-eruption conditions, in terms of flux intensity and geochemical 

characters, were restored in a relatively short time as suggested by Capaccioni et al. (2007). 

Gas pressure decreased (P

324 

325 

326 

327 

328 

329 

330 

331 

332 

333 

334 

335 

336 

3 << P2) and the degassing became located only along the principal 

locations of vents opened during the gas eruption within Area B.  

Post-eruptive conditions may also involve the discharge of hydrothermal fluids through 

opened fractures at Area B causing a progressive closure of some fractures by self-sealing 

processes induced by the progressive drop of pressure and temperature (Gudmundsson 1999, 

2001; Olsen et al., 1998; Cas et al., 2009) and changing the intrinsic value τ of the tensile 

strength of the rocks.  

Continuous GPS data collected at the Islets area have also shown a clear and very rapid 

deformation with horizontal, but not vertical, displacements at the Lisca Bianca site (Figure 

3).  

337 

338 

339 

According to the results of the Okada model (Table 3) the decrease in fluid pressure PΔ  that 

occurred passing from Stage 2 to Stage 3, can be determined by using the relation 

(Gudmundsson, 1999)  

( )212 ν−
⋅Δ

=Δ
L

EWP  340 

341 

342 

343 

344 

345 

346 

where ΔW is the modeled displacement, E is  Young’s modulus of the rocks in Area B, L is 

the length of the modeled faults and ν is Poisson’s ratio of the rocks. 

Assuming that the static Young’s modulus of the basaltic-dacite outcropping in Area B is 

E=15 GPa , ν =0.25  (Gudmundsson, 1999; Schultz, 1995), and ΔW and L are given by the 

Okada modeling (Table 3), we obtain a decreased fluid pressure of 0.05 MPa for the NNE 

system and negligible variations for the NW source. 
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This rough estimate of the pressure suggests that the present-day degassing of the Panarea 

hydrothermal/geothermal system is mainly controlled by the NW faults system present in 

Area B. At any rate, the effects of pressure and temperature changes within the 

hydrothermal/geothermal fluids, are distributed throughout Panarea volcano, as shown by the 

subsidence trend and by the horizontally extended reservoir model (Table 2 and Figures 2 and 

5). 

 

The scenario proposed by the modeling of post-eruption stage deformations is consistent with 

GPS pattern velocities and with tectonic and volcanic data. Velocity patterns can generally be 

interpreted in terms of simple source geometries that represent sills, dikes or plugs. The 

migration of hot fluid inside the hydrothermal/ geothermal system plays a role to magnitude 

and geometry of ground surface displacements in volcanic systems (e.g. Todesco et al., 2003, 

2004; Battaglia et al., 2006; Hurwits et al., 2007).  

Our model results point out the role of NE- and NW- trending fractures as the main pathways 

for the gas exhalation in the Islets area and identify the crucial role of the regional 

discontinuity NE-SW located between Panarea island and Islets area (Gamberi et al., 1997; De 

Astis et al., 2003; Esposito et al., 2006; Esposito, 2007; Acocella et al., 2008). The November 

2002 gas eruption can be interpreted as the evolution of a hydrothermal system fed by a deep 

source of magmatic fluids capable to build up pressure and temperature at some shallow level 

where the migration of fluids causes periodically the tensional strength of the confining rocks 

to be overcome allowing the sudden release of the pressurised gas  

The relationship between earthquake and volcano eruption was revealed by certain statistical 

analysis of events of global scale (Newhall and Dzurisin, 1988; Linde and Sacks, 1998). In 
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393 

events with Ml ≥ 8 the seismic wave produced by the earthquake may disturbs: a) the magma 

reservoir, leading to eruption b) the status of the regional stress by changing it.  

The November 3, 2002 gas eruption followed the earthquake (Ml 5.6) of September 6th 

between Palermo and Ustica Island, correlating with several aftershocks, the strongest of 

which of Ml 4.3 (Azzaro et al., 2004, Rovelli et al., 2004) and with the onset of the strong 

eruption at Mt Etna on October 27th. It preceded the paroxysmal eruption at Stromboli that 

began December 28th and finished with an explosion on April 5, 2003. The Palermo 

earthquake changed the regional strain and triggered the reservoirs of three volcanoes (Walter 

et al., 2009). The eastern portion of the Aeolian Islands is characterized by an extensional 

regional strain consistent with a greater vulnerability to the dynamic triggering (Hill, 2008). A 

similar sequence of events occurred in the Southern Tyrrhenian area in 1865 (Esposito et al., 

2006; Billi and Funiciello, 2008) as reported by Mercalli (1883). 

 

6. Conclusion 

The implementation and monitoring of the Panarea local GPS network have allowed to define 

a detailed pattern of deformation, unknown before the 2002 gas eruption. Results from the 

local GPS network are mainly sensitive to the local deformation field rather than the 

extensional regional deformation field recognized in the eastern sector of the Aeolian Islands.  

Two different kinematic domains have been recognized in the Panarea area, separated by the 

regional NE-SW fault: Area A, which includes NW portion of Panarea Island, and Area B 

which includes the Islets area and SE portion of Panarea Island. In the Islets area, a shortening 

WNW-trend in the order of 10-6 yr-1, has been estimated within the 2002-2007 time span. GPS 

results (2002-2007) have been modeled by an elastic, homogenous, isotropic half-space 

system strongly influenced and related to hydrothermal/geothermal fluid migration. The best-
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417 

fitting model for GPS data collected at post eruption stage, was found through a combination 

of Okada sources. One wide and horizontally extended reservoir simulates the source of 

pressure within the hydrothermal/geothermal system, at a depth of ~ 900 m. The upwelling of 

gas along the NNE- and NW trending fractures at Islets area on 2002-2003 was favored by 

tectonic setting and the mechanical property of rocks. The present day WNW shortening is 

consistent with closing along NNE fractures, as suggested by the Okada model. The 

overpressure data suggests that, presently, the degassing of the Panarea 

hydrothermal/geothermal system is mainly controlled by NW fracture systems.  

We also believe that the continuous and general subsidence trend observed, during the 1995 – 

2007 time span, is mainly due to a decrease of the thermo-baric conditions within the 

hydrothermal/geothermal system although also a subsidence in the region of the Aeolian 

Islands is recognized (Bonaccorso, 2002; Mattia et al., 2008). 

The November 3, 2002 degassing was triggered by changes in the extensional regional strain 

oriented NW-SE in the eastern Aeolian arc. Modeling of GPS data also provides new 

indications on the regional NE-SW fault system, that has an oblique kinematics, suggesting an 

additional component of dextral shear and a predominantly NW-SE normal extension 

observed by structural data. The extension value estimated by the model (0.3 cm/yrs) is 

consistent with the value <100 nanostrain/yr (D’Agostino and Selvaggi, 2004, Esposito, 2007) 

recognized in the eastern Aeolian arc. 

The continuous GPS data recording on the Islets area has allowed to monitor the evolution of 

the degassing phases, evidencing that horizontal quasi-instantaneous displacement occurred 

on June 2005 at Lisca Bianca Islet. Such displacement is characterized by aseismic spreading 

and/or cracks closure while vertical displacement has not been recorded. This sudden offset is 

recorded only at LI3D continuous station. We suppose that it may be connected to a very local 
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fracture system rather than a signal of broader tectonic origin, probably due to migration of 

ppressurised fluids that exert an additional pore-pressure over country rocks.. 

 

The GPS Panarea network is a powerful tool to understand the ground deformations at a local 

scale, in the short and long-term, due to fluid migration in the hydrothermal/geothermal 

systems. 

Therefore, the Panarea volcano deserves the same monitoring and hazard assessment effort of 

any active volcano located nearby human settlements. In particular,  the most critical scenario, 

of the potential hazard, is related to phreatic eruptions that may occur offshore as well as on 

the inhabited island of Panarea. 
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Figure 1 – Location of the 2002 gas eruption (DTM from Anzidei et al, 2006) a) Structural 

sketch map of the Southern Tyrrhenian Sea and Aeolian Islands (After De Astis et al., 2003) 

(TL Tindari-Letojanni fault system, SA Sisifo-Alicudi fault system). Also shown are the 

chronology and location of eruptions and earthquakes during late 2002; b) Aerial view of 

Panarea Island and the archipelago. The arrow indicates the location of major emission point 

to the SW of Bottaro; c) The gas rose to the sea surface forming bubbles some meters in 

diameter. 

 

Figure 2 – Panarea GPS network. GPS velocities with 1 σ uncertainties relative to Panarea 

reference frame. Fit of four Okada sources (green arrows) and comparison between estimated 

GPS velocities. a) Anchor IGS sites;. b) Principal axes of the horizontal strain rate tensor and 

associated 1 σerror calculated from relative velocity fields  

 

Figure 3 – Coordinate time series of Panarea GPS network relative to Eurasia reference 

frame. The vertical line represents the estimated step. Formal error 1σ. Inside each box rate is 

shown. a) Coordinate time series of PANA station pre and post 2002 gas eruption in time span 

1995-2004. PANA time series show a clear offset between 2000 and 2002. b) Coordinate time 

series of the two continuous and the seven non-continuous stations in time span 2002.8 – 

2007.5. The station of LI3D recorded a horizontal displacement in the middle of 2005 (from 

June 18th to June 19th ) 

 

Figure 4 –Conceptual model of Panarea volcano a) projection and section in WNW direction 
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Figure 5 – Schematic evolution of the Panarea hydrothermal- geothermal system during the 

1995 – 2007 time span 
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Figure 1 – Location of the 2002 gas eruption (DTM from Anzidei et al, 2006) a) Structural 
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reference frame. Fit of four Okada sources (green arrows) and comparison between estimated 

GPS velocities. a) Anchor IGS sites;. b) Principal axes of the horizontal strain rate tensor and 

associated 1 σ error calculated from relative velocity fields  
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Figure 3 – Coordinate time series of Panarea GPS network relative to Eurasia reference 

frame. The vertical line represents the estimated step. Formal error 1σ. Inside each box rate is 

shown. a) Coordinate time series of PANA station pre and post 2002 gas eruption in time span 

1995-2004. PANA time series show a clear offset between 2000 and 2002. b) Coordinate time 

series of the two continuous and the seven non-continuous stations in time span 2002.8 – 

2007.5. The station of LI3D recorded a horizontal displacement in the middle of 2005 (from 

June 18th to June 19th ) 
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Figure 4 –Conceptual model of Panarea volcano a) projection and section in WNW direction 
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Figure 5 – Schematic evolution of the Panarea hydrothermal- geothermal system during the 

1995 – 2007 time span 
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Tables 804 

Table 1 – Non-continuous stations of Panarea network: observation history, networks 

95 96 97 98 99 00 01 02 03 04 05 06
1 BA3D Panarea
2 BOTT Panarea
3 LI3D* Panarea
4 LIBI IGM
5 LINE Panarea
6 PA3D Panarea
7 PANA Tyrgeonet
8 PCOR IGM
9 PNRL Panarea

*permanent site from May 2004
campaign measurements   805 

806 

807 

 

 

Table 2 - GPS site positions, Velocities, 1 -  uncertainties

relative to Eurasia

SITE lon lat East E North N Up Up
ID ° ° mm/yr mm/yr mm/yr mm/yr mm/yr mm/yr

BA3D 15.116 38.661 -0.1 1.1 -0.2 1.2 -4.7 2.9
BOTT 15.111 38.637 -0.9 0.9 2.9 0.6 -6.4 1.1
CPAN 15.077 38.642 1.3 1.0 3.3 0.6 -7.0 0.9
LI3D 15.114 38.638 -1.9 0.5 2.8 0.3 -7.4 0.4
LIBI 15.113 38.639 -2.4 1.5 2.7 1.1 -3.1 2.4
LINE 15.107 38.634 -0.6 1.1 1.8 1.2 -9.2 2.8

PANA-PA3D 15.074 38.632 2.1 1.7 -1.0 0.8 -7.3 2.7
PCOR 15.064 38.638 0.7 1.1 3.7 1.0 -1.8 3.0
PNRL 15.100 38.641 2.4 2.0 -0.1 2.2 -5.5 5.3

relative to rigid motion of Panarea volcano

SITE lon lat East North Up Up
ID ° ° mm/yr mm/yr mm/yr mm/yr mm/yr mm/yr

BA3D 15.116 38.661 -0.9 1.1 -2.4 1.2 -4.7 2.9
BOTT 15.111 38.637 -1.2 0.9 0.6 0.6 -6.4 1.1
CPAN 15.077 38.642 0.9 1.0 0.4 0.6 -7.0 0.9
LI3D 15.114 38.638 -2.3 0.5 0.5 0.3 -7.4 0.4
LIBI 15.113 38.639 -2.7 1.5 0.4 1.1 -3.1 2.4
LINE 15.107 38.634 -0.9 1.1 -0.6 1.2 -9.2 2.8

PANA-PA3D 15.074 38.632 1.9 1.7 -3.9 0.8 -7.3 2.7
PCOR 15.064 38.638 0.4 1.1 0.6 1.0 -1.8 3.0
PNRL 15.100 38.641 2.0 2.0 -2.6 2.2 -5.5 5.3  808 

809  
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810  

 
Horizontal 

source  
NE-SW fault 

system  
NNE fracture 

system 
NW fracture 

system 

Length (m) infinite infinite 1100 800 
Width (m) infinite 800 900 800 

Depth (m) 900 0 0 0 
Azimuth angle (°) n.a. 45 27 135 
Dip angle (°) 0 70 90 90 
Rake angle (°) 0 -120 0 0 
Slip (cm·yr-1) 0 0.2 0 0 
Opening (cm·yr-1) -0.7 0.3 -0.7 0 

 811 

812 

813 

814 

815 

Table 3 – Best-fit configuration of the four elastic sources. In italic are the parameters 

retrieved by non-linear inversion; in bold those constrained by geochemical, volcanological 

and structural data. The location of the sources is indicated in Figure 4. 
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